Robust Location Estimators with Applications in HEP Data Analysis

R. Frühwirth, HEPHY, Vienna, Austria

University of Oslo, 16 June 2006

- Robust location estimators in 1D
- Application to energy loss data
- Robust location estimators and regression in 3D
- Application to vertex reconstruction
- Summary and outlook

Introduction to robust location estimators

 $\hfill A$ function $\mu(X)$ of a (continuous) random variable X is called a measure of location if

1.
$$\mu(aX+b) = a\mu(X) + b$$

2. $X \ge 0 \Longrightarrow \mu(X) \ge 0$

Property 1. is called affine equivariance.

- Examples: Mean, median, quantiles, linear combinations of quantiles, mode
- \Box An estimator of $\mu(X)$ is called a location estimator.
- Examples: Sample mean, sample median, order statistics, linear combinations of order statistics, sample mode

- □ If the parent distribution has long tails or if the sample is contaminated by outliers a location estimator should be robust.
- Robustness of an estimator can be quantified by its breakdown point, the smallest proportion of outliers needed to make the estimator useless (unbounded).
- **Examples**:
 - ♦ The sample mean is not robust. Its finite-sample breakdown point is $\epsilon_n^* = 1/n$, and its asymptotic breakdown point is $\epsilon^* = 0$.
 - ♦ The sample median is highly robust. Its finite-sample and its asymptotic breakdown point is $\epsilon_n^* = \epsilon^* = 0.5$.

R. Frühwirth

Estimators based on modal intervals

- ♦ In-depth study in Bickel and Frühwirth, CSDA 50 (2006).
- LMS (least median of squares): minimize the median of the squared residuals.

$$\mu_{\text{LMS}} = \arg\min_{\mu} \mod r_i^2(\mu), \quad r_i(\mu) = x_i - \mu$$

- In 1D $\mu_{\rm LMS}$ is the midpoint of the shortest interval containing 50% of the data.
- The FSBP and the ABP are $\epsilon_n^* = \epsilon^* = 0.5$.

Estimators based on modal intervals (cont)

- Shorth: mean of the data in the shortest interval containing 50% of the data.
- Breakdown point $\epsilon_n^* = \epsilon^* = 0.5$.
- ♦ HSM (half sample mode): iterated LMS.
 - Find the shortest interval containing 50% of the data.
 - Keep only data in this interval and repeat until only two observations are left.
 - The HSM is the mean of the last two observations.
 - Breakdown point $\epsilon_n^* = \epsilon^* = 0.5$.

Estimators based on modal intervals (cont)

- ♦ FSM (fraction of sample mode): generalized HSM.
 - Each successive modal interval contains a fraction p of the data.
 - Breakdown point $\epsilon^* = \min(p, 1-p)$.
- FSMW (fraction of sample mode with weights): generalized FSM.
 - Each observation has a weight assigned to it.
 - Each successive modal interval contains a fraction p of the total sum of the weights.

Other estimators of the mode

EPDFM (mode of the empirical density function): maximum of the smoothed data histogram (kernel estimator).

$$\hat{f}(x) = \frac{1}{nh\sqrt{2\pi}} \sum_{i=1}^{n} \exp\left[-\frac{1}{2} \left(\frac{x - x_i}{h}\right)^2\right]$$

 h is a smoothing parameter determined from a robust scale estimator, e.g. MAD (median of the absolute deviations from the median).

Other estimators of the mode (cont)

- PM (parametric mode): maximum of a pdf (e.g. normal) with location and scale estimated from the data.
 - If necessary, the data can be transformed for a better approximation by the chosen family.
 - The location and scale estimates can be classical (mean and standard deviation) or robust (median and MAD).

Estimators based on order statistics

♦ L-estimators: linear combinations of order statistics.

$$\mathcal{L}(x_1,\ldots,x_n)=w_1x_1+\ldots+w_nx_n$$

Affine equivariance requires $\sum w_i = 1$.

The breakdown point depends on which weights are different from zero. If i is the smallest and j is the largest index with a weight different from zero, the FSBP is

$$\epsilon_n^* = \min(i, n - j + 1)/n$$

Special cases: median, truncated means

Estimators based on trimming or down-weighting

♦ LTS (least trimmed squares): minimize the sum of the h smallest squared residuals.

$$\mu_{\text{LTS}} = \arg\min_{\mu} \sum_{i=1}^{h} r_{[i]}^2(\mu), \quad r_i(\mu) = (x_i - \mu) / \sigma_i$$

- Exact computation by exhaustive search (prohibitive), approximate computation by iteration.
- Maximum breakdown point is $\epsilon_n^* = 0.5$ for h = n/2 + 1.

R. Frühwirth

Estimators based on trimming or down-weighting (cont)

 \diamond M-estimator: minimize the sum of a function of the residuals.

$$\mu_{\rm M} = \arg \min_{\mu} \sum_{i=1}^{n} \rho(r_i(\mu)), \quad r_i(\mu) = (x_i - \mu) / \sigma_i$$

- $\rho(x) = x^2$ gives the mean, $\rho(x) = |x|$ gives the median (if all σ_i are equal).
- $\rho(x)$ should grow less quickly than a quadratic function.
- Computation by iterated re-weighted mean, with weights

$$w_i = \frac{\psi(r_i)/\sigma_i}{r_i}, \quad \psi(x) = \rho'(x)$$

R. Frühwirth

Estimators based on trimming or down-weighting (cont)

Adaptive estimator: minimize the sum of weighted squares residuals.

$$\mu_{\rm M} = \arg\min_{\mu} \sum_{i=1}^{n} w_i r_i^2(\mu), \quad r_i(\mu) = (x_i - \mu) / \sigma_i$$

The weights describe the compatibility of the observation with the estimate:

$$w_i = \frac{\exp(-r_i^2/2T)}{\exp(-r_i^2/2T) + \exp(-C^2/2T)}$$

- C is a cut-off, T is a temperature.
- Computation as an iterated re-weighted mean.

- Estimators based on residuals can be immediately generalized to robust regression.
 - ♦ LMS regression
 - ♦ LTS regression
 - ♦ M regression
 - ♦ Adaptive regression
- Combinatorial optimization
- Dependent on starting value

- □ Joint work with M. Regler and M. Friedl (ICATTP 2005).
- The experimental data
 - ♦ Beam (KEK): Pions with p = 4 GeV/c
 - ♦ Detector: 300 micron silicon wafer, 51 micron pitch
 - ♦ Double-sided, data from p side
 - Amplification by the APV25 front-end chip (developed for CMS)
 - ♦ Low electronic noise (739 e-h pairs)
 - ♦ Pedestal subtraction
 - Common mode correction

Signal data

- Data modelling
 - ♦ Model: Bichsel convoluted with Gaussian noise
 - ♦ Perfect fit
 - ♦ Fitted noise width (723) agrees well with experiment (739)

- Generation of random samples
 - Generate 50000 random samples of size 15 from the experimental distribution.
 - \diamond Add various amounts of uniform noise.
 - Study (parametric) maximum likelihood and (non-parametric)
 L-estimators.
 - Maximum likelihood uses Bichsel model, convoluted with Gaussian

Optimal L-estimator

- \diamond Given a location to be estimated, there is an equivariant L-estimator $\mathcal{L}_{\rm opt}$ with the smallest variance.
- The optimal weights are estimated from the data, using the first two moments of the order statistics:

$$\vec{\mu} = E(\vec{x}), \quad C = \operatorname{cov}(\vec{x})$$

- The two largest order statistics have very large variance and are dropped.
- ♦ More order statistics can be dropped for higher robustness.

♦ Under the constraints $E(\mathcal{L}_{opt}) = t$ and $\sum w_i = 1$ the optimal weights are determined by minimizing

$$M(\vec{w}) = \vec{w}^{\mathrm{T}} C \vec{w} - 2\alpha (\vec{w}^{\mathrm{T}} \vec{\mu} - t) - 2\beta (\vec{w}^{\mathrm{T}} \vec{e} - 1)$$

♦ The explicit solution is given by

$$\vec{w}_{\rm opt} = \Delta^{-1} B(t\vec{e} - \vec{\mu})$$

with

$$B = C^{-1}(\vec{\mu}\vec{e}^{\mathrm{T}} - \vec{e}\vec{\mu}^{\mathrm{T}})C^{-1}, \ \Delta = \vec{\mu}^{\mathrm{T}}B\vec{e}, \ \vec{e} = (1, \dots, 1)^{\mathrm{T}}$$

- Comparison of the separation power (ratio of mean to standard deviation)
 - Truncated means of subsets of size 2,4,6,7,8,10
 - ♦ Optimal L-estimator
 - ♦ ML-estimator
- Contamination with various amounts of noise (uniform in the range of the observations)

- \square Separation ratio ρ drops by about 5% when 2% noise are added
- Optimal L-estimator slightly better than truncated means
- Without noise, means of observations from 1 to 6 and 1 to 7 are nearly as good
- With noise, mean of observations from 2 to 7 is nearly as good
- Estimation of median (mean of observations 7 and 8) gives inferior separation
- ML estimator is not equivariant, slightly worse than the best L-estimators and much slower to compute

Robust location estimators and regression in 3D

□ True 3D location estimators:

- LMS: the point with minimizes the median of the (squared) distances to all data points, center of the smallest sphere covering half of the data
- \Leftrightarrow MVE (Minimum volume ellipsoid): center of the minimal ellipsoid covering h data points (h > n/2)
- ♦ MCD (Minimum covariance determinant): Mean of the h points for which the determinant of the covariance matrix is minimal (h > n/2).
- Computation tends to be slow

□ Coordinatewise 1D location estimators:

- ♦ Coordinatewise median, LMS, HSM, FSM, . . .
- □ Cannot be affine equivariant (only exception: arithmetic mean!)
- Need not be inside the convex hull of the observations
- But: much faster to compute
- Important for fast and robust initialization of vertex fit

LTS, M-estimator, Adaptive estimator:

- Straightforward generalization from 1D case, both for robust location estimation and for robust regression
- Implemented as iterated re-weighted LS-estimator (regression or Kalman Filter)
- Used for robust precision estimates of interaction vertices

- Need fast and robust location estimators for approximate initial estimate (expansion point)
- Need precise but robust regression for estimation of vertex position and track momenta
- Finding of secondary vertices by iterated robust estimation
 - ♦ Compute robust estimate of vertex position
 - Find tracks not compatible with estimated vertex
 - ♦ Repeat on set of incompatible tracks

Studies

- Study of LS, LTS and adaptive estimator with synthetic data (J. D'Hondt et al., IEEE TNS)
- Robust vertex reconstruction in CMS with simulated data (W. Waltenberger, thesis)
- ♦ Gaussian-sum filter for vertex reconstruction (R. Fruehwirth and T. Speer, CPC)

- Sensitivity of Robust Vertex Fitting Algorithms J. D'Hondt, R. Frühwirth, P. Vanlaer, W. Waltenberger IEEE Trans. Nucl. Sci. 51 (2004) 2037.
 - ♦ Performance of LS, LTS and AVF on synthetic vertices
 - ♦ Type-1 outliers: variance inflation
 - ♦ Type-2 outliers: shift
 - ♦ Various multiplicities

- □ Study of type-1 outliers
 - $\diamond \sigma_{\rm out}/\sigma_{\rm inl} = 3,10$
- 20 tracks in total
- $\hfill\square$ Look at pulls, residuals, $\chi^2\mbox{-}{\rm probability}$

RMS of pulls

RMS of residuals

- □ Study of type-2 outliers
 - \diamondsuit 20 tracks, $\Delta y = 100, 300, 500 \mu$
- $\hfill\square$ Look at bias, $\chi^2\mbox{-}{\rm probability}$

- □ Fast initial vertex estimate
 - Should be where the majority of the tracks is
 - ♦ Based on crossing point of track pairs
 - The crossing point is halfway between the two points of closest approach
 - Each crossing point gets a weight inversely proportional to the distance
- Coordinatewise estimators
 - ♦ LMS, HSM, FSMW
 - ♦ Use all crossing points or only a subset

3D estimators

- SMS (approximate LMS): crossing point that minimizes the median of the squared distances
- ISMS (iterated SMS): repeat SMS on the data points below the median
- Baseline estimators
 - \diamond Zero: returns (0,0,0)
 - ♦ Monte Carlo: simulated vertex
 - \diamond vertex fitted by LS

$\hfill\square$ Comparison with $c\bar{c}$ and $q\bar{q}$ events

	$c\bar{c}$				qar q			
Estimator	RMS	σ_{Fit}	fail	t	RMS	σ_{Fit}	fail	t
	$[\mu m]$	$[\mu m]$	%	[ms]	$[\mu m]$	$[\mu m]$	%	[ms]
SubsetHSM(-1)	38	29	0	3.5	37	25	0	4
HSM(-1)	37	27	0	3.4	32	24	0	3.9
LMS(-1)	196	41	0.2	3.4	237	44	1.1	3.9
HSM(100)	54	38	0	0.7	48	32	0	0.8
FSMW(-1)	38	27	0	16.1	34	24	0	22.9
ISMS(200)	33	27	0	8.2	30	26	0.1	8.1
FSMW(200)	49	33	0	3	43	29	0	3

Resolutions and failure rates for quark pairs

Comparison with low-multiplicity vertices

	$J/\psi \phi \to K^+ K^- \mu^+ \mu^-$				$\tau^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$			
Estimator	RMS	σ_{Fit}	fail	t	RMS	σ_{Fit}	fail	t
	$[\mu m]$	$[\mu m]$	%	[ms]	$[\mu m]$	$[\mu m]$	%	[ms]
SubsetHSM(-1)	744	61	19.4	0.2	1018	780	37.9	0.1
HSM(-1)	744	61	19.4	0.2	1020	780	37.8	0.1
LMS(-1)	833	139	17.0	0.2	1035	937	38.4	0.1
HSM(100)	744	61	19.4	0.2	1020	780	37.8	0.1
FSMW(-1)	578	63	14.0	0.3	967	755	32.3	0.2
ISMS(200)	736	60	16.2	0.4	1010	876	38.2	0.2
FSMW(200)	578	64	14.0	0.2	967	755	32.3	0.1

Resolutions and failure rates for low-multiplicity vertices

□ Influence of the initial estimate on the final (adaptive) vertex fit

- vtx: reconstructed vertex can be associated to the simulated vertex
- $\diamond\,<\!{\rm cut:}\,$ reconstructed vertex closer than 200μ from the simulated vertex
- \Rightarrow FSMW(200) with p = 0.4 is the default algorithm

Estimator	$car{c}$ (jetfilter)		$qar{q}$ (jetfilter)		$J/\psi \phi$		$ au o \pi\pi\pi$	
	vtx	< cut	vtx	< cut	vtx	< cut	vtx	< cut
LMS	1969	1849	1963	1881	1901	1120	1578	250
FSMW(200)	1986	1892	1993	1942	1948	1285	1778	272
Zero	443	381	435	385	407	147	167	23
MonteCarlo	1993	1897	2000	1999	1984	1409	1678	348
LinVt×Fit	1955	1840	1935	1854	1926	1305	1648	261

Influence of the initial estimate on the final (adaptive) vertex fit

□ Final precision vertex estimate: Adaptive fitter

- ♦ Iterated re-weighted Kalman filter
- Linearization point and initial weights from fast robust initial estimate
- ♦ Fast annealing: T = 256, 64, 4, 1, 1, ...
- \diamondsuit Iteration stops when T=1 and $\Delta v < 1 \mu {\rm m}$

Detailed study and comparison with Kalman filter in PhD thesis by W. Waltenberger

Example of a $c\bar{c}$ event

Time series of the track weights

Comparing AVF with KVF, $c\bar{c}$ channel

Comparing AVF with KVF, $J/\psi~\phi$ channel

Summary and outlook

Robust location estimators useful in many situations

- L-estimators can be optimized to the distribution
- Mode estimators find the concentration point of the observations without any assumption on the distribution
- Adaptive estimators downweight outliers without assumption on the type or level of the contamination
- Without contamination adaptive estimators are very close to the optimal linear estimator

Iterated adaptive estimator can be used for vertex finding

- ♦ Adaptive fit of "main" vertex
- ♦ Repeat on set of rejected tracks
- ♦ Currently under test
- Adaptive estimator can be generalized for simultaneous fitting of several vertices (multi-vertex fit)
 - ♦ Start with several vertex candidates
 - Weights are modified such that vertices compete for the tracks
 - ♦ Some simple tests with synthetic data

R. Frühwirth

ORCA implementation being ported to new framework CMSSW

- Spin-off: Vertex reconstruction toolkit RAVE (W. Waltenberger, F. Moser, W. Mitaroff)
 - Currently source-code compatible with CMSSW
 - Experiment independent, open to extensions
 - Vertex finding (clustering) and vertex fitting (estimation)
 - ♦ Intended for use in ILC and BELLE(?)
- Simple stand-alone framework (VERTIGO) for fast debugging, visualization and analysis

R. Frühwirth

