

Host Identity Protocol its potential relevance to Grids

Andrei Gursov

Helsinki Institute for Information Technology

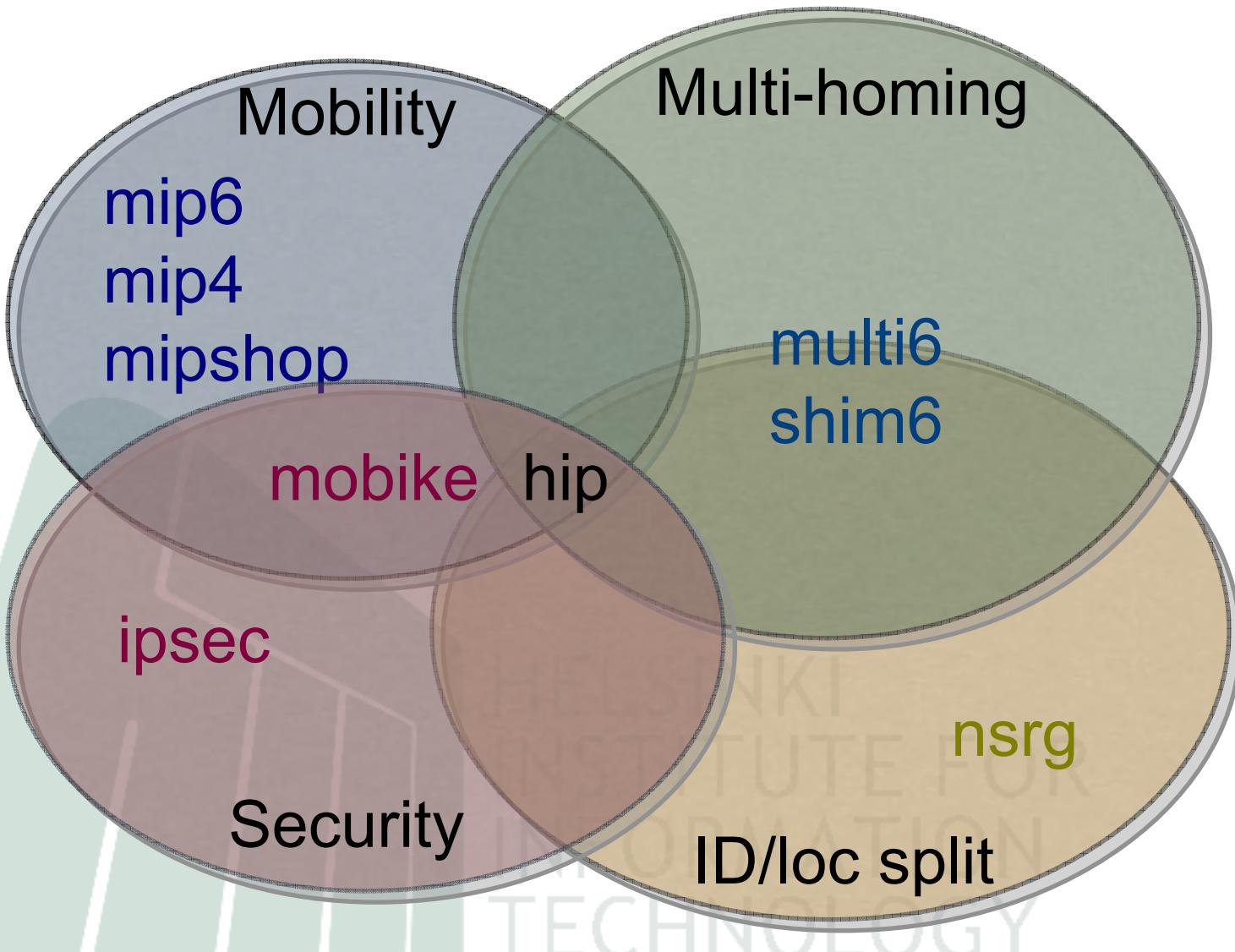
KnowARC

8.11.2006

(HIP slides thanks to Pekka Nikander/Nomadic Lab)

Outline

- Host Identity Protocol overview
- Snapshot on InfraHIP project
- Snapshot on NordicHIP project
- What can HIP offer for Grids?
- Snapshot on NI HAO Grid project

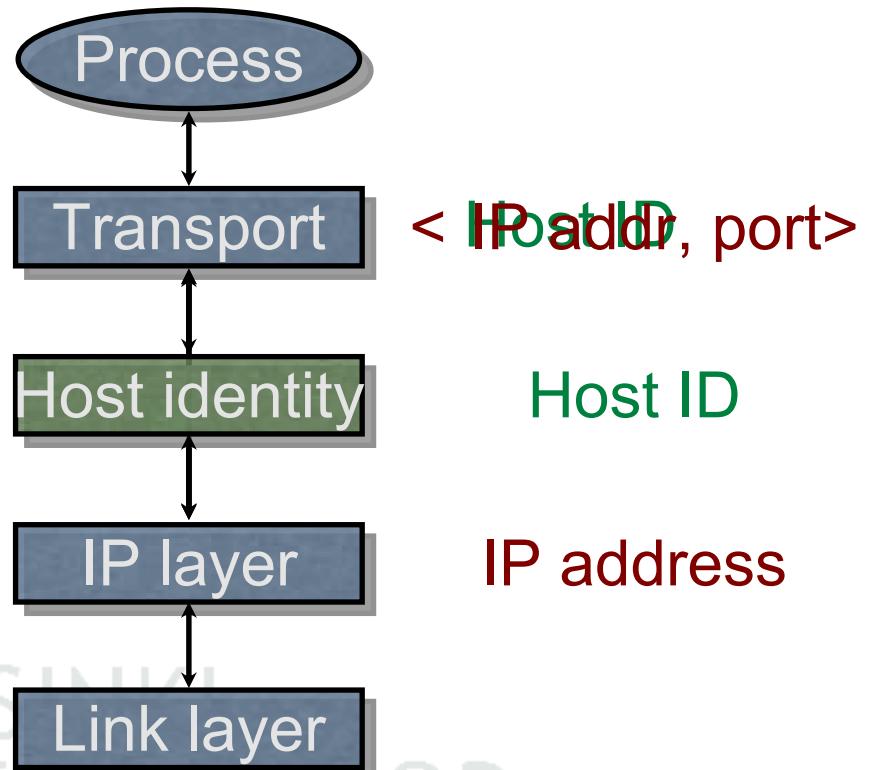

Architectural background

- IP addresses serve the dual role of being
 - End-point Identifiers
- Names of network interfaces on hosts
 - Locators
- Names of naming topological locations
- This duality makes many things hard

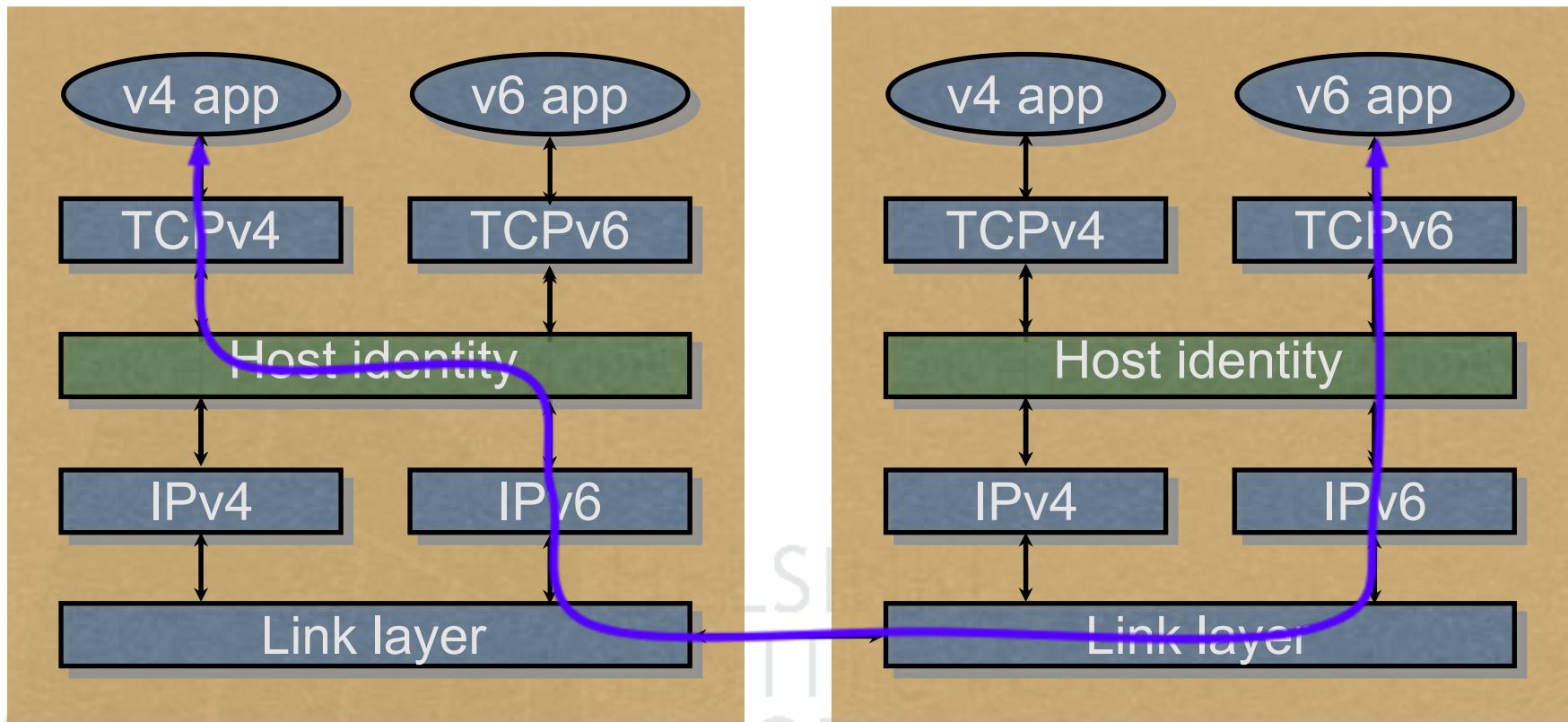
New requirements to Internet Addressing

- Mobile hosts
 - Need to change IP address dynamically
- Multi-interface hosts
 - Have multiple independent addresses
- Mobile, multi-interface hosts most challenging
 - Multiple, dynamically changing addresses
- More complex environment
 - e.g. local-only connectivity

Related IETF WGs and RGs



HIP in a Nutshell


- Architectural change to TCP/IP structure
- Integrates **security**, **mobility**, and **multi-homing**
 - Opportunistic host-to-host **IPsec ESP**
 - End-host **mobility**, across IPv4 and IPv6
 - End-host multi-address **multi-homing**, IPv4/v6
 - IPv4 / v6 **interoperability** for apps
- A new layer between IP and transport
 - Introduces cryptographic **Host Identifiers**

The Idea

- A new Name Space of Host Identifiers (HI)
 - Public crypto keys!
 - Presented as 128-bit long hash values,
- Host ID Tags (HIT)
- Sockets bound to HIs, not to IP addresses
- HIs translated to IP addresses in the kernel

HIP as the new waist of TCP/IP

Protocol overview

Initiator

Responder

I1: $\text{HIT}_I, \text{HIT}_R$ or NULL

R1: $\text{HIT}_I, \text{HIT}_R, \text{puzzle}, \text{DH}^+_R, K^+_R, \text{sig}$

I2: $\text{HIT}_I, \text{HIT}_R, \text{solution}, \text{DH}^+_I, \{K^+_I\}, \text{sig}$

R2: $\text{HIT}_I, \text{HIT}_R, \text{sig}$

ESP protected messages

HIP Mobility & Multi-homing

- Mobility and multi-homing become duals of each other
 - Mobile host has many addresses over time
 - Multi-homed host has many addresses at the same time

Mobility protocol

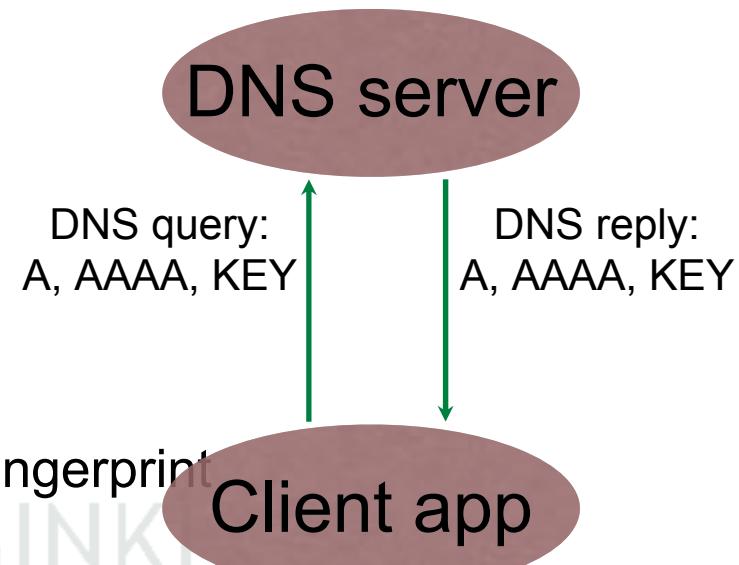
Mobile

REA: HITs, oldSPI_M, newSPI_M, new IP addrs, sig

Corresponding

REA: HITs, oldSPI_C, newSPI_C, sig

ESP on new SPI_C


ESP on new SPI_M new and SPI_C

Rendezvous

- Initial rendezvous
 - How to find a moving end-point?
 - Can be based on directories
 - Requires fast directory updates
 - Bad match for DNS
- Tackling double-jump
 - What if both hosts move at same time?
 - Requires rendezvous point

Key distribution for HIP

- Depends on application
- For multi-addressing,
self-generated keys
- Usually keys in the DNS
- Can use PKI if needed
- Opportunistic mode supported
 - SSH-like leap-of-faith
 - Accept a new key if it matches a fingerprint

Infrastructure research

- HIs currently stored in the DNS
 - Retrieved simultaneously with IP addresses
 - Does not work if you have only a HIT
- Question: How to get data based on HIT only?
 - HITs look like 128-bit **random** numbers
 - Need a data structure for **flat** data

Distributed Hash Tables

- Distributed directory for flat data
- Several different ways to implement
- Each server maintains a partial map
- Overlay addresses to direct to the right server
- Resilience through parallel, unrelated mappings
- Used to create **overlay networks**

HIP overlay and IPsec connectivity

- Overlay control plane between all hosts
 - DHT based flat routing overlay
 - Routes HIP control packets
- End-to-end IPsec between any two hosts
 - Firewalls opened dynamically
- Only end-to-end signalling (HIP)
 - User plane “reacts” to end-to-end signalling messages
- Host Identity Indirection Infrastructure (Hi3) combines i3 with HIP
 - Current prototype on PlanetLab (distributed testbed of 500 servers)

A Brief History of HIP

- Idea discussed briefly at 47th IETF in 1999
- Development “aside” the IETF since then
- IETF working group created in early 2004

- Base protocol more or less ready
 - Five known implementations (3 up-to-date and interoperating)
- WG recharted this year, probably runs through 2007

IETF standardization status

Name	Cur version	Status
ietf-hip-arch	-03	RFC4423
ietf-hip-base	-06	IETF last call
ietf-hip-esp	-03	IESG review
ietf-hip-registration	-02	IESG review
ietf-hip-dns	-08	IESG review
ietf-hip-rvs	-05	IESG review
ietf-hip-mm	-04	IESG review
ietf-hip-api	-00	Mar 07?
ietf-hip-nat	-00	Mar 07?
draft-laganier-ipv6-khi	-05	IETF last call

Implementation status

- Five publicly known implementations
 - Ericsson Research Nomadiclab, FreeBSD/Linux
 - Helsinki University of Technology, Linux
 - Boeing Phantom Works, Linux/Windows/Mac OS
- Outdated
 - Andrew McGregor, Python user level
 - Sun Labs Grenoble, Solaris

Tekes *Infrastructure for HIP Project*

- Partners: HIIT, TKK, Nokia, Ericsson, Elisa, Finnish Defense Forces
 - 2,5 years, mid 2004-2006
- Project Goals
 - Study and develop the infrastructure support necessary for a wide deployment of HIP
 - Provide scientific results and play a role in the standardization of HIP
- InfraHIP II is coming too!

International Connections

- ICSI, Berkeley
 - Scott Shenker
- UC Berkeley
 - Ion Stoica, Anthony Joseph (at HIIT 8-11.2004)
- M.I.T
 - Hari Balakrishnan's group
- RWTH, Aachen
- SICS, Sweden

InfraHIP Work Packages

1. *Next gen. Internet architecture*
2. *HIP on Linux*
3. *Rendezvous and naming*
4. *Multiple HIP identities*
5. *Application migration*
6. *HIP applications*
7. *Corporate HIP*

NordicHIP

- Andrei Gursov, Martti Mäntylä, Bengt Ahlgren, Antti Ylä-Jääski
- Focus: Serve as a collaboration tool for national HIP activities by supporting mutual visits, summer schools, and some core technical work on Internet architecture, IPv4/v6 co-existence and naming infrastructure
- NORDUNET3 call
- Partners: HIIT/TKK, SICS, TML/TKK
- Duration: 2006-2009 (4 years)
- Project budget: 134 000 €/year

Potential HIP benefits for Grids

- IPv4-v6 interoperability
- Multihoming
- Denial-of-Service protection
- IPsec encryption of traffic
- Authentication
- NAT traversal
- Rendezvous support from Hi3
- Mobility/fault tolerance
- Wide-area application migration

NI HAO Grid

- EU project proposal for FP6 China call
 - Didn't go through by one evaluation point...
- A practical project targeting EU-China Grid testbed with IPv6 and HIP
 - HIP can bridge IPv4 and IPv6 applications
- Implement HIP to Globus Toolkit GT3/OGSA (Java- and WebServices-based)

Thanks!

- More info on HIP at <http://infrahip.hiit.fi>, gurtov@hiit.fi
- Questions?

