
Quantum Monte Carlo and
Data Management in
Grid Middleware

Jon Kerr Nilsen

Department of Physics
University of Oslo

Norway

Dissertation presented for the degree of
Philosophiae Doctor (PhD) in Physics

March 2010

Preface and Acknowledgements
The path I have taken to end up with this thesis has been relatively complex

and has certain similarities to a random walk1. After finishing my Master thesis
on Monte Carlo methods and Bose-Einstein condensation at the group for nuclear
and energy physics I was determined to continue along this path in a PhD. Unfor-
tunately the funding agencies were not quite as determined to let me follow this
path, so I needed to get a part-time job to fund my self. Incidentally, it turned
out that the Center for Information Technology Services (USIT) at the University
of Oslo (where I had worked part-time on first-line IT-support during my studies)
had a group specializing in high-performance computing (the HPC-group) which
was willing to hire a part-time PhD candidate who specialized in HPC methods.

Having two jobs (writing the PhD and working with advanced user-support)
on a 50% salary can be a bit tiresome at times and after a year and a half I was
considering to drop the PhD and get a normal job instead (I even considered non-
academic work-places). Meanwhile a project with the name Innovative Services
and Tools for NorduGrid (NGIn) had gotten funding for half of a PhD position for
doing research in the area of grid computing at the group for experimental particle
physics, and asked USIT for funding the other half. Paying 50% salary for a PhD
candidate was no longer a new concept for the HPC-group, and in fact they could
even offer a candidate for the position. Hence, I entered the world of grid data
management and my path split into two, with one Monte Carlo path and one grid
path. How these paths were merged is the topic of this thesis.

A path such as this deserves quite a few thank-you’s: Thanks to Alex Read,
my main supervisor, for invaluable discussions, an infectious passion for the grid
technology, lots of late-night proof-reading and great conference trips. Thanks to
Morten Hjorth-Jensen, my Master supervisor and PhD co-supervisor, for believing
in me and preventing me from leaving the PhD studies. Thanks to Lars Oftedal
and my other co-supervisor, Jostein Sundet for taking the chances to (1) hire an
unfunded PhD candidate for 50% and (2) recognize the idea of having USIT co-
fund PhD programs to enhance the communication between USIT and its user
groups, and thanks to Farid Ould-Saada for pushing the idea to USIT. Thanks to
the KnowARC storage team, Salman Toor, Zsombor Nagy and Bjarte Mohn, for
lots of good phone meetings, face-to-face meetings, conferences and paper-writing
sessions and to the rest of the KnowARC team for providing invaluable expertise
and lots of good times.

Thanks to all my colleagues at both the HPC-group and the EPF-group for
many interesting discussions (even some on-topic discussions) and for bearing with
with my bad puns. Thanks to Katarina Pajchel for sharing office and wits with
me. Let us hold on to our office (and wits) even after finishing our PhD’s. Thanks

1This analogy may become clearer later in the thesis.

i

to Bjørn Samset for lots of fun and for coaxing me into student politics (again!).
Thanks to Thomas Fr̊ag̊at for great work and motivation before he left us for
teaching. Thanks to Lillian Smestad for asking the right questions on topics I
thought I knew. Keep asking those questions! Thanks to David Cameron for
pointing out many secrets of data management. Thanks to Anders Bruvik for all
the much-needed coffee breaks and to P̊al Enger for timely disturbance. Many
thanks to my parents, family and friends for moral support and for at least trying
to understand what I have been working with all these years.

And last, but certainly not last: Thanks to my wife, Elizabeth, for bearing with
me during long hours of work, week-long meetings abroad and absence-mindedness.
This PhD would not have been possible without you!

ii

(From http://xkcd.com/353/.)

From http://en.wiktionary.org/wiki/Pythonesque:
Pythonesque (comparative more Pythonesque, superlative most Pythonesque)

1. (of humour) Surreal or absurd.

2. (computing, informal) Typical of, or suited to, the Python programming
language.

iii

iv

Contents

1 Introduction 1

1.1 Quantum Monte Carlo . 2

1.2 Grid . 3

1.3 Organization of the thesis . 4

I Quantum Monte Carlo 5

2 Monte Carlo 7

2.1 Random numbers . 7

2.2 Selecting from a Distribution . 9

2.3 Monte Carlo Integration . 10

2.3.1 Metropolis-Hastings . 11

2.3.2 Variational Monte Carlo . 13

2.3.3 Diffusion Monte Carlo . 14

2.4 On mixed-language programming 16

2.4.1 MontePython – mixing Python and C++ 17

II Data Management in Grid Middleware 21

3 Distributed Computing 23

3.1 From Proton Collisions to Dataset 24

3.1.1 The Large Hadron Collider 24

3.1.2 The ATLAS Computing Model 26

3.2 Grids and Clouds – Distributed Technologies 28

3.2.1 Grid . 29

3.2.2 Cloud . 30

3.2.3 The Advanced Resource Connector 34

v

4 Distributed Data Management 39
4.1 Don Quijote – ATLAS Distributed Data Management 39
4.2 Distributed Storage . 43
4.3 Chelonia, a Self-healing Storage Cloud 45

III Running Monte Carlo on the Grid 53

5 Parallel Monte Carlo 55
5.1 GaMPI Architecture . 56
5.2 Results . 60

6 Conclusions and Outlooks 63

A Collection of publications 71
A.1 Vortices in atomic Bose-Einstein Condensation (BEC) 71
A.2 MontePython: Implementing QMC using Python 80
A.3 Simplifying parallelization of Scientific Codes in Python 97
A.4 Recent ARC development . 128
A.5 Chelonia - A Self-healing Storage Cloud 139
A.6 Chelonia - distributed cloud storage 149
A.7 Parallel MC simulations on ARC 180

vi

Chapter 1

Introduction

The task of this thesis is twofold. First, the thesis considers a genre of physics
problems and efficient algorithms for solving them. Second, the thesis considers
distributed computing resources and how to connect and utilize them efficiently.
While the two tasks at first thought may seem unrelated, each task has been a
motivating factor for the other in science in the last half century.

Nuclear and particle physics strives to understand how the world is built by
exploring its smallest building blocks and how they are connected. This question
spawns a large number of computational problems with no upper limits to the
amount of computing resources needed to solve them. In many cases advances in
physics are limited by the amount of computing resources, thus motivating the
work of connecting computing resources to gain more computing power.

On the other hand, advances in distributed computing technology are driven by
the demand for easily accessible computing power. While the physics community
is of course not the only scientific nor non-scientific community with growing needs
for computing resources, increasingly large physics experiments have generated de-
mands that would have been considered impossible by smaller experiments. As a
leading example, the European Organization for Nuclear Research (CERN) cre-
ated the world wide web as a means to simplify communication and collaboration
between scientists and is now in the forefront of developing distributed computing
as a consequence of the computing needs of the largest physics experiment ever
built, the Large Hadron Collider.

The two main topics of this thesis, Quantum Monte Carlo and grid middleware,
are two components needed to achieve the same goal. The numerical method of
Monte Carlo provides a means to study physical problems in an ab initio fashion,
applying basic physical rules to simulate physical experiments. The grid middle-
ware provides global access to the computational resources needed to simulate the
experiments. The goal is to improve our understanding of physical phenomena

1

CHAPTER 1. INTRODUCTION

by means of computer simulations. While the physical phenomenon in focus for
this thesis, the physics of Bose-Einstein condensates, is described in the articles
in Appendices A.1 and A.2, we will in the remainder of this introductory chap-
ter introduce the method of Quantum Monte Carlo in Section 1.1 and the grid
technology in Section 1.2, before presenting the outline of the thesis in Section 1.3.

1.1 Quantum Monte Carlo

Already in the nineteenth century a sharp distinction began to appear between
two mathematical methods for treating physical phenomena [1]. Problems involv-
ing only a few particles were studied in classical mechanics, through the study of
systems of ordinary differential equations. On the other hand, to describe systems
with very many particles one used the entirely different methodology of statis-
tical mechanics. Here, probability theory is applied to describe properties of a
set of particles by relating the microscopic properties of individual atoms to the
macroscopic properties of the observed material.

However, in an intermediate situation where the number of particles is moder-
ate, both of these methods come up short. Analytic mechanics cannot describe in-
teractions between three or more interacting particles and a statistical-mechanical
approach would also be unrealistic. For example, consider a high-energy electron
entering an electromagnetic calorimeter. Due to bremsstrahlung the electron emits
a photon. The photon interacts with the matter through pair production, and is
converted into an electron-positron pair. The electron and positron, still having
relatively high energy, emit photons, which again convert to electron-positron pairs
in a so-called electromagnetic shower. The probability of producing a given par-
ticle with a given energy in a given event depends on the energy of the incoming
particle. Additionally, there is a probability distribution for the direction of the
motion. This process is an illustration of a Markov chain, i.e., a chain of events
where the next event depends only on the current event. The tool for studying
such chains is matrix theory. To model this system mathematically, one would
have to multiply a large number of (n × n) transition matrices representing the
state of the system.

Now, a full analysis of all the possible transitions in an electromagnetic shower
is of course not feasible due to the essentially infinite number of possible final states.
However, one can get a quite reasonable description of the shower by performing a
finite number of “gedanken experiments” to obtain a statistically representative set
of possible outcomes. These experiments will not be performed with any physical
instruments, but merely as theoretical experiments on a computer. Assuming that
the probability of each possible event is known, we can run a large number of
experiments to study the shower empirically. This method is referred to as the
Monte Carlo method, or, when applied to quantum mechanical phenomena, the

2

1.2. GRID

quantum Monte Carlo method.

1.2 Grid

The use of the term grid as a technology for connecting computing resources is
based on how the power grid works. The power grid is a rather complicated
structure. Power plants generate electricity by, e.g., burning fossil fuel, nuclear
reactions or converting wind, water or sun power to electric power. The power is
transported by cables over great distances and across borders, and it is bought and
sold on international markets with complicated pricing schemes. However, for an
end user, all that is needed to utilize this power is to plug whatever device into a
socket and pay a bill to a single supplier1. The idea of the computing grid is then
that computers, laptops and other devices should only need to plug into a socket
to get access to worldwide computing and storage resources.

While the comparison with the power grid gives a broad idea of what a com-
puting grid is (or rather, should be) a perhaps more instructive comparison is with
a single desktop. A typical desktop contains a central processing unit (CPU),
random access memory (RAM), a graphical processing unit (GPU), a hard-drive,
a DVD player (or some other optical storage device) and a motherboard where
these units are connected. Additionally the motherboard has different ports for
attaching external devices such as keyboard, mouse, external hard-drives, mem-
ory sticks, and so forth. These units and devices need to be combined to do the
work a desktop is expected to do. For example, when writing a document, the
CPU calculates how many letters can fit into one line, checks if the words entered
exist in a dictionary (and sometimes if they are grammatically correct), etc., the
GPU converts the text to a graphical image and sends it to the screen, the text is
written to RAM for fast access and to the hard-drive for backup. To do all these
tasks, the document editing program relies on the operating system, which acts as
a middleware between the software (the editing program) and the hardware (the
desktop).

In this comparison the grid resembles a desktop. Its hardware is a bit more
complicated as it may contain hundreds of thousands of CPU’s and hard-drives, all
interconnected through network cables rather than through a single motherboard,
and not all the CPU’s can necessarily carry out the same tasks. Additionally,
moving data over the network raises several security issues as, in theory, anyone can
pick up the data stream between the devices. However, the main ideas are the same:
A user who needs to carry out a computational task, uses some software to run
the task, the software sends this task to the grid middleware, the grid middleware
discovers the hardware suitable for the task and send the task there. When the

1Unless, of course, the socket is at a workplace or in a public building where someone else
pays the bill.

3

CHAPTER 1. INTRODUCTION

task is finished, the middleware makes the result available to the software which
brings the result to the user. An example of such grid middleware is the Advanced
Resource Connector (ARC), the platform for one of the main results of this thesis.
An example of how a challenging computational task may be solved with grid
technology, some of which was developed in this thesis project, is described in
detail in Chapter 5.

1.3 Organization of the thesis

As already mentioned the task of this thesis is twofold. This is also reflected
in the outline of the thesis. Part I presents the Monte Carlo theory needed for
the publications “Vortices in atomic Bose-Einstein condensates in the large-gas-
parameter region”, “MontePython: Implementing Quantum Monte Carlo using
Python” and “Simplifying Parallelization of Scientific Codes by a Function-Centric
Approach in Python” (Appendices A.1, A.2 and A.3, respectively).

Part II gives the needed background and main results in distributed comput-
ing (Chapter 3) and distributed data management (Chapter 4). This part gives
the background to and the main results from the publications “ARC middleware:
evolution towards standards-based interoperability”, “Chelonia - A Self-healing
Storage Cloud” and “Chelonia - Distributed cloud storage” (Appendices A.4, A.5
and A.6, respectively).

Finally, Parts I and II are brought together in Part III, which presents GaMPI,
a framework for running Monte Carlo simulations using distributed computing
technologies, and gives the main result from the publication “Parallel Monte Carlo
simulations on an ARC-enabled computing grid” (Appendix A.7). In Chapter 6
we give some concluding remarks and look at some possible future directions for
GaMPI and Chelonia.

4

Part I

Quantum Monte Carlo

5

Chapter 2

Monte Carlo

While the main principles for Monte Carlo methods are the same as when first
described by Metropolis and Ulam [1] in 1949, many variants of Monte Carlo
have emerged as access to computer resources has improved. The usefulness and
generality of the Monte Carlo method makes it applicable even beyond physics
and chemistry, with applications in, e.g., economy [2] and political science [3] (see
also Appendix A.3). While the different variants all have in common that random
numbers are involved, they can broadly be divided in two areas with separate goals:

• Direct simulation of stochastic processes (e.g., electromagnetic showers, par-
ton scattering, roll-call voting).

• Calculation of (many-dimensional) integrals (e.g., many-body problems).

We will in the remainder of this chapter describe different aspects of the Monte
Carlo method, from simulation of processes which are stochastic in nature (e.g.,
scattering processes), to Monte Carlo integration methods in general and the
method of diffusion Monte Carlo in particular, before discussing MontePython,
the implementation of diffusion Monte Carlo carried out for this thesis.

2.1 Random numbers

The main requirement for all Monte Carlo algorithms is a way of generating uncor-
related, unique random numbers. Since computers are deterministic and handle
only a finite set of numbers, truly random numbers do not exist on computers.
Instead, pseudo-random number generators (PRNG’s) are used. A PRNG gener-
ates a deterministic set of numbers that appears non-deterministic to anyone not
knowing the underlying algorithm.

A good random generator should satisfy the following criteria [4]:

7

CHAPTER 2. MONTE CARLO

• Good distribution: The numbers should be distributed according to the prob-
ability distribution function the PRNG claims to produce, without detectable
correlations.

• Long period: The sequence of numbers generated by a PRNG will always
have a finite length, known as the period of the PRNG. To avoid correlations,
a calculation should never come close to exhausting this period.

• Repeatability: For testing and development purposes, it may be necessary
to repeat the sequence generated in the previous calculation. Furthermore, a
PRNG should allow for a part of a calculation to be repeated. This requires
the ability to store the state of the PRNG.

• Long disjoint sub-sequences: To be able to perform independent sub-simulations
and later combine them, the results need to be statistically independent. This
can be achieved if the PRNG can offer disjoint sub-sequences.

• Portability: The PRNG should generate the exact same sequence regardless
of hardware and operating system.

• Efficiency: The generation of the random numbers should not be too time-
consuming.

Note that these criteria should be weighted against the expected use of the PRNG.
If only a relatively short sequence is needed, efficiency and good distribution is
more important than a long period. When results from sub-sequences are to be
used (e.g., for parallel Monte Carlo simulations) many PRNG’s satisfying all the
criteria except long disjoint sub-sequences may need to be discarded due to long-
term correlations appearing as short-term correlations in a parallel setting [5, 6].

To discover non-deterministic features of a PRNG, the PRNG should be thor-
oughly tested. A detailed description of some of the classic tests can be found in
Knuth [7], but we will mention some of them here to give a general idea.

Frequency test: The most basic requirement that a uniform PRNG must meet
is that its numbers are uniformly distributed between zero and one. The test is as
follows: Generate a large sequence of numbers between zero and one. Divide the
interval into n bins. Count the number of random numbers ui that fall into bin j
(0 ≤ j ≤ n). Calculate

X2
k =

∑
i

(ui −me)
2

ui
, (2.1)

with ui are the generated numbers, me is the expected mean value (0.5 in our case)
and X2

k are the test statistics. If ui are truly random, the variables Xk will be
independent, normally distributed random variables with mean 0 and variance 1,
following the chi-square distribution χ2(k) � ∑

kXka.

8

2.2. SELECTING FROM A DISTRIBUTION

Gap test: Another test is used to examine the length of “gaps” between numbers
that falls in the same bin. Let α and β be two real numbers with 0 ≤ α ≤ β ≤
1. Given a sequence of supposedly random numbers, one considers lengths of
consecutive sub-sequences uj , uj+1, . . . , uj+r in which uj+r lies between α and β
while the other numbers do not. Having determined the gaps of length 0, 1, . . . , r,
one applies the frequency test to this empirical sequence.

Tests on sub-sequences: Consider an external program which uses a PRNG.
For example, if the program works with three random variables at a time it may
consistently invoke the generation of three random numbers at a time. In such ap-
plications it is important that the sub-sequences of every third term in the original
sequence is random. If the program requires q numbers at a time, the sequences

u0, uq, u2q, . . . ;u1, uq+1, u2q+1, . . . ; . . . ;uq−1, u2q−1, u3q−1, . . .

should undergo the same testing as the sequence u0, u1, . . . , un.

2.2 Selecting from a Distribution

Quantum mechanics introduces a concept of randomness in the behavior of physi-
cal processes. The idea of an event generator is to simulate this behavior by using
Monte Carlo techniques. While many techniques are used, we will here only high-
light a few of them, in particular the most basic techniques used in, e.g., high
energy physics event generators like HERWIG [8] and PYTHIA [9].

One of the most common situations is to have a function f(x) which is non-
negative in the allowed x range xmin ≤ x ≤ xmax. The wish is to select an x at
random so that the probability in a small region dx around x is proportional to
f(x) dx. Here f(x) might be, e.g., a parton fragmentation function, a differential
cross section or any of a number of probability density functions.

If it is possible to find a primitive function F (x) for which the inverse F−1(x)
is known, a random x can be found as follows:

∫ x

xmin

f(x) dx = R

∫ xmax

xmin

f(x) dx→ x

= F−1(F (xmin) +R(F (xmax)− F (xmin))).

(2.2)

Here R is the fraction of the total area under f(x) to the left of x. Unfortunately,
functions of interest are rarely suitable for this method to work, and more involved
schemes need to be considered. Sometimes special tricks can be found. For exam-
ple, the generation of a Gaussian, f(x) = e−x2

. This function is not integrable,
but by combining it with the Gaussian of a second variable y, a transformation to

9

CHAPTER 2. MONTE CARLO

polar coordinates (r, θ) yields

f(x)f(y) dxdy = e−x2−y2

dxdy = re−r2 drdθ. (2.3)

Since re−r2 is integrable, the r and θ distributions are easily generated and com-
bined to yield x. Additionally, y is also a Gaussian-distributed number which can
be used. For the generation of transverse momenta in parton fragmentation this
is very convenient since there are two transverse degrees of freedom.

The main problems in generating representative samples of a function f(x)
occur if it has singularities close to or within the range xmin ≤ x ≤ xmax. In this
case it may be necessary with one or several variable transformations to make a
function smoother. Examples of this can be found in, e.g., Sjöstrand et al. [9].

2.3 Monte Carlo Integration

Monte Carlo integration may be easiest explained by looking at conventional nu-
merical integration methods. In conventional methods evaluation points are chosen
and the integrand for every point is weighted to get

∫
Ω

f(r) dΩ �
m∑
i=1

ωif(ri). (2.4)

The values of the weights are chosen according to how the evaluation points are
chosen. In one dimension the simplest form of Equation (2.4) is made by choosing
the evaluation points with equal spacing over the integration area. The weights
then become the length of the integration region divided by the number of inte-
gration points so that

∫ 1

0

f(x) dx =
1

m

m∑
i=1

f(xi) +O
(

1

m

)
. (2.5)

Similarly, a two dimensional integration gives

∫ 1

0

∫ 1

0

f(x, y) dxdy =
1

m2

m∑
i=1

m∑
j=1

f(xi, yj) +O
(

1

m

)
(2.6)

with an equal number of integration points in both dimensions. So by adding one
dimension, the number of evaluation points has increased from m to m2 to obtain
the same order of accuracy. For n dimensions we have to carry out mn evaluations.
For an n-dimensional quantum N -body system we have nN degrees of freedom in
the spatial case. The integral then becomes an integral over nN dimensions. For

10

2.3. MONTE CARLO INTEGRATION

example, for a system with 500 particles in 3 dimensions we need to evaluate 101500

points to get an accuracy of 10−1.
Obviously, conventional integration methods are not usable in such a scenario.

Monte Carlo integration, however, does not depend on the number of dimensions
to get a reasonably accurate result. In Monte Carlo integration, the integrand
is evaluated at random points ri taken from an arbitrary probability distribution
ρ(r) (see for example Kent, [10]),

∫
Ω

f(r) dΩ =

∫
Ω

f(r)

ρ(r)
ρ(r) dΩ =

∫
Ω

g(r)ρ(r) dΩ =

m∑
i=1

g(ri) +O
(

1√
m

)
. (2.7)

This is exact in the limit m→ ∞, but in a numerical approach one has to truncate
the summation at some finite value m.

By choosing ρ(r) = 1, the integrand is sampled uniformly at random points.
If the function varies considerably within the integration domain, the variation
of the individual samples will be significant. It is therefore advisable to choose
ρ(r) to duplicate the behavior of f(r). If choosing ρ(r) = f(r)/N , the fraction
g(r) = f(r)/ρ(r) = N , merely a constant which is the true value of the integral
(here the normalization constant N), yielding the exact answer with only one
sample. Of course, this would require knowing the answer before calculating it,
but it illustrates how the Monte Carlo integration can be optimized by choosing
a good approximation to the probability distribution. This optimization is often
referred to as importance sampling.

The main advantage of the Monte Carlo integration scheme is that it is in-
dependent of the number of dimensions. The evaluation time of the integrand
depends only on the functional form, and the variance of the integral estimate
depends solely on how much the integrand varies. However, a convergence of order
O(1/

√
m) is not really satisfactory. While there are several techniques to improve

the efficiency of Monte Carlo integration, the perhaps most well-known in quantum
Monte Carlo is the Metropolis-Hastings algorithm.

2.3.1 Metropolis-Hastings

The Metropolis-Hastings algorithm [11, 12] (often shortened to theMetropolis algo-
rithm) generates a stochastic (random) sequence of phase space points that sample
a given probability distribution. In quantum Monte Carlo methods each point in
phase space represents a vector R = {r1, r2, . . . , rN} in Hilbert space. Here ri rep-
resents all degrees of freedom for particle i. Coupled with a quantum mechanical
operator, each point can be associated with physical quantities (such as kinetic and
potential energy). The fundamental idea behind the Metropolis algorithm is that
the sequence of individual samples of these quantities can be combined to arrive at
average values which describe the quantum mechanical state of the system. The

11

CHAPTER 2. MONTE CARLO

Metropolis algorithm then provides the sample points. We will refer to the ran-
domized walk through the phase space as a random walk. From an initial position
in phase space a proposed move is generated and the move is either accepted or re-
jected according to the Metropolis algorithm. In this way a random walk generates
a sequence

{R0,R1, . . . ,Ri, . . .} (2.8)

of points in the phase space. An important requirement for the random walk is
that it is ergodic, which means that all points in phase space are reachable from
any initial point. Taking a sufficient number of trial steps then ensures that all of
phase space is explored and the Metropolis algorithm makes sure that the points
are distributed according to the required probability distribution.

Given a probability distribution ρ(R) to draw the points from, Metropolis et
al. [11] showed that the sampling is most easily achieved if the points R form a
Markov chain. A random walk is Markovian if each point in the chain depends
only on the position of the previous point. A Markov process may be completely
specified by choosing values of the transition probabilities of moving from R to
R′, P (R′,R)1. The Metropolis algorithm works by choosing the transition prob-
abilities in such a way that the sequence of points generated by the random walk
sample the required probability distribution.

To properly understand the Metropolis algorithm it is necessary to work out
the statistical properties of the points on the Markov chain. Consider a large
ensemble of random walkers, all evolving simultaneously. All the walkers move
step by step in accordance with the transition probabilities. At a given time t,
the distribution of the number of walkers at a point R is N(R, t). As the Markov
chains evolve in time the number of walkers develops according to the so-called
master equation[13],

d

dt
N(R, t) = −

∑
R′

P (R′,R)N(R, t) +
∑
R′

P (R,R′)N(R′, t). (2.9)

As t→ ∞ the derivative dN(R, t)/dt→ 0 so that

∑
R′

P (R′,R)N(R) =
∑
R′

P (R,R′)N(R′) (2.10)

where N(R, t) → N(R). Metropolis et al. [11] then realized that the distribution
of walkers would end up in the required distribution ρ(R) as long as the transition
probabilities obeyed the equation of detailed balance,

P (R′,R)ρ(R) = P (R,R′)ρ(R′). (2.11)

1It is convention to write the final position to the left of initial position.

12

2.3. MONTE CARLO INTEGRATION

Imposing the condition of detailed balance is a necessary requirement for a random
process to sample the phase space with the probability density ρ(R).

There is still some freedom in choosing the transition probabilities, which are
not uniquely defined by the detailed balance condition. In the Metropolis approach,
the walk is generated by starting from a point R and making a trial move to a new
point R′ somewhere in nearby phase space. The way to choose the trial moves is
not crucial, as long as it satisfies the detailed balance. One such approach is to
choose a trial probability

PT (R
′,R) = PT (R,R

′) (2.12)

and an acceptance probability

PA(R
′,R) = min

(
1,
ρ(R′)
ρ(R)

)
, (2.13)

Note that since this approach involves the ratio of probabilities there is no need
to worry about normalization of the distribution ρ(R). Combining the trial and
acceptance probabilities we get

P (R′,R)

P (R,R′)
=
PT (R

′,R)PA(R
′,R)

PT (R,R
′)PA(R,R

′)
=
ρ(R′)
ρ(R)

(2.14)

and the condition of detailed balance is satisfied.

2.3.2 Variational Monte Carlo

Variational Monte Carlo is a quantum Monte Carlo method combining Markov-
chain Monte Carlo2 (MCMC) and the quantum mechanical variational principle.

Finding the ground-state energy of a many-body system of N particles and n
dimensions is equivalent to minimizing the integral

〈H〉 = E[ψ] =

∫
ψ∗(R)Hψ(R) dR∫
ψ∗(R)ψ(R) dR

, (2.15)

Where H is the Hamilton operator, E is the state energy and ψ(R) is the wave
function. According to the variational principle the energy will be at a minimum
for the exact wave function Ψ0. The functional E[ψ] thus provides an upper bound
to the ground state energy.

Rewriting Equation (2.15),

〈H〉 =
∫ |ψ(R)|2∫ |ψ(R)|2 dREL(R) dR (2.16)

2Due to the use of Markov chains, Monte Carlo methods using the Metropolis-Hastings algo-
rithm are often referred to as Markov-chain Monte Carlo methods.

13

CHAPTER 2. MONTE CARLO

with the local energy

EL =
1

ψ(R)
Hψ(R), (2.17)

the square of the wave function divided by its norm can be interpreted as the
probability distribution of the system, arriving at

〈H〉 = ρ(R)

∫
EL(R) dR, (2.18)

where

ρ(R) =
|ψ(R)|2∫ |ψ(R)|2 dR . (2.19)

The integral (2.18) may then be carried out with MCMC by moving walkers
randomly through phase space according to the Metropolis algorithm, and sam-
pling the local energy in each move.

2.3.3 Diffusion Monte Carlo

In the Diffusion Monte Carlo (DMC) method [14], the Schrödinger equation is
solved in complex time t→ it∗,

− ∂ψ(R, t∗)
∂t∗

= [H − E]ψ(R, t∗). (2.20)

The formal solution of (2.20) is

ψ(R, t) = e−[H−E]t∗ψ(R, 0), (2.21)

where e[−(H−E)t∗] is called the Green’s function, and E is a convenient energy shift.
The wave function ψ(R, t∗) in DMC is represented by a set of random vectors

{R1,R2, . . . ,RM}, in such a form that the time evolution of the wave function
is actually represented by the evolution of a set of walkers. The wave function
is positive definite everywhere, as it happens with the ground state of a bosonic
system, so it may be considered as a probability distribution function.

The DMC method involves Monte Carlo integration of the Green’s function by
every walker. The time evolution is done in small time-steps τ , using the following
approximate form of the Green’s function:

G = e−[H−E]t∗ =

n∏
i=1

e−[H−E]τ , (2.22)

where τ = t∗/n. Assume that an arbitrary starting state can be expanded in the
basis of stationary states,

ψ(R, 0) =
∑
ν

Cνφν(R), (2.23)

14

2.3. MONTE CARLO INTEGRATION

we have
ψ(R, t∗) =

∑
ν

e−[Eν−E]t∗Cνφν(R), (2.24)

in such a way that the lowest energy components will have the largest amplitudes
after a long elapsed time, and in the limit of t∗ → ∞ the most important amplitude
will correspond to the ground state (if C0 	= 0)3.

The Green’s function, Equation (2.22), is approximated by splitting it up in a
diffusional part [14]

GD = (4πDτ)−3N/2 exp{−(R′ −R)2/4Dτ}, (2.25)

which has the form of a Gaussian, and a branching part [14]

GB = exp{−((V (R) + V (R′))/2− ET)τ}, (2.26)

so that
G ≈ GDGB . (2.27)

While diffusion is taken care of by a Gaussian random distribution, the branch-
ing is simulated by creation and destruction of walkers with a probability GB . The
idea of DMC computation is quite simple; once an appropriate approximation of
the short-time Green’s function is found and a starting state is determined, the
computation consists in representing the starting state by a collection of walkers
and letting them independently evolve in time. That is, the walker population
is repeatedly updated, until a large enough time when all other states than the
ground state are negligible.

An important improvement to the DMC scheme above is the use of importance
sampling. In problems with singularities in the potential (e.g., the Coulomb poten-
tial) the Green’s function exp[−(H−E)t∗] will reach unbounded values, leading to
an unstable algorithm. Even without singularities the scheme above is inefficient.
This is due to the fact that no restrictions are imposed as to where the walkers
will walk.

To impose such a restriction, the wave function ψ(R, t∗) is substituted with a
new quantity f(R, t∗) = ψT (R)ψ(R, t∗) where ψT (R) is a time-independent trial
wave function, which should be as close as possible to the true ground state4. This
substitution can be shown [13, p. 92] to lead to a transformed Hamilton operator
which may be written as a sum of three terms H = K + F + L, where

K = −D∇2, F = −D(∇ · F(R)) + F(R) · ∇, L = EL(R), (2.28)

3This can easily be seen by replacing E with the ground state energy E0 in (2.24). As E0 is
the lowest energy, we will get limt∗→∞

∑
ν exp[−(Eν − E0)t∗]Cνφν = C0φ0.

4The trial wave function can be found using, e.g., variational Monte Carlo.

15

CHAPTER 2. MONTE CARLO

corresponding respectively to the kinetic part, the drift part and the local energy
part.

An O(τ2) approximation of the Green’s function is given by [15]:

〈R′|G|R〉 = 1

(4πDτ)3N/2
e−[R′−R−DτF(R)]2/4Dτ×

eEτ−[EL(R′)+EL(R)]τ/2 +O(τ2),

(2.29)

while an O(τ3) approximation of the Green’s function is obtained from [16]

G = eEτe−L/2τe−F/2τe−Kτe−F/2τe−L/2τ +O(τ3). (2.30)

While the implementation of the described diffusion Monte Carlo algorithm is
given in Section 4 of the article in Appendix A.2, we now turn our attention to an
important topic in both the article in Appendix A.2 and the one in Appendix A.3,
namely how to utilize the advantages of different programming languages in the
same application. The use of mixed-language programming is described below, in
Section 2.4.

2.4 On mixed-language programming

When setting out to implement a scientific software, e.g., to apply the Monte Carlo
methods in the previous sections to physical systems, one of the first questions that
appears is which programming language. On one hand there are high-level, inter-
preted programming languages like R, MATLAB R© and Octave, where features
like clean syntax, interactive command execution, integrated simulation and visu-
alization and rich documentation shortens development time, leaving more time to
focus on the scientific problem. On the other hand there are (relatively) low-level,
compiled programming languages like FORTRAN, C and C++ which are faster
(if programmed optimally), but generally less readable and, due to the overhead of
compile time, slower to debug. To complicate the question further, one may have
inherited an old software package (e.g., from a supervisor or the previous developer
in the project), seemingly being left with the choice of either continuing to develop
in the same language or translate the entire code to a new language.

The programming language Python [17] opens up a third possibility. When
extended with numerical and visual modules like SciPy [18], it offers most of the
functionality of MATLAB. However, one of the advantages of Python is that it is
designed to be easily extendable with compiled code. With freely available tools
like F2PY [19] and SWIG [20], old, well-tested FORTRAN and C functions can
be directly reused in Python without modification, rather than making wrappers
and calling the functions as external processes with an extra, error-prone layer of
input/output parsing.

16

2.4. ON MIXED-LANGUAGE PROGRAMMING

While reusing old code is a great motivation in itself, it can be beneficial to
look at code extensions from the opposite side as well. If one is to develop software
for a given scientific problem from scratch, a high-level, interpreted programming
language will yield the shortest period of development. Unfortunately, interpreted
languages are slower than compiled languages, partially because compiled lan-
guages can do low-level optimalisations on e.g. loops during compilation, and
partially because, after all, the interpreted language is just a layer on top of a
compiled set of libraries. However, in a scientific program most of the time of the
computation is usually spent in a small part of the program code (e.g. a matrix
operation or an iteration over a dataset). The idea is then to make a profile of
where in the code the time is spent, and rewrite the most time-consuming part in
a compiled language5.

2.4.1 MontePython – mixing Python and C++

While the article in Appendix A.2 presents the implementation of a general frame-
work for simulating bosons using diffusion Monte Carlo (DMC), one of the main
goals of the presented software (MontePython) was to illustrate the applicability of
mixed-language programming for scientific computing. For the actual implemen-
tation of DMC we refer to the article in Appendix A.2. We will, however, present
the main result here.

The main argument against programming in Python is the poor performance.
One would naturally assume that this applies to a mixed-language program as
well. Figure 2.1 shows the speedup when running the same simulation on an
increasing number of CPU’s. The speedup is calculated as the ratio of the wall-
time of the serial simulation (209 minutes for the C++ implementation and 225
minutes for the mixed-language implementation) to the wall-time of the parallel
simulation. The straight line shows the ideal speedup, i.e., when the wall-time
of the parallel simulation equals the serial wall-time times the number of CPU’s.
Circles show the speedup for a pure C++ implementation of DMC while triangles
shows the mixed-language implementation where the most costly computations are
implemented in C++ while the main part of the DMC algorithm is implemented
in Python. Note that for higher numbers of CPU’s the speedup of the mixed-
language implementation is actually closer to the ideal speedup than the pure C++
implementation. This is due to the fact that the serial version of C++ is faster
than the serial version of the mixed-language implementation. When increasing the
number of CPUs, the wall-time of the mixed-language implementation got closer
to the wall-time of the C++ version. As the mixed-language implementation had
lower performance in the serial run, the speedup was effectively marginally better

5The time to rewrite the code should of course be weighed against the amount of time the
code will actually be running.

17

CHAPTER 2. MONTE CARLO

0 20 40 60 80 100 120
Number of CPUs

0

20

40

60

80

100

120

S
p
e
e
d
u
p

Speedup up to 96 CPUs

Opt. C++
Opt. Python
Ideal

Figure 2.1: The figure shows the speedup for the simulations with regards to the
serial runs as a function of the number of CPU’s used. The serial run took about
209 minutes for C++, 225 minutes for Python and was run with an initial 4800
walkers moved in 1750 time-steps. (Taken from ”MontePython: Implementing
Quantum Monte Carlo using Python”, Appendix A.2.)

18

2.4. ON MIXED-LANGUAGE PROGRAMMING

MontePython simulation of 20 particles in 1750 time-steps.

Number of CPU’s Number of walkers Run-time (s)

512 400 000 3504
1024 800 000 3438
1536 1 200 000 3836
2048 1 600 000 4106

Table 2.1: Timings of MontePython simulations where the initial number of walkers per
CPU is kept constant. The simulations where run over 1750 time-steps with 20 interacting
particles in 3 dimensions.

for the mixed-language implementation than for the C++ implementation. It
should be noted that the speedup curve flattens out when going to large numbers
of CPU’s. This is due to the small number of random walkers on each node when
having a constant global number of walkers.

One of the main challenges of the mixed-language approach used in Monte-
Python was that the main data structure needed to be accessible both from Python
and C++. The Python module NumPy (which is part of SciPy) provides an effi-
cient array library highly capable of containing the data of the walkers. However, in
the C++ implementation the walkers were represented as separate objects. While
this representation makes sense in an object oriented implementation, it is not op-
timal performance-wise due to memory fragmentation. To kill two birds with one
stone we decided to let the walkers be stored in a NumPy array while the C++
walker objects only contained pointers to the corresponding elements in the array.

The speedup results in Figure 2.1 are not straight-forward to scale up to a very
large number of CPU’s. This is due to the need for running a serial simulation to
be able to compare with the increasing number of CPU. As MontePython is paral-
lelized with respect to the number of walkers, a reasonable large-scale simulation
requires a large number of walkers. However, the speedup calculation requires the
number of walkers to remain constant with an increasing number of CPU’s. An
alternative way to measure scalability is to increase the number of walkers linearly
with the number of CPU’s to start the simulations with a constant number of
walkers per CPU. Table 2.1 shows the timings for four simulations with increasing
numbers of CPU’s and walkers, all starting with 781 walkers per CPU and all
using around one hour. The most time consuming simulation, with 2048 CPU’s
used 20% more time than the fastest simulation, with 1024 CPU’s. It should be
noted that due to technical limitations on the cluster used for the simulations, the
simulation with 2048 CPU’s had to use a network fabric with significantly higher
latency than the network fabric used in the other simulations. The fact that the
fastest simulation was not the simulation with the fewest CPU’s indicates that the
simulation time depends on the load from other users on the cluster. The relatively
small difference in computation times suggests that only a relatively small part of

19

CHAPTER 2. MONTE CARLO

the time is used for internal communication.
While this concludes our brief look at implementing Monte Carlo methods, a

key part for running Monte Carlo simulations has been left out. As the Monte Carlo
algorithm is suitable for simulating systems too large for conventional methods, it is
mostly interesting for simulating very large systems, thus requiring large amounts
of computing resources. The remainder of this thesis will be devoted to exploring
ways of exploiting such resources.

20

Part II

Data Management in Grid
Middleware

21

Chapter 3

Distributed Computing

The physicist’s need for computational power can easily outgrow the limitations of
a cluster confined between the walls of a computing center. How to deal with such
computations falls into the category of distributed computing. While the main
work of this thesis is related to distributed data management, it is worth getting
a brief overview of the machinery that supports and depends on the distributed
storage.

Computing can, broadly speaking, be divided into two groups; high-performance
computing (HPC) and high-throughput computing (HTC). While HPC focuses on
relatively short-lived (rarely longer than a month), tightly coupled parallel jobs,
the main focus of HTC is to run as many serial jobs as possible within a rea-
sonable time frame to solve a larger problem. To take the problems described in
Appendix A.3 as examples, the problem of ocean wave propagation is studied with
coupled partial differential equations (PDE’s), voting in legislatures is studied with
the use of Markov chain Monte Carlo (MCMC) and a Bose-Einstein condensate
is studied with diffusion Monte Carlo (DMC). While parallelizing PDE’s involves
splitting up a lattice graph and dealing with inter-process communication on the
borders of the sub-lattices, MCMC requires only communication at the start and
end of the simulation. Hence, PDE’s belong to the HPC range of problems while
MCMC typically falls into the HTC category. DMC, however, is not so easily
classified. Being a Monte Carlo method, one may jump to conclusions and clas-
sify DMC as a HTC problem. However, the algorithm requires a global update of
the observables at each time step to correctly calculate the branching term (see
Section 2.3.3). While this involves much less communication than for PDE’s, the
communication is far from negligible. The question of which category (if any)
DMC fits into is a chapter in itself and will be discussed further in Chapter 5.

The term distributed computing relates to running jobs on the wide area net-
work (WAN), as opposed to cluster jobs which are confined to a local area network

23

CHAPTER 3. DISTRIBUTED COMPUTING

(LAN). Distributed computing is therefore closely related to high-throughput com-
puting, and the main paradigms for distributed computing are grids and clouds,
as will be explored in Section 3.2 after looking at a physical experiment in need of
such technologies in Section 3.1.

3.1 From Proton Collisions to Dataset: Comput-
ing needs of the ATLAS experiment

3.1.1 The Large Hadron Collider

Figure 3.1 shows an overview of the accelerator complex at the European Orga-
nization for Nuclear Research (CERN) which includes the Large Hadron Collider
(LHC), the largest, highest energy particle accelerator ever built [21, 22]. LHC
provides high-energy particles to the four experiments shown on the figure; A
Large Ion Collider Experiment (ALICE), A Toroidal LHC ApparatuS (ATLAS),
Compact Muon Solenoid (CMS) and LHC beauty (LHCb) and two smaller exper-
iments; the TOTal Elastic and diffractive cross section Measurement (TOTEM)
(close to CMS) and LHC forward (LHCf) (near ATLAS).

While these experiments are scientifically independent, they all depend on high-
energy particle collisions provided by the LHC. In a synchrotron, particles are ac-
celerated with an electric field and bent using a magnetic field. These fields are
increased synchronously with the energy of the particle beam. A major part of
the motivation for having a very large ring is that the momentum of the particles
depends on the strength of the magnet, B, and the bending radius, and B has
certain practical limits. To gain the high energies required to be inserted in LHC,
the particles go through a series of synchrotron accelerators. While the CERN
accelerator complex accelerates lead ions as well, the acceleration of the proton
serves as a good example. Starting up from hydrogen, the electrons and protons
are separated and the protons accelerated to 50 MeV to be injected from the linear
accelerator Linac2 to a booster. The booster accelerates the protons to 1.4 GeV,
before injecting them to the Proton Synchrotron (PS) where they are further ac-
celerated to 25 GeV and passed on to the Super Proton Synchrotron (SPS) for
further acceleration. At 450 GeV the protons are injected in both directions to
the Large Hadron Collider, where they are accelerated up to 7 TeV to generate
proton-proton collisions with up to 14 TeV center-of-mass energy.

When accelerated and at full intensity, the protons circulate in LHC in 2808
bunches in each direction, each containing 1011 protons. With a bunch crossing
rate up to 40 MHz and around 25 collisions per bunch (depending on luminosity),
LHC produces up to ∼1 billion collisions per second. Consider the data flow of,
e.g., the ATLAS detector. After zero-suppression of the detector data and data-
compression, the size of one collision (or event) is about 1.6 MB. To store all

24

3.1. FROM PROTON COLLISIONS TO DATASET

Figure 3.1: Overview of the CERN accelerator complex. Protons are injected from
Linac2 to the Booster, and then further accelerated in the Booster, PS (Proton
Synchrotron) and the SPS (Super Proton Synchrotron) before injection to LHC
(Large Hadron Collider) in both directions. Lead ions are injected from Linac3
to LEIR (Low Energy Ion Ring) before being accelerated in PS and SPS before
injected to LHC. (Illustration taken from CERN Web pages.)

25

CHAPTER 3. DISTRIBUTED COMPUTING

the events would require a sustained bandwith of 12.8 Pb/s, which with today’s
technology is unrealistic. However, when searching for new physics discoveries,
most of these events are not interesting. The ATLAS Trigger and Data Aquisition
(TDAQ) uses a three level trigger system to reduce the number of events. The first
level (LVL1), which is hardware-based, searches in a subset of the data for specific
combinations of high transverse momentum, electrons/photons, hadrons and jets
and missing transverse energy. The second trigger (LVL2) is software-based and
refines the search even further by taking into account data from the inner detector
and a region-of-interest mechanism. While the LVL1 and LVL2 triggers are based
on specialized algorithms on highly selective data and have latencies of ∼2 μs and
∼10 ms, respectively, the last level event filter accesses the full event data to run
event reconstruction and has an expected latency of a few seconds.

While this trigger mechanism reduces the event rate to 200 Hz, it still requires
320 MB of raw data to be stored per second during data-taking. Taking into
account planned breaks in production, ATLAS alone will produce 3.2 PB of raw
data per year when the LHC reaches design luminosity. Even though all of this
will be stored at CERN, the computing resources needed to reconstruct the events
and do the data analysis to discover new physics cannot fit into the physical area
of the computing center of CERN1. Additionally, to avoid loss of data in case of
natural disasters, terrorist attacks or human errors at CERN, the data need to be
replicated elsewhere.

3.1.2 The ATLAS Computing Model

The data from the event filter comes in form of a byte-stream reflecting the format
delivered from the detector, and is not very suitable for physics analysis. To
maintain reproducibility while ordering the event data for efficient searching and
analysis, the ATLAS Computing Model introduces an event store, i.e., a set of
successively derived event representations [23], of which we will mention the most
important here. The Raw data (RAW) from the event filter are stored in files of
up to 2 GB size with unordered events. The RAW data are reconstructed to get a
consecutive, ordered presentation of the events, the Event Summary Data (ESD).
The ESD is further derived to make Analysis Object Data (AOD). The AOD is
a reduced event representation containing physics objects and other elements of
analysis interest. While the AOD contains all the physics data needed for analysis,
the Tag Data (TAG) contains event level metadata, information about events to
be able to identify and select events of interest to a given analysis. Further derived
from AOD are the Derived Physics Data (DPD). These are n-tuples of events
generated by physicists to analyze and present specific types of events. Additionally
there are representations of simulated data from Monte Carlo simulations.

1Not to mention the required electrical power and cooling of the computers.

26

3.1. FROM PROTON COLLISIONS TO DATASET

Figure 3.2: Overview of the Tiers of ATLAS. The Tier-0 facility at CERN is located
in the middle, connecting to Tier-1 facilities (clouds). The Tier-1 facilities connect
to each other, while the Tier-2 facilities only connect to assigned Tier-1 facilities.

27

CHAPTER 3. DISTRIBUTED COMPUTING

In the ATLAS computing model, computing and storage resources are dis-
tributed in a hierarchical system of tiers as shown in Figure 3.2. The tiers have
different roles:

• The Tier-0 facility is located at CERN and is responsible for archiving and
distributing the primary RAW data from the event filter and performing
first-pass processing. The derived data (ESD, primary AOD and TAG sets)
are distributed to the Tier-1 facilities. The access to Tier-0 is restricted to
people in the central production group and those providing the first-pass
calibration of the detector.

• The Tier-1 facilities have the responsibility of hosting the RAW data (about
one tenth each) and of providing long term access to the RAW data. Addi-
tionally, the Tier-1 facilities are responsible of providing ATLAS-wide access
to the derived data sets, hosting a secondary copy of ESD’s, AOD’s and
TAG’s from another Tier-1 and simulated data from Tier-2 facilities to im-
prove access and provide fail-over. Access to Tier-1 facilities is restricted to
the production managers of the working groups and to the central production
group for reprocessing.

• The Tier-2 facilities support calibration, simulation and analysis activities.
They provide analysis capacity for physics working groups and subgroups
and therefore host all TAG samples, some AOD’s and some of the physics
group DPD samples. All members of the ATLAS virtual organization have
access to all Tier-2’s.

An interesting feature of the ATLAS computing model is that it puts no re-
strictions on which middleware that should be used on the different tiers, as long
as they can provide the required computing power and storage space. As a result
the tiers of ATLAS are run on three different grids with distinct middleware run-
ning together as one, those being Enabling Grids for E-sciencE [24] (EGEE) with
gLite middleware [25], the Open Science Grid [26] (OSG) with the Virtual Data
Toolkit middleware [27] and NorduGrid [28] with the Advanced Resource Connec-
tor (ARC) middleware [29] (Appendix A.4). While the management of distributing
the data sets between the tiers will be discussed in Section 4.1, the term grid and
the middleware running on the NorduGrid will be explained in Section 3.2.

3.2 Grids and Clouds – Distributed Technologies

The idea of having on-demand access to computing, data and services is not entirely
new. Leonard Kleinrock, one of the internet pioneers who contributed to setting up
the ARPANET, envisioned “the spread of computer utilities, which, like present
electric and telephone utilities, will service individual homes and offices across

28

3.2. GRIDS AND CLOUDS – DISTRIBUTED TECHNOLOGIES

the country” [30]. While this vision may have been somewhat premature at the
time, the evolution of new standards and technologies have brought us a great
deal closer to realizing the vision. In the seventies and eighties, internet standards
like TCP/IP [31, 32] and the “vague but interesting” proposal of Tim Berner-
Lee in 1989 (on the management of general information about accelerators and
experiments at CERN [33]) describing the Hyper-Text Markup Language (HTML)
and the Hyper-Text Transfer Protocol (HTTP) laid the foundations for what was
to become known as the World Wide Web (WWW). While WWW in the early
nineties consisted of static information, the introduction of Web 2.0 [34] in the
last decade with interactive web services like wiki, blog and RSS feeds, has opened
the possibility of using the web as a computing platform. The introduction of the
Service Oriented Architecture (SOA) with web services communicating using the
Simple-Object Access Protocol (SOAP) standard provided means for connecting
world-wide resources into grids and later clouds.

Lately, there has been some level of confusion as to the difference between
computing grids and computing clouds. Some argue that the term cloud is just
another word for grid that appeared as a response to the slower-than-promised
progress in grid technology. Others argue that there is a fundamental difference
between the concepts of grids and clouds, the first evolving from an academic
need for sharing resources and the latter evolving from a commercial urge to sell
resources. Much of the confusion is probably due to the fact that grids and clouds
both aim at providing global resources to local users. We will in the remainder of
this section briefly touch upon the concepts of grids and clouds, before discussing
a grid middleware implementation to try to pinpoint the conceptual difference
between grids and clouds.

3.2.1 Grid

While several attempts have been made to define the grid (see, for example [35, 36,
37]) probably the most commonly accepted definition is the ”three-point” checklist
by Ian Foster [38]: A grid is a system that

1. coordinates resources that are not subject to centralized control . . . (Non-
centralized control of resources is often connected with the term Virtual Or-
ganization (VO). A VO is a set of individuals or institutions with a common
set of rules for sharing resources. The individuals/institutions are typically
geographically distributed in several countries.)

2. . . . using standard, open, general-purpose protocols and interfaces . . . (Open
standards are vital for enabling different communities to share resources. As
an example, the success of WWW is for a large part due to the open standards
HyperText Transfer Protocol (HTTP) and HyperText Markup Language.
While there is a great number of web browsers on the market, thanks to the

29

CHAPTER 3. DISTRIBUTED COMPUTING

open standards, all of them are able to present the same HTML document
in the same way.)

3. . . . to deliver nontrivial qualities of service. (The utility of the combined
system should be significantly better than that of the sum of its parts.)

Being mainly developed for scientific computing needs, an important aspect of a
grid is the sharing of resources. Commonly, the resources behind the grid deploy-
ments are based on public funding and organizations provide resources to share by
installing a grid middleware.

Similar to the way an operating system provides an abstraction layer on top
of the hardware in a computer, a grid can be viewed as a set of increasingly
abstracted layers between hardware and users. Figure 3.3 shows the typical grid
abstraction layers. At the bottom, computers, data network, storage systems,
data sources and scientific instruments (e.g., the ATLAS experiment as described
in Section 3.1) represent the hardware resources in the grid, i.e., the grid fabric.
These are connected as networked resources across organizations. On top of the
hardware, operating systems, queuing systems, libraries, application kernels and
internet protocols represent the local abstraction of the hardware. To connect the
distributed grid fabric to one unit, the grid middleware provides services to handle
security, information, data management, resource access and quality of service.
To protect the grid fabric from unauthorized access, all the services need to go
through a security layer to access the grid fabric. For applications to access the grid
middleware, a set of grid tools, or client tools, provide high-level interfaces to the
middleware. As the grid tools are middleware-dependent, the layer of applications
and portals on top of the grid tools are often designed to work with grid tools from
various grid middlewares. An example of such an application is Ganga, the use of
which will be described in Chapter 5.

3.2.2 Cloud

Cloud computing can be considered a rather less mature concept than grid comput-
ing. As an illustration, Gartner’s hype cycle [39] characterizes technologies through
a series of phases “from over-enthusiasm through a period of disillusionment to an
eventual understanding of the technology relevance and role in a market or do-
main”. While grid computing reached the peak of inflated expectation in 2002 (to
continue into a period of disillusionment), cloud computing reached the same peak
in 2009. This is not to say that the idea of clouds should be discarded. However,
being at the peak of the hype, it can be difficult to extract the basics of what a
cloud is from the diverse solutions embracing the cloud paradigm2.

2It should be noted here that the term ”ATLAS cloud” (see Figure 3.2) is not an attempt
from the ATLAS community to embrace the cloud paradigm. The term ”ATLAS cloud” is used

30

3.2. GRIDS AND CLOUDS – DISTRIBUTED TECHNOLOGIES

Applications and portals

Application Portal Portal Application Web-enabled
applications

Grid tools
Languages/
compilers Libraries Debuggers Monitors Web tools

Resource brokers

Grid middleware

Security Information
Data

management
Resource

access QoS

Security layer

Client side

Server side

Fabric
Operating

system
Queuing
system Libraries Application

kernels
Internet

protocols

Networked resources across organizations

Computers Networks
Storage
systems

Data
sources

Scientific
instruments

Grid users

Figure 3.3: Schematic view of the grid abstraction layers. The users use applica-
tions and portals to interact with the grid. The applications acts as a frontend for
the users and uses the grid tools to communicate with the grid middleware which
is an abstraction layer in front of the fabric consisting of the hardware and the
software needed to communicate with the hardware.

31

CHAPTER 3. DISTRIBUTED COMPUTING

However, some early attempts on defining the cloud paradigms have been made,
of which one of the most notable is “Clouds are a large pool of easily usable and ac-
cessible virtualized resources (such as hardware, development platforms and/or ser-
vices). These resources can be dynamically reconfigured to adjust to a variable load
(scale), allowing also for an optimum resource utilization. This pool of resources
is typically exploited by a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized Service Level Agreements.” [40].

The main building blocks of a cloud are the services. The cloud actors access
the services both to add resources and utilize resources. The services provides
quality-of-service (QoS) guarantees through service level agreements. By combin-
ing services, the service user can create a customized virtual platform. Conceptu-
ally the basic services can be divided into three classes.

• Hardware as a Service (HaaS) provides customizable, scalable hardware
resources, typically as a pay-per-use subscription service. Examples of HaaS
are Amazon EC2, IBM’s Blue Cloud project, Nimbus and Eucalyptus.

• Data as a Service (DaaS) provides data in various formats and from multi-
ple resources to be accessed over the Internet. Examples of DaaS are Amazon
Simple Storage Service (S3) and to some extent Google Docs and Adobe Buz-
zword.

• Software as a Service (SaaS) offers software applications as web services,
usually accessible through standard Web browsers, thus eliminating the need
to install and run the application on the client machine. Examples here are
office applications provided by, e.g., Google Docs and Microsoft Office Live.

Additionally, concepts like Infrastructure as a Service (IaaS) and Platform as a
Service (PaaS) combine the above-mentioned concepts to offer higher-level ser-
vices. For example, Google Wave is a web-based service, computing platform and
communication protocol, combining HaaS, DaaS and SaaS in one service.

Figure 3.4 shows the relationship between the cloud actors, i.e., the service
users and the service providers, and the hardware resources. When compared to
Figure 3.3 clouds have fewer abstraction layers, and service providers, being at
the same side of the infrastructure management as the users, have more control
in adding and removing services. However, the hardware is isolated through sep-
arated virtualization layers. While in grid one security layer spans the entire grid
middleware, security in clouds is provided through isolation of the different virtual-
ization layers. Note also that where grids provide high-level services like metadata
searches and data services through the grid tools, the clouds leave these issues to
the cloud applications. This may be due to the current absence of federated clouds,

to describe a Tier-1 with a set of associated Tier-2’s and Tier-3’s, and preceded the commercial
use of ”cloud” by several years.

32

3.2. GRIDS AND CLOUDS – DISTRIBUTED TECHNOLOGIES

Service
Infrastructure

interfaceServiceServiceService

Infrastructure management

Virtualization
layer

Hardware

Operating
system

Virtualization
layer

Hardware

Operating
system

Virtualization
layer

Hardware

Operating
system

Virtualization
layer

Hardware

Operating
system

Virtualization
layer

Hardware

Operating
system

Service
providersService

users

Utilization
Deployment/
management

Figure 3.4: Schematic view of the cloud actors; the service users and service
providers. Both users and providers need to go through the infrastructure man-
agement to use and provide hardware through a virtualization layer.

33

CHAPTER 3. DISTRIBUTED COMPUTING

as grids were in a similar state before the need for federated grids forced a need
for standardization of grid tools. As cloud services become more cost-effective, one
can speculate about a near future where grid services, custom-configured for each
virtual organization, are deployed in (one or more) clouds.

3.2.3 The Advanced Resource Connector

A detailed overview of the Advanced Resource Connector middleware is given in
the article in Appendix A.4.

Since the Condor project [41] set out on their hunt for idle workstations in 1988,
many have joined the hunting party. Where Condor developed a computing envi-
ronment with heterogeneous distributed resources, the appearance of the Globus
Toolkit [42] and its Grid Security Infrastructure (GSI) created a layer for secure,
coordinated access to geographically distributed computing and storage resources
in the late nineties.

Meanwhile, in late 2000, the high-energy physics (HEP) community in the
Nordic countries, due to their participation in LHC experiments, e.g., the ATLAS
project, needed urgently to coordinate their available computing power in order to
contribute to the large computing needs of the LHC collaboration. A peculiarity
of the scientific and academic computing resources in the Nordic countries is that
it consist of geographically scattered small to medium-sized facilities of different
kinds and ownership. The only viable solution to meet these computing needs
was to join these facilities into a unified structure. Studies and tests conducted
by the NorduGrid collaboration [28] revealed that the existing solutions at the
time were either not ready or did not meet the requirements of the Nordic HEP
community [29].

To meet these requirements NorduGrid set out to develop what is now known
as the Advanced Resource Connector (ARC) (Appendix A.4). Building on the
by then de facto standard Globus Toolkit 2002, ARC was developed and put into
production in 2002 [43]. While being in non-stop production since 2002, the de-
velopment of ARC is a continuously ongoing effort. This has been possible due to
a set of strict rules for the middleware development [29]:

1. A grid system, based on ARC, should have no single point of failure, no
bottlenecks.

2. The system should be self-organizing with no need for centralized manage-
ment.

3. The system should be robust and fault-tolerant, capable of providing stable
round-the-clock services for years.

4. Grid tools and utilities should be non-intrusive, have small footprint, should
not require special underlying system configuration and be easily portable.

34

3.2. GRIDS AND CLOUDS – DISTRIBUTED TECHNOLOGIES

5. No extra manpower should be needed to maintain and utilize the Grid layer.

6. Tools and utilities respect local resource owner policies, in particular, security-
related ones.

Supported by the European Union (EU) Framework Package 6, ”Grid-enabled
Know-how Sharing Technology Based on ARC Services and Open Standards” [44]
(KnowARC) started up in June 2006 to improve and extend the ARC middleware
while complying with the requirements of grid standardization and interoperability.
Up to the end of the project in November 2009, KnowARC has redesigned and
implemented a Web-Service based ARC solution. To keep the continuity of the
ARC production, the new implementation is intended to be introduced gradually
after thorough testing and validation by NorduGrid.

Adding new services gradually is possible due to the plug-able architecture of
ARC. Figure 3.5 shows the message flow between the client side and the server side
of the middleware. User applications (command line interfaces (CLI’s), graphical
user interfaces, grid portals) can access the server side through either web services
(WS’s), using the Simple Object Access Protocol (SOAP) or, for backwards compa-
bility, with pre-WS standard protocols like GridFTP, XRSL, Gram, Condor, JDL3.
The client tools provided by ARC build on the ARC client library (libarcclient)
which provides low-level commands such as submit(), cancel(), upload(), download()
and so forth. These commands again build on an adaptor layer which converts
the request to a WS message through a chain of SOAP, HTTP, TLS and TCP. In
the case of an ARC SOAP request, the message is sent through the WS interface
to the Hosting Environment Daemon (HED), a minimal, plug-able WS container.
The HED parses the message and routes it to the requested service which does its
work and returns the result to the requester.

The HED container is worth some extra attention. It contains a set of plug-
able components which provide an interface to connect the services to HED. There
are four kinds of plug-able components with well-defined tasks: Data Management
Components (DMC) are used to transfer data using various protocols, Message
Chain Components (MCC) are responsible for the communication within clients
and services as well as between the clients and the services, ARC Client Compo-
nents (ACC) are plugins used by clients to connect to different Grid flavors, and
Policy Decision Components (PDC) are responsible for the security model within
the system. Figure 3.6 illustrates how a message is propagated through the chain
of MCC’s in HED, from the Transfer Level Protocol (TCP) MCC, through the
Transfer Level Security (TLS) MCC, the HTTP MCC, via a plexer to the SOAP
MCC. The SOAP MCC invokes the appropriate service and the result is returned
back through the same chain.

3One may argue that the problem of the early grid solutions is not the lack of standards, but
rather the flood of overlapping standards.

35

CHAPTER 3. DISTRIBUTED COMPUTING

Figure 3.5: Overview of the client side and the server side of Web Service (WS)
ARC middleware. From left to right, client tools (left) either connect through
the ARC client library (libarcclient) or directly to the WS interface or pre-WS
interfaces for backwards compatibility (middle). Depending on the message, the
request goes to the Hosting Environment Daemon (HED) (right) which routes the
message to the requested service, which in turn does the required work and sends
the result back to the requester. (Illustration taken from KnowARC web pages.)

36

3.2. GRIDS AND CLOUDS – DISTRIBUTED TECHNOLOGIES

Figure 3.6: Overview of the Message Chain Components (MCC’s) of the Hosting
Environment Daemon (HED). MCC’s parse layers of a message and after confirm-
ing with the Policy Decision Component (PDC) pass the message to the next MCC
in the chain.

37

CHAPTER 3. DISTRIBUTED COMPUTING

The most important services included in the final release of the KnowARC
project are the ARC Resource-coupled Execution Service (A-Rex), providing exe-
cution of computational tasks, Chelonia, providing data storage (see Section 4.3),
Hopi, providing data transfer, ISIS, a distributed information service and Charon,
providing remote policy decision. ARC is a grid middleware, intended for connect-
ing resources to form a grid. However, combining the above-mentioned services
to form a grid infrastructure, the likeness to cloud concepts such as Platform as
a Service and Infrastructure as a Service is quite striking. The main difference
lays in the way resources are provided. In clouds the resources are provided by
the infrastructure provider, so the service provider can gain flexibility and reduce
cost [40]. In an ARC deployment the resources are owned by the service providers
who share the resources through the infrastructure. For example, a resource owner
who wants to share the resource, e.g. a computing element, will install and run
a HED instance with the A-Rex service which registers to a remote ISIS service.
While this is a sensible way to share resources, it makes it difficult to provide
quality-of-service guarantees as the service providers do not necessarily control the
infrastructure the service is connected through.

It should, however, be emphasized that neither the definition of grid nor the
definition of cloud is widely agreed upon and that they should be viewed as de-
scriptions of currently available solutions. ARC came as a response to missing
capabilities in other grid middleware solutions and still differs from most grid solu-
tions in, e.g., the absence of centralized control. It also differs from cloud solutions
in that it is interoperable with other distributed solutions and in that the service
providers share the infrastructure responsibility. The common goal of grids and
clouds is to connect local users to global resources. Be it for a grid or a cloud,
ARC may simply be viewed as an advanced resource connector.

38

Chapter 4

Distributed Data
Management

Distributed data management covers all aspects in the life cycle of distributed
data, including topics like data transfer, distributed storage, data localization,
data security, data availability and data access. While most of these topics are
touched upon in this chapter, the main focus of this chapter (and in fact the
thesis) is on distributed storage. However, it may be worthwile to take a look at a
real-life example of distributed data management before delving into the aspects
of distributed storage. The remainder of this chapter is organized as follows. In
Section 4.1 we have a brief look at the system used in the ATLAS Distributed
Data Management model and the Nordic Tier-1 in particular before we look closer
at distributed storage and the ARC storage solution (Chelonia) in Section 4.2.

4.1 Don Quijote – ATLAS Distributed Data Man-
agement

During full LHC operation, with a luminosity of 1034 cm−2s−1 and 7 TeV beams,
the ATLAS experiment will generate tens of petabytes of data per year, to be
aggregated and distributed globally between the tiers of ATLAS as described in
Section 3.1. To handle the flow and replication of these data the ATLAS Dis-
tributed Data Management (DDM) project was established in 2005 to develop the
system Don Quijote 2 [45] (DQ2). DQ2 is a centralized service at CERN provid-
ing a data management interface to the Tier-0 facility, most Tier-1 facilities and
their associated Tier-2 facilities. The tiers are spread globally and run on three
different grid flavours. The task of DQ2 is to manage the complete data flow of the

39

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

ATLAS experiment from raw data archiving through global managed production
and analysis to individual physics analysis at the various home institutions.

The primary concept in DQ2 is the dataset. A dataset is an aggregation of data
from a set of files that are processed together in a computation or data acquisition.
Examples of datasets might be the RAW dataset from a few hours of data-taking
or the derived physics data of a Monte Carlo simulation of, e.g., a hypothetical
Higgs particle. A dataset has two distinct properties:

• A dataset is versioned, meaning that a dataset which is altered (by adding
or removing a file) is tagged with a version number. The tag 0 points to the
last version of the dataset.

• A dataset has a mutability state which can be open, closed or frozen. If a
dataset is open, new data can be added to it, thus creating a new version.
In a closed dataset, new data cannot be added, but file transactions which
have been started before the dataset was closed may change the state back
to open again by creating a new version. A dataset is frozen, or immutable,
when the last version is closed and no new version can be added to it.

In DQ2, the file is the basic system unit. It is identified both by a Globally
Unique Identifier (GUID) and a human-readable Logical File Name (LFN). A
file is immutable and cannot be updated. For each update of a dataset, a new
GUID and LFN must be created. A file may be added to a dataset version and
removed in a later version. However, per default, it will still exist in the system.
One of the reasons for this is that both GUID-based and LFN-based lookup is
required. To achieve adequate performance, GUID-LFN associations need to be
recorded in many places, and both removing and renaming a file require costly
synchronizations.

The DQ2 system consists of a set of command-line tools, end-user tools and a
production system layered on top of a set of centralized catalogues and a set of
site-based services for communicating with the different grid middlewares:

• The DQ2 tools provide logical organization at the dataset level, supporting
the data aggregations by which data is replicated, discovered and analyzed.
The tools for end-users and production are separated since the usage patterns
of the two are quite different. While production tasks are well-defined and
managed at the collaboration or physics group level, the user activities are
more chaotic by nature, requesting subsets of production data and uploading
data produced by individual users.

• The centralized catalogues store file metadata such as GUID, LFN, size and
checksum and dataset metadata such as locations of dataset replicas and
users’ dataset replication requests. Being centralized, the catalogues need to
handle massive amounts of lookups and registrations.

40

4.1. DON QUIJOTE – ATLAS DISTRIBUTED DATA MANAGEMENT

• The local site services deal with communication between DQ2 and the grid
middlewares. All managed data movement in DQ2 is automated using sub-
scriptions, i.e., when a site subscribes to a dataset, the DQ2 site service agent
acts to pull the dataset to the site as well as to keep the site up-to-date on
later changes to the dataset. Data movement is triggered from the destina-
tion side so that local uploading can be done using site-specific mechanisms
if desired.

Figure 4.1 shows the ATLAS DDM topology with the relations between DQ2,
the LHC Computing Grid (LCG) File Catalog (LFC) [46], the File Transfer Service
(FTS) [47], the Storage Resource Manager (SRM) and the site storages. Each
ATLAS cloud (Tier-0 and Tier-1’s) runs a file catalog and a transfer service. Each
LFC is a centralized service maintaining a separate namespace for the data stored
in its particular cloud. To upload a file to a site, DQ2 first registers it at the LFC at
the corresponding cloud, then contacts the corresponding FTS which redirects the
file transfer to the SRM service of the Tier-2. For file replication DQ2 registers and
uploads the file to two different clouds, and to delete a replicated file all the clouds
with a replica need to be contacted. As there is no communication, neither directly
between the LFC’s nor between the LFC and the SRM at each site, manual work is
needed to make sure the different namespaces are not fragmented (e.g., removing
file registrations to non-existent files and registering or removing non-registered
files).

The ATLAS DDM model considers a Tier-1 facility as a single entity and
requires that it provides a single entry point. This is quite natural, as each of the
EGEE and OSG based Tier-1 facilities is situated at a large data center. On the
other hand, while the Nordic countries together have more than enough resources
and a solid data infrastructure, no single data center can provide the required
computing and storage resources to host a Tier-1 facility. NDGF is a meta-centre
connecting several existing scientific computing resources and Grid facilities in the
Nordic countries. One of the tasks of NDGF is to host a Nordic Tier-1 center and
manage the distribution of data and computing tasks between various computing
centers in the Nordic countries [48].

The NDGF Tier-1 builds on the ARCmiddleware which provides the fundamen-
tal grid services, such as information services, resource discovery and monitoring,
job submission and management, brokering and data management and resource
management. All these services run on the frontends of the different resources or,
in the case of the brokering, on the client machines. However, the ARC middle-
ware does not yet provide a production-ready, distributed storage solution scalable
to the levels required by a Tier-1 facility. Instead, NDGF manages a distributed
dCache [49] installation1, where the physical data are stored in storage pools dis-
tributed between computing centers in the Nordic countries (e.g., at the IT-center

1NDGF collaborates with the dCache project and develops the necessary extensions to dCache.

41

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

Site storage
(CASTOR)

Site storage
(dCache)

Site storage
(DPM)

SRM
interface

SRM
interface

SRM
interface

FTS
(Tier-0)

FTS
(Tier-1)

LFC

DQ2

Tier-0 Tier-1 Tier-2

Figure 4.1: The ATLAS DDM topology. DQ2 uses LFC (one at each Tier-1 site)
for file look-up and FTS’s at Tier-0 and Tier-1’s for file transfers. The FTS’s
communicate with the storage at each site through SRM interfaces.

42

4.2. DISTRIBUTED STORAGE

at the University of Oslo (USIT)) while the indexing service and entry point are
located at central machines in Ørestaden near Copenhagen. To avoid having all
the traffic passing through a central endpoint the actual file transfer is redirected
to go directly between the source point and the selected data pool (part of the
GridFTP V2 protocol [50]).

4.2 Distributed Storage

An essential part of distributed data management is of course how to store the
data. To create a distributed storage solution involves facilitating data transfer
and data access, in a secure manner, i.e., in a manner so that at any point in the
lifetime of the data only users with read access can access entries and only users
with write access can change the entries. In the same manner as one can distin-
guish between high-performance computing and high-throughput computing, one
can distinguish between distributed storage for high performance and distributed
storage for high throughput. While the first is designed to be deployed in a Local
Area Network (LAN), inside the same firewall and with full control of the network
connections, the latter is designed to work over the Wide Area Network (WAN)
without control of the network connection, high network latency and high probabil-
ity of failing connections. While it is quite common for high throughput storage to
use high performance storage solutions as local storage backends2, we will here fo-
cus on the high throughput variant of distributed storage, and the term distributed
storage should be read as distributed storage for high throughput computing in the
remainder of this chapter.

Due to the need for connecting over the WAN, distributed storage solutions
need to be exposed to the Internet, both internally and externally. This poses
several challenges:

• Security: When being confined to a single LAN, a malicious user will have
to break into the LAN (or otherwise gain access to the LAN) to pick up data
transfers. File transfers over WAN are exposed to any user and sensitive
data need to be secured through encryption.

• Access: In a LAN environment there is a limited number of users, all of
them accessing the system with a local username and password. In a WAN
environment there is a much greater number of potential users and traditional
access control methods are not designed to scale to huge numbers of users.

• Fault tolerance: While a LAN environment is not void of errors, the po-
tential sources of errors increase in a WAN environment as more connection

2For example, the dCache pool at the University of Oslo uses GPFS to physically store the
data.

43

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

points need to be passed between the resources. Additionally, the infras-
tructure (switches, routers, cables, etc.) is not physically controlled by one
system administrator. Hence, one should expect a higher fault rate in a WAN
environment, and design the storage system accordingly.

• Performance: Whereas in a LAN environment latency can be down to
microseconds and bandwidth can reach levels near internal harddrive per-
formance, in a WAN environment it is not unusual with latency up to a
second and bandwidth in the order of megabits per second. A message-flow
which performs very well in a LAN environment does not necessarily perform
optimally in a WAN environment.

• Scalability: While having a storage system distributed over WAN drasti-
cally increases the possibility of storing huge amounts of data, it also increases
the needed efforts in managing and monitoring the data. Existing solutions
for managing and monitoring data in a LAN are most likely not designed to
work in a distributed environment.

• Metadata handling: Accessing a storage system, be it for localizing files,
downloading files or uploading files, requires accessing metadata. The meta-
data are stored in a database which can grow very large when the number
of entries in the system increases. To achieve a reasonable performance in
the system, this meta-database needs to be very efficient. To have a reliable
system the meta-database needs to be consistent. Having the metadata on
a single machine can provide consistency, but will limit the performance on
database lookups, make a single point of failure and limit the scalability of
the system. As the need to distribute a storage system is closely connected
to the question of scalability, a major challenge in distributed storage is how
to consistently and efficiently replicate the metadata over several machines.

All these challenges are quite demanding and their solutions depend, to a cer-
tain degree, on the intended use of the storage system at hand. For example, if
the storage system is intended to be used for a large scale physics experiment,
high performance and scalability may be prioritized while lowering the security
demands. On the other hand, a multinational company in need of sharing their
customer database between the local offices may set security much above perfor-
mance. It is not given that a storage solution that is considered very good in one
case will even be considered usable in the other case.

As a result of the diverging needs of potential users, many distributed storage
solutions have emerged over the years, usually based on either grid or cloud ideas.
While many of these solutions are highly specialized to solve specific tasks, some
solutions are intended to be used for more generic data storage. Examples of
such solutions are dCache and DPM/LFC (see Section 4.1), both used at ATLAS

44

4.3. CHELONIA, A SELF-HEALING STORAGE CLOUD

Tier-1 facilities, and Amazon Simple Storage Service (S3) which is a storage cloud
guaranteeing ”infinite” storage space on a pay-per-use basis.

The dCache system is a service-oriented storage system which combines hetero-
geneous storage elements to collect several hundreds of terabytes in a single names-
pace. Originally designed to work on a local area network, dCache has proven to
be useful also in a Grid environment, with the distributed NDGF dCache installa-
tion as one large example3. While proved to be suitable for storing huge amounts
of data, dCache suffers from rather complex installation and maintenance. The
fact that all metadata need to be stored in a single LAN environment introduces
a single point of failure.

By combining the Disk Pool Manager (DPM) and LFC4 it is possible to set up
a relatively lightweight storage system with distributed metadata by registering all
files uploaded to any DPM to several LFC’s. However, just like in the ATLAS DDM
topology, DPM and LFC have no direct coupling and registration and replication
of files are left to the client tool. If, e.g., a file is removed from a DPM without
updating LFC, the namespace of the storage system becomes inconsistent and file
lookup inefficient.

Amazon S3 is a generic cloud storage system where storage space is provided by
Amazon, thus freeing the users from the efforts and costs of buying and maintaining
storage hardware. While this offers great savings for a company in need of storage
space, it also raises a security issue. Where in traditional grid storage solutions,
both the users and services need to trust the same, third-party, certificate authority,
the security model of S3 requires users to trust the storage provider entirely.

A large part of my work in this thesis has been devoted to address the above-
mentioned challenges and shortcomings of existing solutions. The result, a light-
weight, fault-tolerant and generic storage solution without single points of failure,
is described below, in Section 4.3.

4.3 Chelonia, a Self-healing Storage Cloud with
Grid Capabilities

The basic components needed for creating a distributed storage system are the
storage elements (SE’s) where the data are stored, a protocol for transferring the
data to the SE’s and between the SE’s, a database to keep track of where the data
are physically stored and a structure in which the data can be organized.

Chelonia, being one of the main components in the KnowARC final release,
is a file-based storage system with the files organized in collections in a global,

3Disk pools are located in Norway, Sweden, Finland, Denmark and Slovenia.
4Note that LFC is used both as an ATLAS cloud-wide file catalog and as a file catalog for

DPM on local sites.

45

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

hierarchical namespace. Chelonia is a self-healing storage system in the sense that
all files can be replicated and Chelonia handles both file replication and discovery
of broken and missing file replicas internally. Additionally, to avoid single points
of failure, all the services can be replicated. While an overview of Chelonia is
given in the papers in Appendices A.5 and A.6 the most important parts will be
summarized here.

Chelonia consists of a set of services communicating through the Hosting Envi-
ronment Daemon (HED) message chain components (see Section 3.2.3). Figure 4.2
shows an overview of the Chelonia architecture. The architecture consists of four
services, each with well-defined tasks: The A-Hash (blue space ship) consistently
stores the metadata (e.g., file location, size and time of creation) of each entry , the
Librarian (orange book) manages the hierarchical namespace, the Shepherd (light
blue staff) manages the SE and the Bartender (red cup) provides the interface to
users and third-party services.

In Chelonia every entry (files, collections, mount points) is associated with a
Global Unique ID (GUID) and a Logical Name (LN). These are managed by the
Librarian and stored in the A-Hash. Whereas the collections and mount points are
only logical entities, the files have physical data stored at the SE’s as well. The
location of a physical file is uniquely defined by combining the Uniform Resource
Locator (URL) of the Shepherd and the local UID of the file. The locations of
the physical files are stored in the metadata of the corresponding LN. Thus, every
physical file is uniquely and consistently defined. The Shepherd manages the SE
together with a transfer service (e.g., a HTTP(S) or GridFTP service) and a storage
backend. By checking the files, first when they are uploaded to the transfer service
and then periodically, the Shepherd will notice if files are inconsistent and report
this to a Librarian. If there are valid replicas of the same file in the system, the
Shepherd will delete the inconsistent file, and the Shepherds together will generate
a new replica of the file. The Bartender service provides a high-level interface
to the storage storage system, both for clients and for Shepherds, and makes the
decision of which Shepherds will host the replicas of an incoming file.

Additionally, the Bartenders support gateways which provide the possibility of
including third-party storage services or federated Chelonia clouds in the global
namespace5. The gateway feature is useful in several scenarios. One scenario
appears when introducing Chelonia to a new community. Some of the users may
already have data stored in an existing storage solution. With a gateway they can
access these data through the Chelonia namespace. Another scenario is related
to performance. In Linux operating systems it is quite common to partition the
hard drive with some partitions optimized for many small files (e.g., user home
areas) and some partitions optimized for larger files (e.g., for multimedia files).
This scenario is directly transferable to Chelonia, where different policies on, e.g.,

5Gateways can be compared to mount points in UNIX operating systems.

46

4.3. CHELONIA, A SELF-HEALING STORAGE CLOUD

B

L

L

B

L
A-H

A-HA-H

A-H

S

S

S

client
tools

Figure 4.2: Schematic of the Chelonia architecture. The figure shows the main
services of Chelonia; The Bartender (cup), the Librarian (book), the A-Hash (space
ship) and the Shepherd (staff). The communication channels are depicted by black
lines. (Taken from ”Chelonia - distributed cloud storage”, Appendix A.6.)

47

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

file access and file replication can be configured according to the expected usage
of the partition.

The A-Hash is a vital part of Chelonia, as this is where the entire state of Che-
lonia is stored. A metadatabase which is replicated by design is rather uncommon
in generic storage systems and deserves extra attention. The A-Hash is replicated
using the Oracle Berkeley DB [51] (BDB), an open-source database library wih
a replication API. The replication is based on a single master, multiple clients
framework where all clients can read from the database and only the master can
write to the database.

While a single master ensures that the database is consistent at all times, it
raises the problem of having a single point of failure in the master. If the master is
unavailable, the database cannot be updated, files and entries cannot be added to
Chelonia and file replication will stop working. The possibility of a failing master
cannot be completely avoided and so to ensure high availability, means must be
taken to find a new master if the first master becomes unavailable. The Berkeley
database uses a variant of the Paxos algorithm [52] to elect a master amongst peer
clients: Every database update is assigned an increasing number. In the event of
a master going offline, the clients send a request for election, and a new master is
elected amongst the clients with the highest numbered database update.

While the automatic election of a master between the A-Hashes reduces the
time of unavailability, it does also make it impossible to know a priori which A-
Hash is the master. For the Librarians to discover which A-Hash to write to and
which to read from, the master A-Hash maintains a list of URL’s to the currently
available master and clients. The list is stored in the A-Hashes in a system entry
which is readable for every Librarian, as shown in Figure 4.3. As long as a Librarian
knows about and has read-access to at least one A-Hash during start-up, it will
download the list and set up a connection to the master for writing and one client
for reading. The Librarian refreshes this list both periodically and in the event of
a failing connection.

The Berkeley database comes with a replication manager which takes care of
replicas, election of master and replication messages. Unfortunately, this manager
relies on a communication framework for sending messages that uses unsecured
TCP messages and is thus unsuitable when exposing the A-Hashes to a WAN
environment. On the other hand, the ARC HED provides a secure communication
framework designed for a grid environment. For the A-Hash to be able to use
the replication framework of BDB, BDB requires a call-back function for sending
messages and a function for processing messages and forwarding them to BDB.
Figure 4.4 shows how a replication message is sent from BDB at A-Hash 1 to BDB
at A-Hash 2. When BDB sends a replication message, the message is passed to the
business logic class ReplicatedAHash of A-Hash 1, converted to a SOAP message and
sent through HED resulting in a call to the method processMessage() in the business
logic class of A-Hash 2. This invokes processMessage() of the A-Hash 2 replication

48

4.3. CHELONIA, A SELF-HEALING STORAGE CLOUD

A-H 1 A-H 2 A-H 3 A-H 4

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Read-Only

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Read-Only

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Read-Only

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Read-Write

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Local copy

L

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Local copy

<<GUID 2>>
Client: A-H 1
Client: A-H 2
Client: A-H 3

Master: Client 4

Local copy

LL

Figure 4.3: Relationship between A-Hash master, A-Hash clients and Librarians.
All Librarians write to the master (A-Hash 4) and read from any of the clients (A-
Hashes 1, 2 and 3). The list of client and master URL’s (GUID 2) are maintained
by the master A-Hash and replicated to the client A-Hashes. Additionally, the
Librarians have local copies of the list.

49

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

HED

A-H 1

A-H 2

ReplicatedAHash

ReplicationManager

Berkeley DB

ReplicatedAHash

ReplicationManager

Berkeley DB

sendMessage()

sendMessage()

processMessage()

processMessage()

processMessage()

Figure 4.4: Message flow of a replication message (arrow) between two A-Hashes.

50

4.3. CHELONIA, A SELF-HEALING STORAGE CLOUD

manager, which in turn sends the message to the process() function of BDB.
While storing data safely in a distributed fashion in a self-healing system with-

out single points of failure may be important in itself, a user of the system may
find the accessibility of the system even more important. To provide access to files,
file systems must provide an Application Programming Interface (API). While the
implementation of the API depends on the file system, newer file systems aim to-
wards following the standard API set by the Portable Operating System Interface
[for UNIX] [53] (POSIX) standard. Examples of system interfaces for file opera-
tions are creat6 and remove for creating and removing a file, fopen and fclose for
opening and closing files, and fread and fwrite for reading and writing files.

In addition to a command line interface and a specialized ARC protocol sup-
ported by the HED data management component ARC DMC, Chelonia provides a
module for mounting the Chelonia namespace as a local directory on the user’s lo-
cal machine. The File System in Userland [54] (FUSE) provides an interface to the
POSIX commands and makes it possible to translate the interface of the Bartender
to a near-POSIX interface, thus enabling the possibility of mounting the Chelonia
namespace into the namespace of almost any operating system supporting POSIX
file systems (e.g. Mac OS X, Linux and other UNIX-like systems). In this way,
features like graphical file browsers and drag-and-drop functionality to upload and
download files are provided by the operating system on the user’s machine, as
exemplified by the screen shot from a Mac OS X computer in Figure 4.5.

Chelonia is a storage system intended to be lightweight and easy to install and
use. It shares features with both traditional storage solutions and distributed data
management tools. Being a generic storage system, it can be used in scenarios not
at all envisioned when designing it. One such scenario is described in the following
chapter, Chapter 5, where Chelonia plays a central role in a grid-based parallel
computing framework.

6Ken Thompson, winner of the 1983 Turing award for his work on designing UNIX, was once
asked what he would have done differently. His reply: ”I’d spell creat with an e.”

51

CHAPTER 4. DISTRIBUTED DATA MANAGEMENT

Figure 4.5: Screenshot of the Chelonia FUSE module in use. Through the FUSE
module Chelonia offers users a drag and drop functionality to upload or download
files to the storage cloud. (Taken from ”Chelonia - distributed cloud storage”,
Appendix A.6.)

52

Part III

Running Monte Carlo on the
Grid

53

Chapter 5

Parallel Monte Carlo – High
Performance or High
Throughput?

The idea of running Monte Carlo in parallel is far from new. As stated by Metropo-
lis and Ulam on the Monte Carlo method [1]:

The Markov chain procedure itself is serial, and in general one
does not shorten the time required for a solution of the problem
by the use of more than one computer. On the other hand, the
statistical methods can be applied by many computers working in
parallel and independently.

The most standard way of parallelizing a computing task in High Performance
Computing (HPC) is by incorporating the Message Passing Interface (MPI). In
many cases this can be done almost automatically, as explained in the article in
Appendix A.3. MPI provides a way to split a task into smaller sub-tasks, which
communicate by passing messages between each other. Even on a Local Area
Network (LAN) with low latency and high bandwidth, the communication be-
tween sub-tasks is associated with lowered performance. On a Wide Area Network
(WAN), where high latency and often low and unstable bandwidth is common, the
cost of communication between subtasks can soon make the parallelized computing
task slower than the serial version of the same task, thus making the utility of the
combined resources significantly worse than that of the sum of its parts.

As mentioned in the introduction of Chapter 3, computing tasks involving par-
tial differential equations are examples of tasks that require a high degree of com-

55

CHAPTER 5. PARALLEL MONTE CARLO

munication and hence belong to the HPC category of computing tasks. It was also
mentioned that most Monte Carlo (MC) methods belong to the High Throughput
Computing (HTC) category, where resources are connected through the WAN.
In most MC methods the computing tasks can be split into many independent
sub-tasks with no need for communication during the computation.

However, as always, there are exceptions which do not properly fit into either
of the two categories. Diffusion Monte Carlo (DMC) uses a set of random walkers
to simulate the ground state of a quantum mechanical system. The simulation
is time-dependent, and in each time-step the observables of the system need to
be updated to be used in the next time-step. The precision of the simulation
increases with the number of walkers, and a natural parallelization of DMC is to
split the set of walkers into walker subsets. This requires only communicating the
observables of the system at the end of each time-step. Additionally, in the DMC
algorithm the number of walkers is dynamic (see Section 2.3.3), thus raising a need
to occasionally redistribute the walkers between the sub-tasks. Depending on the
size of the simulated system and the number of walkers, DMC can fit into either
the HPC category or the HTC category.

This observation raises (at least) one question: Is it feasible to run a parallelized
version of DMC using the widely distributed resources of a grid? Restricting the
problem to MPI, the answer is most likely negative due to latency and security
issues related to passing messages over WAN. However, using some alternative
means of communication, is it possible to run a large-scale DMC computation?

5.1 GaMPI Architecture

The article in Appendix A.7 explores this question by means of a pull-based com-
pute model based on the ARC middleware, Chelonia and the computational task-
management tool Ganga [55]. Similar to a common parallelization method in MPI
programming, the presented framework (GaMPI) uses a single master/multiple
slaves method to divide the work. While the master process takes care of splitting
the task into sub-tasks and updating the tasks after each time-step, the actual
work is carried out by the slaves. However, whereas in MPI both the master and
slaves can communicate directly through well-established connections, in GaMPI
the master and the slaves have no way of communicating directly with each other;
while the slaves are running on the grid, the master resides on the grid user’s local
machine.

The workflow of GaMPI can be summarized as follows:

1. The master runs inside Ganga, which creates, submits and monitors the grid
jobs. After initializing the submission of the grid jobs (the slaves) the master
leaves the management of the grid jobs to Ganga.

56

5.1. GAMPI ARCHITECTURE

2. The master splits the required number of walkers into blocks. The number
of blocks is independent of the number of slaves. The walker blocks are
uploaded, named with the prefix walker block, to a collection in Chelonia,
i.e., the walker pool. Additionally, the master uploads an empty file named
do timestep.

3. The slaves check if the file do timestep exists and, if it does, try to download
a block of walkers from the pool, chosen randomly from the files with prefix
walker block. When all the walkers in the block are moved and diffusion and
branching is done on the walker block, the slave uploads the walker block
with the prefix moved walker block.

4. The main variables of interest after a time-step are the number of walkers
(which is dynamic due to the branching part of DMC) and the ground state
energy after moving the walkers. Chelonia supports arbitrary metadata for
a file, enabling these two variables to be appended to the metadata of the
walker block file. This way, the master can simply do a stat on each of
the walker block files to calculate the global energy and number of walkers,
without actually downloading all the walkers.

5. The master monitors the walker pool, and as soon as there are only moved
walker blocks in the walker pool, the master removes the file named do timestep,
thus telling the slaves that they can poll the walker pool less frequently.

6. The master then checks the metadata of the files to get the ground state en-
ergy and the number of walkers, thus avoiding a full download of all walker
blocks. The branching term of DMC (Equation 2.26, repeated here for clar-
ity),

GB = exp{−((V (R) + V (R′))/2− ET)τ}, (5.1)

involves a trial energy, ET , which in this case is a best estimate of the ground
state energy. The best estimate of the ground state energy is the mean of the
energy per walker. For every time-step the master acquires this mean from
the walker blocks and refreshes the energy in the metadata. When the energy
is updated, the master renames the walker blocks with prefix walker block and
again uploads the do timestep file. The process of the master stat’ing walker
blocks to get data, refreshing the metadata and signaling the slaves to be
stopped and started can be compared to a call to MPI ALLREDUCE at the end of
a time-step in a standard MPI diffusion Monte Carlo program. In the MPI
version all processes would block at the call to MPI ALLREDUCE and not continue
until all processes had been updated with the new data, similar to the effect
of removing and uploading the do timestep file.

57

CHAPTER 5. PARALLEL MONTE CARLO

7. After repeating steps (1) to (5) for the required number of time-steps, the
master uploads the file stop. As soon as the slaves see the stop file, they end
their work and exit.

To avoid that more than one slave works on the same walker block, the slaves
will try to rename the walker block to have the prefix .walker block before down-
loading it. In Chelonia, renaming is an atomic operation and it is not allowed to
overwrite an already existing file. Hence, only the first slave to rename the walker
block will get the walkers, thus limiting data transfer and avoiding multiple slaves
working on the same task. It should be mentioned that a way to further reduce
the amount of network load could be to introduce caching on the slaves where each
slave maintained a local walker pool, and tried to reserve these files first. How-
ever, GaMPI being in a proof-of-concept state at the moment, caching is not yet
implemented and the gain remains to be seen.

After a number of time-steps, the walker blocks may be unbalanced. The
master, knowing the number of walkers per walker block, checks after each time-
step if any walker block is more than 50% above or below the mean of the block-
sizes. If so, the master downloads the walker blocks and iterates through them,
taking as much from the largest walker block as needed for the smallest walker
block to be at the mean of walker blocks. To avoid superfluous file transfers the
iteration stops as soon as no walker blocks are above or below 10% of the mean.

Figure 5.1 shows an example of the communication flow between the compo-
nents of GaMPI. Here, a master process is started in Ganga (laptop) and slave
process are submitted from the laptop to ARC (bottom cloud). The communi-
cation between the master process and the slave processes is realized by sending
files to and retrieving files from Chelonia (top cloud). In analogy with a standard
MPI system, ARC provides the access to computing resources similar to the re-
source allocation of mpirun, Chelonia plays the role of the MPI protocol and Ganga
is the core process started by mpirun. As mentioned above, in a standard MPI
implementation of diffusion Monte Carlo, the processes communicate at the end
of each time-step with a call to MPI ALLREDUCE to get an average of the energy. In
GaMPI, this call is replaced with four steps: First, the slave processes update the
energy in the metadata of the moved walker block files and upload them to Chelonia.
Second, the master process blocks the slave processes by removing the do timestep

file from Chelonia. Third, the master process renames the moved walker block
files and reads and updates the energies and last, the master process re-uploads
the do timestep file to Chelonia to release the blocking of the slave processes.

In Figure 5.1, Chelonia itself is set up with two sets of Bartender-Librarian-
Shepherd and a ring of three A-Hash replicas. In this setup, any of the two Bar-
tenders can be used and will yield the same result on queries, and uploading a file,
the file can end up on any of the two Shepherds. However, each of the Shepherds
contacts only one Bartender and one Librarian. The reason for such a setup is that

58

5.1. GAMPI ARCHITECTURE

Figure 5.1: The figure shows an example of the communication flow between Ganga
(laptop), Chelonia (top cloud) and ARC (bottom cloud), and between the services
internally in Chelonia. Communication between Ganga and the grid is carried
out by exchanging files through the Chelonia cloud. Internally, Chelonia is set up
with two sets of Bartender-Librarian-Shepherd and a ring of three A-Hash replicas.
(Taken from ”Parallel Monte Carlo simulations on ARC connected grid resources,
using Chelonia storage and GANGA job interface”, Appendix A.7.)

59

CHAPTER 5. PARALLEL MONTE CARLO

Figure 5.2: Trial energy as a function of time-step.

a Shepherd will reuse the connection to the first Bartender/Librarian it successfully
contacts. With only two instances of each service, there is a great chance of both
Shepherds constantly communicating with the same Librarian and/or Bartender.
Thus, to balance the load between the services, each Shepherd gets assigned one
Librarian and Bartender. This means that if one Librarian or one Bartender stops,
one of the Shepherds will stop. While this is not optimal in a production setup,
it may make sense in a simple setup where one set of Shepherd, Librarian and
Bartender is run on the same machine, as is the case for the results shown below.

5.2 Results

As can be seen in Equation 5.1 the trial energy plays an important role in the
evolution of the number of walkers in diffusion Monte Carlo. If the trial energy is
too high, the branching ratio will be too large and the number of walkers will grow
very fast. If the trial energy is too low the number of walkers will fall to zero in
only a few iterations. In fact the trial energy is strongly correlated to the number

60

5.2. RESULTS

Time per iteration for 30000 walkers, 16 CPUs

Case Description Min. (s) Average (s) Max. (s)

a MPI, single cluster 735 790 838
b GaMPI, single cluster 545 778 1191
c GaMPI, three clusters 738 885 1157

Table 5.1: Timings per iteration (time-step) for running 50 iteration of diffusion Monte
Carlo using regular MPI on a single cluster, using GaMPI on the same cluster, and running
GaMPI with grid jobs distributed between three clusters in three different countries. In
all runs 16 CPUs were used in parallel. Note that the timings do not take into account
the number of walkers in each time-step. Values are for time-steps 30 — 50. (Taken
from ”Parallel Monte Carlo simulations on ARC connected grid resources, using Chelonia
storage and GANGA job interface”, Appendix .)

of walkers. An estimate of the trial energy is given by [13],

ET = E0 − 1

2τ

∑
i

ln

(
si
si−1

)
, (5.2)

where E0 is an initial guess of the trial energy, τ is the time-step length and si
is the number of walkers at time-step i. This trial energy may be updated at
each time-step. If the number of walkers is larger than in the previous step the
trial energy is decreased, and if the number of walkers decreases, the trial energy
increases. Thus, feeding Equation 5.2 into Equation 5.1, the trial energy decreases
the variation in the number of walkers.

Figure 5.2 shows the trial energy as a function of time-steps. E0 was set to 0.8.
Initially, the walkers, each consisting of 100 particles, were distributed randomly
with a gaussian distribution in three dimensions with mean 0 and standard devi-
ation 1. The walkers were then moved in 200 time-steps in an external potential
Vext(r) = r2 corresponding to a spherical harmonic oscillator. As the particles
initially are distributed with a rather high potential, the energy is higher than
E0. As the particles move closer to the center of the trap due to the potential,
the energy decreases, first rapidly then more gradually. However, the energy does
not stabilize completely as would be expected. While the trial energy estimate of
Equation 5.2 serves as an approximation for stabilizing the number of walkers, and
hence the energy estimate, it is not optimal for giving an estimate of the actual
energy of the system. To obtain a precise estimate of the energy, the importance
sampling described in Section 2.3.3 needs to be introduced, thus complicating
the diffusion Monte Carlo implementation beyond what is needed for testing the
GaMPI framework and will rather be implemented at a later stage. This would
also help to stabilize the number of walkers properly by introducing a guiding trial
wave-function.

Table 5.1 shows the timings for a simple diffusion Monte Carlo implementation

61

CHAPTER 5. PARALLEL MONTE CARLO

run in three different environments. All three simulations used 16 CPUs and the
same input parameters. The first two columns show the timings per time-step when
running on the same cluster in the same machine room as the Chelonia machines.
While the timings in the first row are with running with MPI using the framework
described in Appendix A.3, the second row is when using the GaMPI framework.
The third row shows timings of simulations using the GaMPI framework, now with
grid jobs distributed between three clusters in Norway, Sweden and Slovenia.

At first glance it may be surprising that the single-cluster GaMPI simulation is
slightly faster than the MPI simulation. All of the timings are wall-time timings,
i.e., taking the time from the end of one time-step to the end of the next step.
For the GaMPI simulations this involves getting and updating the metadata of
the walker blocks and, if the load is not balanced, downloading and uploading
entire walker blocks, thus introducing an extra layer of file I/O and data transfer
over WAN when compared to the MPI simulation. The differences in performance
are, however, not very large and can be explained by the stochastic nature of the
number of walkers and the fact that the simulations were run in heterogeneous
environments where both hardware and simultaneously running simulations can
influence the performance.

It is quite likely that the cluster used for the MPI simulation and the single-
cluster GaMPI simulation suffered from a higher load during the MPI simulation
than during the GaMPI simulation. The result does, however, show that an ap-
plication in the middle-ground between high-performance and high-throughput
computing, such as a diffusion Monte Carlo simulation, can be run on the grid
without a significant performance loss.

62

Chapter 6

Conclusions and Outlooks

This thesis has been equally divided into two parts, with one part rooted in physics,
studying efficient parallel algorithms for exploring Bose-Einstein condensates, and
one part rooted in computational science, working with distributed computing
and ways to improve distributed data management. While being two seemingly
unrelated topics, both have given motivation and inspiration for the other and, in
the end, the two topics play vital roles in the same article in Appendix A.7.

The Monte Carlo algorithm was presented and formed the basis for several
of the presented publications. Being an ab initio method with individual treat-
ment of particles, quantum Monte Carlo serves well as a ”benchmark” algorithm
for which to compare faster, but approximate mean-field algorithms. Being a rel-
atively straight-forward method to implement, quantum Monte Carlo also serves
well as an example implementation to present ideas on efficient programming meth-
ods and implementations, as was shown with the mixed-language MontePython
implementation.

An overview of distributed technologies, specifically the grid and cloud tech-
nologies, and their use in a real-world physics experiment was given. The ATLAS
experiment at LHC is one of the largest physics experiments ever built, and the
need for computing and storage resources is far greater than what can be man-
aged by one site. This raised the need for distributed technologies such as grids
and clouds and led to middleware solutions such as the Advanced Resource Con-
nector, a grid middleware for which the candidate has contributed significantly to
development as part of this thesis.

A significant part of this thesis was related to distributed data management
and the main result was the generic storage solution Chelonia for which the can-
didate gave several important contributions, specifically the replicated database
for metadata storage and the FUSE module for mounting Chelonia on the user’s
desktop.

63

CHAPTER 6. CONCLUSIONS AND OUTLOOKS

Large scale computing problems are often split into two categories; high-performance
computing (HPC) and high-throughput computing (HTC). While many problems
clearly fall into one of the categories, it was shown that diffusion Monte Carlo is
more of a borderline case, making it an ideal candidate for comparing the cate-
gories. Specifically, MontePython was used to run on a HPC cluster using MPI,
while GaMPI was used for HTC by running on an ARC grid. Interesting here was
that the diffusion Monte Carlo implementation was identical in both cases, and
only the communication protocols were different. The main result was that the
run times were surprisingly similar, even though the interprocess communication
was expected to be far slower in the HTC case.

The GaMPI framework is mainly intended for the middle-ground between triv-
ially parallel cases such as ATLAS event generators and Markov-chain Monte Carlo,
and the more communication-demanding cases like tightly coupled PDE’s. GaMPI
is currently at the state of a prototype, with lots of room for improvements and
adjustments, and the framework is only tested with a simple diffusion Monte Carlo
implementation. Nevertheless, the idea of a parallel framework for grid computing
seems promising and a natural way forward is to include more use-cases for testing.

GaMPI has proven to be a good test-case for Chelonia, as it is quite different
from the use-cases originally considered when Chelonia was designed. The GaMPI
simulations have revealed several weaknesses in the current Chelonia implemen-
tation and the underlying ARC middleware. Perhaps most noteworthy are the
problems occuring when more than 64 users (or GaMPI processes) access Chelo-
nia at the same time. While these weaknesses may require some work, it is very
important to sort out as many of them as possible before deploying Chelonia for
new users. In this respect, GaMPI can serve as a very good substitute for many
(impatient) users.

Chelonia has so far been implemented under the KnowARC umbrella. As
the KnowARC project is now ended, new projects are coming where Chelonia
could be developed and tested further. The perhaps most promising project is
the European Middleware Initiative (EMI) in the EU Framework Programme 7.
Here, the three major European grid middlewares ARC, gLite and UNICORE will
join forces to create one European middleware package. Chelonia is one of three
storage solutions mentioned in the EMI proposal. While nothing is settled yet,
there is a strong hope that Chelonia will continue to be developed and hardened
towards being a production-ready storage system, be it under the EMI umbrella
or as part of other future projects.

64

Bibliography

[1] N. Metropolis and S Ulam. The Monte Carlo Method. J. of the American
Statistical Association, 44:335, 1949.

[2] D. Creal. A Survey of Sequential Monte Carlo Methods for Economics and
Finance. Serie research memoranda, VU University Amsterdam, Faculty of
Economics, Business Administration and Econometrics, 2009.

[3] Achim Zeileis, Christian Kleiber, and Simon Jackman. Regression Models for
Count Data in R. Journal of Statistical Software, 27, 2008.

[4] Stefan Weinzierl. Introduction to Monte Carlo Methods. arXiv:hep-
ph/0006269, 2000.

[5] M. Mascagni and A. Srinivasan. SPRNG: A Scalable Library for Pseudo-
random Number Generation. ACM Transactions on Mathematical Software,
26:436, 2000.

[6] A. Srinivasan, M. Mascagni, and D. Ceperley. Testing Parallel Random Num-
ber Generators. Parallel Computing, 29:69, 2003.

[7] D.E. Knuth. The Art of Computer Programming, Second Edition. Addison-
Wesley Publishing Company, 1981.

[8] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richard-
son, and B. R. Webber. HERWIG 6: An Event Generator for Hadron Emission
Reactions With Interfering Gluons (Including Supersymmetric Processes).

[9] Torbjorn Sjostrand, Stephen Mrenna, and Peter Skands. PYTHIA 6.4 Physics
and Manual, 2006.

[10] P. R. C. Kent. Techniques and Applications of Quantum Monte Carlo. PhD
thesis, (Robinson College, Cambridge, 1999).

65

BIBLIOGRAPHY

[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, and
E. Teller. Equations of State Calculations by Fast Computing Machines. J.
Chem. Phys., 21:1087, 1953.

[12] W. K. Hastings. Monte Carlo Sampling Methods using Markov Chains and
their Applications. Biometrika, 57:97, 1970.

[13] B.L. Hammond, W.A. Lester Jr, and P.J. Reynolds. Monte Carlo Methods in
Ab Initio Quantum Chemistry. World Scientific, 1994.

[14] R. Guardiola. Monte Carlo Methods in Quantum Many-Body Theories. In
J. Navarro and A. Polls, editors, Microscopic Quantum Many-Body Theories
and Their Applications, volume 510 of Lecture Notes in Physics, pages 269–
336. Springer Verlag, 1998.

[15] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester Jr. Fixed-node
quantum Monte Carlo for molecules. J. Chem. Phys., 77:5593, 1982.

[16] A. Sarsa, J. Boronat, and J. Casulleras. Quadratic diffusion Monte Carlo and
Pure Estimators for Atoms. J. Chem. Phys., 116:5956, 2002.

[17] Guido van Rossum et al. The Python Programming Language. http://www.
python.org/, 1991–. Web site.

[18] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open Source
Scientific Tools for Python. http://www.scipy.org/, 2001–. Web site.

[19] Pearu Peterson. F2PY: A Tool for connecting Fortran and Python Programs.
Int. J. Comput. Sci. Eng., 4:296, 2009.

[20] David Beazley et al. SWIG: Simplified Wrapper and Interface Generator.
http://www.swig.org, 1995–. Web site.

[21] C. Amsler et al. (Particle Data Group). Review of Particle Physics. Physics
Letters, B667:1+, 2008.

[22] CERN video productions. Video News release: LHC Energy Record. LHC
sets new World Record. 2009.

[23] ATLAS Computing: Technical Design Report. Technical Design Report AT-
LAS. CERN, Geneva, 2005. Revised version submitted on 2005-06-20 16:33:46.

[24] Enabling Grids for E-sciencE. "http://www.eu-egee.org/". Web site.

[25] gLite, Lightweight Middleware for Grid Computing. "http://glite.web.

cern.ch/glite/". Web site.

66

BIBLIOGRAPHY

[26] Open Science Grid. "http://www.opensciencegrid.org/". Web site.

[27] Virtual Data Toolkit. "http://vdt.cs.wisc.edu/". Web site.

[28] NorduGrid Collaboration. "http//:www.nordugrid.org/". Web site.

[29] M. Ellert et al. Advanced Resource Connector Middleware for Lightweight
Computational Grids. Future Gener. Comput. Syst., 23:219, 2007.

[30] L. Kleinrock. UCLA to be First Station in Nationwide Computer Network.
Technical report, UCLA Press Release, 1969.

[31] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission
Control Program, 1974.

[32] R. Braden. Requirements for Internet Hosts - Communication Layers, 1989.

[33] Tim Berners-Lee. Information Management: A Proposal. http://www.w3.

org/History/1989/proposal.html, 1989.

[34] Tim O’Reilly. What Is Web 2.0? Design Patterns and Business Models for
the Next Generation of Software. www.oreilly.com, 2005.

[35] Miguel L. Bote-Lorenzo, Yannis A. Dimitriadis, and Eduardo Gomez-Sanchez.
Grid Characteristics and Uses: A Grid Definition. In Across Grids 2003,
LNCS 2970, pages 291–298, 2003.

[36] Heinz Stockinger. Defining the Grid: A Snapshot on the Current View. J.
Supercomput., 42:3, 2007.

[37] Heba Kurdi, Maozhen Li, and Hamed A. Raweshidy. A Classification of
Emerging and Traditional Grid Systems. IEEE Distributed Systems Online,
9:1, 2008.

[38] Ian Foster. What is the Grid? - A Three Point Checklist. GRIDtoday, 1,
2002.

[39] Gartner. Gartner’s 2009 Hype Cycle Special Report Evaluates Maturity of
1,650 Technologies. 2009.

[40] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
Break in the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Com-
mun. Rev., 39:50, 2009.

[41] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter
of Idle Workstations. In Proceedings of the 8th International Conference of
Distributed Computing Systems, 1988.

67

BIBLIOGRAPHY

[42] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Perfor-
mance Computing, 11:115, 1997.

[43] Paula Eerola, Balázs Kónya, Oxana Smirnova, Tord Ekelöf, Mattias Ellert,
John Renner Hansen, Jakob Langgaard Nielsen, Anders Wäänänen, Alek-
sandr Konstantinov, and Farid Ould-Saada. Building a Production Grid in
Scandinavia. IEEE Internet Computing, 7:27, 2003.

[44] EU KnowARC project. "http://www.knowarc.eu/". Web site.

[45] Mario Lassnig, Miguel Branco, David Cameron, Benjamin Gaidioz, Vincent
Garonne, Birger Koblitz, Massimo Lamanna, Ricardo Rocha, and Pedro Sal-
gado. Managing ATLAS Data on a Petabyte-Scale with DQ2. In Journal
of Physics: Conference Series, Bristol, England, 2008. Institute of Physics
Publishing.

[46] Akosh Frohner. Official Documentation for LFC and DPM. https://twiki.
cern.ch/twiki/bin/view/LCG/DataManagementDocumentation. Web site.

[47] The gLite File Transfer Service. http://egee-jra1-dm.web.cern.ch/egee%
2Djra1%2Ddm/FTS/. Web site.

[48] G Behrmann, D Cameron, M Ellert, J Kleist, and A Taga. ATLAS DDM
Integration in ARC. Journal of Physics: Conference Series, 119:062015, 2008.

[49] M de Riese, P Fuhrmann, T Mkrtchyan, M Ernst, A Kulyavtsev, V Pod-
stavkov, M Radicke, N Sharma, D Litvintsev, T Perelmutov, and T Hesselroth.
The dCache Book. http://www.dcache.org/manuals/Book/Book-a4.pdf.

[50] I Mandrichenko, W Allcock, and T Perelmutov. GridFTP V2 Protocol De-
scription, 2005. OGF Document Series GFD.47.

[51] Oracle Berkeley DB. http://www.oracle.com/technology/products/

berkeley-db/index.html. Web site.

[52] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16:133, 1998.

[53] Standard for Information Technology - Portable Operating System Interface
(POSIX). Shell and Utilities. Technical report, 2004.

[54] Filesystem in Userspace. http://fuse.sourceforge.net/. Web site.

68

BIBLIOGRAPHY

[55] J.T. Moscicki, F. Brochu, J. Ebke, U. Egede, J. Elmsheuser, K. Harrison,
R.W.L. Jones, H.C. Lee, D. Liko, A. Maier, A. Muraru, G.N. Patrick, K. Pa-
jchel, W. Reece, B.H. Samset, M.W. Slater, A. Soroko, C.L. Tan, D.C. van der
Ster, and M. Williams. Ganga: A Tool for Computational-Task Management
and Easy Access to Grid Resources. Computer Physics Communications,
180:2303, 2009.

69

BIBLIOGRAPHY

70

Appendix A

Collection of publications

A.1 Vortices in atomic Bose-Einstein condensates
in the large-gas-parameter region

Article published in Physical Review A 71, 053610 (2005).
The article ”Vortices in atomic Bose-Einstein condensates in the large-gas-

parameter region” was a product of a collaboration with a group at Universitat de
Barcelona.

The main idea with the article was to explore the dilute limits where the mean-
field equations of Gross-Pitaevskii (GP) and Modified Gross-Pitaevskii (MGP) are
still valid. The variational Monte Carlo (VMC) application I developed as part of
my Master thesis, being an ab inito method, was ideal to use as a ”real” physics
experiment for which to compare the mean-field approximations.

My contributions to this article were to implement the VMC application, run
the VMC simulations and get the results needed for comparing with the mean-field
results.

71

APPENDIX A. COLLECTION OF PUBLICATIONS

72

Vortices in atomic Bose-Einstein condensates in the large-gas-parameter region

J. K. Nilsen,1 J. Mur-Petit,2 M. Guilleumas,2 M. Hjorth-Jensen,1,3,4,5 and A. Polls2
1Department of Physics, University of Oslo, N-0316 Oslo, Norway

2Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, E-08028 Barcelona
3Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

4PH Division, CERN, CH-1211 Geneve 23, Switzerland
5Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

�Received 10 December 2004; published 19 May 2005�

In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab
initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps.
We examine both the ground state and excited states having a vortex line along the z axis at high values of the
gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio
Monte Carlo methods, both for the ground and vortex states.

DOI: 10.1103/PhysRevA.71.053610 PACS number�s�: 03.75.Hh, 03.75.Lm, 02.70.Uu

I. INTRODUCTION

Most theoretical studies of Bose-Einstein condensates
�BEC� in gases of alkali atoms confined in magnetic or op-
tical traps have been conducted in the framework of the
Gross-Pitaevskii �GP� equation �1�. The key point for the
validity of this description is the dilute condition of these
systems, i.e., the average distance between the atoms is much
larger than the range of the interatomic interaction. In this
situation the physics is dominated by two-body collisions,
well described in terms of the s-wave scattering length a.
The crucial parameter defining the condition for diluteness is
the gas parameter x�r�=n�r�a3, where n�r� is the local den-
sity of the system. For low values of the average gas param-
eter xav�10−3, the mean-field Gross-Pitaevskii equation does
an excellent job �see, for example, Ref. �2� for a review�.
However, in recent experiments, the local gas parameter may
well exceed this value due to the possibility of tuning the
scattering length in the presence of a Feshbach resonance
�3,4�.
Under such circumstances it is unavoidable to test the

accuracy of the GP equation by performing microscopic cal-
culations. If we consider cases where the gas parameter has
been driven to a region were one can still have a universal
regime, i.e., that the specific shape of the potential is unim-
portant, we may attempt to describe the system as dilute hard
spheres whose diameter coincides with the scattering length.
However, the value of x is such that the calculation of the
energy of the uniform hard-sphere Bose gas would require to
take into account the second term in the low-density expan-
sion �5� of the energy density

E
V
=
2�n2a�2

m �1 + 12815 �na3�
�1/2 + ...	 , �1�

where m is the mass of the atoms treated as hard spheres. For
the case of uniform systems, the validity of this expansion
has been carefully studied using diffusion Monte Carlo �6�
and hypernetted-chain techniques �7�.
The energy functional associated with the GP theory is

obtained within the framework of the local-density approxi-

mation �LDA� by keeping only the first term in the low-
density expansion of Eq. �1�

EGP��� =
 dr� �2

2m
� � ��r��2 + Vtrap�r����2 +

2��2a
m

���4	 ,
�2�

where

Vtrap�r� =
1
2m���

2 x2 + ��
2 y2 + �z

2z2� �3�

is the confining potential defined by the two angular frequen-
cies �� and �z. The condensate wave function � is normal-
ized to the total number of particles.
By performing a functional variation of EGP��� with re-

spect to �* one finds the corresponding Euler-Lagrange
equation, known as the Gross-Pitaevskii �GP� equation

�− �2

2m
�2 + Vtrap�r� +

4��2a
m

���2	� = �� , �4�

where � is the chemical potential, which accounts for the
conservation of the number of particles. Within the LDA
framework, the next step is to include into the energy func-
tional of Eq. �2� the next term of the low-density expansion
of Eq. �1�. The functional variation gives then rise to the
so-called modified GP equation �MGP� �8�

�− �2

2m
�2 + Vtrap�r� +

4��2a
m

���2�1 + 32a3/23�1/2
����	� = �� .

�5�

The MGP corrections have been estimated in Ref. �8� in a
cylindrical condensate in the range of the scattering lengths
and trap parameters from the first JILA experiments with
Feshbach resonances. These experiments took advantage of
the presence of a Feshbach resonance in the collision of two
85Rb atoms to tune their scattering length �3�. Fully micro-
scopic calculations using a hard-spheres interaction have also
been performed in the framework of variational and diffusion
Monte Carlo methods �10–13�.

PHYSICAL REVIEW A 71, 053610 �2005�

1050-2947/2005/71�5�/053610�7�/$23.00 ©2005 The American Physical Society053610-1

In this work we compare the results of the GP and MGP
equations discussed above, Eqs. �4� and �5�, with variational
Monte Carlo �VMC� calculations for axially symmetric traps
in a region �x�10−3�, where the validity of the GP equation
is not clear. We examine both the ground state and excited
states having a vortex line along the z axis.
In the next section we present our numerical approaches

together with a discussion of ground-state properties. In Sec.
III we proceed to study several trial wave functions to de-
scribe the excited state with one vortex. A comparison be-
tween VMC and the GP and MGP equations is done. We
summarize our results in Sec. IV.

II. NUMERICAL APPROACHES AND GROUND-STATE
PROPERTIES

The starting point of the Monte Carlo calculations is the
Hamiltonian for N trapped interacting atoms given by

H = −
�2

2m�
i=1

N

�i
2 +�

i=1

N

Vtrap�ri� +�
i	j

N

Vint��ri − r j�� . �6�

The two-body interaction Vint��ri−r j�� between the atoms is
described by a hard-core potential of radius a, where a is the
scattering length. The atoms are thus treated as hard spheres.
The next step is to define a trial wave function

�T�1, ... ,N� = F�1, ... ,N��MF�1, ... ,N� , �7�

where F�1,… ,N� is a many-body correlation operator ap-
plied to the mean-field wave function �MF. The advantage of
using a correlated trial wave function lies in the fact that
nonperturbative effects, as the short-range repulsion between
atoms may be directly incorporated into the trial wave func-
tion. The simplest correlation operator has the Jastrow form
�14�,

F�1, ... ,N� =

i	j
f�rij� . �8�

In our variational calculations we use a two-body correlation
function, which is the solution of the Schrödinger equation
for a pair of atoms at very low energy interacting via a hard-
core potential of diameter a. The ansatz for the correlation
function f�r� reads

f�r� = ��1 − a/r� r� a
0 r� a .� �9�

This type of correlation, besides being physically motivated,
has been successfully used in Refs. �10,11� to study both
spherically symmetric and deformed traps. These authors
have also explored the quality of this correlation function by
comparing variational Monte Carlo �VMC� and diffusion
Monte Carlo �DMC� calculations for the case of spherically
symmetric traps �12�, with a good agreement between the
VMC and DMC results.
The deformation of the trap is incorporated in the mean-

field wave function �MF, which is taken as the product of N
single-particle wave functions

�r� = A����1/4 exp�− 1
2��x2 + y2 + �z2�� , �10�

where � is taken as the variational parameter of the calcula-
tion, and A���= �� /��3/4 is the normalization constant. The
parameter �=�z /�� is kept fixed and set equal to the asym-
metry of the trap. In this way the mean-field wave function
�MF has all the particles in the condensate, the latter being
described by the wave function
.
The evaluation of the expectation value of the Hamil-

tonian with this correlated trial wave function provides an
upper bound to the ground-state energy of the system

ET =
��T�H��T�
��T��T�

. �11�

This expectation value has been evaluated by the Metropolis
Monte Carlo method of integration �15,16�.
The energy obtained with the Hamiltonian of Eq. �6� can

be directly compared to the output of the GP and MGP equa-
tions, see Eqs. �4� and �5�. The Gross-Pitaevskii equations
represent a mean-field description, with all the atoms in the
condensate. In fact, the additional correlations, which are
taken into account in the second-order term of the low-
density expansion of the energy �see Eq. �1��, are incorpo-
rated in the density functional and, therefore, in the solution
of the MGP equation. In contrast, the Monte Carlo calcula-
tion explicitly incorporates the interatomic correlations, and
therefore one could, in principle, find the natural orbits and
extract the occupation of the condensate �10�.
The GP and MGP equations have been solved by the

steepest descent method �17� for the deformed harmonic os-
cillator trap previously described in Eq. �3�. An initial de-
formed trial state is projected onto the minimum of the func-
tional by propagating it in imaginary time. In practice, one
chooses a small time step
t and iterates the equation

��r,t +
t� � ��r,t� −
tH��r,t� �12�

by normalizing � at each iteration. When the gas parameter
becomes large, the time step, which governs the rate of con-
vergence, should be taken accordingly small. Convergence is
reached when the chemical potential becomes a constant in-
dependent of the position, see Eqs. �4� and �5�.
For the comparison of the results obtained with the differ-

ent GP-type equations and the variational Monte Carlo cal-
culations, we consider a disk-shaped trap with �=�z /��

=�8, see Ref. �18�. We have fixed the scattering length to
a=35aRb, with aRb=100a0, a0 being the Bohr radius. We set
the number of confined atoms to N=500 in order to keep the
amount of computing time acceptable when using the Monte
Carlo method. All the numerical results are given in units of
the harmonic oscillator length a�= �� /m���1/2 and the har-
monic oscillator energy ���.
First we analyze the GP and MGP results reported in

Table I. For a scattering length a=35aRb, the corrections of
the MGP approach to the chemical potential are of the order
of 20%. The energy corrections are also relevant, and it is
interesting to study the different contributions to the energy.
The kinetic energy is given by

NILSEN et al. PHYSICAL REVIEW A 71, 053610 �2005�

053610-2

Ekin =
�2

2m
 dr� � ��r��2, �13�

while the harmonic oscillator energy due to the trapping po-
tential reads

EHO =
m
2
 dr„��

2 �x2 + y2� + �z
2z2…���r��2 �14�

and the interaction energies E1 and E2 are given by

E1 =
2��2a
m
 dr���r��4, �15�

E2 =
2��2a
m

128
15 �a

3

�
�1/2
 dr���r��5. �16�

The virial theorem is used to establish a relation between the
different contributions to the energy, viz.,

2Ekin − 2EHO + 3E1 +
9
2E2 = 0, �17�

which serves as a proof of the numerical accuracy of the
solution of the GP equations. The results in Table I show that
this test is well satisfied by all calculations.
Note that the kinetic energy associated with the mean-

field descriptions is not negligible, indicating that the regime
where the Thomas-Fermi approximation to the GP equation
is valid has not been reached. In this limit, the chemical
potential is

�TF =
1
2 �15āN��2/5���, �18�

where ā=a /a� is the dimensionless scattering length, and
the energy per particle ETF/N=5�TF/7. In this approach we
have ETF/N=9.03��� and �TF=12.64���. Both these val-
ues differ from the values reported in Table I. However, this
approximation can still be used to estimate the peak value of
the gas parameter, namely,

xTF
pk = n�0�a3 =

1
8�

�15āN��2/5ā2, �19�

which yields xTF
pk =0.023. At this rather large value of the

diluteness parameter, the corrections brought by the MGP
equation to the GP results are expected to be relevant �6,7,9�.
However, x is low enough to allow for a mean-field approach
�as it is the case of the MGP equation�. For such density
regimes, a mean-field approach provides a rather good de-
scription when compared to a microscopic calculation �8�.
The variational Monte Carlo results are also given in

Table I and show a close agreement with the results provided

by the MGP equation. Note that in this approach, and using
the Hamiltonian of Eq. �6�, the potential energy is zero since
the wave function is strictly zero inside the core. The total
energy in this case is distributed between EHO and the true
kinetic energy. Actually the only energies that can be directly
compared to the GP results are the total and the harmonic
oscillator energies.
The Monte Carlo results obtained with the Metropolis al-

gorithm take into account the energy of 27 000 configura-
tions, grouped in 90 blocks of 300 movements. At each
Monte Carlo step we move all the particles and the accep-
tance is around 58%. A thermalization process is incorpo-
rated at the beginning of the Monte Carlo process and before
each block. In the Monte Carlo calculation we have used the
Pandharipande-Bethe prescription for the kinetic energy
�16�, which produces a smaller variance. To get a feeling for
the numerical accuracy of our VMC results, we list here GP,
MGP, and VMC results in the dilute limit. We employ N
=500 particles and a scattering length for 87Rb considered by
Dalfovo and Stringari �19�, which in units of the oscillator
parameter perpendicular to the z axis is 4.33�10−3. We ob-
tain energies in units of the oscillator energy of 3.303 2151,
3.308 0392, and 3.324 1881 �10� for GP, MGP, and VMC
calculations, respectively. The VMC results are for an opti-
mum variational parameter �=0.475. Taking into account
that the two-body correlation has been kept fixed, and that
the only variational parameter is �, these results indicate that
our ansatz for the variational wave function is a viable one.
Actually, as the reader will note from the discussion below,
this discrepancy of roughly 0.5% is of the same relative or-
der as for the higher density cases reported here.
In the minimization process we keep fixed the parameter

� in the single-particle wave function of Eq. �10�, i.e., we
assume that the deformation of the trap is transferred to the
wave function, and vary only �. At the minimum, �
=0.7687. One can also explore the effects of the correlations
in the density profiles. These profiles, which represent a col-
umn density defined according to

nc�r�� =
 dz n�r�,z� �20�

and normalized such that 2��dr�r�nc�r��=1, are shown in
Fig. 1 for the various approximations used in this work. The
repulsive character of the correction term of the MGP equa-
tion translates into a decrease of the value of the column
density at the origin and an increase of the size of the con-
densate �8,9�. This gives a slightly more extended profile for
the MGP approach compared to both the GP and the VMC
results. As one can see from Fig. 1, there is a much better

TABLE I. Chemical potential and energies in units of ��� from the GP, MGP, and VMC calculations for
the ground state. The scattering length is a=35aRb=0.151 55a�, �=�8, N=500.

� E /N Ekin/N EHO/N E1 /N E2 /N

GP 12.980 9.496 836 0.394 95 5.619 11 3.482 7765
MGP 15.453 11.061 08 0.353 53 6.940 92 2.516 691 1.249 938
VMC 11.121 09�14� 4.215 20�24� 6.905 90�19�

VORTICES IN ATOMIC BOSE-EINSTEIN … PHYSICAL REVIEW A 71, 053610 �2005�

053610-3

agreement between the Monte Carlo and MGP profiles than
with the corresponding profile from the GP calculation, par-
ticularly at small values of the radial distance where the den-
sity is larger.
The good agreement between VMC and MGP does not

guarantee that these methods give a good description of the
system. However, as it was shown in Ref. �11� for the case of
spherical traps, the improvements introduced in the trial
wave function by a diffusion Monte Carlo calculation,
which, in principle, allows for an exact solution of the many-
body problem, are rather small and the variational wave
function of Eq. �10� provides a very good description of the
system. Therefore we assume that the same will be true for
deformed traps. Furthermore, for these values of the dilute-
ness parameter, the MGP equation is very useful to calculate
the energy, chemical potential, and density profiles of the
ground state of the system for condensates with larger num-
ber of particles, which would be computationally prohibitive
for a Monte Carlo calculation.

III. VORTEX STATES

The existence of these excited condensate states is crucial
to studies of the superfluid behavior of trapped atomic con-
densates. In this section we study the effects of correlations
in vortex states. We consider a singly quantized vortex line
along the z axis. This means that all the atoms rotate around
the z axis with a quantized circulation. The GP equation can
easily be generalized to describe this kind of vortex states �2�
by using the following ansatz for the condensate wave func-
tion

��r� = ��r�exp�i��� , �21�

where � is the angle around the z axis and � is an integer.
This vortex state has a tangential velocity

v� =
�

mr�
� , �22�

where r�=�x2+y2 is the distance to the symmetry axis of the
vortex. The number � represents the quantum of circulation,
and the total angular momentum along the z axis is given by
N��. Introducing the wave function of Eq. �21�, in the GP
energy functional of Eq. �2�, one gets the corresponding GP
energy functional for the vortex state

EGP+vor��� =
 dr� �2

2m
� � ��r��2 +

�2

2m
�2

r�
2 ���2 + Vtrap�r����2

+
2��2a
m

���4	 , �23�

which incorporates a centrifugal term in the density func-
tional, arising from the quantized flow of atoms around the
vortex core. This term defines a rotational energy

Erot =
�2

2m
 dr�2

r�
2 ���r��2. �24�

The corresponding nonlinear Schrödinger equation ob-
tained by functional variation is

�− �2

2m
�2 +

�2

2m
�2

r�
2 + Vtrap�r� +

4��2a
m

���2	� = �� .

�25�

Adding E2 to the density functional and after performing
a functional variation one gets the corresponding MGP equa-
tion for the vortex state.
Based on the virial theorem, one can again derive a rela-

tion between the different contributions to the energy

2Ekin − 2EHO + 3E1 +
9
2E2 + 2Erot = 0. �26�

The thermodynamic critical angular frequency �c re-
quired to produce a vortex of vorticity � is obtained by com-
paring the energy of the system in the rotating frame with
and without the vortex �20�

�c =
1
N��

�E� − E0� . �27�

A main feature of a vortex state is the hole �core of the
vortex� that appears in the center of the density profile along
the rotation axis. From Eq. �25�, it is clear that the solution of
this equation has to vanish on the z axis because of the pres-
ence of the centrifugal term. The size of the core is charac-
terized by the healing length.
For the microscopic description of the vortex state we use

an Onsager-Feynman-type trial wave function �21�

�F�1, ... ,N� = ei��j�j

j
f�r�,j��0�1, ... ,N� , �28�

where �0�1,… ,N� is the ground-state wave function. The
phase factor �� j� j depends on the angular variables of the
particles and is the equivalent to the phase factor introduced
in the mean-field description of Eq. �21�. The function f�r��
modulates the density as a function of the radial coordinate

FIG. 1. Ground-state column density nc�r�� as a function of the
distance to the z axis, for N=500 particles, comparing the GP �solid
line� and MGP �dashed line� results for a=35aRb=0.151 55a�. Also
shown are the results of variational Monte Carlo calculations �line
with symbols�. The deformation �=�8 and the oscillator lengths are
defined as in Refs. �18,19�. The radial distance is given in units of
a�= �� /m���1/2. The column density is dimensionless. See text for
further details.

NILSEN et al. PHYSICAL REVIEW A 71, 053610 �2005�

053610-4

r�. We examine three types of f�r��. In the first ansatz we
use the simple option

f1�r�� = r�. �29�

In the second case we consider,

f2�r�� = 1 − exp�− r�/d� , �30�

where d is a variational parameter. Note that for d=1, the
behavior of f2�r�� for small r� coincides with the behavior
of f1�r��. Finally, the third function is that of Ref. �22�,
which has been used in the context of quantum liquids,

f3�r�� = 1 − exp„− �r�/d�2… , �31�

where d is again a variational parameter.
These three trial wave functions describe a singly quan-

tized vortex state ��=1�, whose axis lies in the z direction
and with a tangential velocity field v�=� /mr�. The evalua-
tion of the expectation value of the Hamiltonian �Eq. �6��
with these wave functions is equivalent to calculate the mean
value of the Hamiltonian

H = −
�2

2m�
i=1

N

�i
2 +�

i=1

N
�2

2m
�2

r�,i
2 +�

i=1

N

Vtrap�ri�

+�
i	j

N

Vint��ri − r j�� , �32�

with ��1,… ,N�=
 j f�r�,j��0�1,… ,N�. In this way the ro-
tational contribution to the energy has been directly incorpo-
rated in the Hamiltonian. Minimizing this new problem pro-
vides the best energy and wave functions inside this
subspace of wave functions. In the context of liquid 4He
there have been attempts to perform a full minimization al-
lowing for a more general phase function. The analysis indi-
cates that the present procedure provides very accurate re-
sults �23�.
We start by discussing the GP and MGP results �obtained

by the steepest descent method �17� as done for the ground
state as well� with an initial condensate wave function

��r� � f1�r���0�r� . �33�

It is worth mentioning, as a check of the numerical proce-
dure, that starting with f2�r�� or f3�r�� to modulate the con-
densate wave function we converge to the same results as
with f1�r��.
As expected, the presence of the vortex increases the

chemical potential. Also EHO has a small increase, related to
the enlargement of the profile because of the presence of the
vortex hole. These results are listed in Table II. Although the

MGP corrections to the energy are sizable and of the same
order as those in the ground state, the critical frequency,
�GP=0.29�� , is barely affected as both energies, the energy
of the vortex state and the ground-state energy, are shifted by
similar amounts, yielding �MGP=0.24��.
The GP and MGP profiles for the vortex state are shown

in Fig. 2. As a consequence of the repulsive character of the
MGP corrections, the central density of the GP ground-state
density profile is higher than the MGP one and, therefore, the
depth of the hole around the z axis is larger in the GP ap-
proach. However, the healing length is almost the same.
As can be seen from Table III, the Monte Carlo results for

the energies are in good agreement with the MGP ones for all
the trial wave functions considered. This table shows two
types of calculations. In the first three rows we list the ener-
gies obtained by keeping �0 equal to the ground-state wave
function and performing the minimization with respect to the
parameter d in the modulating function, except in the case of
f1, which has no variational parameters. In the second set of
results, we perform a minimization allowing to vary also the
harmonic oscillator parameter � of the wave function �0.
The changes in � and d do not yield significant changes in
the computed energy.
The density profiles seem to be more sensitive to the

modulating function, as one can see from Fig. 2. These pro-
files correspond to the case where the ground-state wave

TABLE II. Chemical potential and energies in units of ��� from the GP and MGP calculations for the
one-vortex state with the vortex line along the z axis. The scattering length is a=35aRb=0.151 55a�, �
=�8, N=500.

� E /N Ekin/N EHO/N E1 /N E2 /N Erot /N

GP-1v 13.187 9.783 5936 0.425 08 5.742 71 3.403 871 0.211 93
MGP-1v 15.623 11.305 0.376 92 7.037 74 2.482 418 1.223 280 0.184 92

FIG. 2. Vortex column density nc�r�� as a function of the dis-
tance to the z axis, for N=500 particles, comparing GP �solid line�
and MGP �dashed line� results for a=35aRb=0.151 55a�. Also
shown are the results of variational Monte Carlo calculations �lines
with symbols� using the different Onsager-Feynman ansatzes. The
deformation �=�8 and the oscillator lengths are defined as in Refs.
�18,19�. The radial distance is given in units of a�= �� /m���1/2.
The column density is dimensionless. See text for further details.

VORTICES IN ATOMIC BOSE-EINSTEIN … PHYSICAL REVIEW A 71, 053610 �2005�

053610-5

function �0 is kept fixed when we minimize the energy of
the vortex state. For f3 we obtain a radial structure, which is
not present in the mean-field approach �22�. The MGP profile
shows a broader surface region than the VMC profiles. In the
core of the vortex, the MGP profile looks very similar to the
VMC results with the modulating function f2 of Eq. �30�.
These two results exhibit a smaller healing length than the
VMC calculation which employs f1.
From the variational point of view, the best description of

the vortex should correspond to the wave function that pro-
vides the minimum energy. According to this criterion, this
corresponds to the trial wave function built with the modu-
lating function f1 of Eq. �29�.
Finally, in Fig. 3 we plot the density profiles for all VMC

calculations, with and without vortices. We note that they all
provide a similar healing length and that the asymptotic be-
havior is almost equal for both the ground state and the vor-
tex states.

IV. CONCLUSIONS

We have compared the results of the Gross-Pitaevskii
�GP� and the modified Gross-Pitaevskii �MGP� equations to

ab initio variational Monte Carlo calculations for Bose-
Einstein condensates of atoms in deformed traps. We have
studied both the ground state and excited states having a
vortex line along the z axis. The interatomic potential has
been characterized by a hard-sphere potential with a radius
that coincides with the scattering length used in the GP and
MGP equations.
We have performed the calculations for 500 particles. The

parameters characterizing the trap and the scattering length
have been chosen to reach values of the gas parameter where
the MGP calculations provide corrections of the order of
20% compared to the GP results. It is indeed very interesting
that even at such values of the gas parameter one can still
describe the system in terms of mean-field approaches. We
find, for example, an excellent agreement between the MGP
and VMC results, especially for the energies of the ground
state and the vortex states. The MGP and VMC density pro-
files for the ground state are also in good agreement. The
situation is different for the vortex state. Three different trial
wave functions produce similar energies but slightly different
profiles. In the core of the vortex, the MGP profile is close to
the profiles obtained with the ansatzes f1 and f2 of Eqs. �29�
and �30�, respectively. These functions yield also the lowest
energies. Whether a diffusion Monte Carlo �DMC� calcula-
tion will show a similar trend remains to see. We are plan-
ning DMC studies of the systems discussed here. Our pre-
liminary DMC calculations for the energy of the ground state
show little change with respect to the VMC results and,
hence, a very good agreement with the MGP results.
In summary, we would like to point out that the good

agreement between the VMC and MGP is rather encouraging
and allows for further MGP explorations of vortex states in
condensates with both a larger number of interacting atoms
and large scattering lengths.

ACKNOWLEDGMENTS

The authors are grateful to Professor A. Fabrocini and
Professor J. Boronat for many useful discussions. This re-
search was also partially supported by DGICYT �Spain�
Project No. BFM2002-01868 and from Generalitat de Cata-
lunya Project No. 2001SGR00064. J. Mur-Petit acknowl-
edges support from the Generalitat de Catalunya. Support
from the Research Council of Norway is acknowledged.

TABLE III. Variational Monte Carlo results obtained with different Onsager-Feynman ansatzes. The
results labeled VMC�f1�, VMC�f2�, and VMC�f3� stand for the modulating wave functions in Eqs. �28�, �30�,
and �31�, respectively.

� d E /N Ekin/N EHO/N Erot

VMC�f1� 0.7685 11.334 32�18� 4.148 04�26� 7.021 75�19� 0.164 527�44�
VMC�f2� 0.7685 1.175 11.362 73�18� 4.235 94�31� 6.939 87�24� 0.186 912�58�
VMC�f3� 0.7685 0.425 11.391 71�18� 4.288 45�30� 6.913 68�23� 0.189 580�30�
VMC�f1� 0.775 11.334 15�17� 4.186 34�29� 6.982 13�22� 0.165 679�60�
VMC�f2� 0.745 1.425 11.354 57�15� 4.078 16�31� 7.096 96�25� 0.179 446�93�
VMC�f3� 0.745 0.550 11.386 83�19� 4.149 02�33� 7.064 46�26� 0.173 350�26�

FIG. 3. Column density nc�r�� as a function of the distance to
the z axis, comparing the VMC profiles for the vortex state corre-
sponding to the different Onsager-Feynman ansatzes �lines with
symbols as in Fig. 2� and the ground state �dashed line with full
circles�. The trap parameters and the scattering length are the same
as in the two preceding figures. The radial distance is given in units
of a�= �� /m���1/2. The column density is dimensionless. See text
for further details.

NILSEN et al. PHYSICAL REVIEW A 71, 053610 �2005�

053610-6

�1� L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 �1961� �Sov.
Phys. JETP 13, 451 �1961��; E. P. Gross, Nuovo Cimento 20,
454 �1961�.

�2� F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Rev.
Mod. Phys. 71, 463 �1999�.

�3� S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and
C. E. Wieman, Phys. Rev. Lett. 85, 1795 �2000�.

�4� B. GossLevi, Phys. Today 53�9�, 46 �2000�.
�5� A. L. Fetter, and J. D. Walecka, Quantum Theory of Many-
Particle Systems �McGraw-Hill, New York, 1971�.

�6� S. Giorgini, J. Boronat, and J. Casulleras, Phys. Rev. A 60,
5129 �1999�.

�7� F. Mazzanti, A. Polls, and A. Fabrocini, Phys. Rev. A 67,
063615 �2003�.

�8� A. Fabrocini and A. Polls, Phys. Rev. A 60, 2319 �1999�.
�9� A. Fabrocini and A. Polls, Phys. Rev. A 64, 063610 �2001�.

�10� J. L. Dubois and H. R. Glyde, Phys. Rev. A 63, 023602
�2001�.

�11� A. R. Sakhel, J. L. Dubois, and H. R. Glyde, Phys. Rev. A 66,
063610 �2002�.

�12� J. L. Dubois and H. R. Glyde, Phys. Rev. A 68, 033602
�2003�.

�13� D. Blume and C. H. Greene, Phys. Rev. A 63, 063601 �2001�.

�14� R. Jastrow, Phys. Rev. 98, 1479 �1955�.
�15� N. Metropolis, A. E. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 �1953�.
�16� R. Guardiola, in Microscopic Quantum Many-Body Theories

and their Applications, edited by J. Navarro and A. Polls
�Springer-Verlag, Berlin, 1998�, Lecture Notes in Physics Vol.
510.

�17� K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weis, Nucl.
Phys. A 342, 111 �1980�.

�18� M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 �1995�.

�19� F. Dalfovo and S. Stringari, Phys. Rev. A 53, 2477 �1996�.
�20� A. L. Fetter and A. A. Svidzinsky, J. Phys.: Condens. Matter

13, R135 �2001�.
�21� L. Onsager, Nuovo Cimento, Suppl. 6, 249 �1949�; R. P. Feyn-

man, in Progress in Low Temperature Physics, edited by C.
Gorter �North-Holland, Amsterdam, 1955�, Vol. I.

�22� G. V. Chester, R. Metz, and L. Reatto, Phys. Rev. 175, 275
�1968�; S. A. Vitiello, L. Reatto, G. V. Chester, and M. H.
Kalos, Phys. Rev. B 54, 1205 �1996�.

�23� S. Giorgini, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 77,
2754 �1996�.

VORTICES IN ATOMIC BOSE-EINSTEIN … PHYSICAL REVIEW A 71, 053610 �2005�

053610-7

APPENDIX A. COLLECTION OF PUBLICATIONS

A.2 MontePython: Implementing Quantum Monte
Carlo using Python

Article and source code published in Computer Physics Communications, doi:10.1016/j.cpc.2007.06
The article ”MontePython: Implementing QuantumMonte Carlo using Python”

is a writeup of MontePython, a software for simulating Bose-Einstein condensates
with Monte Carlo methods in parallel.

The main ideas behind this article were to (1) illustrate how mixed-language
programming can be used to make efficient, and readable, scientific code and (2)
present an object-oriented approach to implementing a generic diffusion Monte
Carlo simulator.

I was the sole author of both the article and the source code.

80

Computer Physics Communications 177 (2007) 799–814

www.elsevier.com/locate/cpc

MontePython: Implementing Quantum Monte Carlo using Python ✩

Jon Kristian Nilsen

a USIT, Postboks 1059 Blindern, N-0316 Oslo, Norway
b Fysisk institutt, Postboks 1048 Blindern, N-0316 Oslo, Norway

Received 30 August 2006; received in revised form 24 April 2007; accepted 16 June 2007

Available online 29 June 2007

Abstract

We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo
(QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we
describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial
and parallel cases to show that the overhead using Python can be negligible.

Program summary

Program title: MontePython
Catalogue identifier: ADZP_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZP_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 49 519
No. of bytes in distributed program, including test data, etc.: 114 484
Distribution format: tar.gz
Programming language: C++, Python
Computer: PC, IBM RS6000/320, HP, ALPHA
Operating system: LINUX
Has the code been vectorised or parallelized?: Yes, parallelized with MPI
Number of processors used: 1–96
RAM: Depends on physical system to be simulated
Classification: 7.6; 16.1
Nature of problem: Investigating ab initio quantum mechanical systems, specifically Bose–Einstein condensation in dilute gases of 87Rb
Solution method: Quantum Monte Carlo
Running time: 225 min with 20 particles (with 4800 walkers moved in 1750 time steps) on 1 AMD OpteronTM Processor 2218 processor;
Production run for, e.g., 200 particles takes around 24 hours on 32 such processors.
© 2007 Elsevier B.V. All rights reserved.

PACS: 03.75.Hh; 03.75.Lm

Keywords: Python; C++; Quantum Monte Carlo; Bose–Einstein condensation; MPI

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

E-mail address: j.k.nilsen@usit.uio.no.

0010-4655/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2007.06.013

800 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

1. Introduction

In scientific programming there has always been a struggle between computational efficiency and programming efficiency. On
one hand, we want a program to go as fast as possible, resorting to low-level programming languages like FORTRAN77 and C
which can be difficult to read and even harder to debug. On the other hand, we want the programming process to be as efficient as
possible, turning to high-level software like Matlab, Octave, Maple, R and S+. Here features like clean syntax, interactive command
execution, integrated simulation and visualization and rich documentation make us feel more productive. However, if we have some
well tested and fast routines written in low-level language, interfacing these routines with, e.g., Matlab is rather cumbersome. Most
often, we will end up using similar Matlab routines, which are often written as generally as possible at the cost of computing
efficiency.

Recently, the programming language Python [1] has emerged as a potential competitor to Matlab. Python is a very powerful
programming language which, when extended with numerical and visual modules like SciPy [2], shares many of the features of
Matlab. In addition, Python was designed to be extendible with compiled code for efficiency and several tools are available for
doing so.

In this paper we will demonstrate how Python can be extended with compiled code to yield an efficient scientific program.
Specifically, we will start with a Monte Carlo simulator written in C++ and, with the help of SWIG [3], reuse the C++ code in a
Python Monte Carlo simulator. We will show that this porting from low-level to high-level code can be achieved without significant
loss of efficiency.

The remainder of this paper is organized as follows. In Section 2 we define the system we apply the Monte Carlo simulator
to. Section 3 discuss briefly the diffusion Monte Carlo algorithm. Next, we go through the implementations of diffusion Monte
Carlo, both in C++ and Python, in Section 4. Furthermore, Sections 5 and 6 compare the efficiency of C++ and Python for varying
numbers of CPUs and Section 7 visualize the output from diffusion Monte Carlo with the use of Python. Finally, we round off with
some remarks in Section 8.

2. The system

Quantum Monte Carlo (QMC) has a wide range of applications, for example studies of Bose–Einstein condensates of dilute
atomic gases (bosonic systems) [4] and studies of so-called quantum dots (fermionic systems) [5], electrons confined between
layers in semi-conductors. In this paper we will focus on a model which is meant to reproduce the results from an experiment by
Anderson et al. [6]. Anderson et al. cooled down 4 × 106 87Rb to temperatures in the order of 100 nK to observe Bose–Einstein
condensation in the dilute gas. Our physical motivation in this paper is to model numerically this fascinating experiment. This should
be done in an as general as possible way, so that we can expand our computations to systems not yet explored in experiments. We
will in this section go through the steps needed to put the experiment into the framework of QMC.

In QMC the goal is to solve the Schrödinger equation

(1)ih̄
∂

∂t
Ψ (R, t) = HΨ (R, t),

or rather the time independent version

(2)HΨ (R) = EΨ (R).

Thus, to model the experiment above using Quantum Monte Carlo methods, all we need is a Hamiltonian and a trial wave function.
The Hamiltonian for N trapped interacting atoms is given by

(3)H = − h̄2

2m

N∑
i=1

∇2
i +

N∑
i=1

Vext(ri) +
N∑

i<j

Vint
(|ri − rj |

)
.

Taking advantage of the fact that the gas is dilute, we can describe the two-body interaction Vint(|ri − rj |) by a hard-core potential
of radius a, where a is the scattering length, thus treating the atoms as hard spheres [7].

We define the trial wave function by

(4)ΨT =
∏
i

g(ri)
∏
i<j

f (rij),

where g(ri) describes the interaction between one particle and the external potential, Vext, while the two-body correlation function
f (rij) describes the interaction between two particles. The function f (rij) is the solution of the Schrödinger equation for a pair of
atoms at very low energy interacting via a hard-core potential of radius a. The ansatz for f (r) reads

(5)f (r) =
{

(1− a/r) r > a,

0 r � a.

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 801

Besides being physically motivated, this type of correlation has been successfully used in Refs. [8] and [4] to study both spherically
symmetric and deformed traps. In the experiment of Anderson et al., the particles were trapped in a disk-shaped harmonic oscillator
potential. This corresponds to using an external potential

(6)Vext = m

2

(
ω⊥x2 + ω⊥y2 + ωzz

2),
If we neglect the particle–particle interaction and insert the potential of Eq. (6) into Eq. (2) we obtain

(7)g(r) = A(α)λ1/4 exp
(−α

(
x2 + y2 + λz2

))
,

where α is taken as the variational parameter of the calculation and A(α) = (2α/π)3/4 is a normalization constant. The parameter
λ = ωz/ω⊥ is kept constant and set equal to the asymmetry of the trap. Still following Anderson et al. we let λ = √

8 throughout
this paper.

3. The Diffusion Monte Carlo algorithm

In this section we will go through the Diffusion Monte Carlo algorithm used in this paper. Diffusion Monte Carlo is built on
Monte Carlo integration and the Metropolis algorithm [9] and usually needs input from a Variational Monte Carlo algorithm. The
interested reader may find more information on these algorithms in, e.g., [10].

In Diffusion Monte Carlo (DMC) we seek to solve the Schrödinger equation in imaginary time. This involves Monte Carlo
integration of a Green’s function. As the Green’s function is approximated by splitting it up in a diffusional part (which has the
form of a Gaussian) and a branching part we also need a Gaussian random generator and a way to create and destroy walkers.

3.1. Basic ideas of DMC

The basic ingredients of DMC are [11]:

(1) It considers the Schrödinger equation in imaginary time,

(8)−∂ψ(R, t)

∂t
= [H − E]ψ(R, t),

where R represents the set of all coordinates. The formal solution of (8) is

(9)ψ(R, t) = e−[H−E]tψ(R,0),

where exp[−(H − E)t] is called the Green’s function, and E is a convenient energy shift.
(2) The wave function is positive definite everywhere, as it happens with the ground state of a bosonic system, so it may be

considered as a probability distribution function. (This assumption leads to difficulties when we consider fermionic systems,
where the wave functions are anti-symmetric and special care needs to be made.)

(3) The wave function is represented by a set of random vectors {R1,R2, . . . ,RM}, in such a form that the time evolution of the
wave function is actually represented by the evolution of the set of walkers.

(4) The actual computation of the time evolution is done in small time steps τ , and the Green’s function is approximated accord-
ingly,

(10)e−[H−E]t =
n∏

i=1

e−[H−E]τ ,

where τ = t/n.
(5) The imaginary time evolution of an arbitrary starting state ψ(R,0), once expanded in the basis of stationary states of the

Hamilton operator

(11)ψ(R,0) =
∑
ν

Cνφnu(R)

is given by

(12)ψ(R, t) =
∑
ν

e−[Eν−E]tCνφν(R),

in such a way that the lowest energy components will have the largest amplitudes after a long elapsed time, and in the t → ∞
limit the most important amplitude will correspond to the ground state (if C0 �= 0).1

1 This can easily be seen by replacing E with the ground state energy E0 in Eq. (12). As E0 is the lowest energy, we will get limt→∞
∑

ν exp[−(Eν −E0)t]φν =
C0φ0.

802 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

(6) An improvement of this scheme is the introduction of importance sampling.

The scheme is quite simple; once we have found an appropriate approximation for the short-time Green’s function and deter-
mined a starting state, the job consists in representing the starting state by a collection of walkers and letting them evolve in time,
i.e. obtaining a collection of walkers from the old collection of walkers, up to a time large enough so that all other states than the
ground state are negligible.

3.2. Importance sampling

An important improvement to the DMC scheme above is, as mentioned above, the use of importance sampling. In problems
with singularities in the potential (e.g., the Coulomb potential) the Green’s function exp[−(H − E)t] will reach unbounded values,
leading to an unstable algorithm. Even without singularities the scheme above is inefficient. This is due to the fact that we have
imposed no restrictions as to where the walkers will walk.

To impose such a restriction, we substitute our wave function ψ(R, t) with a new quantity f (R, t) = ψT (R)ψ(R, t) where
ψT (R) is a time-independent trial wave function, which should be as close as possible to the true ground state. This substitution
can be shown [10, p. 92] to lead to a transformed Hamilton operator which may be written as a sum of three terms H = K +F +L,
where

(13)K = −D∇2, F = −D
(∇ · F(R)

) + F(R) · ∇, L = EL(R),

corresponding, respectively, to the kinetic part, the drift part and the local energy part.
An O(τ 2) approximation of the Green’s function is given by [12]:

(14)〈R′|G|R〉 = 1

(4πDτ)3N/2
e−[R′−R−DτF(R)]2/4Dτ eEτ−[EL(R′)+EL(R)]τ/2 +O(τ 2),

while an O(τ 3) approximation the Green’s function is obtained from [13]

(15)G = eEτ e−L/2τ e−F/2τ e−Kτ e−F/2τ e−L/2τ +O(τ 3).

3.3. DMC algorithm

In Algorithm 1 we state the DMC algorithm corresponding to Eq. (14). The algorithm corresponding to Eq. (15) is similar except
that the move is split into four parts due to the splitting of the drift operator. ξ in the move part of Algorithm 1 is drawn from the
multivariate Gaussian distribution with null mean and σ = √

2Dτ , the solution of the kinetic Green’s function.

4. The implementations

In the previous sections we have identified a physical system to simulate and found algorithms to use in the simulations. One
important question that remains is how we implement the system and the algorithms. In this section we will propose three different
approaches. They all use the same algorithms, they solve the same systems, with identical results, and they are all written in an
object oriented way. In fact, most of the code is the same for all three approaches. The only difference in the implementations is the
amount of time spent in low level, compiled language (represented by C++) versus time spent in high level, interpreted language

Generate an initial set of random walkers with the Metropolis algorithm
for 0 to time

for 0 to Nwalkers
Diffusion:

for 0 to particles
propose move r′ = r + DτF(r) + ξ

Branching; calculate replication factor:
n = int(exp{τ(EL(R)/2+ EL(R′)/2− E)})
if n = 0

Kill the walker
if n > 0

Allow the walker to make n − 1 clones
Remove dead walkers, and make new clones
Check walker population and adjust trial energy sample contributions to observable

Algorithm 1. DMC algorithm

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 803

Fig. 1. Class diagram of DMC.

(represented by Python). The assumption is that compiled code is faster while interpreted code is clearer, easier to debug and easier
to expand. We will in this section go through a pure C++ implementation, a straight forward Python approach and a more involved
Python approach.

4.1. C++ implementation

The base of our implementations is a serial diffusion Monte Carlo (DMC) solver written in C++. The Python solvers are both
heavily based on this code. We will therefore first go through the C++ implementation of DMC. In Figs. 1 and 2 we present the
class diagram and float diagram of the C++ implementation.

In Fig. 1 we show three classes, class DMC, class Func and class Walker.

• The class DMC contains the DMC algorithm, implemented in the function diffMC() (and helper functions to clean up the code).
It also contains a pointer to the class Func and an array of walker objects (or just walkers).

• The class Func contains functors, i.e. classes whose only purpose is to receive a set of numerical values and transform these to
numerical output (not unlike mathematical functions). Specifically, Func contains different wave functions (with corresponding
analytic local energies and quantum forces if implemented) along with generic functions for the gradient and Laplace operator.
The different functions of the systems are subclasses derived from general functions to ensure that the functions of all the
systems have the same input and output.

• The class Walker contains all the physical information of a walker, that is, its position in phase space (and function for setting
and getting the position) and functions for getting physical values like the energy of the walker and the wave function of the
walker.

The advantage of this division of the program is quite clear. The class DMC contains the DMC algorithm and may easily be
replaced with other Monte Carlo algorithms, like the already mentioned variational Monte Carlo, Green’s FunctionMonte Carlo and

804 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

Fig. 2. Float diagram of DMC.

so on. These replacements will neither affect the systems implemented in class Func nor the physical information of the walkers.
Likewise, new systems may be implemented without changing the code of the algorithm.2 The wave function and the potential (or
optionally an analytic expression of the local energy and the quantum force) are sent to the walkers as pointers to Func objects and
are as such not known to the walkers at compile time.

Fig. 2 shows the float diagram of the DMC program. The algorithm is divided into functions so that, e.g., the function diffMC()
contains a loop calling the function oneTimeStep(), which in turn loops over oneMonteCarloStep() and so on. Each such function
is represented by a box in the float diagrams.

2 Except, of course, that the DMC class has to know that the new system exists.

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 805

Looking at the float diagram, Fig. 2, it is easy to realize that most of the time of computation is spent in the bottom boxes of the
diagram. When implementing the DMC in Python the bottom boxes should be kept in C++ while only diffMC() (which is in broad
lines the hole DMC algorithm) will be in Python code.

4.1.1. Checkpointing
One aspect which is frequently forgotten when writing a scientific program is that of checkpointing. A Monte Carlo simulation

may easily take several days, or even weeks and months. This would be infeasible without some way to stop and start the simulation
in case of computer crashes, power losses or overeager computer managers. In checkpointing we store all information needed to
resume the computation at given steps of the simulation. The challenge is to identify the steps at which the checkpointing should
be made. The checkpoints should be made frequently enough to save time compared to starting all over, but not so frequently that
the simulation is significantly slowed down.

In variational Monte Carlo it suffices to write a new initialization file where the number of steps is reduced to what is remaining
of the original number of steps and a random seed so that we continue the random stream we have started. The latter is important if
we want to get reproducible results. As the amount of data stored in a checkpoint is so small, we can do it after every step without
reducing speed. However, making a checkpoint during the movement of the particles would be quite cumbersome and the amount
of data needed to store the checkpoint would increase dramatically.

Again, diffusion Monte Carlo is more challenging. As generating a starting state in effect takes a variational Monte Carlo run,
we have to store all the walkers at every checkpoint. This involves storing all particle positions, the last calculated local energy and
quantum force (which is a vector) and so on, for every walker. In the C++ implementation this is realized by the functions getBuffer
and setBuffer in the Walker objects. In a call to getBuffer the walker puts all it’s information into a character array. In a checkpoint
these arrays are concatenated and dumped to file. When restarting the program, the arrays are read from the file and sent to the
walkers through setBuffer. The checkpoints are, as for variational Monte Carlo, made after every time step.

4.1.2. Generating random numbers
Central to a Monte Carlo method is the random number generator. The Monte Carlo integration depends on a walker’s ability to

reach all points in phase space from its starting point. If the random numbers determining the movement of the walker are in some
way correlated, the walker will lose this ability. A good random number generator is therefore of great importance. Consider the
simple one-dimensional definite integral

(16)F =
1∫

0

f (x)dx.

To solve this equation numerically, we approximate F in terms of FN :

(17)F = lim
N→∞ FN,

where

(18)FN = 1

N

N∑
i=1

f (xi).

When we solve Eq. (16) using Monte Carlo integration, we draw the sample points {xi} randomly from a given probability density
function. However, as a computer only has a finite sized set of numbers available, we have to use random numbers generated from
a pseudo-random number generator (PRNG). For every PRNG there is a finite number of pseudo-random numbers, known as the
cycle length of the PRNG. When this cycle length is reached Eq. (17) will cease to converge. This may not seem like a serious
problem as the cycle length can be made quite large by using better PRNGs. However, we have to take care to choose a good PRNG.
To take an example, the PRNG ran0 (see [14]) has a cycle length of about 2.1 × 109. On a 3.40 GHz Intel(R) Xeon(TM) CPU
ran0 takes 40 seconds to run through one cycle. It is obvious that using this (widely used) PRNG will lead to problems when a
Diffusion Monte Carlo simulation takes several days of CPU time.

The generation of random numbers is a science in itself and, though of great importance to Monte Carlo methods, we will not
go through this aspect in detail. We can advise the interested reader to read the introduction of [15]. In the simulations in this paper
we have used a 64-bit linear congruential generator with prime addend [16,17] which has a period of 264. Linear congruential
generators may have correlations between numbers that are separated by a power of 2. We should therefore take care to avoid using
this generator in batches of powers of 2.

4.2. Parallelizing the C++ implementation

To parallelize Variational Monte Carlo (VMC) is embarrassingly easy. As long as you ensure that all the calculations use different
sets of random numbers (and thereby ensuring that the calculations are uncorrelated) the algorithm is parallelized by running an

806 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

independent calculation on each node. The communication between the nodes is restricted to spreading the input parameters before
the calculations and collecting the output after calculation. The parallel efficiency is essentially 100%, and the calculation can
theoretically use any number of nodes without efficiency loss.

The parallelization of Diffusion Monte Carlo (DMC) is more cumbersome. This is due to the branching part in Algorithm 1
where walkers are killed or reproduced. If we had parallelized DMC in a straight forward way, i.e. by starting one DMC run per
node with different sets of random numbers and collected the results at the end, the walkers would be unevenly distributed among
the processes, leading to an inefficient DMC code. For a DMC code to function properly it needs an as large as possible number
of walkers to get a good representation of the wave function. A lot of unconnected DMC simulations will basically yield a set of
not-so-good wave functions. We therefore have to collect all the walkers, remove dead walkers and make copies of the more virile
walkers according to the branching process and then redistribute the walkers at every time step.

The parallelization is realized by a division of the walker array. A master node stores an array of the full number of walkers
and distribute these walkers evenly between the slave nodes where the walkers are stored in smaller walker blocks. The preparation
to sending and receiving the walker blocks is identical to the checkpoint procedure mentioned above, apart from the file writing
and reading. In fact we use the MPI_Pack procedure to pack the walkers for checkpointing, even in the serial program. The only
difference is that we send and receive the walkers instead of writing to and reading from file.

The main problem left is then to ensure that the sets of random numbers in fact are independent.

4.2.1. Generating random numbers in parallel
Generating random numbers in parallel is not as straightforward as one may think. A common first approach is to start the same

random generator on every node, varying the seed with the rank of the node as a factor to get independent streams and hoping that
these streams are uncorrelated. The main problem with this approach is that random generators often have long-term correlations
which is of little importance in the serial case, but may appear as short-term correlations in a parallel case [16,17]. In the extreme
case, we may chose seeds yielding random numbers separated with exactly one cycle. In this case we will end up with NCPU

identical streams, yielding NCPU identical simulations and extremely good (but wrong) statistics in the results. Several approaches
to get safe streams in parallel are suggested in [16,17] and implemented in the SPRNG library which we use in our simulations.

4.3. Python implementation I

The C++ implementation uses about 90% of the time in the walker objects and most of this time in computing local energies
(N3 operations where N is the number of particles) in functions located in Func. In the python implementation of diffusion Monte
Carlo (pyDMC) the classes Walker and Func are therefore linked into a shared library readable from Python, through a thin wrapper
module, together with the functions from the DMC class below the function oneTimeStep() in Fig. 2.

The main obstacle in implementing pyDMC is the handling of the walkers. In a straight forward approach we put the walker
objects in a native Python array. This is a very tempting approach; we can leave the entire problem of creating and killing walkers3

to Python. Another approach is to make a walker array class in C++. This way we can avoid explicit looping in the Python code,
but we are again left to take care of varying array sizes in C++.

To understand the first approach, we must have a look at how to put the walkers into a native array. To get a C++ class visible
from Python it has to be compiled and linked into a shared library. This step is taken care of by the use of SWIG [3]. The walker
array is then realized by the function warray:

def warray(self,size,particles,dim):
w = []
for i in range(size):

w += [Walker()]
w[i].pyInitialize(particles,dim)

return w

A great advantage with Python is that you can expand a class in run-time (or in fact build an entire class in run-time). Utilizing
this advantage, we have inserted the function warray into the class Walker where it naturally belongs, as can be seen in the function
funcToMethod:

def funcToMethod(func, clas, method_name=None):
setattr(clas, method_name or func.__name__, func)

funcToMethod(warray,Walker) # insert function warray in class Walker

3 Which is not a straight forward problem with C++ arrays.

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 807

This approach is particularly handy if we want to expand the Func class with new physical systems, enabling us to write the
new functors in pure Python code. However, as the functors are where most of the computation time takes place, this approach will
severely hinder the effectiveness of the simulation.

In the native array approach most of the parallelization is realized with the functions spread_walkers and gather_walkers.
spread_walkers is as follows:

def spread_walkers(self):
if self.master:

displace = self.loc_walkers[self.master_rank]
for i in range(1,self.numproc):

send_w = self.w[displace:displace+self.loc_walkers[i]]
send_buff = walkers2py(send_w)
self.pypar.send(send_buff,i)
displace += self.loc_walkers[i]

else:
recv_buff = self.pypar.receive(self.master_rank)
w_args = [self.loc_walkers[self.myrank], self.particles, self.dimensions]
self.w_block = py2walkers(recv_buff, *w_args)

If the master node calls spread_walkers, a walker buffer is made for each slave node and then sent. If the caller is a slave, it
receives the relevant buffer and add it to the local walker block. The function gather_walkers is very similar, except that the slaves
sends the buffers and the master receives and concatenates the buffers to the global walker array. The functions walkers2py and
py2walkers are functions for converting a walker to a NumPy array and back again, taking advantage of the functions getBuffer and
setBuffer in the Walker class.

A simple Python script for parallel DMC computations is as follows. We start with defining a function for one time step, or
iteration:

def timestep(i_step):
M = d.no_of_walkers
d.spread_walkers()
for walker in d.w_block:

d.monte_carlo_step(walker)
d.gather_walkers()
d.update = False
if d.master:

kill and replicate walkers
for i in range(M-1,-1,-1):

if d.w[i].isDead():
d.w[i:i+1] = [] # removing walker

else:
while d.w[i].tooAlive():

baby_walker = d.copy_walker(d.w[i])
baby_walker.calmWalker()
d.w += [baby_walker]
d.w[i].madeWalker()

d.no_of_walkers = len(d.w)
d.no_of_walkers = d.pypar.broadcast(d.no_of_walkers, d.master_rank)
d.refresh_w_blocks()
d.spread_walkers()
d.num_args[-1] = d.update
if d.master:

find energy for this state (details skipped)
adjust trial energy (and no. of walkers)
nrg = -.5*math.log(float(d.no_of_walkers)/float(M))/d.tau
d.e_trial += nrg

d.e_trial = d.pypar.broadcast(d.e_trial,d.master_rank)
d.no_of_walkers = d.pypar.broadcast(d.no_of_walkers, d.master_rank)

This function may be divided into three steps. We start with running through all the walkers, doing a regular Monte Carlo step.
Next we kill strayed walkers and replicate good walkers defined by the replication factor in Algorithm 1. Last, we calibrate the trial
energy for the next time step. Given the timestep function the DMC script is as follows:

808 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

import pypar,math
from DMC import DMC

d = DMC(pypar)

set initial walker positions:
d.uni_dist()

do initial termalization using metropolis:
for i in range(d.metropolis_termalization):

for walker in d.w_block:
d.metropolis_step(walker)

find initial energy (details skipped)

do Monte Carlo iterations:
for i in range(d.steps):

timestep(i)

if d.master:
calculate final energy and store to file (details skipped)

pypar.Finalize()

Here we generate a DMC object, setup an initial uniform walker distribution, do a termalization to distribute the walkers along
the ground state of the system, make an estimation for the trial energy, and then start the production by iterating through the time
steps. This implementation is capable of doing DMC computations, albeit not very efficiently, and, as you will see, there is room
for improvement.

4.4. Python implementation II

When thinking performance of arrays in Python the add-on package Numerical Python (NumPy) springs to mind as an obvious
choice. The fact that the module pypar (which we are going to use in the parallelization) supports sending NumPy arrays directly,
is of course helping in that choice. However, even though NumPy supports a lot of types, (such as integers, floats, chars etc.) there
is no support for walkers as a type.4 It is possible to use generic Python objects in NumPy arrays, but this will mainly make NumPy
array comparable to native arrays.

The approach with native Python arrays is quite straightforward and easy to implement. It is, however, quite inefficient as well.
There are two main reasons for this. First, looping is known to be an inefficient construct in Python. With a native Python array, the
loops over walkers have to be done in Python. Second, native Python arrays are slower than, e.g., NumPy arrays, because native
arrays are written for a much more general use than just numerics. The question is how we can use the most of the C++ walker code
as-is while avoiding explicit for-loops in Python.

One solution is to implement an array class (lets call it WalkerArray) in Python which is wrapper class to a C++ class containing
a C++ array of walkers and functionality to create and kill walkers. Even though this is a good approach in a serial implementation,
we still have to convert these arrays to NumPy arrays to be able to send the walkers in MPI.

In our Python implementation, we keep the WalkerArray, but store all the walker data in a NumPy array. To do this we have
modified the C++ Walker class so that it only uses pointers to an array for all arrays and variables that should be stored. This array
is then provided by NumPy. Even though this approach taints the C++ implementation of the Walker class, we get the advantage
that the Python DMC class only has to care about NumPy arrays, providing us with powerful tools for vectorizing the Python code.

4.4.1. WalkerArray
To implement the class WalkerArray we need to have some knowledge of the C++ Walker class. The Walker class contains

some arrays storing all particle positions and all previous particle positions and variables to know if the walker should be removed
or duplicated. In addition it stores the last computed local energy, quantum force and wave function to minimize the number of
times we compute these quantities. In the C++ code this information is allocated and stored in each walker, making the creation
of a walker rather costly. When we send walkers in MPI the information is collected from each walker and concatenated into one
array before communication and inserted into the walkers after communication. Now, we want turn it the other way, i.e. we want to
allocate and store all information from all walkers in one array (preferably a NumPy array) and let the walkers operate on pointers
to this array. This way the time to initialize a walker is reduced dramatically and all information on walkers are readily available
from Python. This change of view for the Walker class is realized by changing all variables that define the walker to references to
the corresponding pointers to the NumPy array.

4 To the best of my knowledge.

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 809

Fig. 3. Speedup of a simulation as a function of the number of CPUs used. In the left figure the serial run took about 30 minutes and was run with an initial 480
walkers moved in 3500 time steps. In the right figure the serial run took about 4 hours 30 minutes and was run with an initial 4800 walkers moved in 1750 time
steps.

5. Python vs. C++

Now we know how to implement a Python version of a Monte Carlo solver. We then need to know if MontePython is efficient
enough. We can assume that the Python implementation will never be faster that the corresponding C++ code, as Python will always
have some degree of overhead just to access the C++ code. The question is how big this overhead may be. In Fig. 3 we have plotted
the speedup of a Monte Carlo simulation as a function of the number of CPUs.5 To the left we have done a relatively light simulation
with 20 particles in 3 dimensions using 480 walkers. The walkers are spread out evenly and communicated from the master node
to the slave nodes and back again 3500 times so that all walkers are sent 7000 times. The size of one walker is in this case 1.2 kB
which means that for, e.g., 4 CPUs the size of each message is about 144 kB. We can see that for this message size the overhead of
using Python is almost none.

To the right in Fig. 3 we have increased the number of walkers to 4800. However, we are also using a much higher number of
CPUs. The message size for, e.g., 64 CPUs is only 9 kB. As we explicitly loop over the number of CPUs when we send walkers to
and from the master, the overhead increases dramatically when compared to the time to send one message. The send and receive
methods should therefore be vectorized with scatter and gather routines. Unfortunately we do not have uniform message sizes,
making generic scatter and gather routines unusable. We will therefore have to write these routines ourselves.

Python has similar speed to C++, but the curve flattens out much faster as we increase the number of CPUs. As Monte Carlo
simulations are known to have perfect speedup, we cannot be satisfied with the parallel algorithms of either the C++ version or the
Python version.

6. Optimizing MontePython

One of the points in using Python in scientific programming is that you can implement new and improved algorithms efficiently.
We have seen that distribution of the random walkers over the compute nodes leads to a bottleneck due to communication when the
number of CPUs grows large. This bottleneck is evident both for the C++ implementation and the Python implementation. In this
section we will improve the algorithm for load balancing of the walker in two ways. First, we will improve on the way the walkers
are killed and reproduced. Second, we will improve on the load balancing itself by optimizing for heterogeneous clusters of CPUs.

6.1. Distributing walkers in parallel

The C++ Diffusion Monte Carlo application was originally written in serial and then ported to parallel using MPI. In the serial
version we used an algorithm where, in order to kill a walker, we moved the last walker in the sequence onto the walker that was to
be killed and decreased the number of walkers with one. To reproduce a walker, we copied the walker to the end of the sequence.
This algorithm is optimal and widely used in serial Diffusion Monte Carlo. When we parallelized the code, we kept this serial
algorithm by gathering all the walkers to the master node, let the master node do the killing and reproducing in serial, and then
spread the walkers evenly among the slave nodes again. This way the load was always balanced, and the master had full control
of the walkers at all times. The main problem is that, apart from memory issues as the master needs to store a lot of walkers, the

5 Speedup is the time of a serial simulation divided by the walltime of the simulation.

810 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

serial work load for the master increases fast when we increase the number of CPUs in the calculation. This problem is very clear
in Fig. 3, where the speedup is quite poor already for 32 CPUs, both for the C++ version and the Python version.

Again, the algorithm is best explained through the source code. First we let the slave nodes individually move their walkers and
kill and reproduce their local walkers, then the function DMC.load_balancing() balances the load:

1 def load_balancing(self):
self.t1 = time.time()

3 w_numbers = self.pypar.gather(Numeric.array([len(self.w_block)]),
self.master_rank)

5 tmp_w_numbers = copy.deepcopy(w_numbers)
w_numbers = self.pypar.broadcast(tmp_w_numbers,

7 self.master_rank)
9 self.no_of_walkers = Numeric.sum(w_numbers)

11 self.__find_opt_w_p_node()

13 self.first_balance = False
balanced = Numeric.array(self.loc_walkers)

15
difference = w_numbers-balanced

17
diff_sort = Numeric.argsort(difference)

19 prev_i_min = diff_sort[0]

21 while sum(abs(difference))!=0:
diff_sort = Numeric.argsort(difference)

23 i_max = diff_sort[-1]
i_min = diff_sort[0]

25
if i_min == prev_i_min:

27 i_min = diff_sort[1]

29 if self.myrank==i_max:
self.pypar.send(self.w_block[balanced[i_max]:],i_min)

31 args = [balanced[i_max],
self.particles,

33 self.dimensions,
self.w_block[0:balanced[i_max]]]

35 self.w_block = WalkerArray.WalkerArray(*args)
elif self.myrank==i_min:

37 recv_buff = self.pypar.receive(i_max)
args = [len(self.w_block)+difference[i_max],

39 self.particles,
self.dimensions,

41 Numeric.concatenate((self.w_block[:],recv_buff))]
self.w_block = WalkerArray.WalkerArray(*args)

43 difference[i_min]+=difference[i_max]
difference[i_max]=0

45 prev_i_min = i_min

This function deserves some explanation. From line 4 to 9 we update the current walker distribution and total number of walkers.
In line 11 we determine the optimal distribution of walkers. to be explained in Section 6.2. At this point we know the actual
distribution of walkers and the optimal distribution of walkers. The idea is then to find the length of the difference between the
optimal and actual distribution and move walkers among nodes until the length, or the sum of the absolute value of the differences
is zero, see line 21. This is realized in lines 29–44 by moving the excess walkers from the node with maximum difference to the
walker with minimum difference recursively. A problem with this procedure is that the same node can have a minimum difference
in subsequent cycles of the while-loop.6 This leads to unnecessary waiting in the program. The remedy is seen in line 26 where we

6 E.g., if a node with minimum difference needs 4 walkers and the second minimum is 1, while the maximum difference is 2, the minimum node is still the same
after the first cycle. Then the message of the next cycle will have to wait till the first message is sent.

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 811

take the second minimum node if the minimum node is the same node as in the previous cycle. Of course this problem may just be
transferred to the second minimum node, but this is much less likely to happen.

It should be noted that this optimization does not preserve the result from the non-optimized code, in the sense that we will not
get an identical output in the end. This is due to the fact that the random sequences are distributed per node and not per walker,
meaning that each walker will get a different series of random numbers depending on which node it is sent to. The output will,
however, be within the error range of the non-optimized code.

6.2. Heterogeneous clusters

Most new high performance clusters are more or less homogeneous, in the sense that the computation nodes have identical
specifications with respect to CPU, RAM, network and storage. However, as a cluster usually expands in time, due to more funds
and need for more resources, it is very likely that it will become a heterogeneous cluster. Also, with the trend of multiple cores
and CPUs per computation nodes, combined with the fact that there is more than one user per cluster, different nodes will have
different (and possibly too high) load and therefore different computational speed. This means that even if a cluster is homogeneous
on paper, it will act like a heterogeneous cluster in practice. If we want to gain the optimal performance from a cluster, we need to
take into account this heterogeneity.

In the function __find_opt_w_p_node() we use the time from the DMC class is initialized to the function is called to
determine how the optimal distribution of walkers at every time step. The function itself goes as follows:

1 def __find_opt_w_p_node(self):
self.t1 = time.time()

3 timings = self.pypar.gather(Numeric.array([abs(self.t1-self.t0)]),
self.master_rank)

5 tmp_timings = copy.deepcopy(timings)
timings = self.pypar.broadcast(tmp_timings,

7 self.master_rank)

9 C = self.no_of_walkers/sum(1./timings)

11 tmp_loc_walkers = C/timings

13 self.loc_walkers = self.NumericFloat2IntList(tmp_loc_walkers)
remainders = tmp_loc_walkers-self.loc_walkers

15
while sum(self.loc_walkers) < self.no_of_walkers:

17 maxarg = Numeric.argmax(remainders)
self.loc_walkers[maxarg] += 1

19 remainders[maxarg] = 0

21 if self.master and self.first_balance:
print timings

23 print self.loc_walkers

25 return self.loc_walkers

To understand this function we just need some simple linear algebra. Say that we have set of walkers [x1, x2, . . . xN] spread in
an optimal way over N nodes. On node i the time to move one walker is given by ai yielding a set [a1, a2, . . . aN]. By optimal
distribution we mean a distribution of walkers were each node finishes the work assigned to it between synchronizations at the same
time C, i.e. aixi = C. In addition we know the total number of walkers, T . We know that

(19)
∑

xi =
∑ C

ai

,

so that the problem reduces to finding C. However, as T = ∑
xi , we have

(20)C = T∑
1/ai

.

Here Eq. (20) corresponds to line 9 of __find_opt_w_p_node(). The rest of the function is merely taking care of the fact that
xi are integers while ai and C are real numbers.

812 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

Fig. 4. The figure shows the speedup for the simulation as a function of the number of CPUs used. The serial run took about 209 minutes for C++, 225 minutes for
Python and was run with an initial 4800 walkers moved in 1750 time steps.

6.3. Optimized results

Fig. 4 shows the speedup of the improved walker distribution compared to the same improvement in C++.We see that the speedup
is actually better for Python for higher numbers of CPUs. C++ version. The main reason for this is that the serial version of C++ is
faster than that of Python, with 209 minutes compared to 225 minutes. When increasing the number of CPUs the Python version
gets closer to the C++ version in walltime, and already for 32 CPUs the walltimes are inseparable, with differences of less than 1%.
Due to storing the data in a NumPy array, Python does not need to allocate memory for every moved walker separately every time a
block of walkers is moved. It should be noted that we again see a slope in the speedup curve when going to large numbers of CPUs.
This is again due to the small number of walkers on each node when having a constant global number of walkers. This effect is now
independent on whether we use Python or C++.

The simple syntax in Python and the use of NumPy arrays to store walkers also allow us to concentrate our effort directly on
the optimization of the algorithm instead of dealing with, e.g., how to send, receive and concatenate a slice of walkers. As a simple
comparison, the author used approximately two working days to implement the optimization in Python. Due to some problems with
segmentation faults in the timer function, it took the author about seven working days to implement the C++ version. This could be
just as much due to lack of programming skills from the author as problems with C++, but it is quite clear that debugging is more
efficient in Python than C++.

7. Visualizing with Python

We mentioned in the introduction that integration of simulation and visualization is an important feature of Matlab, Maple and
others. This feature is maybe even more powerful in Python. In Figs. 5 and 6 we have used pyVTK and Mayavi [18] to plot the
particle density, which is an output of diffusion Monte Carlo. pyVTK [19] is a Python interface to the Visualization ToolKit (VTK),
while Mayavi, which is built on pyVTK, is a scriptable graphic interface for 3D visualization.

A signature of a Bose–Einstein condensate is that it is irrotational. If we try to rotate the condensate, it will compensate by
setting up quantum vortices along the rotational axis. Vortices is therefore crucial to the study of Bose–Einstein condensates. We
need only small modifications to the Hamiltonian (Eq. (3)) and trial wave function (Eq. (4)) to consider a single vortex along the
z-axis in our system [7].

Figs. 5 and 6 shows the change in the ground state when inserting the vortex. The repulsive nature of the vortex pushes the
particles away from the z-axis, decreasing the maximum density when compared to the ground state.

8. Conclusion

We have implemented a Monte Carlo solver using three different approaches; pure C++, a Python implementation, and an
efficient, vectorized Python implementation. Furthermore we have compared the vectorized Python implementation with a corre-
sponding C++ implementation and shown that the overhead of using Python is small for sufficiently large problems. In fact, with
only two rather simple functions we were able to introduce an improved parallel algorithm for walker distribution, making the dif-
ference between Python and C++ close to negligible. In addition, we have shown that Python can be used directly as a visualization
tool for rendering three dimensionally scientific visualizations. We conclude that Python can serve as a powerful tool in scientific
programming.

J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814 813

Fig. 5. The figures show where particles are detected. Plotted are the expectation values in two spatial dimensions, the yz-plane to the left and the xy-plane to the
right. The topmost figure corresponds to the ground state, while the bottom figure corresponds to a state with one vortex in the center of the trap.

Fig. 6. The figures show where particles are detected. Plotted are the expectation values for finding, from left to right, 1, 2, 3 and 4 particles. The topmost figure
corresponds to the ground state, while the bottom figure corresponds to a state with one vortex in the center of the trap.

References

[1] G. van Rossum, et al., The Python Programming Language, 1991.

814 J.K. Nilsen / Computer Physics Communications 177 (2007) 799–814

[2] P. Peterson, E. Jones, T. Oliphant, et al., SciPy: Open Source Scientific Tools for Python, 2001.
[3] D. Beazley, et al., SWIG: Simplified Wrapper and Interface Generator, 1995.
[4] J.L. DuBois, H.R. Glyde, Natural orbitals and bec in traps, a diffusion Monte Carlo analysis, Phys. Rev. A 68 (2003).
[5] A. Harju, Variational Monte Carlo for interacting electrons in quantum dots, J. Low Temperature Phys. 140 (2005) 181–210.
[6] J.R. Anderson, M.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornel, Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269

(1995) 198.
[7] J.K. Nilsen, J. Mur-Petit, M. Guilleumas, M. Hjorth-Jensen, A. Polls, Vortices in atomic Bose–Einstein condensates in the large gas parameter region, Phys.

Rev. A 71 (2005).
[8] J.L. DuBois, H.R. Glyde, Bose–Einstein condensation in trapped bosons: A variational Monte Carlo analysis, Phys. Rev. A 63 (2001).
[9] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller, E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys. 21

(1953) 1087.
[10] B.L. Hammond, W.A. Lester Jr., P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry, World Scientific, 1994.
[11] R. Guardiola, Monte Carlo methods in quantum many-body theories, in: J. Navarro, A. Polls (Eds.), Microscopic Quantum Many-Body Theories and their

Applications, in: Lecture Notes in Physics, Springer, Verlag, 1997, pp. 269–336.
[12] P.J. Reynolds, D.M. Ceperley, B.J. Alder, W.A. Lester Jr, J. Chem. Phys. 77 (1982) 5593.
[13] A. Sarsa, J. Boronat, J. Casulleras, Quadratic diffusion Monte Carlo and pure estimators for atoms, Phys. Rev. A (2001).
[14] W.H. Press, S.A. Teukolsky, W.T. Vetterlin, B.P. Flannery, Numerical Recipes in C, second ed., Cambridge University Press, 2002.
[15] D.E. Knuth, The Art of Computer Programming, second ed., Addison-Wesley Publishing Company, 1981.
[16] M. Mascagni, A. Srinivasan, Sprng: A scalable library for pseudorandom number generation, ACM Trans. Math. Software 26 (2000) 436–461.
[17] A. Srinivasan, M. Mascagni, D. Ceperley, Testing parallel random number generators, Parallel Comput. 29 (2003) 69–94.
[18] P. Ramachandran, Mayavi: A free tool for CFD data visualization, in: 4th Annual CFD Symposium, Aeronautical Society of India, 2001.
[19] P. Peterson, PyVTK: Tools for Mmanipulating VTK Files in Python, 2001.

A.3. SIMPLIFYING PARALLELIZATION OF SCIENTIFIC CODES IN
PYTHON

A.3 Simplifying Parallelization of Scientific Codes
by a Function-Centric Approach in Python

Article submitted to Comp. Science & Discovery.
The article ”Simplifying Parallelization of Scientific Codes by a Function-Centric

Approach in Python” was the product of a cross-science collaboration between
two computer scientists (Xing Cai and Hans Petter Langtangen), a social scientist
(Bjørn Høyland) and a physicist (me).

The main idea of the article was to present a ”toolbox” of generic methods for
parallelizing existing scientific applications, exemplified by applications from the
three sciences.

My main contributions to the article were the source code of the Monte Carlo
examples and the text in Sections 3.2 and 4.2 and Appendix B.

97

APPENDIX A. COLLECTION OF PUBLICATIONS

98

Simplifying Parallelization of Scientific Codes by a

Function-Centric Approach in Python

Jon K. Nilsen1,2, Xing Cai3,4, Bjørn Høyland5 and Hans Petter

Langtangen3,4

1 USIT, P.O. Box 1059 Blindern, N-0316 Oslo, Norway
2 Department of Physics, P.O. Box 1048 Blindern, University of Oslo, N-0316 Oslo,

Norway
3 Center for Biomedical Computing, Simula Research Laboratory, P.O. Box 134,

N-1325 Lysaker, Norway
4 Department of Informatics, P.O. Box 1080 Blindern, University of Oslo, N-0316

Oslo, Norway
5 Department of Political Science, P.O. Box 1097 Blindern, University of Oslo,

N-0317 Oslo, Norway

E-mail: j.k.nilsen@usit.uio.no, xingca@simula.no,

bjorn.hoyland@stv.uio.no, hpl@simula.no

Abstract.

The purpose of this paper is to show how existing scientific software can be

parallelized using a separate thin layer of Python code where all parallel communication

is implemented. We provide specific examples on such layers of code, and these

examples may act as templates for parallelizing a wide set of serial scientific codes.

The use of Python for parallelization is motivated by the fact that the language is

well suited for reusing existing serial codes programmed in other languages. The

extreme flexibility of Python with regard to handling functions makes it very easy to

wrap up decomposed computational tasks of a serial scientific application as Python

functions. Many parallelization-specific components can be implemented as generic

Python functions, which may take as input those functions that perform concrete

computational tasks. The overall programming effort needed by this parallelization

approach is rather limited, and the resulting parallel Python scripts have a compact

and clean structure. The usefulness of the parallelization approach is exemplified by

three different classes of applications in natural and social sciences.

Submitted to: Computational Science & Discovery

Simplifying Parallelization of Scientific Codes 2

1. Introduction

Due to limited computing power of standard serial computers, parallel computing has

become indispensable for investigating complex problems in all fields of science. A

frequently encountered question is how to transform an existing serial scientific code

into a new form that is executable on a parallel computing platform. Although portable

parallel programming standards, such as MPI and OpenMP, have greatly simplified the

programming work, the task of parallelization may still be quite complicated for domain

scientists. This is because inserting MPI calls or OpenMP directives directly into an

existing serial code often requires extensive code rewrite as well as detailed knowledge

of and experience with parallel programming.

The hope for non-specialists in parallel computing is that many scientific

applications possess high-level parallelism. That is, the entire computational work

can be decomposed into a set of individual (and often collaborative) computational

tasks, each of coarse grain, and can be performed by an existing piece of serial

code. Depending on the specific application, the decomposition can be achieved by

identifying a set of different parameter combinations, or (fully or almost) independent

computations, or different data groups, or different geometric subdomains. For a given

type of decomposition, the parallelization induced programming components, such as

work partitioning, domain partitioning, communication, load balancing, and global

administration, are often generic and independent of specific applications. These generic

components can thus be implemented as reusable parallelization libraries once and for

all. This is what we exemplify in the present paper.

It is clear that a user-friendly parallelization approach relies on at least two factors:

(1) The existing serial code should be extensively reused; (2) The programming effort by

the end user must be limited. To achieve these goals we suggest to use Python to wrap

up pieces of existing serial code (possibly written in other languages), and implement

the parallelization tasks in separate and generic Python functions.

Python [1] is an extremely expressive and flexible programming language at its core.

The language has been extended with numerous numerical and visualization modules

such as NumPy [2] and SciPy [3]. The two requirements of a user-friendly parallelization

mentioned above are actually well met by Python. First of all, Python is good at inter-

operating with other languages, especially Fortran, C, and C++, which are heavily

used in scientific codes. Using wrapper tools such as F2PY [4], it is easy to wrap up an

existing piece of code in Fortran and C and provide it with a Pythonic appearance.

Moreover, among its many strong features, Python is extremely flexible with

handling functions. Python functions accept both positional arguments and keyword

arguments. The syntax of a variable set of positional and keyword arguments (known

as “(*args,**kwargs)” to Python programmers) allows writing libraries routines that

work with any type of user-defined functions. That is, the syntax makes it possible to

call a Python function without revealing the exact number of arguments.

It is also straightforward to pass functions as input arguments to a Python function

Simplifying Parallelization of Scientific Codes 3

and/or return a function as output. A callable class object in Python can be used as if it

were a stand-alone function. Such a construction, or alternatively a closure (known from

functional programming), can be used to create functions that carry a state represented

through an arbitrarily complex data structure. The result is that one can express the

flow of a scientific code as a Python program containing a set of calls to user-defined

Python functions. These user-defined functions can be ordinary functions or classes

that wrap pieces of the underlying scientific code. This is what we call a function-

centric representation of the scientific code. With such a function-centric approach, we

can build a general framework in Python for almost automatic parallelization of the

program flow in the original scientific code. Later examples will convey this idea in

detail.

Performance of the resulting parallel application will closely follow the performance

of the serial application, because the overhead of the parallelization layer in Python is

just due to a small piece of extra code, as we assume the main computational work to

take place in the Python functions that call up pieces of the original scientific code.

In the parallelization layer, good performance can be ensured by using efficient array

modules in Python (such as numpy [2]) together with light-weight MPI wrappers (such

as pypar [5]). For examples of writing efficient Python code segments for some standard

serial and parallel numerical computations, we refer the reader to Cai et al. [6].

Related Work. In C++, generic programming via templates and object-oriented

programming has been applied to parallelizing serial scientific codes. Two examples

can be found in [7] and [8], where the former uses C++ class hierarchies to enable

easy implementation of additive Schwarz preconditioners, and the latter uses C++

templates extensively to parallelize finite element codes. Many scientific computing

frameworks have also adopted advanced programming to incorporate parallelism behind

the scene. In these frameworks (see, e.g., [9, 10, 11, 12, 13]) the users can write parallel

applications in a style quite similar to serial programming, without being exposed to

many parallelizing details. Likewise are frameworks that are specially designed to allow

coupling of different serial and parallel components, such as Cactus [14] and MpCCI [15].

The Python programming language, however, has not been widely used to parallelize

existing serial codes. The Star-P system [16] provides the user with a programming

environment where most of the parallelism is kept behind the scene. Hinsen [17] has

combined Python with BSP to enable high-level parallel programming. In addition,

quite a number of Python MPI wrappers exist, such as pyMPI [18], pypar [5], MYMPI [19],

mpi4py [20, 21], and Scientific.MPI [22]. Efforts in incorporating parallelism via

language extensions of Python can be found in [23, 24, 25].

The contribution of the present paper is to show by examples that a function-

centric approach using Python may ease the task of parallel scientific programming.

This result is primarily due to Python’s flexibility in function handling and function

arguments. As a result, generic tasks that arise in connection with parallelization can

often be programmed as a collection of simple and widely applicable Python functions,

Simplifying Parallelization of Scientific Codes 4

which are ready to be used by non-specialists to parallelize their existing serial codes.

This paper contains three examples with different algorithmic structures. A wide

range of problems in science can be attacked by extending and adapting the program

code in these examples. Moreover, readers whose problems are not covered by the

examples will hopefully from these examples understand how we solve programming

problems by identifying the principal, often simplified, underlying algorithmic structure;

then creating generic code to reflect the structure; and finally applying the generic

code to a specific, detailed case. Our approach is much inspired by the success of

mathematics in problem solving, i.e., detecting the problem’s principal structure and

devising a generic solution makes complicated problems tractable. With Python as tool,

we demonstrate how this strategy carries over to parallelization of scientific codes.

The remainder of the paper is organized as follows. We give in Section 2 a simple

but motivating example, explaining the principles of splitting a problem into a set of

function calls that can easily be parallelized. Generic parallelization of three common

types of real scientific applications are then demonstrated in Section 3. Afterwards,

Section 4 reports the computational efficiency of the suggested parallelization approach

applied to specific cases in the three classes of scientific problems. Some concluding

remarks are given in Section 5.

2. A Motivating Simple Example

2.1. Serial Version

Suppose we want to carry out a parameter analysis that involves a large number

of evaluations of a multi-variable mathematical function f(a1, . . . , aq). The Python

implementation of f may use p positional arguments and k keyword arguments such

that the total p+ k arguments contain at least the variables a1, . . . , aq (i.e., q ≤ p+ k).

As a very simple example, consider the parabola f(x, a, b, c) = ax2 + bx + c with the

following Python implementation (q = 4, p = 1, k = 3):

def func(x, a=0, b=0, c=1):
return a*x**2+b*x+c

Suppose we want to evaluate func for a particular set of input parameters chosen from

a large search space, where x, a, b, and c vary in specified intervals. The complete

problem can be decomposed into three main steps: (1) initialize a set of arguments to

func; (2) evaluate func for each entry in the set of arguments; (3) process the set of

function return values from all the func calls.

Step (1) calls a user-defined function initialize which returns a list of 2-tuples,

where each 2-tuple holds the positional and keyword arguments (as a tuple and a

dictionary) for a specific call to func. Step (2) iterates over the list from step (1)

and feed the positional and keyword arguments into func. The returned value (tuple) is

stored in a result list. Finally, step (3) processes the result list in a user-defined function

finalize which takes this list as input argument.

Simplifying Parallelization of Scientific Codes 5

A generic Python function that implements the three-step parameter analysis can

be as follows:

def solve_problem(initialize, func, finalize):
input_args = initialize()
output = [func(*args, **kwargs) for args, kwargs in input_args]
finalize(output)

Note that the use of list comprehension in the above code has given a very compact

implementation of the for-loop for going through all the evaluations of func. The

initialize, func, and finalize functions are passed to solve problem as input

arguments. These three user-defined functions are independent of solve problem.

As an example, assume that x is a set of n uniformly distributed coordinates in

[0, L], and we vary a and b in [−1, 1] each with m values, while c is fixed at the value 5.

For each combination of a and b, we call func with the vector x as a positional argument

and the a, b, c values as keyword arguments, and store the evaluation results of func in

a list named output. The objective of the computations is to extract the a and b values

for which func gives a negative value for one or several of the coordinates x ∈ [0, L]. For

this very simple example, the concrete implementation of the initialize and finalize

functions can be put inside a class named Parabola as follows:

class Parabola:
def __init__(self, m, n, L):

self.m, self.n, self.L = m, n, L

def initialize(self):
x = numpy.linspace(0, self.L, self.n)
a_values = numpy.linspace(-1, 1, self.m)
b_values = numpy.linspace(-1, 1, self.m)
c = 5

self.input_args = []
for a in a_values:

for b in b_values:
func_args = ([x], {’a’: a, ’b’: b, ’c’: c})
self.input_args.append(func_args)

return self.input_args

def func(self, x, a=0, b=0, c=1):
return a*x**2+b*x+c

def finalize(self, output_list):
self.ab = []
for input, result in zip(self.input_args, output_list):

if min(result) < 0:
self.ab.append((input[0][1], input[0][2]))

Now, to find the combinations of a and b values that make ax2 + bx + c < 9, we

can write the following two lines of code (assuming m = 100, n = 50, and L = 10):

problem = Parabola(100, 50, 10)
solve_problem(problem.initialize, problem.func, problem.finalize)

Note that the desired combinations of a and b values will be stored in the list

problem.ab. Also note that we have placed func inside class Parabola, to have all

Simplifying Parallelization of Scientific Codes 6

pieces of the problem in one place, but having func as stand-alone function or a class

method is a matter of taste.

Despite the great mathematical simplicity of this example, the structure of the

solve problem function is directly applicable to a wide range of much more advanced

problems. Although initialize and finalize are Python functions with very simple

arguments (none and a list, respectively), this is not a limitation of their applicability.

For example, the initialize step in our simple example needs values for m, n, and L,

the a and b interval and so on, which can not be specified in the generic solve problem

function. To overcome this limitation, the information of m, n, and L can be hard-

coded (not recommended), or transferred to initialize through global variables (not

recommended in general) or carried with initialize as a state, either as class attributes

or as a surrounding scope in a closure. We have chosen the class approach, i.e.,

class attributes store user-dependent data structures such that the initialize and

finalize methods can have the simple input argument structure demanded by the

generic solve problem function. Alternatively, a closure as follows can be used instead

of a class (this construct requires some knowledge of Python’s scoping rules):

def initialize_wrapper(m, n, L):
def initialize(self):

x = numpy.linspace(0, L, n)
a_values = numpy.linspace(-1, 1, m)
...
return input_args

return initialize

Now, the returned initialize function will carry with it the values of m, n, and

L in the surrounding scope. The choice between the class approach and the closure

approach, or using global variables in a straightforward global initialize function,

is up to the programmer. The important point here is that initialize must often

do a lot, and the input information to initialize must be handled by some Python

construction. Similar comments apply to finalize.

2.2. Parallel Version

Let us say that we want to utilize several processors to share the work of all the func

evaluations, i.e., the for-loop in the generic solve problem function. This can clearly

be achieved by a task-parallel approach, where each evaluation of func is an independent

task. The main idea of parallelization is to split up the for-loop into a set of shorter

for-loops, each assigned to a different processor. In other words, we need to split up

the input args list into a set of sub-lists for the different processors. Note that this

partitioning work is generic, independent of both the func function and the actual

arguments in the input args list. Assuming homogeneous processors and that all

the function evaluations are equally expensive, we can divide the input args list into

num procs (number of processors) sub-lists of equal length. In case input args is not

divisible by num procs, we adjust the length of some sub-lists by 1:

def simple_partitioning(length, num_procs):

Simplifying Parallelization of Scientific Codes 7

sublengths = [length/num_procs]*num_procs
for i in range(length % num_procs): # treatment of remainder

sublengths[i] += 1
return sublengths

def get_subproblem_input_args(input_args, my_rank, num_procs):
sub_ns = simple_partitioning(len(input_args), num_procs)
my_offset = sum(sub_ns[:my_rank])
my_input_args = input_args[my_offset:my_offset+sub_ns[my_rank]]
return my_input_args

Using the above generic get subproblem input args function, each processor gets

its portion of the global input args list, and a shorter for-loop can be executed there.

Note that the syntax of Python lists and numpy arrays has made the function very

compact.

The next step of parallelization is to collect the function evaluation results from all

the processors into a single global output list. Finally, we let finalize(output) run

only on the master processor (assuming that this work does not require parallelization).

For the purpose of collecting outputs from all the processors, the following generic

Python function can be used:

def collect_subproblem_output_args(my_output_args, my_rank,
num_procs, send_func, recv_func):

if my_rank == 0: # master process?
output_args = my_output_args
for i in range(1, num_procs):

output_args += recv_func(i)
return output_args

else:
send_func(my_output_args, 0)
return None

The last two input arguments to the above function deserve some attention.

Both send func and recv func are functions themselves. In the case of using

the pypar wrapper of MPI commands, we may simply pass pypar.send as the

send func input argument and pypar.receive as recv func. Moreover, switching

to another MPI module is transparent with regard to the generic function named

collect subproblem output args. It should also be noted that most Python MPI

modules are considerably more user-friendly than the original MPI commands in

C/Fortran. This is because (1) the use of keyword arguments greatly simplifies the

syntax, and (2) any picklable (marshalable) Python data type can be communicated

directly.

Now that we have implemented the generic functions get subproblem input args

and collect subproblem output args, we can write a minimalistic parallel solver as

follows:

def parallel_solve_problem(initialize, func, finalize,
my_rank, num_procs, send, recv):

input_args = initialize()
my_input_args = get_subproblem_input_args(input_args,

my_rank, num_procs)
my_output = [func(*args, **kwargs) \

for args, kwargs in my_input_args]

Simplifying Parallelization of Scientific Codes 8

output = collect_subproblem_output_args(my_output, my_rank,
num_procs, send, recv)

if my_rank == 0:
finalize(output)

We remark that the above function is generic in the sense that it is independent of

the actual implementation of initialize, func, and finalize, as well as the Python

MPI module being used. All problems that can be composed from independent function

calls can (at least in principle) be parallelized by the shown small pieces of Python code.

As a specific example of using this parallel solver, we may address the problem

of evaluating the parabolic function (func and class Parabola) for a large number of

parameters. Using the pypar MPI module and having the problem-dependent code in

a module named Parabola and the general function-centric tools in a module named

function centric, the program becomes as follows:

from Parabola import func, Parabola
from function_centric import parallel_solve_problem

problem = Parabola(m=100, n=50, L=10)
import pypar
my_rank = pypar.rank()
num_procs = pypar.size()
parallel_solve_problem(problem.initialize,

func,
problem.finalize,
my_rank, num_procs,
pypar.send, pypar.receive)

pypar.finalize()

To the reader, it should be obvious from this generic example how to parallelize

other independent function calls by the described function-centric approach.

3. Function-Centric Parallelization

We have shown how to parallelize a serial program that is decomposable into three

parts: initialize, calls to func (i.e., a set of independent tasks), and finalize. In

this section, we describe how the function-centric parallelization is helpful for three

important classes of scientific applications: Markov chain Monte Carlo simulations,

dynamic population Monte Carlo simulations, and solution of partial differential

equations. We use Python to program a set of simple and generic parallelization

functions.

3.1. Parallel Markov chain Monte Carlo Simulations

The standard Markov chain Monte Carlo algorithms are embarrassingly parallel and

have exactly the same algorithmic structure as the example of parameter analysis in

Section 2. This means that the functions initialize, func, and finalize can easily be

adapted to Monte Carlo problems. More specifically, the initialize function prepares

the set of random samples and other input parameters. Some parametric model is

Simplifying Parallelization of Scientific Codes 9

computed by the func function, whereas finalize collects the data returned from all

the func calls and prepares for further statistical analysis.

Function-centric parallelization of Markov chain Monte Carlo applications

closely follows the example in Section 2. We can reuse the three generic

functions named get subproblem input args, collect subproblem output args, and

parallel solve problem, assuming that all the func evaluations are equally costly and

all the processors are equally powerful so there is no need for more sophisticated load

balancing.

In Section 4.1, we will look at a real-life Markov chain problem from political science

(Appendix Appendix A gives its mathematical description).

3.2. Population Monte Carlo with Dynamic Load Balancing

A more advanced branch of Monte Carlo algorithms is population Monte Carlo, see [26].

Here, a group of walkers, also called the population, is used to represent a high-

dimensional vector and the computation is carried out by a random walk in the state

space. During the computation some of these walkers may be duplicated or deleted

according to some acceptance/rejection criteria, i.e., the population is dynamic in time.

Population Monte Carlo algorithms have been proven useful in a number of fields,

spanning from polymer science to statistical sciences, statistical physics, and quantum

physics.

Unlike the examples so far, where the computational tasks were totally independent

and of static size, population Monte Carlo algorithms may be viewed as an iteration in

time where we repeatedly do some work on a dynamic population, including moving the

walkers of the population and adjusting the population size, which in a parallel context

calls for dynamic load balancing.

3.2.1. Serial Implementation A serial implementation of the time integration function

can be as follows:

def time_integration(initialize, do_timestep, finalize):
walkers, timesteps = initialize()
output = []
for step in range(timesteps):

old_walkers_len = len(walkers)
output.append(do_timestep(walkers))
walkers.finalize_timestep(old_walkers_len, len(walkers))

finalize(output)

The input arguments to the generic time integration function are three functions:

initialize, do timestep, and finalize. This resembles the three-step structure

discussed in Section 2. The do timestep function can have a unified implementation for

all the variants of population Monte Carlo algorithms. The other two input functions

are typically programmed as methods of a class that implements a particular algorithm

(such as diffusion Monte Carlo in Section 4.2). Here, the initialize method sets up

a population object walkers (to be explained below) and determines the number of

Simplifying Parallelization of Scientific Codes 10

time steps the walkers are to be propagated. The finalize method can, e.g., store the

output for later analysis.

The purpose of the do timestep function is to implement the work for one

time step, including propagating the walkers and adjusting the population. An

implementation that is applicable for all population Monte Carlo algorithms may have

the following form:

def do_timestep(walkers):
walkers.move()
for walker in range(len(walkers)):

if walkers.get_marker(walker) == 0:
walkers.delete(walker)

elif walkers.get_marker(walker) > 1:
walkers.append(walker, walkers.get_marker(walker)-1)

return walkers.sample_observables()

The above implementation of time integration and do timestep assumes that

walkers is an object of a class, say with name Walkers, that has a certain number of

methods. Of course, the flexibility of Python allows that the concrete implementation

of class Walkers be made afterwards, unlike C++ and Java that require class Walkers

be written before implementing time integration and do timestep. Here, we expect

class Walkers to provide a generic implementation of a group of walkers, with supporting

methods for manipulating the population. The most important methods of class

Walkers are as follows:

• move() carries out the work of moving each walker of the population randomly

according to some rule or distribution function.

• get marker(walker) returns the number of copies belonging to a walker with index

walker, where 0 means the walker should be deleted, 2 or more means that clones

should be created.

• append(walker, nchilds) and delete(walker) carry out the actual cloning and

removal of a walker with index walker.

• sample observables() returns the observables at a given time step, e.g., an

estimate of the system energy.

• finalize timestep(old size, new size) does some internal book keeping at the

end of each time step, such as adjusting some internal variables. It takes as input the

total number of walkers before and after the walker population has been adjusted

by the do timestep function.

• len is one of Python’s special class methods and is in our case meant to

return the number of walkers. A call len(walkers) yields the same result as

walkers. len ().

For a real application, such as the diffusion Monte Carlo algorithm (see Section 4.2

and Appendix Appendix B), the concrete implementation of the methods should reflect

the desired numerical algorithm. For example, the move method of diffusion Monte

Carlo uses diffusion and branching as the rule to randomly move each walker, and the

finalize timestep method adjusts the branching ratio.

Simplifying Parallelization of Scientific Codes 11

3.2.2. Parallelization Parallelism in population Monte Carlo algorithms arises

naturally from dividing the walkers among the processors. Therefore, a parallel version

of the time integration function may be as follows:

def parallel_time_integration(initialize, do_timestep, finalize,
my_rank, num_procs, send, recv, all_gather):

my_walkers, timesteps = initialize(my_rank, num_procs)
old_walkers_len = sum(all_gather(numpy.array([len(my_walkers)])))
my_output = []
for step in range(timesteps):

do what is required at this time step and measure CPU time
t_start = time.time()
results = do_timestep(my_walkers)
my_output.append(results)
task_time = time.time() - t_start

redistribute walkers and get walker size per process
num_walkers_per_proc = dynamic_load_balancing(\

my_walkers, task_time, my_rank, num_procs,\
send, recv, all_gather)

finalize task for this time step
new_walkers_len = sum(num_walkers_per_proc)
my_walkers.finalize_timestep(old_walkers_len, new_walkers_len)
old_walkers_len = new_walkers_len

my_output = collect_subproblem_output_args(my_output, my_rank,
num_procs, send, recv)

if my_rank == 0:
finalize(my_output)

In comparison with its serial counterpart, the parallel time integration

function has a few noticeable changes. First, the input arguments have been extended

with five new arguments. The two integers my rank and num procs are, as before, meant

for identifying the individual processors and finding the total number of processors. The

other three new input arguments are MPI communication wrapper functions: send,

recv, and all gather, which can be provided by any of the Python wrapper modules

of MPI. The only exception is that pypar does not directly provide the all gather

function, but we can easily program it as follows:

def all_gather (input_array):
array_gathered_tmp = pypar.gather (input_array, 0)
array_gathered = pypar.broadcast (array_gathered_tmp, 0)
return array_gathered

Second, we note that the initialize function is slightly different from the serial

case, now accepting my rank and num procs as input. This is because initial division

of the walkers is assumed to be carried out here, giving rise to my walkers on each

processor. Third, a new function dynamic load balancing is called during each

time step. This function will be explained below in detail. Fourth, unlike that the

serial counterpart could simply pass the size of its walkers to finalize timestep,

the parallel implementation needs to collect the global population size before calling

finalize timestep. We remark that each local population knows its own size,

but not the global population size. For this purpose, the dynamic load balancing

function returns the individual local population sizes as a numpy array. Last, the

Simplifying Parallelization of Scientific Codes 12

collect subproblem output args function from Section 2.2 is used to assemble all

the individual results onto the master processor before calling the finalize function.

As mentioned before, parallelization of population Monte Carlo algorithms has

to take into account that the total number of walkers changes with time. Dynamic re-

distribution of the walkers is therefore needed to avoid work load imbalance. The generic

dynamic load balancing function is designed for this purpose, where we evaluate

the amount of work for each processor and, if the work distribution is too skew, we

move the excess walkers from a busy processor to a less busy one. The function first

checks the distribution of local population sizes. If the difference between the smallest

number of walkers and the largest number of walkers exceeds some predefined threshold,

dynamic load balancing finds a better population distribution and redistributes the

walkers:

def dynamic_load_balancing(walkers, task_time, my_rank, num_procs, \
send, recv, all_gather):

walkers_per_proc = all_gather(numpy.array([len(walkers)]))
if imbalance_rate(walkers_per_proc) > walkers.threshold_factor:

timing_list = all_gather(numpy.array([task_time]))
rebalanced_work = find_optimal_workload(timing_list,

walkers_per_proc)
walkers = redistribute_work(walkers,

walkers_per_proc,
rebalanced_work,
my_rank, num_procs, send, recv)

return walkers_per_proc

Two helper functions find optimal workload and redistribute work are used

in the above implementation. Here, find optimal workload finds the optimal

distribution of work, based on how much time each local population has used. The

redistribute work function carries out the re-shuffling of walkers. A straightforward

(but not optimal) implementation of these functions goes as follows:

def find_optimal_workload(timing_list, current_work_per_proc):
total_work = sum(current_work_per_proc)
C = total_work/sum(1./timing_list)
tmp_rebalanced_work = C/timing_list
rebalanced_work = numpy.array(tmp_rebalanced_work.tolist(),’i’)
remainders = tmp_rebalanced_work-rebalanced_work
while sum(rebalanced_work) < total_work:

maxarg = numpy.argmax(remainders)
rebalanced_work[maxarg] += 1
remainders[maxarg] = 0

return rebalanced_work

def redistribute_work(my_walkers, work_per_proc, rebalanced_work,
my_rank, num_procs, send, recv):

difference = work_per_proc-rebalanced_work
diff_sort = numpy.argsort(difference)
prev_rank_min = diff_sort[0]
while sum(abs(difference)) != 0:

diff_sort = numpy.argsort(difference)
rank_max = diff_sort[-1]
rank_min = diff_sort[0]
if rank_min == prev_rank_min and rank_max != diff_sort[1]:

rank_min = diff_sort[1]

Simplifying Parallelization of Scientific Codes 13

if my_rank==rank_max:
send(my_walkers.cut_slice(rebalanced_work[my_rank]),\

int(rank_min))
elif my_rank==rank_min:

my_walkers.paste_slice(recv(int(rank_max)))
difference[rank_min] += difference[rank_max]
difference[rank_max] = 0
prev_rank_min = rank_min

return my_walkers

Careful readers will notice that two particular methods, my walkers.cut slice

and my walkers.paste slices, provide the capability of migrating the work load

between processors in the redistribute work function. These two methods have to be

programmed in class Walkers, like the other needed methods described earlier: move,

get marker, append, delete, and so on. The cut slice method takes away excess

work from a local population and the paste slice method inserts additional work into

a local population. Note that the input argument to the cut slice method is an index

threshold meaning that local walkers with indices larger than that are to be taken away.

The returned slice from cut slice is a picklable Python object that can be sent and

received through MPI calls.

The generic redistribute work function deserves a few more words. Among its

input arguments is the ideal work distribution, rebalanced work, which is calculated

by find optimal workload. The redistribute work function first calculates the

difference between the current distribution, work per proc, and the ideal distribution.

It then iteratively moves walkers from the processor with the most work to the processor

with the least work until the difference is evened out.

This load balancing scheme is in fact independent of population Monte Carlo

algorithms. As long as you have an algorithm repeatedly doing a task over time and

where the amount of work in the task varies over time, this scheme can be reused. The

only requirement is that an application-specific implementation of class Walkers, in

terms of method names and functionality, should match with dynamic load balancing

and redistribute work. It should be noted that the given implementation of the latter

function is not optimal.

The algorithm of diffusion Monte Carlo, described in Appendix Appendix B, is

a typical example of a population Monte Carlo algorithm. The implementation is

described in Section 4.2 and Appendix Appendix B.

3.3. Parallel Additive Schwarz Iterations

From the perspective of communication between processors, parallelization of the Monte

Carlo algorithms is relatively easy. Parallel Markov chain Monte Carlo algorithms only

require communication in the very beginning and end, whereas parallel population

Monte Carlo algorithms only require communication at the end of each time step.

Actually, our function-centric approach to parallelization can allow more frequent

communication. To show the versatility of function-centric parallelization, we apply

Simplifying Parallelization of Scientific Codes 14

it to an implicit method for solving partial differential equations (PDEs) where

communication is frequent between processors.

More specifically, many PDEs can be solved by an iterative process called domain

decomposition. The idea is to divide the global domain, in which the PDEs are to be

solved, into n overlapping subdomains. The PDEs can then be solved in parallel on

the n subdomains. However, the correct boundary condition at the internal subdomain

boundaries are not known, thus leading to an iterative approach where one applies

boundary conditions from the last iteration, solves for the n subdomain problems again,

and repeats the process until convergence of the subdomain solutions (see e.g. [27, 28]).

This algorithm is commonly called additive Schwarz iteration and can successfully be

applied to many important classes of PDEs [29, 30, 31]. The great advantage of the

algorithm, especially from a software point of view, is that the PDE solver for the global

problem can be reused for each subdomain problem. Some additional code is needed for

communicating the solutions at the internal boundaries between the subdomains. This

code can be implemented in a generic fashion in Python, as we explain later.

Let us first explain the additive Schwarz algorithm for solving PDEs in more detail.

We consider some stationary PDE defined on a global domain Ω:

L(u) = f, x ∈ Ω, (1)

subject to some boundary condition involving u and/or its derivatives. Dividing Ω into

a set of overlapping subdomains {Ωs}Ps=1, we have the restriction of (1) onto Ωs, for all

s, as

L(u) = f, x ∈ Ωs. (2)

The additive Schwarz method finds the global solution u by an iterative process

that generates a series of approximations u0, u1, u2 and so on. During iteration k,

each subdomain computes an improved local solution us,k by locally solving (2) for

u = us,k with us,k = uk−1 as (an artificial) boundary condition on Ωs’s non-physical

internal boundary that borders with neighboring subdomains. All the subdomains can

concurrently carry out the local solution of (2) within iteration k, thus giving rise to

parallelism. At the end of iteration k, neighboring subdomains exchange the latest

local solutions in the overlapping regions to (logically) form the global field uk. The

subdomain problems (2) are of the same type as the global problem (1), which implies

the possibility of reusing an existing serial code that was originally implemented for (1).

The additional code for exchange of local solutions among neighbors can be implemented

by generic communication operations, independently of specific PDEs.

A generic implementation of parallel additive Schwarz iteration algorithm can be

realized as the following Python function:

def additive_Schwarz_iterations(subdomain_solve, communicate,
set_BC, max_iter, threshold, solution,
convergence_test=simple_convergence_test):
iter = 0; not_converged = True # init

while not_converged and iter < max_iter:

Simplifying Parallelization of Scientific Codes 15

iter += 1
solution_prev = solution.copy()
set_BC(solution)
solution = subdomain_solve()
communicate(solution)
not_converged = not convergence_test(\

solution, solution_prev, threshold)

In the above function, max iter represents the maximum number of additive

Schwarz iterations allowed, and subdomain solve is a function that solves the

subdomain problem of form (2) and returns an object solution, which is typically a

numpy array containing the latest subdomain solution us,k on a processor (subdomain).

However, solution may well be a more complex object, say holding a collection

of scalar fields over computational grids, provided that (i) the object has a copy

method, (ii) convergence test and communicate can work with this object type, and

(iii) subdomain solve returns such an object. This flexibility in choosing solution

reflects the major dynamic power of Python and provides yet another illustration of the

generality of the examples in this paper.

Given an existing serial code, for example in a language like Fortran or C/C++, the

subdomain solve function is easily defined by wrapping up an appropriate piece of the

serial code as a Python class (since subdomain solve does not take any arguments, the

function needs a state with data structures, conveniently implemented as class attributes

as explained in Section 2.1).

The communicate argument is a function for exchanging the latest local solutions

among the subdomains. After the call, the solution object is updated with recently

computed values from the neighboring subdomains, and contents of solution have been

sent to the neighbors. The communicate function is problem independent and can be

provided by some library. In our implementation, the implementation is entirely in

Python to take advantage of easy programming of parallel communication in Python.

The set BC argument is a function for setting boundary conditions on a subdomain’s

internal boundary. This function depends on the actual serial code and is naturally

implemented as part of the class that provides the subdomain solve function.

The convergence test function is assumed to perform an appropriate convergence

test. The default generic implementation can test

max
1≤s≤P

‖us,k − us,k−1‖2
‖us,k‖2

against a prescribed threshold value. An implementation reads

def simple_convergence_test(solution, solution_prev, threshold=1E-3):
diff = solution - solution_prev
loc_rel_change = vdot(diff,diff)/vdot(solution,solution)
glob_rel_change = all_reduce(loc_rel_change, MAX)
return glob_rel_change < threshold

We remark that all reduce is a wrapper of the MPI MPI Allreduce command and

vdot computes the inner product of two numpy arrays.

Simplifying Parallelization of Scientific Codes 16

Unlike the three-component structure described in Sections 3.1 and 3.2, the

main ingredients for parallel additive Schwarz iterations are the functions of

subdomain solve, communicate, set BC, and convergence test. In other words, it is

not natural to divide the work of solving a PDE into initialize, func, and finalize.

Nevertheless, function-centric parallelization is also here user-friendly and gives a

straightforward implementation of additive Schwarz iterations as above. The

convergence test function shown above is clearly generic, and so is the communicate

function in the sense that it does not depend on the PDE. Both functions can be

reused for different PDEs. The other two functions are PDE dependent, however,

subdomain solve normally wraps an existing serial code, while the implementation

of set BC is typically very simple.

4. Applications and Numerical Experiments

In this section we will address three real research projects involving the three classes of

algorithms covered in Section 3. The projects have utilized our function-centric approach

to parallelizing existing codes. That is, we had some software in Fortran, C++, and

R performing the basic computations needed in the projects. The serial software was

wrapped in Python, adapted to components such as initialize, func, do timestep,

finalize, subdomain solve, communicate, set BC. Parallelization was then carried

out as explained in previous sections. An important issue to be reported is the parallel

efficiency obtained by performing the parallelization in a Python layer that is separate

from the underlying serial scientific codes.

The Python enabled parallel codes have been tested on a Linux cluster of 3.4 GHz

Itanium2 processors, which are interconnected through 1Gbits ethernet. The purpose

is to show that the function-centric parallelization approach is easy to use and that

satisfactory parallel performance is achievable.

4.1. Parallel Markov Chain Monte Carlo Simulations

The first case is from political science and concerns estimating legislators’ ideal points

by the Markov chain Monte Carlo (MCMC) method. For a detailed description

of the mathematical problem and the numerical method, we refer the reader to

Appendix Appendix A. This application fits into the setup in Section 3.1. The statistical

engine is provided by the PSCL library [32] in R [33], for which there exists a Python

wrapper.

To use the function-centric parallelization described in Section 3.1, we have written

a Python class named PIPE. In addition to the constructor of the class (i.e., the init

method), there are three methods as follows:

• initialize sets up the functionality of the PSCL library through the Python

wrapper of R (named rpy), and prepares the input argument list needed for func.

Simplifying Parallelization of Scientific Codes 17

• func carries out the computation of each task by invoking appropriate functions

available through rpy (in short, func is a Python wrapper to the R function ideal

from the PSCL library).

• finalize summarizes the output and generates an array in R format.

The resulting parallel Python program is now as short as

from function_centric import parallel_solve_problem
import pypar
my_rank = pypar.rank()
num_procs = pypar.size()

from pypipe import PIPE
problem = PIPE("EP1.RData", "rcvs", "NULL", "NULL")
parallel_solve_problem(problem.initialize, problem.func, problem.finalize,

my_rank, num_procs, pypar.send, pypar.receive)
pypar.finalize()

The practical importance of a parallel MCMC code is that large and

computationally intensive simulations are now easily doable. More specifically, data

from the European Parliament between 1979 and 2004 [34] are used for simulation.

During the five year legislative terms, the European Parliament expanded the size of

the membership as well as the number of votes taken. (This trend has continued since

2004.) It is hence increasingly computationally intensive to estimate the ideal point

model without reducing the length of the Markov chain. We examined the parallel

performance by comparing the computing time for each of the five legislatures, running

the parallelized code on 32 CPUs. The results are reported in Table 1. When comparing

the results, the reader should note that we have not made any attempts to optimize the

ideal code (called by our func function) for the purpose of parallelization. This makes

it straightforward to switch to new versions of the ideal function. We ran 100,000

MCMC iterations. The parallel efficiency was about 90%.

Table 1. Speedup results associated with voting analysis.

Legislature Votes Members 1 CPU 32 CPUs Efficiency

1979 - 1984 810 548 287m 32.560s 10m 13.318s 87.91%

1984 - 1989 1853 637 783m 59.059s 26m 58.702s 91.06%

1989 - 1994 2475 597 1006m 59.258s 33m 26.140s 94.11%

1994 - 1999 3603 721 1905m 0.930s 66m 0.068s 90.20%

1999 - 2004 5639 696 2898m 45.224s 102m 7.786s 88.70%

4.2. Parallel Diffusion Monte Carlo Simulations

As an example of population Monte Carlo methods, we will now look at parallel Diffusion

Monte Carlo (DMC) computations (see Appendix Appendix B for a detailed numerical

description), which is used here to simulate Bose-Einstein condensation. We recall from

Section 3.2 that dynamic load balancing is needed in connection with the parallelization,

Simplifying Parallelization of Scientific Codes 18

and can be provided by the generic dynamic load balancing function. To utilize the

parallel time integration function parallel time integration from Section 3.2, we

need to program a parallel version of the initialize function. The do timestep

function from Section 3.2 can be used as is.

def initialize(my_rank, num_procs):
nwalkers = 1000
nspacedim = 3
stepsize = 0.1
timesteps = 200
walkers_per_proc = simple_partitioning(nwalkers, num_procs)
my_walkers = Walkers(walkers_per_proc[my_rank], nspacedim, stepsize)
my_walkers.threshold_factor = 1.1
return my_walkers, timesteps

This initialize function is quite similar to its serial counter part. As noted

in Section 3.2, it takes as input my rank and num procs. The simple partitioning

function is called to partition the walker population. A my walkers object is assigned

to each processor, and a threshold factor is prescribed to determine when load balancing

is needed.

Together with the parallel time integration function from Section 3.2, the

above initialize function is the minimum programming effort needed to parallelize

a serial population Monte Carlo code. For the particular case of our parallel Diffusion

Monte Carlo implementation, we also need to know the global number of walkers in every

timestep to be able to estimate its observables globally. Moreover, the load balancing

scheme needs the time usage of each processor during each time step.

A class with name Walkers needs to be implemented to match with the

implementations of parallel time integration, dynamic load balancing, and the

above initialize function. The essential work is to provide a set of methods

with already decided names (see Section 3.2), such as move, append, delete,

finalize timestep, cut slice, and paste slice. A concrete example of the Walkers

class is described with more details in Appendix Appendix B.

We report in Table 2 the timing results of a number of parallel DMC computations.

The parallel efficiency was about 85%. We increased the total number of walkers when

more processors were used in the simulation, such that the number of walkers assigned to

each processor remained as 200. Such a use of parallel computers for DMC simulations

mimics the everlasting wish of quantum physicists to do larger computations as soon as

more computing resource becomes available. Note that in this scaled scalability test,

good speedup performance is indicated by an almost constant time usage independent

of the number of processors.

4.3. Parallel Boussinesq Simulations

Simulating the propagation of ocean waves is the target of the our third and final

concrete case. The reader is referred to Appendix Appendix C for the mathematical

model and the numerical method. The involved equations can be solved in parallel by

the additive Schwarz algorithm of Section 3.3.

Simplifying Parallelization of Scientific Codes 19

Table 2. Timing results of the parallel DMC simulations where each processor is

constantly assigned with 200 walkers, all moved in 5000 time steps.

CPUs Time Efficiency

1 37m10.389s N/A

5 42m32.359s 87.39%

10 42m00.734s 88.48%

20 42m29.945s 87.47%

30 42m33.895s 87.33%

40 43m30.092s 85.45%

50 43m39.159s 85.16%

Our starting point for parallelization is a 25 years old legacy Fortran 77 code

consisting of a set of subroutines. More specifically, the most important subroutines

are KONTIT and BERIT, which target the two semi-discretized equations (C.3) and

(C.4) of the mathematical model (see Appendix Appendix C). These two Fortran

77 subroutines contain intricate algorithms with nested layers of do-loops, which are

considered to be very difficult to parallelize by directly inserting MPI calls in the Fortran

code. Performing the parallelization outside the Fortran code is therefore much more

convenient. Using the proposed framework in the present paper the parallelization is a

technically quite straightforward task.

The subdomain solver consists of calls to the subroutines KONTIT and BERIT. The

implementation of the Python function subdomain solve (see Section 3.3) requires a

Python interface to KONTIT and BERIT, which can easily be produced by the F2PY

software. Since a subdomain solver needs to set artificial boundary conditions at non-

physical boundaries, we have programmed two light-weight wrapper subroutines in

Fortran, WKONTIT and WBERIT, which handles the boundary conditions before invoking

KONTIT and BERIT. We then apply F2PY to make WKONTIT and WBERIT callable from

Python. Since the Fortran subroutines have lots of input data in long argument lists

and subdomain solve takes no arguments, we have created a class where the Fortran

input variables are stored as class attributes:

import f77 # extension module for the Fortran code

class SubdomainSolver:
def __init__(self, ...):

set input arguments to the Fortran subroutines as class attributes
(nbit,F,YW,H,QY,WRK,dx,dy,dt,kit,ik,gg,alpha,eps,
lower_x_neigh,upper_x_neigh,lower_y_neigh,upper_y_neigh)

def continuity(self):
self.Y, self.nbit = f77.WKONTIT(\

self.F, self.Y, self.YW, self.H, self.QY, self.WRK,
self.dx, self.dy, self.dt, self.kit, self.ik,
self.gg, self.alpha, self.eps, self.nbit,
self.lower_x_neigh, self.upper_x_neigh,
self.lower_y_neigh, self.upper_y_neigh)

Simplifying Parallelization of Scientific Codes 20

def bernoulli(self):
similar to the continuity method

sd = SubdomainSolver(...)
subdomain_solve1 = sd.continuity
subdomain_solve2 = sd.bernoulli

Note that since there are two PDEs (C.3) and (C.4), we have created two functions:

subdomain solve1 and subdomain solve2. The main computation of the resulting

parallel program is in the following while loop:

t = 0
while t < t_stop:

t = t+dt
additive_Schwarz_iterations(subdomain_solve1, communicate,

set_BC, 10, 1E-3, sd.Y)
additive_Schwarz_iterations(subdomain_solve2, communicate,

set_BC, 10, 1E-3, sd.F)

The additive Schwarz iterations function from Section 3.3 can be placed in a

reusable module. The communicate function is borrowed from a Python library for

mesh partitioning and inter-subdomain communication. The set BC function actually

does not do anything for this particular application.

Speedup results are reported in Table 3, for which the global solution mesh was

fixed at 1000×1000, and the number of time steps was 40. The results show that we can

handle a quite complicated mathematical problem in a black-box Fortran code with our

suggested simple framework and obtain a remarkable good speedup, with just a trivial

extension of the Fortran code.

Table 3. The speedup results of the Python enabled parallel Boussinesq simulations.

CPUs Time Speedup Efficiency

1 166.66s N/A N/A

2 83.61s 1.99 99.67%

4 44.45s 3.75 93.73%

8 20.16s 8.27 103.33%

16 11.43s 14.58 91.13%

5. Conclusion

We have shown how serial scientific codes written in various common languages,

including Fortran, C, C++, and Python, can be parallelized in a separate, small

software unit written in Python. The advantage of such an approach is twofold.

First, the existing, often complicated, scientific high-performance code remains (almost)

unchanged. Second, the parallel algorithm and its inter-processor communication are

conveniently implemented in high-level Python code.

This approach to parallelization has been implemented in a software framework

where the programmer needs to implement a few Python functions for carrying out the

Simplifying Parallelization of Scientific Codes 21

key steps in the solution approach. For example, our first application involves doing

a set of independent tasks in parallel, where a small Python framework deals with the

parallelism and demands the user to supply three functions: initialize for preparing

input data to the mathematical model, func for calling up the serial scientific code,

and finalize for processing the computational results. Some more functions must be

supplied in more complicated problems where the algorithm evolves in time, with a need

for dynamic load balancing and more parallel communication.

Our simple software frameworks outlined in this paper are applicable to many

different scientific areas, and we have described some common classes of problems:

parameter investigation of a mathematical model, standard Monte Carlo simulation,

Monte Carlo simulation with need for dynamic load balancing, and numerical solution

of partial differential equations. In each of these cases, we have outlined fairly detailed

Python code such that most technical details of the parallel implementations are

documented. This may ease the migration of the ideas to new classes of problems

beyond the scope of this paper.

In particular, the shown frameworks have been used to parallelize three real

scientific problems taken from our research. The problems concern Markov Chain

Monte Carlo models for voting behavior in political science, Diffusion Monte Carlo

methods for Bose-Einstein condensation in quantum mechanics, and additive Schwarz

and finite difference methods for simulating ocean waves by a system of partial

differential equations. The results of our investigations of the parallel efficiency are very

encouraging: In all these real science problems, parallelizing serial codes in the proposed

Python framework gives almost optimal speedup results, showing that there arises no

significant loss due to using Python and performing the parallelization “outside” the

serial codes.

As a conclusion, we believe that the ideas and code samples from this paper can

simplify parallelization of serial codes greatly, without significant loss of computational

efficiency. This is good news for scientists who are non-experts in parallel programming

but want to parallelize their serial codes with as small efforts as possible.

Simplifying Parallelization of Scientific Codes 22

Appendix A. Voting in Legislatures

In the spatial model of politics, both actors’ preferences over policies (ideal points) and

policy alternatives are arranged geometrically in a low-dimensional Euclidean space. An

actor receives the highest possible utility if a policy is located at her ideal point; she

gains or loses utility as the policy moves towards or away from her ideal point [35]. We

adopt the Bayesian approach proposed by Clinton, Jackman and Rivers [36]. Assume

there are n legislators who vote on m proposals. On each vote j = 1, . . . ,m, legislator

i = 1, . . . , n chooses between a ”Yea” position ζj and a ”Nay” position ψj located in

the policy-space R
d, where d is the number of dimensions. Then, we have yij = 1 if

legislator i votes ”Yea” on roll call j, and yij = 0 if she votes ”Nay”. The model assumes

quadratic utility functions. The ideal point of legislator i is xi ∈ R, while ηij and υij are

stochastic elements whose distribution is jointly normal. The variance of the stochastic

elements is (ηij − υij) = σ2
j . Denote the Euclidean norm by ‖ · ‖, utility maximising

implies that legislator i votes ”Yea” on vote j if

Ui(ζj) = −‖xi − ζj‖2 + ηij > Ui(ψj) = −‖xi − ψj‖2 + υij (A.1)

and ”Nay” otherwise. Clinton, Jackman and Rivers [36] show that the model can be

understood as a hierarchical probit model:

P (yij = 1) = Φ(β′
jxi − αj), (A.2)

where βj=2(ζj − ψj)/σj, αj=(ζ ′jζj − ψ′
jψj)/σj, Φ(·) is the standard normal function,

βj is the midpoint between the ”Yea” and ”Nay” positions on proposal j, and xi is

the legislator’s ideal point. The direction of αj indicates the location of the status quo

relative to the proposal. If αj is positive, the new proposal is located higher on the

dimension than the status quo. If αj is negative, the new proposal is located lower on

the dimension than the status quo.

The MCMC Algorithm. In the Markov Chain Monte Carlo (MCMC) algorithm for

the statistical analysis of voting behavior [36], the difference between utilities of the

alternatives on the jth vote for the ith legislator is given by y∗ij = βjxi −αj + εij, where

βj and αj are model parameters, xi is a vector of regression coefficients and εij are

standard normal errors. If we know βj and αj, xi can be imputed from the regression

of y∗ij + αj on βj using the m votes of legislator i and vice versa. If we know xi, we

can use the votes of the n legislators on roll call j to find βj and αj. Given xi, βj and

αj (either from priors or from the previous iteration), we can find y∗ij by drawing εij
randomly from a normal distribution subject to the constraints implied by the actual

votes, i.e., if yij = 0, y∗ij < 0 and if yij = 1, y∗ij > 0.

The goal is to compute the joint posterior density for all model parameters βj and

αj, j = 1, . . . ,m and all coefficient vectors xi, i = 1, . . . , n. The MCMC algorithm forms

a Markov chain to explore as much as possible of this joint density, i.e., letting t index

an MCMC iteration,

(i) find y∗,tij from xt−1
i , βt−1

j and αt−1
j ,

Simplifying Parallelization of Scientific Codes 23

(ii) sample βt
j and α

t
j using xt−1

i and y∗,tij ,

(iii) find xt
i from βt

j, α
t
j and y

∗,t
ij .

This process must then be repeated until convergence, i.e., that the samples have moved

away from the priors to the neighborhood of the posterior mode before samples are

drawn.

Clinton, Jackman and Rivers [36, p. 369] find that the computation time is

increasing in nmT , where n is the number of legislators, m is the number of votes

and T is the number of MCMC iterations. Although they argue that very long runs are

normally not necessary, they nevertheless advise long runs to ensure that the MCMC

algorithm has converged. It is increasingly time-consuming to estimate the model on

on a standard desktop computer as the size of the legislature and the number of votes

increase.

Appendix B. Bose-Einstein Condensation

The famous experiment of Anderson et al. [37] was about cooling 4 × 106 87Rb down

to temperatures in the order of 100nK for observing Bose-Einstein condensation in the

dilute gas. To model this fascinating experiment in the framework of Quantum Monte

Carlo, so that numerical simulations can be extended beyond the physical experiments,

we may use the governing Schrödinger equation:

i�
∂

∂t
Ψ(R, t) = HΨ(R, t). (B.1)

The most important parts of the mathematical model are a Hamiltonian H and a

wave function Ψ, see [38]. The Hamiltonian for N trapped interacting atoms is given

by

H = − �
2

2m

N∑
i=1

∇2
i +

N∑
i=1

Vext(ri) +
N∑
i<j

Vint(|ri − rj|). (B.2)

The external potential Vext corresponds to the trap used to confine the 87Rb atoms, and

was in the experiment in the order of r2. The two-body interaction Vint(|ri− rj|) can be

easily described by a hard-core potential of radius a in a dilute gas. We have however,

for the sake of simplicity, neglected these interactions in our example implementation

of class Walkers.

The Method of Diffusion Monte Carlo. In the Diffusion Monte Carlo (DMC)

method [39], the Schrödinger equation is solved in imaginary time,

−∂dψ(R, t)
∂t

= [H − E]ψ(R, t). (B.3)

The formal solution of (B.3) is

ψ(R, t) = e−[H−E]tψ(R, 0), (B.4)

Simplifying Parallelization of Scientific Codes 24

where e[−(H−E)t] is called the Green’s function, and E is a convenient energy shift.

The wave function ψ(R, t) in DMC is represented by a set of random vectors

{R1, R2, . . . , RM}, in such a form that the time evolution of the wave function is

actually represented by the evolution of a set of walkers. This feature gives rise to task

parallelism. The wave function is positive definite everywhere, as it happens with the

ground state of a bosonic system, so it may be considered as a probability distribution

function.

The DMC method involves Monte Carlo integration of the Green’s function by

every walker. The time evolution is done in small time steps τ , using the following

approximate form of the Green’s function:

e−[H−E]t =
n∏

i=1

e−[H−E]τ , (B.5)

where τ = t/n. Assume that an arbitrary starting state can be expanded in the basis

of stationary,

ψ(R, 0) =
∑
ν

Cνφν(R), (B.6)

we have

ψ(R, t) =
∑
ν

e−[Eν−E]tCνφν(R), (B.7)

in such a way that the lowest energy components will have the largest amplitudes after

a long elapsed time, and in the limit of t→ ∞ the most important amplitude will

correspond to the ground state (if C0 	= 0)‡.
The Green’s function is approximated by splitting it up in a diffusional part,

GD = (4πDτ)−3N/2 exp{−(R′ −R)2/4Dτ}, (B.8)

which has the form of a Gaussian and a branching part,

GB = exp{−((V (R) + V (R′))/2− ET)τ}. (B.9)

While diffusion is taken care of by a Gaussian random distribution, the branching is

simulated by creation and destruction of walkers with a probability GB. The idea of

DMC computation is quite simple; once we have found an appropriate approximation

of the short-time Green’s function and determined a starting state, the computation

consists in representing the starting state by a collection of walkers and letting them

independently evolve in time. That is, we keep updating the walker population, until a

large enough time when all other states than the ground state are negligible.

‡ This can easily be seen by replacing E with the ground state energy E0 in (B.7). As E0 is the lowest

energy, we will get limt→∞
∑

ν exp[−(Eν − E0)t]φν = C0φ0.

Simplifying Parallelization of Scientific Codes 25

Algorithm 1 Diffusion Monte Carlo

for step in range(0, timesteps) :

for i in range(0, Nwalkers) :

Diffusion;

propose move R′ = R+ ξ

Branching;

calculate replication factor n:

n = int(exp{−((V (R) + V (R′))/2− ET)τ})
if n = 0 :

mark walker as dying

if n > 0 :

mark walker to make n− 1 clones

Remove dead walkers and make new clones;

Update walker population Nwalkers and adjust trial energy;

Sample contributions to observable.

The Implementation. In Algorithm 1 we summarize the DMC algorithm corresponding

to (B.8)-(B.9). In the algorithm ξ is a Gaussian with zero mean and a variance of

2Dτ corresponding to (B.8). The deleting and cloning of walkers are, as mentioned in

Section 3.2, performed by the do timestep function, repeated here for clarity:

def do_timestep(walkers):
walkers.move()
for walker in range(len(walkers)):

if walkers.get_marker(walker) == 0:
walkers.delete(walker)

elif walkers.get_marker(walker) > 1:
walkers.append(walker, walkers.get_marker(walker)-1)

return walkers.sample_observables()

The main computational work of the DMC algorithm at each time step is

implemented in the move function inside class Walkers, together with a helper function

branching:

class Walkers:
...

def branching(self, new_positions):
old_potential = potential(self.positions)
new_potential = potential(new_positions)
branch = numpy.exp(-(0.5 * (old_potential + new_potential)

- self.adjust_branching) * self.stepsize)
self.markers = numpy.array(branch+

numpy.random.uniform(0,1,branch.shape), ’i’)

def move(self):
displacements = numpy.random.normal(0, 2*self.stepsize,

self.positions.shape)
new_positions = self.positions+displacements
self.branching(new_positions)

Simplifying Parallelization of Scientific Codes 26

self.positions = new_positions
...

The move function first generates a set of Gaussian (normal) distributed random

numbers, corresponding to (B.8). Next, it calls the branching function, which calculates

a potential V (r) = r2 for the old and the new positions§. These potentials are used to

calculate GB following (B.9) and create an integer array self.markers with its average

value equal to GB (stored in the branch variable). This array is of the same length as

the number of walkers (stored in self.positions) and marks the walkers as dying or

clone-able.

It is worth noticing that if the new potential of a walker is much higher than that

in the previous time step (i.e., the walker is far from the center of the trap), the value of

branch will be close to 0 and the walker will be deleted. However, if the new potential

is much lower (i.e. closer to the center of the trap), branch will be greater than 1 and

the walker will be cloned. As long as the two-body interaction is ignored, the walkers

will only be encouraged to move towards the center of the trap, thus yielding a lower

energy than seen in real experiments.

Appendix C. Ocean Wave Propagation

The following two PDEs, normally termed as the Boussinesq water wave equations [40],

can be used to model wave propagation:

∂η

∂t
+∇ ·

(
(H + αη)∇φ+ εH

(
1

6

∂η

∂t
− 1

3
∇H · ∇φ

)
∇H

)
= 0, (C.1)

∂φ

∂t
+
α

2
∇φ · ∇φ+ η − ε

2
H∇ ·

(
H∇∂φ

∂t

)
+
ε

6
H2∇2∂φ

∂t
= 0. (C.2)

The primary unknowns of (C.1)-(C.2) are the water surface elevation η(x, y, t) and the

depth-averaged velocity potential φ(x, y, t). The symbol H denotes the water depth as

a function of (x, y). The advantage of the above Boussinesq wave model, in comparison

with the standard shallow water equations, is its capability of modeling waves that are

weakly dispersive (ε > 0) and/or weakly nonlinear (α > 0), see [41]. Therefore, the

Boussinesq water wave equations are particularly adequate for simulating ocean wave

propagation over long distances and large water depths.

Discretization of the Boussinesq water wave equations (C.1)-(C.2) normally starts

with a temporal discretization as follows:

η� − η�−1

Δt
+∇ ·

((
H + α

η�−1 + η�

2

)
∇φ�−1 +

εH

(
1

6

η� − η�−1

Δt
− 1

3
∇H · ∇φ�−1

)
∇H

)
= 0, (C.3)

§ In a more optimized implementation, the old potential would have been stored from the previous

move and not calculated every time.

Simplifying Parallelization of Scientific Codes 27

φ� − φ�−1

Δt
+
α

2
∇φ�−1 · ∇φ�−1 + η� −

ε

2
H∇ ·

(
H∇

(
φ� − φ�−1

Δt

))
+
ε

6
H2∇2

(
φ� − φ�−1

Δt

)
= 0, (C.4)

where we use � to denote the time level, and Δt denotes the time step size. The basic

idea of computation at each time step is to first compute η� based on η�−1 and φ�−1 from

the previous time step, and then compute φ� using the new η� and the old φ�−1. To carry

out the actual numerical computation, we need a spatial discretization of (C.3)-(C.4),

using e.g. finite differences or finite elements, so we end up with two systems of linear

equations that need to be solved during each time step.

References

[1] Guido van Rossum et al. The Python programming language, 1991–.

http://www.python.org/.

[2] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant. Numerical Python. Technical

report, Lawrence Livermore National Lab., CA, 2001.

http://www.pfdubois.com/numpy/numpy.pdf.

[3] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python.

http://www.scipy.org/, 2001–.

[4] F2PY software package. http://cens.ioc.ee/projects/f2py2e.

[5] Pypar – parallel programming with Python.

http://sourceforge.net/projects/pypar, 2007.

[6] X. Cai, H. P. Langtangen, and H. Moe. On the performance of the Python programming language

for serial and parallel scientific computations. Scientific Programming, 13(1):31–56, 2005.

[7] X. Cai and H. P. Langtangen. Developing parallel object-oriented simulation codes in Diffpack.

In Proceedings of the Fifth World Congress on Computational Mechanics, Vienna University of

Technology, 2002. ISBN 3-9501554-0-6.

[8] F. Cirak and J. C. Cummings. Generic programming techniques for parallelizing and extending

procedural finite element programs. Engineering with Computers, 24:1–16, 2008.

[9] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith,

and H. Zhang. PETSc Web page.

http://www.mcs.anl.gov/petsc, 2001.

[10] O. Lawlor, S. Chakravorty, T. Wilmarth, N. Choudhury, I. Dooley, G. Zheng, and L. Kalé.

ParFUM: A parallel framework for unstructured meshes for scalable dynamic physics

applications. Engineering with Computers, 22(3):215–235, 2006.

[11] J. R. Stewart and H. C. Edwards. A framework approach for developing parallel adaptive

multiphysics applications. Finite Elements in Analysis and Design, 40:1599–1617, 2004.

[12] The Trilinos project.

http://trilinos.sandia.gov/, 2008.

[13] UG home page.

http://sit.iwr.uni-heidelberg.de/~ug/, 2007.

[14] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, , and J. Shalf. The Cactus

framework and toolkit: Design and applications. In J. M. L. M. Palma et al., editor, Proceedings

of VECPAR 2002, volume 2565 of Lectures Notes in Computer Science, pages 197–227. Springer

Verlag, 2003.

[15] MpCCI 3.0.

http://www.mpcci.de/, 2008.

Simplifying Parallelization of Scientific Codes 28

[16] Star-P Overview.

http://www.interactivesupercomputing.com/products/, 2008.

[17] K. Hinsen. Parallel scripting with Python. Computing in Science & Engineering, 9(6):82–89,

2007.

[18] pyMPI: Putting the py in MPI.

http://pympi.sourceforge.net/, 2008.

[19] MYMPI webpage.

http://peloton.sdsc.edu/~tkaiser/mympi/, 2008.

[20] L. Dalćın, R. Paz, and M. Storti. MPI for Python. Journal of Parallel and Distributed Computing,

65(9):1108–1115, 2005.

[21] L. Dalćın, R. Paz, M. Storti, and J. D’Eĺıa. MPI for Python: Performance improvements and

MPI-2 extensions. Journal of Parallel and Distributed Computing, 68(5):655–662, 2008.

[22] ScientificPython webpage.

http://dirac.cnrs-orleans.fr/plone/software/scientificpython/, 2007.

[23] G. D. Benson and A. S. Fedosov. Python-based distributed programming with Trickle. In H. R.

Arabnia, editor, Proceedings of PDPTA’07, pages 30–36. CSREA Press, 2007.

[24] G. Olson. Introduction to concurrent programming with Stackless Python.

http://members.verizon.net/olsongt/stackless/why_stackless.html, 2006.

[25] C. E. Rasmussen, M. J. Sottile, J. Nieplocha, R. W. Numrich, and E. Jones. Co-array Python: A

parallel extension to the Python language. In M. Danelutto, D. Laforenza, and M. Vanneschi,

editors, Proceedings of Euro-Par 2004, Lectures Notes in Computer Science, pages 632–637.

Spriner Verlag, 2004.

[26] Yukito IBA. Population Monte Carlo algorithms. Transactions of the Japanese Society for

Artificial Intelligence, 16:279–286, 2001.

[27] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In Acta Numerica 1994, pages

61–143. Cambridge University Press, 1994.

[28] B. F. Smith, P. E. Bjørstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods

for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[29] X. Cai, G. K. Pedersen, and H. P. Langtangen. A parallel multi-subdomain strategy for solving

Boussinesq water wave equations. Advances in Water Resources, 28(3):215–233, 2005.

[30] X. Cai and H. P. Langtangen. Parallelizing PDE solvers using the Python programming language.

In A. M. Bruaset and A. Tveito, editors, Numerical Solution of Partial Differential Equations

on Parallel Computers, volume 51 of Lecture Notes in Computational Science and Engineering,

pages 295–325. Springer-Verlag, 2006.

[31] H. P. Langtangen and X. Cai. A software framework for easy parallelization of PDE solvers. In

C. B. Jensen, T. Kvamsdal, H. I. Andersson, B. Pettersen, A. Ecer, J. Periaux, N. Satofuka,

and P. Fox, editors, Parallel Computational Fluid Dynamics. North-Holland, 2001.

[32] Simon Jackman. PSCL: classes and methods for R developed in the Political Science

Computational Laboratory, Stanford University. Technical report, Department of Political

Science, Standford University, 2006.

[33] R Development Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN 3-900051-07-0.

[34] Simon Hix, Abdul Noury, and Gerard Roland. Power to the parties: cohesion and competition in

the European Parliament, 1979-2001. British Journal of Political Science, 35(2):209–234, 2005.

[35] Melvin J. Hinich and Michael C. Munger. Analytical Politics. Cambridge University Press, 1997.

[36] Joshua Clinton, Simon Jackman, and Doug Rivers. The statistical analysis of roll call data.

American Political Science Review, 98(4):355–370, 2004.

[37] J.R. Anderson, M.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornel. Observation of

Bose-Einstein condensation in a dilute atomic vapor. Science, 269:198, 1995.

[38] J. K. Nilsen, J. Mur-Petit, M. Guilleumas, M. Hjorth-Jensen, and A. Polls. Vortices in atomic

Bose-Einstein condensates in the large gas parameter region. Phys. Rev. A, 71, 2005.

Simplifying Parallelization of Scientific Codes 29

[39] R. Guardiola. Monte Carlo methods in quantum many-body theories. In J. Navarro and A. Polls,

editors, Microscopic Quantum Many-Body Theories and Their Applications, volume 510 of

Lecture Notes in Physics, pages 269–336. Springer Verlag, 1998.

[40] D. M. Wu and T. Y. Wu. Three-dimensional nonlinear long waves due to moving surface pressure.

Proc. 14th Symp. Naval Hydrodyn., pages 103–129, 1982.

[41] G. Pedersen and H. P. Langtangen. Dispersive effects on tsunamis. In Proceedings of the

International Conferance on Tsunamis, Paris, France, pages 325–340, 1999.

APPENDIX A. COLLECTION OF PUBLICATIONS

A.4 Recent ARC development: through modu-
larity to interoperability

Article submitted to Journal of Physics, Conference Series.
The article “ARC middleware: evolution towards standards-based interoper-

ability” is based on the efforts of the KnowARC development team. It presents an
overview of ARC and the new components to be included in the production release
of ARC.

My main contributions to this article have been to develop parts of the code
described in Section 4.5, in particular the replicated A-Hash, the FUSE module
and the ARC DMC.

128

Recent ARC developments: through modularity to

interoperability

O Smirnova1,2, D Cameron1,3, P Dóbé2,4, M Ellert1,5, T Fr̊ag̊at3,
M Grønager1, D Johansson1,6, J Jönemo2,5, J Kleist1,7, M Kočan8,
A Konstantinov3,9, B Kónya2, I Márton4, S Möller10, B Mohn5,
Zs Nagy4, J K Nilsen3, F Ould Saada3, W Qiang3, A Read3,
P Rosendahl11, G Rőczei4, M Savko8, M Skou Andersen11, P Stefán4,
F Szalai4, A Taga3, S Z Toor12 and A Wäänänen11

1 NDGF, Kastruplundsgade 22, DK-2770 Kastrup, Denmark
2 Lund University, Experimental High Energy Physics, Institute of Physics, Box 118,
SE-22100 Lund, Sweden
3 University of Oslo, Dept. of Physics, P. O. Box 1048, Blindern, N-0316 Oslo, Norway
4 NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest, Hungary
5 Uppsala University, Dept. of Physics and Astronomy, Div. of Nuclear and Particle Physics,
Box 535, SE-75121 Uppsala, Sweden
6 Linköping University, National Supercomputer Centre, SE-581 83 Linköping, Sweden
7 Aalborg University, Dept. of Computer Science, Frederik Bajersvej 7E, DK-9220 Aalborg Ø,
Denmark
8 Pavol Jozef Šafárik University, Faculty of Science, Jesenná 5, SK-04000 Košice,
Slovak Republic
9 Vilnius University, Institute of Material Science and Applied Research, Saulėtekio al. 9,
Vilnius 2040, Lithuania
10 University of Lübeck, Inst. Of Neuro- and Bioinformatics, Ratzeburger Allee 160,
D-23538 Lübeck, Germany
11 University of Copenhagen, NBI, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
12 Uppsala University, Dept. of Information Technology, Box 337, SE-75105 Uppsala, Sweden

E-mail: oxana.smirnova@hep.lu.se

Abstract. The Advanced Resource Connector (ARC) middleware introduced by NorduGrid
is one of the basic Grid solutions used by scientists worldwide. While being well-proven in
daily use by a wide variety of scientific applications at large-scale infrastructures like the Nordic
DataGrid Facility (NDGF) and smaller scale projects, production ARC of today is still largely
based on conventional Grid technologies and custom interfaces introduced a decade ago. In
order to guarantee sustainability, true cross-system portability and standards-compliance based
interoperability, the ARC community undertakes a massive effort of implementing modular Web
Service (WS) approach into the middleware. With support from the EU KnowARC project,
new components were introduced and the existing key ARC services got extended with WS
technology based standard-compliant interfaces following a service-oriented architecture. Such
components include the hosting environment framework, the resource-coupled execution service,
the re-engineered client library, the self-healing storage solution and the peer-to-peer information
system, to name a few. Gradual introduction of these new services and client tools into the
production middleware releases is carried out together with NDGF and thus ensures a smooth
transition to the next generation Grid middleware. Standard interfaces and modularity of the
new component design are essential for ARC contributions to the planned Universal Middleware
Distribution of the European Grid Initiative.

1. Introduction
The ARC Grid middleware [1] originally started as a rather monolithic solution meeting
requirements of the High Energy Physics community and heavily based on the pre-Web Service
Globus Toolkit [2] libraries and API. Since this was a common practice for Grid projects at that
time, several Globus technologies got effectively promoted to de facto standards supporting
basic interoperability, most notably, in the security area. Later on, different projects developed
proprietary approaches in order to meet various performance and operational requirements. Grid
middleware solutions quickly diverged, to the point of being incompatible with each other and
industry standards [3].

In recent years, a strong drive towards wide interoperability emerged in the Grid
community [4]. The Open Grid Forum [5] became an efficient standards development
organization, delivering specifications that can be used as a basis for standard-conforming and
thus interoperable Grid solutions. Modular Web Service based approach to Grid components
was introduced in Globus and many other middlewares, further widening interoperability
opportunities. At the same time, transition to new technologies presents Grid developers with
new challenges. ARC developers were among the first to start implementing new, often not yet
fully matured standards. The main challenge on this path is two-fold: how to transform the
middleware without undermining what has been achieved in terms of performance and usability
and how to be able to continuously adapt to the changing specifications. In what follows, we
will present a brief summary of the existing ARC features and illustrate its performance using
the example of the Nordic DataGrid Facility [6], give an overview of the relevant standards, and
proceed to the description of the new ARC components being developed by the EU KnowARC
project [7].

2. ARC features and performance
This section gives a high-level overview of the current production ARC middleware; detailed
description is available elsewhere [1]. ARC is a comparatively light-weight middleware, optimized
for serial data-intensive computational tasks. It implements a service-based architecture with
well defined though sometimes custom interfaces. The key design concept is the absence
of a single point of failure. Combined with a stateful implementation of services, this
provides a reliable and thus efficient system, as proven by many years of contribution to LHC
computing [8, 9]. Figure 1 shows higher than average percentage of utilization of computing
resources pledged for ATLAS production by the ARC-enabled NDGF, fully attributed to high
middleware efficiency.

Figure 1. Utilization of computing resources pledged for ATLAS production by the involved
Tier-1 centers in 2008. Arrow indicates NDGF. PIC and TRIUMF sites acquired more physical
resources in course of the year than originally pledged.

In data-intensive HEP computing, the leading source of failures and inefficiencies is data
management [10]. ARC is optimized for this kind of high-throughput distributed computing by
moving input and output data handling into computing service plugins executed on the front-
end. This increases CPU utilization, allows for data caching, enables optimization of bandwidth
usage through configuration tuning, and minimizes the risk of accidental distributed denial of
service attacks.

ARC services deploy as a comparatively thin layer, with software installation limited to the
front-end, allowing to keep compute nodes off-line. Computing service includes support for
retries of transfer failures, transparent downtime handling, support for memory and CPU time
limits, and all configuration is done through only one file. ARC is interfaced to batch systems
via a plugin framework and currently supports seven batch systems plus a simple fork process
launch.

ARC implements a dynamic hierarchial multi-rooted distributed information system that
holds information not only about computing and storage resources, but also about individual
jobs. All such information is produced and kept locally at each service instance. This allows to
encapsulate resource discovery, matchmaking, task scheduling and status monitoring in a client,
whithout the need of an intermediary brokering or bookkeeping service.

The standard command line interface (CLI) of ARC integrates all the client functionality
necessary for basic job and data management, including resource discovery and brokering.
The CLI tools are implemented on top of a public API; this API facilitates development of
application-specific clients, portals or even workload or workflow management systems, and a
number of such exist – for example, the Lunarc Application Portal [11].

Since ARC user community relies on a wide variety of operating systems, the code has to be
very portable and contain minimal number of external dependencies. Globus libraries (mostly
those providing the GSI [12] security layer and GridFTP [13] functionality) constitute the bulk
of such external dependencies. Thanks to the joint effort of KnowARC and NDGF projects, all
the necessary external software is now available through official Fedora and Debian repositories,
and ARC itself will soon follow the suit.

3. Grid standards
As follows from the previous section, ARC efficiently implements many core Grid functionalities.
Naturally, there are bugs to fix and more features to implement, but in general there is no
pressing need for dramatic changes. That is, as long as ARC occupies its own niche and does
not interact with other solutions.

However, one must always keep in mind that the key attractive point of the Grid concept is
that of resource sharing. This is particularly important for the distributed collaborative HEP
computing. Non-interoperable middleware solutions create an unnecessary overhead, forcing
users to create higher-level application-specific tools.

In general, when different applications need to use different infrastructures, standards must
be in place. Like in any other infrastructure, such standards must cover all possible aspects:
from basic interfaces and schemas, to access control, to service level agreements and policies.

When HEP-driven projects all over the world started developing Grid solutions, there were
no standards in place, only a couple of reference implementations. By now HEP computing
makes use of three major middlewares, plus a large set of experiment-specific solutions bordering
the line between application software and middleware. Absence of standards creates enormous
overhead and at times leads to bottlenecks, especially when the documentation of proprietary
interfaces and schemas is scarce.

It is practically impossible to abandon all the developed tools or to re-write them in a
standard-conforming manner. ARC strategy is to add standard interfaces to existing services,
thus preserving the architecture and the underlying functionality. When other middleware

developers will follow the same path, the community will finally get the pervasive interoperable
Grid.

As was mentioned earlier, Grid-specific standards are developed in the framework of OGF
by a large number of working groups representing all middleware developers.

Some OGF standards are already implemented and used in production by ARC and other
middlewares. Most notably, these are the ones pertaining to data transfer and management:
the GSI-enabled file transfer protocol GridFTP and the Storage Resource Manager (SRM)
interface [14]. This in practice creates the basis for the current LHC computing, allowing for
seamless cross-infrastructure data movement.

Most relevant standards in the job description and execution domain are the Job Submission
Description Language (JSDL) [15] and the Basic Execution Service (BES) interface [16].
Although being final specifications, they are not suitable for production environments and thus
early implementations of these specifications are not widely deployed in HEP computing. One
of the obstacles is the inherently generic nature of these standards, which means that real-life
solutions must add numerous extensions. There is on-going work in the OGF’s PGI working
group driven by ARC, gLite [17] and UNICORE [18] consortia to agree on a common set of
extensions and modifications defined via a production profile. JSDL is already supported by
ARC, and BES interface is available in the new components – both with the necessary ARC-
specific extensions.

For the information and resource discovery domain, a new Glue2 [19] specification has been
recently released. New components of ARC come compliant with this standard, and there is
commitment from the gLite developers to move to Glue2 in near future as well.

Some standards are still sorely missing; this is particularly true for those related to access
control, accounting and user management. Middlewares deployed in HEP computing, including
ARC, make use of de facto standards like GSI and VOMS [20], which effectively provides another
solid basis for current interoperation. The work of OGF and its PGI group in particular will
hopefully fill this gap soon.

4. New components of ARC
The ongoing development of the ARC middleware is driven by the following considerations:

• The ARC server-side components should exhibit standard-based, well-documented open
interfaces. The custom interfaces are being replaced by community-embraced ones (see
Sections 4.2, 4.4 and 4.5).

• In order to facilitate the rapid development of new components (both on the service
and the client side) a modular and developer-friendly framework should be implemented
(Sections 4.1 and 4.3). The new framework must offer easy extensibility.

• The ARC code base should carefully select and isolate 3rd party dependencies into optional
and modular plugins. In particular, the dependency on the legacy Globus libraries should be
as minimal as possible. A clean code base is particularly important due to our portability
goal of ARC being available on MacOS and MS Windows platforms in addition to the
already supported numerous Linux flavors.

• ARC should come with rich and self-sufficient services. The service development framework
should facilitate easy creation of intelligent and powerful services such as the A-REX
(Section 4.2) and the storage solution (Section 4.5).

• Last but not least the increased modularity and the introduction of new interfaces should
not result in decreased performance or usability.

In the following sections, overview of key new ARC components will be given.

4.1. Hosting Environment Daemon
The cornerstone of the new approach is a light-weight Web Service container called the Hosting
Environment Daemon (HED), which provides hosting environment for various services, as
well as a number of modules to support flexible, interoperable, and efficient communication
mechanism for building SOAP-based Web Services. The design of the HED is built around the
idea of flexibility and modularity, such that the service developers can simply concentrate on
the application level Web Service implementation by only using the core minimum amount of
components. It also simplifies work on the middleware level: for example, it makes possible to
implement another communication protocol or authentication mechanism. Meanwhile, a service
administrator can easily configure and deploy the middleware and application-specific services
satisfying a variety of requirements without having to know much about the implementation.

The architecture of HED is illustrated in Figure 2. The key components of it are the so-called
Message Chain Components (MCC) which are in charge of implementing different protocol levels.
For example, as shown in the message flow, the HTTP MCC will process a stream from the TLS
MCC to parse the HTTP message and pass its body to the SOAP MCC, and also process the
SOAP response from the SOAP MCC to generate the HTTP message for the TLS MCC.

The dotted line in Figure 2 shows an alternative path for the information propagation between
MCCs. A service administrator can configure the MCCs according to the interoperability
requirements with a counterpart. For instance, the configuration shown with the dotted line
is compatible with the WSE (Web Services Enhancement for .NET) SOAP message mechanism.
Another configuration could be SOAP over HTTPG (HTTP over GSI) which is needed to
interoperate with services like the Storage Resource Manager (SRM). This approach ensures
flexibility of HED in terms of protocols support.

HED contains a flexible security framework for implementing and enforcing security-related
functionality, such as authentication and authorization. Each security-related functionality can
be implemented as a pluggable and configurable component (plugin) called SecHandler. Each
MCC or service is usually configured with two queues of SecHandler – one for the incoming
messages and another for outgoing ones. In Figure 2, the “AuthZ” and “AuthN” sub-modules
inside MCCs and services are examples of SecHandlers.

HED is often perceived as yet another Web Services development framework; in reality,
the purpose of HED is not to re-implement Axis, Tomcat or gSOAP, but simply to provide
framework for gluing various functionalities, including other service container solutions via
plugins if necessary. In the current implementation there are no Apache or Axis plugins, because
the developers of HED were focused on making the solution lightweight and implemented only
bare essentials like SOAP and HTTP. This is currently sufficient for our purposes and does not
require any other traditional Web Service hosting environment.

4.2. Execution service with a standard-compliant interface
The ARC Resource-coupled EXecution service (A-REX) is the next generation computing
element of ARC offering WS-interfaces and advanced security solutions [21]. The powerful
computing element implements job execution capability over a large variety of computational
resources. A-REX is built around the Grid Manager component of the production ARC
computing element. A-REX interprets standard job description (JSDL, with NorduGrid
extensions), offers OGF-compliant job execution and management interface (BES, also with
NorduGrid extensions), features transparent, automatic and integrated data staging and caching
capability, support for large number of batch systems, session directory management, comes
with logging capability and support for Runtime Environments. A-REX offers Web Service-
based local information interface serving Glue2 information. A-REX is also capable of working
together with community approved security frameworks.

 TLS MCC
AuthZ

AuthN

 HTTP MCC
AuthZ

AuthN

 TCP MCC
AuthZ

 Plexer

 SOAP MCC
AuthZ

AuthN

 AREX Service
AuthZ

AuthN
 File Service

AuthZ

AuthN

Config

Loader

Info Engine

Logging

Counter

XMLNode

 FTP MCC
AuthZ

AuthN

 GSI MCC
AuthZ

AuthN

HED Message Flow

Internet

Component Configuration

Figure 2. Example of the Hosting Environment Daemon deployed with job execution services

4.3. Interoperable client
The client tools for job and data management are based on libraries implemented in C++.
These libraries are plugin based, and adding support for a new Grid job execution service flavor
or a new data access protocol can be done by developing a new plugin. The main libraries and
the client tools can take advantage of the new functionality provided by the new plugin without
having to be re-compiled or re-linked.

The client libraries have been wrapped using SWIG to create language bindings for Python
and Java, thereby making it easy to integrate the Grid client functionality provided by the
libraries in application frameworks based on these languages. Python bindings are used in the
implementation of the self-healing storage solution (see Section 4.5) as well as in the Lunarc
Application Portal [11]. Java bindings are not yet widely used. So far no major obstacle caused
by the wrapper approach has been met.

The client libraries implement uniform handling of user and host credentials, computing
resource discovery and information retrieval as well as matchmaking and brokering, job
submission and input/output data handling.

Plugins for job handling for several Grid job execution services are already available, including
the ARC Grid Manager, A-REX and the gLite CREAM service. Support for UNICORE
execution services is currently being developed.

The client library supports several job description languages, including the extended resource
description language (xRSL) [22] used by the ARC Grid Manager, the JDL used by e.g. CREAM,
and the standard JSDL. The library is capable of converting between these descriptions as needed

to interoperate with different services. Not all job description elements can be matched one-
to-one between the languages, which is one of the key factors motivating work on a common
standard JSDL profile.

Plugins for data management exist for most data management protocols currently in use by
different Grid projects, including HTTP (including HTTPS and HTTPg), GridFTP and SRM
as well as support for several replica location catalogues such as the Globus RLS and the gLite
LFC. There is also support for the new ARC self-healing storage solution.

Also the brokering used in the client is based on plugins and users can write their own
brokering modules using either C++ or Python.

4.4. P2P information system backbone
The operation of Grid infrastructures is based on co-operation of services. The information
system holds any Grid system together and provides a way for the other participants to find
each other: the information system is the backbone of any Grid. Its special role requires
high redundancy. To adhere to this requirement the information should be stored over the
network in multiple places. The next generation information indexing backbone of ARC is
being implemented as a P2P network of ISIS components.

ISIS as the building block of the P2P information cloud collects information from other
registered services (and also from other ISIS services), stores these in its local database and
then redistributes them towards its neighbors in the network in a reliable manner.

An ISIS instance stores the so-called Registration Entries submitted by the services. The
maintained database of these entries can be queried by XQuery 1.0 and XPath 2.0 [23]
expressions through a custom Web Service interface. The same interface is used to insert records
into the ISIS database. The ISIS database itself is a soft-state database, which allows its entries
to be up-to-date even in case of lost network connection.

While ARC services can register information to ISIS services and these records can be queried
by clients, ISIS services cannot discover one another following this way. ISIS solves this issue by
using P2P technology to build a cloud of information systems and to balance the load among
them. To join the P2P cloud, an ISIS service only needs to know the address of some already
connected ISIS and then it can connect the existing network by simply synchronizing its local
database. The databases are kept synchronized by sending modification messages to other ISIS
services in multiple paths.

ISIS is implemented as a service within the HED, thus all the WS related communications
are performed by the hosting environment framework. Further advantages of using the HED
are the flexible and uniform configuration possibility, ready-to-use security framework and the
built-in self-registration mechanism.

Though ISIS as such is largely information schema agnostic, it has to be mentioned that ARC
information system follows the Glue2 specification.

The current ISIS implementation lacks proper P2P-like authorization framework: the system
is either configured as an open network or controlled via a central authorization service.

4.5. Self-healing storage solution
An ever increasing number of Grid applications demand not only increased CPU power, but also
vast amounts of storage space. Nowadays, single Grid jobs can easily produce gigabytes or even
terabytes of data, thus ramping up the requirements of storage systems to the petabyte-scale
and beyond.

A Grid storage system is a set of services providing access to data stored at distributed
facilities. A traditional architecture used by infrastructures like NDGF consists of an indexing
service, indexing files from storage resources, a replication service for managing replica locations,
and occasionally a (often centralized) metadata catalog imposing a global namespace on top of

the resources. Data access can be handled either through a file transfer service or directly
through the storage resource by querying the metadata catalog. For all these services, third-
party solutions were used so far, with ARC providing only client-side utilities.

While this architecture has strongly improved the accessibility of physically distributed data,
the following challenges still remain:

• A centralized metadata catalog can quickly become a bottleneck.

• When storage resources are unaware of the state of their files, consistency throughout the
system can be hampered.

• It is often not straightforward to plug in an arbitrary storage resource, which may limit the
amount of available hardware resources and introduce an overhead of data migration.

• Maintenance and operation of complex distributed storage systems can be rather resource-
consuming.

In order to address the above mentioned issues the KnowARC project set forth to
develop a distributed by design, self-healing and flexible Grid storage solution which has a
replicated metadata catalog, state-aware storage resources and an operating system agnostic
implementation. The developed system consists of a set of SOAP based services residing
within HED, which together provide a robust, scalable, and consistent data storage system.
Data is managed in a hierarchical global namespace with files and subcollections grouped into
collections1. A dedicated root collection serves as a reference point for accessing the global
namespace, making it possible to reference the hierarchy using logical names. The global
namespace is accessed in the same manner as in local filesystems.

Figure 3. High-level overview of the ARC self-healing storage solution

Being based on a service-oriented architecture, the developed system consists of a set of
services as shown in Figure 3. The services are as follows: The Bartender (B) provides the high-
level interface to the user and offers the possibility to connect to third-party storage solutions; the
Librarian (L) handles the entire storage namespace, using the A-Hash (A-H) as a metadatabase;
and the Shepherd (S) is the frontend for the physical storage node.

As is the case for all openly accessible Web Services, the security model is of crucial
importance for the developed system. The security architecture of the storage system can be

1 A concept very similar to files and directories in most common file systems.

split into three parts: the inter-service authorization which ensures that only trusted services
can get or modify data; the transfer-level authorization which ensures secure file transfers; and
the high-level authorization which handles user’s permissions to modify files and collections, e.g.
read and write access to files and collections.

Three different client tools, serving different needs, have been developed for the storage
system. A prototype command line tool offers the end user all the storage system functionality
from a terminal window. However, end users frequently interacting with the storage system may
want to an even easier tool than the command line tool, and for this purpose a FUSE module has
been developed. The FUSE module allows the user to mount the namespace of the system into
her local filesystem, and use the storage system as if it was a local directory. It uses the same
libraries and transfer methods as the command line tool and preliminary tests have shown no
significant difference in performance when comparing the two. Finally, a storage system plugin
(so-called Data Management Component) for the ARC data libraries has been developed. The
plugin enables transparent, integrated access to the storage system from the ARC middleware
thus making it possible to run Grid jobs which both down and uploads data from the developed
storage system.

The ARC storage solution does not require standards like SRM or GridFTP, and by default
relies on standard HTTP and TLS; however, the fact that the services reside in HED means
that e.g. an SRM interface can be easily added whenever necessary.

5. Conclusion: Towards a common middleware distribution
Recent ARC developments transformed the middleware from a rather monolithic solution based
on old and sometimes obsolete technologies to a modern modular software that meets many
industry and community standards. Decreasing dependency on third-party technologies and
increasing reliance on commonly used ones allows ARC to achieve better interoperability with
other related solutions. Driven by the community requirements and supported by the maturing
open Grid standards, a growing number of middleware providers develop similar modular
standard-compliant solutions consisting of interchangeable and complementary components.
This is a welcoming sign for resource owners who would like to join large Grid infrastructures
and yet retain the freedom of technology choice. The European Grid Initiative (EGI) [24] project
strives to achieve exactly this: a pan-European Grid infrastructure for research communities.
Such an environment has to rely on a set of agreed middleware tools and utilities that satisfy
common criteria and meet common standards. This set currently goes by the name Universal
Middleware Distribution (UMD) and will be based on middleware components provided, among
others, by ARC, gLite and UNICORE consortia. Standard-based interoperability between the
UMD components is the principal criterion in the selection process. There is a strong confidence
that this middleware suite is achievable, not least because of the commitment of the core
consortia to the OGF standardization process. With the re-designed and newly introduced
components, ARC is well on track to offer its traditionally reliable and efficient Grid tools and
services conforming to strictest interoperability and standardization requirements.

Acknowledgments
This work was supported in part by the Information Society and Technologies Activity of the
European Commission through the work of the KnowARC project (Contract No.: 032691).

References
[1] Ellert M et al. 2007 Future Gener. Comput. Syst. 23 219–240 ISSN 0167-739X
[2] Foster I and Kesselman C 1997 International Journal of Supercomputer Applications 11 115–128 available

at: http://www.globus.org
[3] Field L and Schulz M 2008 Proc. of CHEP 2007, J. Phys.: Conf. Ser. 119 012001 ed R Sobie, R Tafirout

and J Thomson (IOP) URL http://dx.doi.org/10.1088/1742-6596/119/1/012001

[4] Riedel M et al. 2009 Journal of Concurrency and Computation: Practice and Experience 21 961–990
[5] Open Grid Forum Web site URL http://www.ogf.org/

[6] Nordic DataGrid Facility Web site URL http://www.ndgf.org

[7] EU KnowARC project Web site URL http://www.knowarc.eu

[8] Eerola P et al. 2003 Proc. of CHEP 2003, eConf C0303241:MOcT011
[9] Sturrock R et al. 2005 Proc. of CHEP 2004, CERN-2005-002 vol 2 ed A Aimar, J Harvey and N Knoors p

1095
[10] J Andreeva, S Campana, F Fanzago and J Herrala 2008 Journal of Grid Computing 6 3–13
[11] Lunarc Application Portal Sourceforge site URL http://laportal.sourceforge.net/

[12] Foster I et al. 1998 CCS ’98: Proceedings of the 5th ACM conference on Computer and communications
security (ACM Press) pp 83–92 ISBN 1-58113-007-4

[13] Allcock W et al. 2002 Parallel Comput. 28 749–771 ISSN 0167-8191
[14] A Sim, A Shoshani and others 2008 The Storage Resource Manager Interface (SRM) Specification v2.2

GFD-R-P.129 URL http://www.ggf.org/documents/GFD.129.pdf

[15] Anjomshoaa A et al. 2008 Job Submission Description Language (JSDL) Specification, Version 1.0 (first
errata update) GFD-R.136 URL http://www.gridforum.org/documents/GFD.136.pdf

[16] Foster I et al. 2007 OGSATM Basic Execution Service Version 1.0 GFD-R-P.108 URL
http://www.ogf.org/documents/GFD.108.pdf

[17] gLite, Lightweight Middleware for Grid Computing Web site URL http://glite.web.cern.ch/glite/

[18] UNICORE, Uniform Interface to Computing Resources Web site URL http://www.unicore.eu

[19] Andreozzi S et al. 2009 GLUE Specification v2.0 GFD-R-P.147 URL
http:/www.ogf.org/documents/GFD.147.pdf

[20] Alfieri R et al. 2005 Future Gener. Comput. Syst. 21 549–558 ISSN 0167-739X
[21] Konstantinov A The ARC Computational Job Management Module - A-REX NORDUGRID-TECH-14 URL

http://www.nordugrid.org/documents/a-rex.pdf

[22] Smirnova O Extended Resource Specification Language The NorduGrid Collaboration NORDUGRID-
MANUAL-4 URL http://www.nordugrid.org/documents/xrsl.pdf

[23] 2007 XQuery 1.0: An XML Query Language W3C Recommendation URL http://www.w3.org/TR/xquery/

[24] European Grid Initiative Web site URL http://www.eu-egi.eu/

A.5. CHELONIA - A SELF-HEALING STORAGE CLOUD

A.5 Chelonia - A Self-healing Storage Cloud

Article to appear in the proceedings for Cracow ’09 Grid Workshop, Oct. 12-14.
The article ”Chelonia - A Self-healing Storage Cloud” is written by the KnowARC

storage team. It gives an overview of the Chelonia architecture and presents pre-
liminary test results of a Chelonia deployment distributed between three different
countries.

The text was written by Salman Toor and me together. The tests were run by
Salman Toor, Zsombor Nagy and me.

139

APPENDIX A. COLLECTION OF PUBLICATIONS

140

Chelonia – A Self-healing Storage Cloud

Jon K. Nilsen1, Salman Toor2, Zsombor Nagy3 and Bjarte Mohn2

1 University of Oslo, Norway
2 Uppsala University, Sweden

3 NIIF, Hungary

Abstract

The concept of storage clouds based on the Service-Oriented Architec-
ture (SOA) provides a framework for managing storage resources in a
consistent and reliable manner. Under the umbrella of the KnowARC
project we have designed and implemented a resilient, reliable and self-
healing storage system. In this paper, we will present an overview of
Advanced Resource Connector’s novel storage system, Chelonia, con-
sisting of a set of services whic together provide a self-healing, grid-
enabled storage cloud. We will also present some proof-of-concept test
results from the deployment and the utilization of storage resources
distributed across three different countries.
Keywords: Grid, Storage, Cloud

1 Introduction

An increasing number of scientific applications and experiments demand not
only increased CPU power, but also vast amounts of storage space. Nowadays,
we can easily find applications/experiments which produce terabytes of data.
The availability of the requested storage space (data) is not only required for
the duration of the application or experiment, but in many cases for years af-
ter the completion of the application/experiment. Such requirements push the
development of distributed storage in the direction of a reliable, resilient and
consistent data management system.

In the last couple of years the concept of storage clouds has gone from being
completely unknown to being the subject of significant attention from end-users
and developers alike [11]. A storage cloud addresses many of the above men-
tioned challenges, but from a user perspective it also hides the complexity of the
machinery involved in making the system work. Such a framework requires well-
defined roles for the involved parties (the Service Providers and Infrastructure
Providers). It also requires these groups to have explicit understandings of and
commitments to their roles. Apart from the conceptual agreements, there is a
fundamental need for sustainable technology on which the framework can built.

Storage clouds aim to provide a unified view of the storage (regardless of
where the files are physically stored) and a user-centric interface to the cloud.
To achieve high quality of service, such as high availability, reliability and con-
sistency, storage clouds need some sort of self-healing capability.

In the advent of the next generation of the Advanced Resource Connector
(ARC) grid middleware [7] (new release due during spring 2010), we hereby

present Chelonia, a storage cloud from the research team behind the ARC mid-
dleware. The aim of Chelonia is to address high availability of data in a secure
environment but also the consistency and reliability of the storage system itself.
The architecture of Chelonia is close to the ideology of storage clouds, thus en-
couraging us not to develop yet another grid storage solution, but to address
an even wider community and build a grid-aware storage solution within the
paradigm of storage clouds. In this paper we will present how Chelonia provides
the above identified capabilites of a storage cloud.

This paper is organized as follows: An overview of Chelonia and its architec-
ture is given in Section 2, while the security of the storage system is elaborated
in Section 3. Section 4 gives an overview of the use of Chelonia, while in Sec-
tion 5 we give some early, proof-of-concept results. In section 6 we give some
comparisons with related work in both the grid and cloud communities before
making some concluding remarks in Section 7.

2 Chelonia Architecture

Over the years, different concepts have evolved to deal with the challenges
of handling distributed storage resources. Whereas cluster storage solutions
addressed the limitations of single machines and grid storage addressed the lim-
itations of cluster storage, the now emerging concept of storage clouds addresses
the shortcomings of grid storage. While grid storage has greatly improved the
availability of geographically distributed data, actual data access can still be
cumbersome and may require knowledge of where the data is physically located.
In comparison, cloud storage typically exposes a limited set of features, hiding
details like where the data is stored. However, whereas collaboration and re-
source sharing is an important aspect of the grid, clouds tend to handle security
through isolation of users [10].

The storage cloud is an emerging paradigm and this shift from data grid to
storage cloud is due to the years of research and development of grid tools in
academia. The Chelonia storage cloud is designed to combine the best of these
two paradigms for a truly distributed, self-healing, user-friendly storage solution,
providing means for resource sharing and collaboration.

Chelonia consists of a set of SOAP-based services residing within the Hosting
Environment Daemon (HED) [6]. Together, the services provide a self-healing,
reliable, resilient and consistent data storage. Data is managed in a hierarchical
global namespace with files and subcollections grouped into collections (a con-
cept very similar to files and directories in most common file systems). A dedi-
cated root collection serves as a reference point for accessing the namespace. The
hierarchy can then be referenced using Logical Names. The global namespace is
accessed in the same manner as in local filesystems. Being based on a service-
oriented architecture, the Chelonia cloud consists of a set of services, the Bar-
tender, Librarian, A-Hash and Shepherd as shown in Fig. 1. All the services are
replicated to ensure high availability, scalability and to avoid single points of fail-
ure.

Fig. 1: Schematic of the Chelo-
nia cloud architecture. The fig-
ure shows the main services of
Chelonia; The Bartender (cup),
the Librarian (book), the A-
Hash (space ship) and the Shep-
herd (staff). The communication
channels are depicted by black
lines.

The Bartender, being the only service visi-
ble to the user, provides a high-level interface for
the storage system. Clients connect to the Bar-
tender to create and remove files, collections and
mount-points using their Logical Names and the
Bartender communicates with the Librarian and
Shepherd services to execute the clients’ requests.
The Shepherd serves as a front-end to a storage
node. The Shepherd service reports to the Li-
brarian about the state of the stored data. The
Librarian manages the hierarchy and metadata of
files, collections and mount points. In addition,
the Librarian handles the information about reg-
istered Shepherd services. The Librarian uses the
A-Hash for consistently storing the entire state of
the system, including file metadata and registra-
tion of Shepherds. Additionally the A-Hash itself,
being replicated, stores information about other
registered A-Hash services. It is therefore cru-
cial for the system that the A-Hash is consistent.
The A-Hash is built on the Oracle Berkeley DB
High Availability [1] database. The replication is

based on a single master, multiple clients framework where all clients can read
from the database, while only the master is allowed to write to the database.
In the event of a master not responding, a new master is automatically chosen
between the remaining replicas.

3 Chelonia Security Model

As is the case for all openly accessible web services, the security model is
of crucial importance for Chelonia. The security architecture of the storage
can be split into three parts; the inter-service authorization; the transfer-level
authorization; and the high-level authorization.

The inter-service authorization maintains the integrity of the internal
communication between services. There are several communication paths be-
tween the services in the storage system. The Bartenders send requests to the
Librarians and the Shepherds, the Shepherds communicate with the Librarians
and the Librarians with the A-Hash. If any of these services is compromised or
a new rogue service gets inserted in the system, the security of the entire sys-
tem is compromised. To enable trust between the services, they need to know
each other’s Distinguished Names (DN’s). The services nood to obtain a certifi-
cate from a trusted Certificate Authority, thus preventing rogue services from
attacking a Chelonia cloud.

The transfer-level authorization handles the authorization in the cases of

uploading and downloading files. When a transfer is requested, the Shepherd will
provide a one-time Transfer URL (TURL) to which the client can connect. In
the current architecture, this TURL is world-accessible. This may not seem very
secure at first. However, provided that the TURL has a very long, unguessable
name, that it is transfered to the user in a secure way and that it can only be
accessed once before it is deleted, the chance of being compromised is very low.

The high-level authorization considers the access policies for the files and
collections in the system. These policies are stored in A-Hash, in the metadata
of the corresponding file or collection, providing a fine-grained security in the
system.

The communication with and within the storage system is realized through
HTTPS with standard X.509 authentication.

4 Chelonia in Operation

Once in operation, the Chelonia storage cloud will be a pulsing system where
heartbeats are periodically sent from each Shepherd to a Librarian together
with information about replicas whose state changed since the last heartbeat.
Heartbeats are stored in the A-Hash, thus making them visible to all Librarians
in the system. If any of the Librarians notices that a Shepherd is late with its
heartbeat, it will mark all the replicas in that Shepherd as offline.

In addition to the heartbeat, the Shepherds periodically check with the Li-
brarians to see if there are sufficient replicas of the files in Chelonia and if the
checksums of the replicas are correct. If a file is found to have too few replicas,
the Shepherd informs a Bartender about this situation and together they ensure
that a new replica is created at a different storage node. A file having too many
replicas will also be automatically corrected by Chelonia as the first Shepherd
to notice this will mark its replica(s) as unneeded and later delete it (them).
Replicas with invalid checksums are marked as invalid, and as soon as possible
replaced with a valid replica.

The Gateway is built into the Bartender service as an independent plug-in
and provides means to mount other Chelonia clouds as well as external storage
systems into a global namespace. The Gateway plug-ins are protocol-oriented in
the sense that external storage managers which support a certain protocol will be
handled using the Gateway plug-in based on that protocol. While excluding some
of the features provided by accessing storage managers directly, this approach
reduces the number of Gateway plug-ins required for different storage managers.
The currently available Gateway plug-in is based on the GridFTP protocol[5].

In addition to the traditional command line tool, Chelonia comes with a
FUSE module which provides a high-level access to the storage system. Filesys-
tem in Userspace (FUSE) [2] provides a simple library and a kernel-userspace
interface. Using FUSE and the ARC Python interface, the FUSE module allows
users to mount the storage namespace into the local namespace, enabling the
use of, e.g., graphical file browsers.

5 Testing and Discussion

Even though internal performance and scalability is important for a storage
cloud, the main concerns of a user are the response time of the system, that
files are always available and that files will survive server crashes. Before a
storage system can be considered for deployment, thorough testing is required.
We will in this section present a proof-of-concept test, focusing on the usability
of a geographically distributed storage cloud. While extensive performance and
scalability tests have been carried out they are beyond the scope of this paper.

In the test deployment the computer resources were geographically distributed
with three machines provided by Uppsala Multidisciplinary Center for Advanced
Computational Science (UPPMAX), Sweden, five machines provided by the Cen-
ter for Information Technology (USIT) at the University of Oslo, Norway, and
one machine provided by National Information Infrastructure Development In-
stitute (NIIF), Hungary. The actual services were then distributed as follows:

• Three A-Hashes, two at USIT and one at UPPMAX.
• Two Bartenders, one at UPPMAX and one at NIIF.
• Two Librarians, one at UPPMAX and one at USIT.
• Three Shepherds, one at each site.

While the Shepherds at UPPMAX and NIIF had ample storage space for our
tests, the Shepherd at USIT was limited to 1GB. The actual test was then carried
out in five steps:

1. 100 10 kB files from UPPMAX and 10 1 GB files from USIT were uploaded
to the system, generating 1 file replica of each file. The time from request-
ing an upload to the transfer started (the system response time) and the
distribution of files between the Shepherds were noted.

2. The number of replicas for each 10 kB file was increased to two. The file
distribution was noted.

3. One Shepherd was stopped and the file distribution between the two re-
maining Shepherds was noted.

4. The stopped Shepherd was restarted. The file distribution was noted.
5. The 10 kB files were downloaded to USIT. The system response time was

noted.
Fig. 2 shows the time taken by the system before starting the file transfers in

the case of uploading and downloading 100 10 kB files. The files were uploaded
at UPPMAX and downloaded at USIT. The difference between upload (dots)
and download (stars) is due to the extra steps needed to upload a file. While
in downloading the system only needs to look up a logical name and generate
a transfer URL, a file upload requires the existence of the logical name to be
checked, the file and its metadata to be registered in the system and a transfer
URL to be generated. As the checksum of the file is part of the metadata, the
client needs to calculate the checksum as part of the registration. Additionally,
registering data to the A-Hash requires that all A-Hash replicas acknowledge the
data before the master A-Hash can return, making writing to a slower process
than reading from the A-Hash, again in favor of the download time. It should
be mentioned that ideally the checksum should be calculated during the actual

Number of files (#)
0 20 40 60 80 100

Ti
m

e
(s

)

0

0.5

1

1.5

2

2.5

3
Downloading files

Uploading files

Fig. 2: Time from request to transfer is started. Dots show timing for upload, stars show
timing for download. The difference between upload and download is due to extra time to
register the file and calculate checksum on the client side in the case of file upload.

UPPMAX USIT NIIF
10 kB files 37 36 27
1 GB files 3 0 7
Total 40 36 34

Tab. 1: Overall file distribution after uploading all 10 kB files and 1 GB files.

file transfer to avoid scanning the entire file twice. This was unfortunately not
implemented in the client tool used in this test.

An important feature of Chelonia is that file replicas are distributed evenly
between the Shepherds. Evidently, one Shepherd cannot have more than one
replica of the same file, but additionally an even distribution of file locations
can help avoiding one Shepherd becoming a hot-spot in the system. Thus, a
balanced distribution will help in achieving high availability. Tab. 1 shows the
distribution of the file replicas between Shepherds after all files were uploaded
to the system. For the 10 kB files, where an ideal distribution would be between
33 and 34 files per Shepherd, the fluctuation is due to randomly choosing which
Shepherd should receive a file. Randomly choosing Shepherds will lead to a
uniform distribution of replicas when the number of replicas grows very large.
Looking at the distribution of 1 GB files, we note that the USIT Shepherd has
received 0 files. Since this Shepherd have less than 1 GB disk space available,
it will not accept any transfer above this limit, and all 1GB files are directed to
the two other Shepherds.

Tab. 2 shows the file distribution of 100 10 kB files having 2 replicas each.

All online One offline All online
UPPMAX 71 N/A 50
USIT 58 100 69
NIIF 71 100 81
Total 200 200 200

Tab. 2: File distribution before, during and after the UPPMAX Shepherd was offline.

In the first column all three Shepherds are online, in the second column one
Shepherd is offline, and in the third column all Shepherds are again online,
corresponding to step 2, 3 and 4 of the test. Since all the files had two replicas,
the system was able to heal it self by duplicating the replicas stored at the offline
Shepherd, as can be seen in column two where the two online Shepherds had
100 replicas each. When the third Shepherd again came online the Shepherds
discovered that there were more replicas than required, and removed extraneous
replicas.

6 Related Work

When compared with typical grid distributed data management solutions,
the closest resemblance with Chelonia is the combination of the storage element
Disk Pool Manager (DPM) and the file catalog LCG (LHC (Large Hadron Col-
lider) Computing Grid) File Catalog (LFC) [8]. By registering all files uploaded
to different DPM’s in LFC one can achieve a single uniform namespace similar
to the namespace of Chelonia. However, where Chelonia has a strong coupling
between the Bartenders, the Librarians and the Shepherds to maintain a consis-
tent namespace, DPM and LFC has no coupling and registration and replication
of files is handled on the client side.

While Chelonia is designed for geographically distributed users and data stor-
age, Hadoop [3] with its file system HDFS is directed towards physically closely
grouped clusters. HDFS builds on the master-slave architecture where a sin-
gle NameNode works as a master and is responsible for the metadata whereas
DataNodes are used to store the actual data. Though similar to Chelonia’s
metadata service, the NameNode cannot be replicated and may become a bot-
tleneck in the system. Additionally, HDFS uses non-standard protocols for com-
munication and security while Chelonia uses standard protocols like HTTP(S),
GridFTP and X509.

In the cloud storage family, Amazon Simple Storage Service (S3) [4] is a
storage solution promising unlimited storage and high availability. Amazon uses
a two level namespace as opposed to the hierarchical namespace of Chelonia.
In the security model of S3, users have to implicitly trust S3 entirely, where
as in Chelonia users and services need to trust a common independent third
party Certificate Authority. Additionally, S3 lacks fine-grained delegation and
access control lists are limited to 100 principals, limiting the usability for larger
scientific communities [9].

7 Conclusion

Chelonia, a cloud-like grid storage solution, has been described and the pre-
sented test of a storage cloud spanning three European countries shows that
several key features of the Chelonia storage service are ready. The system runs
in a geographically distributed environment, the stored files are accessible both
during and after server outages, maintaining the required number of replicas, and
files can be shared between sites situated in different countries. Even though
more testing is required to have Chelonia ready for production, the test shows
promise for Chelonia to be a robust, self-healing storage cloud suitable for sci-
entific communities.

Acknowledgements. We wish to thank UPPMAX, NIIF and USIT for providing
resources for running the storage tests. The work has been supported by the
European Commission through the KnowARC project (contract nr. 032691)
and by the Nordunet3 programme through the NGIn project.

References

1. Oracle Berkeley DB, http://www.oracle.com/technology/products/

berkeley-db/index.html.
2. Filesystem in Userspace, http://fuse.sourceforge.net/.
3. Apache Hadoop, http://hadoop.apache.org/.
4. Amazon Simple Storage Service, http://s3.amazonaws.com
5. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming and S. Tuecke:

GridFTP: Protocol extensions to FTP for the Grid, GWD-R (Recommendation),
page 3, 2001.

6. D. Cameron, M. Ellert, J. Jönemo, A. Konstantinov, I. Marton, B. Mohn,
J. K. Nilsen, M. Nordén, W. Qiang, G. Rőczei, F. Szalai and A. Wäänänen:
The Hosting Environment of the Advanced Resource Connector middleware,
NorduGrid, NORDUGRID-TECH-19, http://www.nordugrid.org/documents/

arc1-storage-documentation.pdf.
7. M. Ellert and others: Advanced Resource Connector middleware for lightweight

computational Grids, Future Gener. Comput. Syst., 23, 1, 219-240, 2007.
8. Akosh Frohner: Official Documentation for LFC and DPM, https://twiki.

cern.ch/twiki/bin/view/LCG/DataManagementDocumentation.
9. M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel: Amazon S3 for

science grids: a viable solution?, DADC ’08: Proceedings of the 2008 international
workshop on Data-aware distributed computing, pages 55-64, 2008. New York,
NY, USA, ACM, 2008.

10. L. M. Vaquero, L. R. Merino, J. Caceres and M. Lindner: A break in the clouds:
towards a cloud definition, SIGCOMM Comput. Commun. Rev., 39, 1, pages
50-55, 2009.

11. L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer and W. Karl: Scientific
Cloud Computing: Early Definition and Experience, HPCC ’08: Proceedings of
the 2008 10th IEEE International Conference on High Performance Computing
and Communications, pages 825-830, 2008. Washington, DC, USA, IEEE Com-
puter Society, 2008.

A.6. CHELONIA - DISTRIBUTED CLOUD STORAGE

A.6 Chelonia - distributed cloud storage

Article submitted to Journal of Parallel and Distributed Computing.
The article ”Chelonia - distributed cloud storage” gives an extensive overview

of Chelonia and presents the results of a series of performance and stability tests.
My main contributions to the article were the results in Section 5.4 and all of

the text, written in collaboration with Salman Toor and Bjarte Mohn.

149

APPENDIX A. COLLECTION OF PUBLICATIONS

150

Performance and Stability of the Chelonia

Storage Cloud

J. K. Nilsena,b, S. Toorc, Zs. Nagyd, B. Mohne, A. L. Reada

aUniversity of Oslo, Dept. of Physics, P. O. Box 1048, Blindern, N-0316 Oslo, Norway
bUniversity of Oslo, Center for Information Technology, P. O. Box 1059, Blindern,

N-0316 Oslo, Norway
cDept. Information Technology, Div. of Scientific Computing Uppsala University, Box

256, SE-751 05 Uppsala, Sweden
dInstitute of National Information and Infrastructure Development

NIIF/HUNGARNET, Victor Hugo 18-22, H-1132 Budapest, Hungary
eDept. of Physics and Astronomy, Div. of Nuclear and Particle Physics, Uppsala

University, Box 535, SE-751 21 Uppsala, Sweden

Abstract

In this paper we present the Chelonia storage cloud middleware. It was
designed to fill the requirements gap between those of large, sophisticated
scientific collaborations which have adopted the grid paradigm for their dis-
tributed storage needs, and of corporate business communities which are
gravitating towards the cloud paradigm. The similarities to and differences
between Chelonia and several well-known grid- and cloud-based storage so-
lutions are commented. The design of Chelonia has been chosen to op-
timize high reliability and scalability of an integrated system of heteroge-
neous, geographically dispersed storage sites and the ability to easily expand
the system dynamically. The architecture and implementation in term of
web-services running inside the Advanced Resource Connector Hosting En-
vironment Dameon (ARC HED) are described. We present results of tests in
both local-area and wide-area networks that demonstrate the fault-tolerance,
stability and scalability of Chelonia.

Key words: Data Grid, Cloud Storage, Middleware, Distributed Data
Management

Email addresses: j.k.nilsen@usit.uio.no (J. K. Nilsen), salman.toor@it.uu.se
(S. Toor), zsombor@niif.hu (Zs. Nagy), bjarte.mohn@fysast.uu.se (B. Mohn),
a.l.read@fys.uio.no (A. L. Read)

Preprint submitted to Future Generation Computing Systems January 25, 2010

1. Introduction

As computationally demanding research areas expand, the need for stor-
age space for results and intermediate data increases. Currently running
experiments in areas like high energy physics, atmospheric science and molec-
ular dynamics already generate petabytes of data every year. The increasing
number of international and even global scientific collaborations also con-
tributes to the growing need to share (and protect) data efficiently and ef-
fortlessly.

While different research groups have different requirements for a storage
system, a set of key characteristics can be identified. The storage system
needs to be reliable to ensure data integrity. It needs to be scalable and ca-
pable to dynamically expand to future needs, and given that many research
groups today use computational grids to process their data, it is highly fa-
vorable if the storage system is grid-enabled.

Lately, the concept of storage clouds has gone from being completely
unknown to being the subject of significant attention from end-users and
developers alike [23]. A storage cloud addresses many of the needs men-
tioned above, but from a user perspective it also hides the complexity of
the machinery involved in making the system work. Such a framework re-
quires well-defined roles for the involved parties (the Service Providers and
Infrastructure Providers). It also requires these groups to have explicit un-
derstandings of and commitments to their roles. Apart from the conceptual
agreements, there is a fundamental need for sustainable technology on which
the framework can built.

In this paper we will present the design and performance of the Chelonia
storage cloud [1, 21]. With Chelonia we aim at designing a system which
fulfills the requirements of global research collaborations, but which also
meets the specifications of a storage cloud, e.g., user-centric interfaces and
transparency. With Chelonia it is possible to build anything from simple
storage systems for sharing holiday pictures to large-scale storage systems
for storing petabytes of scientific data.

This paper is organized as follows: First we give a brief introduction to
distributed data storage solutions in Section 2, before we in Section 3 give
an architectural overview of Chelonia and its services. Section 4 exemplifies
important features of Chelonia, while Sections 5 and 6 present performance

2

and stability of Chelonia, respectively. A comparison with other storage
solutions on the market is given in Section 7. Section 8 presents ongoing
development work, before the conclusions are given in Section 9.

2. Distributed Data Storage Solutions

Over the years, different concepts have evolved to deal with the challenge
of handling increasing volumes of data and the fact that the data tend to
be generated and accessed over vast geographic regions. The largest storage
solutions nowadays can be roughly divided between the data grids developed
and used by scientific communities, and cloud storage arising from the needs
of corporate business communities. While both concepts have the same goal
of distributing large amounts of data across distributed storage facilities,
their focuses are slightly different.

Data grid solutions focus on sharing data stored at several large storage
facilities which are usually supported by public funding and run by different
organizations. A grid storage system provides its clients with access to data
stored at remote storage systems. A traditional architecture (see e.g. [15, 12])
typically consists of an indexing service, indexing files from storage resources,
a file transfer service for transferring files, a replication service for manag-
ing replica locations, and a (often centralized) metadata catalog imposing a
global namespace on top of the resources. While they enable the sharing
of resources between large number of users, data grids are often considered
to be rather cumbersome in use and maintenance. For example, there is no
common method of establishing a global namespace and this is achieved only
additional effort of the organization that cares for its own data.

Cloud storage focuses more on providing large amounts of storage to other
organizations, and one cloud storage facility is usually run by a single orga-
nization. The main building blocks of a cloud are the services. The cloud
actors access the services both to add resources and utilize resources. The
services provides Quality of Service (QoS) guarantees through Service Level
Agreements (SLA’s). In clouds, storage is provided through the concept of
Data as a Service (DaaS), which together with Infrastructure as a Service
(IaaS), Hardware as a Service (HaaS) and Software as a Service (SaaS) can
form a Platform as a Service (PaaS). Hence, by combining services, the ser-
vice user can create a customized virtual platform. While this provides more
flexibility for the cloud user and service providers than the grid concept, it
limits the ability of sharing resources. When a user has set up a virtual com-

3

puting platform, this platform is typically limited to be used by this user.
Data security is usually realized through isolating the virtual platform to be
used only by the one user.

Storage clouds are an emerging paradigm, and even though the focus
differs from the data grids, the paradigm has learned from the experience
of the grid paradigm and improved on several features like usability and
payment plans. However, arising from the needs of corporate business the
storage clouds lack features like file-sharing and high-level tools needed by the
scientific communities. The Chelonia storage cloud is designed to combine
the best of two paradigms for a truly distributed, self-healing, flexible storage
solution, with a replicated metadata catalog, easy-to-use storage resources
and an operating system-agnostic implementation.

3. Architecture of Chelonia

Chelonia consists of a set of SOAP-based web services residing within
the Hosting Environment Daemon (HED) [14] service container from the
ARC grid middleware. Together, the services provide a self-healing, reliable,
robust, scalable, resilient and consistent data storage system. Data is man-
aged in a hierarchical global namespace with files and subcollections grouped
into collections1. A dedicated root collection serves as a reference point for
accessing the namespace. The hierarchy can then be referenced using Log-
ical Names. The global namespace is accessed the same manner as in local
filesystems.

Being based on a service-oriented architecture, the Chelonia storage cloud
consists of a set of services as shown in Figure 1. The Bartender (cup)
provides the high-level interface to the user; the Librarian (book) handles
the entire storage namespace, using the A-Hash (space ship) as a meta-
database; and the Shepherd (staff) is the front-end for the physical storage
node. Note that any of the services can be deployed in multiple instances for
high availability and load balancing. Before going into the technical details
of Chelonia itself, it may be beneficial to have a brief look at the middleware
providing the communication layer of Chelonia.

1A concept very similar to files and directories in most common file systems.

4

�

�

�

Figure 1: Schematic of Chelonia’s architecture. The figure shows the main services of
Chelonia; The Bartender (cup), the Librarian (book), the A-Hash (space ship) and the
Shepherd (staff). The communication channels are depicted by black lines.

3.1. The Advanced Resource Connector

The Chelonia communication layer is provided by the next generation
Advanced Resource Connector (ARC) Grid middleware, developed by Nor-
duGrid [2] and the EU-supported KnowARC project [3]. The next generation
ARC is based upon web-services which make frequent use of pluggable com-
ponents for offering certain capabilities. The ARC services, including Che-
lonia (Section 3.2), run inside a container called the Hosting Environment
Daemon (HED).

There are three basic kinds of plugable components for HED: Data Man-
agement Components (DMC’s) are used to transfer the data using various
protocols; Message Chain Components (MCC’s) are responsible for the com-
munication within services as well as between the clients and the services;
and Policy Decision Components (PDC’s) are responsible for the security
model within the system. In Chelonia, the Shepherd uses DMC’s to trans-
fer files, all client-service and inter-service communication goes through the
SOAP MCC and the Bartender uses the PDC to decide if a user has access

5

or not.

3.2. Core Services
The main components of Chelonia are the four services, the A-Hash, the

Librarian, the Bartender and the Shepherd. They each have separate roles
based on the distinct characteristics of a distributed storage system. When
compared with traditional data grid solutions, the Librarian may be viewed
as an indexing service and the Shepherd as the manager of the file transfer
service. The replication service is provided by the Shepherd, Librarian and
Bartender services acting together and the Librarian and A-Hash function as
a metadata catalog. When compared with cloud storage solutions, Chelonia
provides DaaS with the Bartender providing a well-defined API for easy-to-
use access. Acting together, the services provide an easy-to-use, lightweight
storage system without single points of failure.

3.2.1. The A-Hash

The A-Hash service is a database that stores objects which contain key-
value pairs. In Chelonia, it is used to store the global namespace, all file
metadata and information about itself and storage elements. Being such a
central part of the storage system, the A-Hash needs to be consistent and
fault-tolerant. The A-Hash is replicated using the Oracle Berkeley DB [4]
(BDB), an open source database library wih a replication API. The replica-
tion is based on a single master, multiple clients framework where all clients
can read from the database and only the master can write to the database.
While a single master ensures that the database is consistent at all times,
it raises the problem of having the master as a single point of failure. If
the master is unavailable, the database cannot be updated, files and entries
cannot be added to Chelonia and file replication will stop working. The
possibility of the master failing cannot be completely avoided, so to ensure
high availability means must be taken to find a new master if the first mas-
ter becomes unavailable. BDB uses a variant of the Paxos algorithm [18] to
elect a master amongst peer clients: Every database update is assigned an
increasing number. In the event of a master going offline, the clients sends
a request for election, and a new master is elected amongst the clients with
the highest numbered database update.

3.2.2. The Librarian

The Librarian service manages the hierarchy and metadata of files and col-
lections, handles the Logical Names and monitors the Shepherd services. The

6

Librarian service is stateless, instead it stores all the persistent information
in the A-Hash. This makes it possible to deploy any number of independent
Librarian services to provide high-availability and load-balancing. In this
case all the Librarians should communicate with the same set of A-Hashes in
order to use the same database of metadata. As only the master A-Hash can
be written to and the Librarian cannot know a priori which A-Hash replica
is the master, the Librarian needs to get this information from one of the
A-Hashes. For this reason, the master A-Hash stores the list of all available
A-Hashes, so that the information is replicated to all A-Hash replicas. As all
A-Hash replicas are readable, the Librarian only needs to know about a few
of the A-Hashes at start-up to be able to get this list. During run-time the
Librarian holds a local copy of the A-Hash list and refreshes it both regularly
and in the case of a failing connection.

3.2.3. The Shepherd

Each instance of the Shepherd service manages a particular storage node
and provides a uniform interface for storing and accessing file replicas. On a
storage node there must be at least one independent storage element service
(with an interface such as HTTP(S), ByteIO, etc.) which performs the actual
file transfer. A storage node then consists of a Shepherd service and a storage
element service connected together. Storage element services can either be
provided by ARC or by third-party services. For each kind of storage element
service, a Shepherd backend module is needed to enable the Shepherd service
to communicate with the storage element service, e.g., to initiate file uploads,
downloads and removal, and to detect whether a file transfer was successful
or not. Currently there are three Shepherd backends: One for the ARC
native HTTP(S) server called Hopi; one for the Apache web server; and one
for a service which implements a subset of the ByteIO interface. In addition
to storing files and providing access to them, the Shepherd is responsible for
checking if a file replica is valid and, if necessary, initiating replication of the
file to other Shepherds.

3.2.4. The Bartender

The Bartender service provides a high-level interface of the storage sys-
tem for the clients (other services or users). The clients can create and
remove collections (directories), create, get and remove files, and move files
and collections within the namespace using Logical Names. Access policies
associated with files and collections are evaluated by the Bartender (using

7

the PDC plugin of HED) every time a user wants to access them. The Bar-
tender communicates with the Librarian and Shepherd services to execute
the client’s requests. The file content itself does not go through the Bar-
tender; file transfers are directly performed between the storage nodes and
the clients.

The Bartender also supports so-called gateway modules which make it
possible to communicate with third-party storage solutions, thus enabling
the user to access multiple storage systems through a single Bartender client.
These modules are protocol-oriented in the sense that external storage man-
agers which support a certain protocol will be handled using the gateway
module based on that protocol. While excluding some of the features pro-
vided by accessing storage managers directly, this approach reduces the num-
ber of gateway modules required for different storage managers. The cur-
rently available gateway module is based on the GridFTP protocol[9].

3.3. Security

As is the case for all openly accessible web services, the security model is
of crucial importance for the Chelonia storage cloud. While the security of
the communication with and within the storage system is realized through
HTTPS with standard X.509 authentication, the authorization related secu-
rity architecture of the storage can be split into three parts; the inter-service
authorization; the transfer-level authorization; and the high-level authoriza-
tion:

• The inter-service authorization maintains the integrity of the inter-
nal communication between services. There are several communication
paths between the services in the storage system. The Bartenders send
requests to the Librarians and the Shepherds, the Shepherds commu-
nicate with the Librarians and the Librarians with the A-Hash. If any
of these services are compromised or a new rogue service gets inserted
in the system, the security of the entire system is compromised. To
enable trust between the services, they need to know each other’s Dis-
tinguished Names (DN’s). This way a rogue service would need to
obtain a certificate with that exact DN from some trusted Certificate
Authority (CA).

• The transfer-level authorization handles the authorization in the cases
of uploading and downloading files. When a transfer is requested, the

8

Shepherd will provide a one-time Transfer URL (TURL) to which the
client can connect. In the current architecture, this TURL is world-
accessible. This may not seem very secure at first. However, provided
that the TURL has a very long, unguessable name, that it is transfered
to the user in a secure way and that it can only be accessed once before
it is deleted, the chance of being compromised is fairly low.

• The high-level authorization considers the access policies for the files
and collections in the system. These policies are stored in the A-Hash,
in the metadata of the corresponding file or collection, providing a
fine-grained security in the system.

3.4. Accessing Chelonia

Being the only part a user will (and should) see from a storage system,
the client tools are an important part of the Chelonia storage cloud. In
addition to a vanilla command-line interface, two ways of accessing Chelonia
are supported.

3.4.1. FUSE Module

The FUSE module provides a high-level access to the storage system.
Filesystem in Userspace (FUSE) [5] provides a simple library and a kernel-
userspace interface. Using FUSE and the ARC Python interface, the FUSE
module allows users to mount the storage namespace into the local names-
pace, enabling the use of graphical file browsers as shown in the screenshot
in Figure 2.

3.4.2. Grid Job Access

To access data through the ARC middleware client tools, one needs to go
through Data Manager Components (DMC’s). These are protocol-specific
plugins to the client tools. For example, to access data from a HTTPS
service, the HTTP DMC will be used with a URL starting with https://,
to access data from an SRM service, the SRM DMC will be used with a URL
starting with srm://. Similarly, to access Chelonia, the ARC DMC will be
used with a URL starting with arc://.

The ARC DMC allows grid jobs to access Chelonia directly. As long as A-
REX, the job execution service of ARC, and ARC DMC are installed on a site,
files can be both downloaded and uploaded by specifying the corresponding
URL’s in the job description. In this case, the Bartender URL needs to

9

Figure 2: Screenshot of the Chelonia FUSE module in use. Through the FUSE module
Chelonia offers users a drag and drop functionality to upload or download files to the
storage cloud.

be embedded in the URL as a URL option. For example, if a job requires
an input file /user/me/input.dat, the URL specified in the job description
will be as follows (given that the file can be found by a Bartender with URL
https://storage/Bartender):

arc:///user/me/input.dat?BartenderURL=https://storage/Bartender

4. Chelonia in Operation

Both the Chelonia storage system and its clients can be installed from
binary packages (available for several different platforms) or after compiling
the source packages. A fully operational storage cloud requires a minimum
installation of one instance of every service described above. The Chelonia
Administrator manual [19] gives detailed instructions on how to install, con-
figure and run the services. In order for users to interact with Chelonia,
several user tools are provided. These are documented both in the Chelonia
user manual [20] and Linux man pages and directly through command line
calls.

10

For the user, transfering files to and from Chelonia are simple operations.
For example, if a user wants to upload a file orange.jpg to Chelonia, he/she
can use, e.g., the Chelonia CLI. Assuming that the URL of one or more Bar-
tenders and the required number of file replicas are written in a configuration
file, the user gives the command

chelonia put orange.jpg /user/me/orange.jpg

Note that there is no need for the user to know where files are physically
stored or will be stored in Chelonia.

Under the hood of Chelonia, the Bartender receiving the request from the
CLI contacts a Librarian to create an entry in the Chelonia namespace. If the
Librarian confirms the new entry, the Bartender then contacts a Shepherd to
get a transfer URL which is returned to the CLI. When the CLI has uploaded
the file, the Shepherd queries the Librarian to find out how many replicas are
needed and, if needed, initiates a file transfer to another Shepherd. In the
case of downloading a file, the Bartender gets the locations of the file from a
Librarian, chooses one of them and contacts the corresponding Shepherd for
a transfer URL.

When in operation, the Chelonia storage cloud is a pulsing system where
heartbeats are periodically sent from each Shepherd to a Librarian together
with information about replicas whose state changed since the last heart-
beat. Heartbeats are stored in the A-Hash, thus making them visible to all
Librarians in the system. If any of the Librarians notices that a Shepherd
is late with its heartbeat, it will mark all the replicas in that Shepherd as
offline.

In addition to the heartbeat, the Shepherds periodically check with the
Librarians to see if there are sufficient replicas of the files in Chelonia and if
the checksums of the replicas are correct. If a file is found to have too few
replicas, the Shepherd informs a Bartender about this situation and together
they ensure that a new replica is created at a different storage node. A file
having too many replicas will also be automatically corrected by Chelonia
- the first Shepherd to notice this will mark its replica(s) as unneeded and
later delete it (them). Replicas with invalid checksums are marked as invalid,
and as soon as possible replaced with a valid replica.

With the Chelonia gateway module, a user can mount external storage
systems into the Chelonia namespace. For example, if a Chelonia user has
access to a set of files stored in dCache [16] (see Section 7) under /fruits he

11

can add a mount point (say /my/dCache) to easily access these data through
the Chelonia namespace, i.e., using standard Chelonia commands like

chelonia get /my/dCache/fruits/apple.jpg

More technically, when the Bartender looks up the entry /my/dCache which
is a mount point to dCache, it will use the corresponding gateway module to
generate an external URL which the client tool will use to contact dCache
directly. This way, Chelonia can include third-party storage namespaces in
its global namespace by simply storing a single entry.

5. System Performance

5.1. Adding and Querying the Status of Files

In a hierarchical file system files are stored in levels of collections and
sub-collections. The time to add or get a file depends mainly on two factors;
the number of entries in the collection where the file is inserted, and the
number of parent collections to the collection where the file is inserted (the
depth of the collection). Based on these two factors we have run two different
tests:

• Depth test tests the performance when creating many levels of sub-
collections. The test adds a number of sub-collections to a collection,
measures the time to add and stat the sub-collections, then adds a
number of sub-sub-collections to one of the sub-collections and so forth.
To query a collection at a given level means that all the collections at
the lower levels needs to be queried first. In Chelonia, each query causes
a message to be sent through TCP. Hence, it is expected that time will
increase linearly as the level of collections increases. As every message
is of equal size, this test ideally depends only on network latency.

• Width test tests the performance when adding many entries (col-
lections) to one collection. The test is carried out by adding a given
number of entries to a collection and measuring the time to add each
entry and the time to stat the created entry. When adding an entry
to a collection, the system needs to check first if the entry exists. In
Chelonia, this means that the list of entries in the collection needs to
be transferred through TCP. It is therefore expected that the time to
add an entry will increase linearly as this list increases and ideally the
time will depend only on the bandwidth of the network.

12

Both tests were run in two types of environments: In the Local Area
Network (LAN) setup four computers were connected to the same switch. A
centralized A-Hash service, a Librarian, a Bartender, and the client were each
run on a separate computer. In the Wide Area Network (WAN) setup, the
client and Bartender were located in Uppsala, Sweden, while the Librarian
and a replicated A-Hash consisting of three replicas were located in Oslo,
Norway.

Folder Depth
0 5 10 15 20 25 30

Ti
m

e
[s

ec
on

ds
]

0

0.05

0.1

0.15

0.2

0.25

Creating a folder

Stat’ing a folder

(a) Services running on LAN

Folder Depth
0 5 10 15 20 25 30

Ti
m

e
[s

ec
on

ds
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 Creating a folder

Stat’ing a folder

(b) Services running on WAN

Figure 3: Time to add an entry to a collection (continuous line) and time to get status of
a collection (dashed line) given the hierarchical depth of the collection.

The test result for the depth test is shown in Figures 3(a) (LAN) and 3(b)
(WAN). The continuous lines show the time to create an entry, while the
dashed lines show the time to get the status of the collection. All the plots are
averages of five samples, with the error bars representing the minimum and
maximum values. The LAN test shows a near-perfect linear behaviour, with
the error bars too small to be seen. As mentioned earlier, since the packet
size for each message is constant in this test, the main bottleneck (apart from
Chelonia itself) is the network latency. Since all computers in the LAN test
are connected to the same switch we can assume that the latency is near
constant. Hence, the LAN test shows that in a very simple network scenario
Chelonia works as expected, with the network being the major bottleneck.
Notice also that creating an entry consistently takes 0.021 s longer than
getting the status of the collection, again corresponding to the extra message
needed to create an entry.

In the WAN test, the complexity is a bit increased, as in addition to
sending messages over WAN, the A-Hash is now replicated. The time still
increases linearily, albeit with more fluctuation due to the WAN environment.

13

Creating an entry at the first level in the hierarchy now takes 0.11 s longer
than getting the status of the collection, corresponding to the fact that the
entry needs to be replicated three times. However, at higher levels, getting
the status over WAN is actually faster than getting the status over LAN. The
effect of the replicated A-Hash will be discussed in more detail in Section 5.4.

Number of entries
0 200 400 600 800 1000

Ti
m

e
[s

ec
on

ds
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Creating a folder

Stat’ing a folder

(a) Services running on LAN

Number of entries
0 200 400 600 800 1000

Ti
m

e
[s

ec
on

ds
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Creating a folder

Stat’ing a folder

(b) Services running on WAN

Figure 4: Time to add an entry to a collection (continuous line) and time to get status of
a collection (dashed line) given the number of entries already in the collection.

The test results for the width test are shown in Figures 4(a) (LAN) and
4(b) (WAN). The continous lines show the time to add entries to a collection
and the dotted lines show the time to get the status of a collection containing
the given number of entries. The operations were repeated five times, with
the plots showing the averages of these five samples. As expected, the time
increase linearily with increasing number of entries. The results of the WAN
test fluctuate more than those of the LAN test, which is to be expected; in the
LAN test all services are on computers connected to the same switch, while
in the WAN test, the services are distributed between two different countries.
However, the WAN test shows similar linearity, albeit with a slightly higher
response time. It is worth noticing that for the width test, in contrast to the
depth test, we see no benefit of using a replicated A-Hash. This is due to
the fact that the bandwith is the limiting factor in this test.

An interesting feature of both tests is that while creating an entry takes
more time when there are only few entries in the collection, creating new
entries is actually faster than stating the collection when the collection has
many entries. This is due to the fact that getting the status of a collection
requires the metadata of the collection (and hence the list of entries in the
collection) to be transfered first from the A-Hash to the Librarian, and second

14

from the Librarian to the Bartender and last from the Bartender to the client.
When creating an entry, neither the Bartender nor the client needs this list
of entries, so that less data is transfered between services. However, for fewer
entries, creating new entries is more expensive since the Bartender needs to
query the Librarian twice, first to check if it is allowed to add the entry and
second to actually add it.

5.2. File Replication

The concept of automatic file replication in Chelonia was presented in
Section 4. In this section we will demonstrate both how Chelonia works with
different file states to ensure that a file always has the requested number of
valid (ok) replicas and how Chelonia distributes the replicas in the system
in order to ensure maximum fault tolerance of the system.

The test system consists of one Bartender, one Librarian, two A-Hashes
(one client and one master) and five Shepherds. All services are deployed
within the same LAN. As a a starting point 10 files of 114 MB are uploaded
to the system and for each file 4 replicas are requested. Thus the initial
setup of the test system contains 40 replicas with an initial distribution of
file replicas as shown in Table 1.

Shepherd Initial Final

S1 9 9
S2 8 7
S3 8 8
S4 7 9
S5 8 7

Total 40 40

Table 1: Initial and final load distribution of 40 files on 5 Shepherds

The first phase of the file replication test was to kill one of the Shepherd
services, S3, of the test system. Chelonia soon recognized the loss of this
service (no heartbeat received within one cycle) and started compensating
for the lost replicas. File replicas in Chelonia have states ALIVE, OFFLINE,
THIRDWHEEL or CREATING which are recorded in the A-Hash. Initially
the test system had 40 ALIVE replicas (10 files with 4 replicas each), but
when the Librarian did not get the S3 heartbeat it changed the state of the
8 replicas stored in S3 to OFFLINE.

15

At this point a number of files stored in our Chelonia setup had too few
ALIVE replicas. As explained above, the Shepherds check periodically that
files with replicas stored on its storage element have the correct number of
ALIVE replicas. Thus, in the next cycle the S1, S2, S4 and S5 Shepherds
started to create new file replicas which initially appeared in the system with
the state CREATING.

Figure 5 gives a graphical overview of the number of replicas and the
replica states in the test system every 15 seconds. At 15 s (00:15) all 40 file
replicas were ALIVE as explained above, but soon thereafter S3 was turned
off and the other Shepherds started creating new replicas. Queried at 30 s
(00:30) the system contained 32 ALIVE, 8 OFFLINE and 1 CREATING file
replica.

While the system worked on compensating for the loss of S3, the second
phase of the replication test was initiated by turning the S3 shepherd online
again. The reappearence of the S3 Shepherd can be seen in Figure 5 at
90s (01:30) as a significant increase in the number of ALIVE replicas. In
fact there were now too many ALIVE replicas in the system and at 105 s
(01:45) 2 replicas were marked as THIRDWHEEL (the Chelonia state for
redundant replicas). THIRDWHEEL replicas are removed from Chelonia
as soon as possible, and during the next 45 s the system removed all such
replicas. A query of the system at 165 s (02:45) shows that the system once
again contained 40 ALIVE replicas. The final distribution of replicas between
Shepherds is given in Table 1.

5.3. Multi-User Performance

While any distributed storage solution must be robust in terms of multi-
user performance, it is particularly important for a grid-enabled storage cloud
like Chelonia where hundreds of grid jobs and interactive users are likely to
interact with the storage system in parallel. To analyze the performance
of Chelonia in such environments we have studied the response time of the
system while increasing the number of simultaneous users (multi-client).

Due to limited hardware resources, multiple clients for the tests were
simulated by running multiple threads from three different computers. Each
client thread creates 50 collections sequentially and tests were done for an
increasing number of simultaneous clients. For each test the minimum, av-
erage and maximum time used by the client was recorded. Figure 5.3 shows
the system response times for up to 100 simultaneous clients using the above-

16

Time [MM:SS]
00:00 00:20 00:40 01:00 01:20 01:40 02:00 02:20 02:40 03:00

N
um

be
r o

f f
ile

s

0

10

20

30

40

50

Time [MM:SS]
00:00 00:20 00:40 01:00 01:20 01:40 02:00 02:20 02:40 03:00

N
um

be
r o

f f
ile

s

0

10

20

30

40

50
ALIVE

OFFLINE

THIRDWHEEL

CREATING

Figure 5: Number of replicas and their corresponding states when querying the test system
every 15 seconds. Shepherd S3 is turned offline between 00:15 and 00:30 and back online
between 01:15 and 01:30.

mentioned testbed deployment. The shown test was run in a LAN environ-
ment with one centralized A-Hash, one Librarian and one Bartender.

The test results show that the response time of the system increases
linearly with an increasing number of simultaneous clients. From 40 clients
and onwards the difference between the fastest client and slowest client starts
to become sizeable. When running 50 clients or more in parallel, it was
occasionally observed that a client’s request failed due to the heavy load of
the system. When this happened, the request was retried until successfully
completed, as shown by the slightly fluctuating slope of the mean curve. The
same linearity was seen in the corresponding WAN test (not shown), albeit
with a factor two higher average time, consistent with the results observed
in the depth and width tests in Section 5.1.

As can be noted in Figure 5.3, for more than 30 clients, the maximum
times increase approximately linearly while the minimum times are close to
constant. The reason for this is a limitation on the number of concurrent
threads in the Hosting Environment Daemon (HED). If the number of con-
current requests to HED reaches the threshold limit, the requests are queued
so that only a given number of requests are processed at the same time. In
the test each client used only one connection for creating all 50 collections.
Hence, the fastest request was one that had not been queued so that when

17

Simultaneous clients
0 20 40 60 80 100

Ti
m

e
[s

ec
on

ds
]

0

100

200

300

400

500

600

Average time to create 50 collections

Figure 6: Average (square), minimum (lower bar) and maximum (bar) system response
time as a function of the number of simultaneous clients of the system. Each client creates
50 collections sequentially.

the number of requests was above the threshold, the minimum timing did
not depend on the total number of clients. On the other hand, the slowest
request was queued behind several other requests so that the maximum time
increased with the number of simultaneous clients.

5.4. Centralized and Replicated A-Hash

As the A-Hash stores all metadata about files, file locations and shep-
herds, it is important that the A-Hash is fault tolerant and able to survive
even fatal hardware failures. While in theory replicating the A-Hash provides
these features, the replication adds complexity to the A-Hash in that all data
need to be replicated to all A-Hash instances. Additionally, in the event of a
failing A-Hash instance, the Librarians need to seamlessly find and connect
to other A-Hashes.

To test the fault tolerance and performance overhead of the replicated A-
Hash in a controlled environment, four tests have been set up with services
and a client on different computers in the same LAN:

1. Centralized: One client contacting a centralized A-Hash was set up
as a benchmark, as this is the simplest possible scenario.

18

2. Replicated, stable: One client contacting three A-Hash instances
(one A-Hash master, two A-Hash clients) randomly. All the A-Hashes
were running during the entire test.

3. Replicated, unstable clients: Same setup as in point 2, but with a
random A-Hash client restarted every 60 seconds.

4. Replicated, unstable master: Same setup as in point 2, but with
the master A-Hash restarted every 60 seconds.

While setups 1 and 2 test the differences in having a centralized A-Hash and
a replicated A-Hash, setups 3 and 4 tests how the system responds to an
unstable environment. In all four setups the system has services available
for reading at all times. However, in setup 3 one may need to reestablish
connection with an A-Hash client and in setup 4 the system is not available
for writing during the election of a new master. During the test the client
computer constantly and repeatedly contacted the A-Hash for either writing
or reading for 10 minutes. During write tests the client computer reads the
newly written entry to ensure it is correctly written.

Reading

Minimum (s) Average (s) Maximum (s)

Centralized 0.003399 0.003780 0.013441
Replicated, stable 0.003453 0.003738 0.013261
Replicated, unstable clients 0.003412 0.003754 0.289535
Replicated, unstable master 0.003402 0.003763 1.971131

Writing

Minimum (s) Average (s) Maximum (s)

Centralized 0.003828 0.004260 0.014459
Replicated, stable 0.016866 0.033902 1.057602
Replicated, unstable clients 0.016434 0.034239 1.131142
Replicated, unstable master 0.016293 0.044868 60.902862

Table 2: Timings for reading from and writing to a centralized A-Hash compared with a
stable replicated A-Hash, a replicated A-Hash where clients are restarted and a replicated
A-Hash where the master is restarted.

Table 2 shows timings of reading from and writing to the A-Hash for the
four setups. As can be seen, for reading, all four setups have approximately
the same performance. Somewhat surprisingly, the replicated setups actually
perform better than the centralized setup, even though only one client com-
puter was used for reading. While reading from more A-Hash instances is an

19

advantage for load balancing in a multi-client scenario, one client computer
can only read from one A-Hash instance at a time. Thus, the only difference
between the centralized and replicated setups in terms of reading is how en-
tries are looked up internally in each A-Hash instance, where the centralized
A-Hash uses a simple Python dictionary, while the replicated A-Hash uses
the Berkeley DB which has more advanced handling of cache and memory.

Looking at the write performance in Table 2, there is a more notable
difference between the centralized and the replicated setups. On average,
writing to the replicated A-Hash takes almost 10 times as long as writing
to the centralized A-Hash. The reason for this is that the master A-Hash
will not acknowledge that the entry is written until all the A-Hash instances
have confirmed that they have written the entry. While this is rather time-
consuming, it is more important that the A-Hash is consistent than fast. It is
however worth noticing when implementing services using the A-Hash, that
reading from a replicated A-Hash is much faster than writing to it.

6. System Stability

While optimal system performance may be good for the day-to-day user
experience, the long-term stability of the storage system is an absolute re-
quirement. It does not help to have a response time of a few milliseconds
under optimal conditions if the services need to be frequently restarted due
to memory leaks or if the servers become unresponsive due to heavy load.

To test the system stability, a Chelonia deployment was run continuously
over a week’s time. During the test a client regularly interacted with the
system, uploading and deleting files and listing collections. The deployment
consisted of one Bartender, one Librarian, three A-Hashes and two storage
nodes, each consisting of a Shepherd and a Hopi service. All the services and
the client ran on separate servers in a LAN environment.

Figure 7 shows the overall memory utilization for seven of the services for
the entire run time (top), the A-Hashes and the Librarian in the first 24 hours
(bottom left) and the Librarian, the Bartender and one of the Shepherds
in the last 37 hours (bottom right). The memory usage was measured by
reading the memory usage of each service process in 5 seconds intervals using
the Linux ps command.

The most crucial part of Chelonia, when it comes to handling server
failures, is the replicated A-Hash. If the A-Hash becomes unavailable, the
entire system is unavailable. If a client A-Hash goes down, the Librarians

20

Date
01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

R
SS

 u
sa

ge
 [k

B
]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

A-Hash2

A-Hash3

A-Hash7

Bartender

Librarian

Hopi1

Shepherd1

1st of January [HH:MM]
01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00

R
SS

 u
sa

ge
 [k

B
]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Last 37 hours of operation [DD:HH]
07:01 07:07 07:13 07:19 08:01 08:07 08:13 08:19

R
SS

 u
sa

ge
 [k

B
]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

F
ig
u
re

7
:
R
esid

en
t
m
em

o
ry

u
tiliza

tio
n
of

th
e
C
h
elo

n
ia

serv
ices

d
u
rin

g
an

8
d
ay

ru
n
.

21

may need to find a new client. If the master A-Hash goes down, the entire
system will be unavailable until a new master is elected. The bottom left of
Figure 7 shows the memory consumption of the three A-Hashes, A-Hash2,
A-Hash3 and A-Hash7, and the Librarian during the first 24 hours of the
stability test. When the test started A-Hash3 (red line) was elected as A-
Hash master, and the Librarian started using A-Hash7 (blue line) for read
operations. After 2.5 hours, A-Hash3 was stopped (seen by the sudden drop
of the red line), thus forcing the two remaining A-Hashes to elect a new
master between them. While not visible on the figure, the A-Hash, and
hence Chelonia, was unavailable for a 10 seconds period during the election,
which incidentally was won by A-Hash2 (black line). After three additional
hours, A-Hash3 was restarted, thus causing an increase of memory usage for
the master A-Hash as it needed to update A-Hash3 with the latest changes
in the database. Eight hours into the test, the same restart procedure was
carried out on A-Hash7 which was connected to the Librarian. This time
there was no noticeable change in performance. However A-Hash3 increased
memory usage when the Librarian connected to it.

The bottom right of Figure 7 shows the memory usage of the Bartender,
the Librarian and one of the shepherds in the last 37 hours of the test. Per-
haps most noteworthy is that the memory usage is very stable. The main
reason for this is due to the way Python, the programming language of Ch-
elonia, allocates memory. As memory allocation is an expensive procedure,
Python tends to allocate slightly more memory than needed and avoids re-
leasing the already acquired memory. As a result, the memory utilization
gets evened out after a period of time even though the usage of the system
varies. During the run-time of the test, files of different sizes were periodi-
cally uploaded to and deleted from the system. The slight jump in memory
usage for the Bartender (green line) was during an extraordinary upload of a
set of large files. This jump was followed by an increase in memory for the Li-
brarian when the files were starting to be replicated between the Shepherds,
thus causing extra requests to the Librarian.

Figure 8 shows the CPU load for six of the services. While the load on
the A-Hashes, the Bartender and the Librarian are all below 2.5% of the
CPU, Shepherd-1 (bottom left) and Shepherd-8 (bottom right) use around
10% and 20%, respectively. While the difference between the Shepherds is
due to the fact that Shepherd-1 was run on a server with twice the number of
CPU’s as the server of Shepherd-8, the difference between the Shepherds and
the other services is due to the usage pattern during the test. To confirm that

22

01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

C
PU

 lo
ad

 [%
]

0

0.5

1

1.5

2

2.5

A-Hash2

01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

C
PU

 lo
ad

 [%
]

0

0.5

1

1.5

2

2.5

A-Hash3

01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

C
PU

 lo
ad

 [%
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bartender

01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

C
PU

 lo
ad

 [%
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Librarian

01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

C
PU

 lo
ad

 [%
]

0

10

20

30

40

50

60

70

80

90

100

Shepherd 1

01Jan 02Jan 03Jan 04Jan 05Jan 06Jan 07Jan 08Jan 09Jan

C
PU

 lo
ad

 [%
]

0

10

20

30

40

50

60

70

80

90

100

Shepherd 8

Figure 8: CPU load of the Chelonia services during an 8 day run. Each point is an average
of the CPU usage of the previous 60 seconds.

23

the files stored on the storage node are healthy, the Shepherd calculates a
checksum for each file, first when the file is received and later periodically. In
periods where no new files are uploaded, the Shepherds use almost no CPU
as already stored files don’t need frequent checksum calculations. However,
when files are frequently uploaded, deleted and re-uploaded, as was the case
during the test, the number of checksum calculations, and hence the CPU
load, increases significantly. This can particularly be seen on January 1 and
4 when a set of extra large files were uploaded, causing spikes in the CPU
load of the two Shepherds. Note also that the spikes occurs at the same time
for both Shepherd, as should be expected in a load balanced system.

7. Related Work

There are a number of grid and cloud storage solutions on the market, fo-
cused on different storage needs. While direct performance comparison with
Chelonia is beyond the scope of this paper, some similarities and differences
between Chelonia and related storage solutions are worth mentioning.

In the cloud storage family, Amazon Simple Storage Service (S3) [6]
promises unlimited storage and high availability. Amazon uses a two-level
namespace as opposed to the hierarchical namespace of Chelonia. In the
security model of S3, users have to implicitly trust S3 entirely, whereas in
Chelonia users and services need to trust a common independent third party
Certificate Authority. Additionally, S3 lacks fine-grained delegation and ac-
cess control lists are limited to 100 principals, limiting the usability for larger
scientific communities [22].

While Chelonia is designed for geographically distributed users and data
storage, Hadoop [7] with its file system HDFS is directed towards physi-
cally closely-grouped clusters. HDFS builds on the master-slave architecture
where a single NameNode works as a master and is responsible for the meta-
data whereas DataNodes are used to store the actual data. Though similar
to Chelonia’s metadata service, the NameNode cannot be replicated and may
become a bottleneck in the system. Additionally, HDFS uses non-standard
protocols for communication and security while Chelonia uses standard pro-
tocols like HTTP(S), GridFTP and X509.

When compared to typical grid distributed data management solutions,
the closest resemblance with Chelonia is the combination of the storage el-

24

ement Disk Pool Manager (DPM) and the file catalog LCG 2 File Catalog
(LFC) [17]. By registering all files uploaded to different DPM’s in LFC one
can achieve a single uniform namespace similar to the namespace of Chelonia.
However, where Chelonia has a strong coupling between the Bartenders, Li-
brarians and Shepherds to maintain a consistent namespace, DPM and LFC
have no coupling such that registration and replication of files is handled
on the client side. If a file is removed or altered in DPM, this may not be
reflected in LFC. In Chelonia, a change of a file has to be registered through
the Bartender and propagated to the Librarian before it is uploaded to the
Shepherd.

dCache [16] differs from Chelonia in that dCache has a centralized set of
core services while Chelonia is distributed by design. dCache is a service-
oriented storage system which combines heterogeneous storage elements to
collect several hundreds of terabytes in a single namespace. Originally de-
signed to work on a local area network, dCache has proven to be useful also
in a grid environment, with the Nordic Data Grid Facility (NDGF) dCache
installation [10] as the largest example. There, the core components, such as
the metadata catalogue, indexing service and protocol doors are run in a cen-
tralized manner, while the storage pools are distributed. Chelonia, designed
to have multiple instances of all services running in a grid environment, will
not need a centralized set of core services. Additionally, dCache is relatively
difficult to deploy and integrate with new applications. Being a more light-
weight and flexible storage solution, Chelonia aims more towards new, less
demanding, user groups which are generally less familiar with grid solutions.

Scalla [11] differs from Chelonia in that Scalla is designed for use on cen-
tralized clusters, while Chelonia is designed for a distributed environment.
Scalla is a widely used software suite consisting of an xrootd server for data
access and an olbd server for building scalable xrootd clusters. Originally
developed for use with the physics analysis tool ROOT [13] , xrootd offers
data access both through the specialized xroot protocol and through other
third-party protocols. The combination of the xrootd and olbd components
offers a cluster storage system designed for low latency, high bandwidth envi-
ronments. In contrast, Chelonia is optimized for reliability, consistency and
scalability at some cost of latency and is more suitable for the grid environ-
ment where wide area network latency can be expected to be high.

2LHC (Large Hadron Collider) Computing Grid

25

Unlike Chelonia, iRODS [8] does not provide any storage itself but is
more an interface to other, third-party storage systems. Based on the client-
server model, iRODS provides a flexible data grid management system. It
allows uniform access to heterogeneous storage resources over a wide area
network. Its functionality, with a uniform namespace for several Data Grid
Managers and file systems, is quite similar to the functionality offered by our
gateway module. However, iRODS uses a database system for maintaining
the attributes and states of data and operations. This is not needed with
Chelonia’s gateway modules.

8. Future Work

In addition to the continous process of improvements and code-hardening
(based on user feedback) there are plans to add some new features.

The security of the current one-time URL based file transfers could be
improved by adding to the URL a signed hash of the IP and the DN of the
user. In this way the file transfer service could do additional authorization,
allowing the file transfer only for the same user with the same IP.

Because of the highly modular architecture of both Chelonia and the ARC
HED hosting environment, the means of communication between the services
could be changed with a small effort. This would enable less secure but more
efficient protocols to replace HTTPS/SOAP when Chelonia is deployed inside
a firewall. This modularity also allows additional interfaces to Chelonia to
be implemented easily. For example, an implementation of the WebDAV
protocol would make the system accesible to standard clients built into the
mainstream operating systems.

Another possible direction for enhancing the functionality of Chelonia
is to add handling of SQL databases. In addition to files, the system could
store database objects and use databases as storage nodes to store them. SQL
databases allow running extensive queries to get the desired information. In
a distributed environment, high availability and consistency is often ensured
by the replication of data. Access to multiple copies of the data in the system
also allows queries to be run in parallel. Consistent, multiple copies of the
data also provdies a simple, transparent platform for scalable access to the
same data to a large number of distributed clients.

26

9. Conclusions

Chelonia is a cloud-like storage solution with grid capabilities. While
its core services resembles those of a traditional data grid, the single-entry
interface and the capabilities resemble those of storage clouds.

An important part of developing a distributed storage system is proper
testing of the system, both in terms of performance and stability. The pre-
sented tests are designed to give an understanding of how Chelonia behaves
in a real-life environment while at the same time controlling the environment
enough to get interpretable results. The tests have shown that Chelonia
can handle both deep and wide hierarchies as expected, both in LAN en-
vironments and in WAN environments. The system has shown self-healing
capabilities, both in terms of individual service stops and in terms of file
availability. Multiple clients have accessed the system simultaneously with
reasonable performance results and, even more importantly, Chelonia has
been heavily used for more than a week with stable performance even with
vital services being shut down during the test.

10. Acknowledgements

We wish to thank Mattias Ellert for vital comments and proof reading.
Additionally, we would like to thank UPPMAX, NIIF and USIT for providing
resources for running the storage tests.

The work has been supported by the European Commission through the
KnowARC project (contract nr. 032691) and by the Nordunet3 programme
through the NGIn project.

References

[1] http://www.nordugrid.org/chelonia/. Chelonia Web page.

[2] http//:www.nordugrid.org/. NorduGrid Collaboration.

[3] http://www.knowarc.eu/. EU KnowARC project.

[4] http://www.oracle.com/technology/products/berkeley-db/
index.html. Oracle Berkeley DB.

[5] http://fuse.sourceforge.net/. Filesystem in Userspace.

27

[6] http://s3.amazonaws.com. Amazon Simple Storage Service.

[7] http://hadoop.apache.org/. Apache Hadoop.

[8] R. Moore A. Rajasekar, M. Wan. Event Processing in Policy Oriented
Data Grids. In Proceedings of Intelligent Event Processing AAAI Spring
Symposium, pages 61–66. AAAI, March 2009.

[9] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming,
S. Tuecke, Status Of This Memo, L. Liming, and S. Tuecke. GridFTP:
Protocol extensions to FTP for the Grid. GWD-R (Recommendation),
page 3, 2001.

[10] G Behrmann, P Fuhrmann, M Gronager, and J Kleist. A distributed
storage system with dcache. Journal of Physics: Conference Series,
119(6):062014 (10pp), 2008.

[11] Chuck Boeheim, Andy Hanushevsky, David Leith, Randy Melen,
Richard Mount, Teela Pulliam, and Bill Weeks. Scalla: Scalable Cluster
Architecture for Low Latency Access Using xrootd and olbd Servers.
Technical report, Stanford Linear Accelerator Center, 2006.

[12] M Branco, D Cameron, B Gaidioz, V Garonne, B Koblitz, M Lassnig,
R Rocha, P Salgado, and TWenaus. Managing atlas data on a petabyte-
scale with dq2. Journal of Physics: Conference Series, 119(6):062017
(9pp), 2008.

[13] Rene Brun and Fons Rademakers. ROOT – An object oriented data
analysis framework. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 389(1-2):81–86, April 1997.

[14] D. Cameron, M. Ellert, J. Jönemo, A. Konstantinov, I. Marton,
B. Mohn, J. K. Nilsen, M. Nordén, W. Qiang, G. Rőczei, F. Szalai,
and A. Wäänänen. The Hosting Environment of the Advanced Resource
Connector middleware. NorduGrid. NORDUGRID-TECH-19.

[15] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and
Steven Tuecke. The data grid: Towards an architecture for the dis-
tributed management and analysis of large scientific datasets. Journal
of Network and Computer Applications, 23(3):187 – 200, 2000.

28

[16] M de Riese, P Fuhrmann, T Mkrtchyan, M Ernst, A Kulyavtsev, V Pod-
stavkov, M Radicke, N Sharma, D Litvintsev, T Perelmutov, and T Hes-
selroth. dCache Book.

[17] Akosh Frohner. https://twiki.cern.ch/twiki/bin/view/LCG/

DataManagementDocumentation. Official Documentation for LFC and
DPM.

[18] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[19] Zs. Nagy, J. K. Nilsen, and S. Toor. Chelonia Administrator’s Manual.
NorduGrid. NORDUGRID-MANUAL-10.

[20] Zs. Nagy, J. K. Nilsen, and S. Toor. Chelonia User’s Manual. Nor-
duGrid. NORDUGRID-MANUAL-14.

[21] Zs. Nagy, J. K. Nilsen, S. Toor, and B. Mohn. Chelonia – A Self-
healing Storage Cloud. To appear in the proceedings of the Cracow
Grid Workshop 2009.

[22] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson
Garfinkel. Amazon S3 for science grids: a viable solution? In DADC
’08: Proceedings of the 2008 international workshop on Data-aware dis-
tributed computing, pages 55–64, New York, NY, USA, 2008. ACM.

[23] Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David
Kramer, and Wolfgang Karl. Scientific cloud computing: Early defini-
tion and experience. In HPCC ’08: Proceedings of the 2008 10th IEEE
International Conference on High Performance Computing and Commu-
nications, pages 825–830, Washington, DC, USA, 2008. IEEE Computer
Society.

29

APPENDIX A. COLLECTION OF PUBLICATIONS

A.7 Parallel Monte Carlo simulations on an ARC-
enabled computing grid

Article submitted to Computer Physics Communication.
The article ”Parallel Monte Carlo simulations on an ARC-enabled computing

grid” is an ”in-house” production with Bjørn H. Samset, a Postdoc in the exper-
imental particle physics group at the University of Oslo where I did much of the
research for this thesis.

The main idea of the article was to present a viable framework for running
scientific applications which fall between the chairs of high-performance and high-
throughput computing.

My contributions were the text in Sections 3.2 and 4, the performance results.
The source code was implemented in collaboration with Bjørn H. Samset.

180

Parallel Monte Carlo simulations on an ARC–enabled

computing grid

Jon K. Nilsena, Bjørn H. Samseta

aDepartment of Physics, University of Oslo

Abstract

Grid computing opens new possibilities for running heavy Monte Carlo
simulations of physical systems in parallel. This paper presents GaMPI,
a system for running an MPI-based random walker simulation on grid re-
sources. Integrating the ARC middleware and the new storage system Chel-
onia with the Ganga grid job submission and control system, we show that
MPI jobs can be run on a world–wide computing grid with good performance
and promising scaling properties. Results for a diffusion Monte Carlo simu-
lation run on three heterogeneous computing clusters in three countries are
compared to standard running on a single MPI cluster. We scale to larger,
more CPU–intensive system sizes and show that GaMPI can run also these
cases efficiently.

Key words: Grid, parallelization, high throughput computing

1. Introduction

Monte Carlo (MC) simulations of physical processes are usually too heavy
for a single CPU, or even a multi–core machine, to process in a reasonable
time. The natural extension from a single machine is to run the simulations
in parallel on a cluster of nodes, with one or more cores each, and have the
processes communicate via the Message Passing Interface (MPI).

With the recent improvements in grid computing technology, especially
in the areas of storage solutions and user–space job configuration tools, it
is interesting to run massively parallel MC simulation on a large computing
grid. The main obstacles to doing this have been the lack of efficient com-
munication between parallel threads, which on a cluster would be handled
via MPI, and also the complexity of configuring a grid–based MC solution.

Preprint submitted to Computer Physics Communications March 19, 2010

In this paper we present a diffusion Monte Carlo (DMC) simulation, run-
ning on NorduGrid resources, via the ARC [1] grid middleware. MPI–like
inter–process communication is handled through the new Chelonia grid stor-
age system [2, 3], while the jobs are configured and submitted via the Ganga
grid user tool [4]. We first describe the DMC simulation itself in Section 2,
including a baseline result achieved on a single multi–core computing node.
Next, in Section 3, we describe the various components developed or used
to run the code on the grid, and how we integrated them to form the sys-
tem called GaMPI. Finally, in Section 5, we show three series of performance
tests where we run various configurations of the DMC simulation on the grid,
employing ARC–enabled computing clusters located in several countries.

2. DMC simulations and baseline result

Diffusion Monte Carlo (DMC) has a wide range of application, for ex-
ample studies of Bose-Einstein condensates of dilute atomic gases (bosonic
systems) [5] and studies of so-called quantum dots (fermionic systems) [6],
consisting of electrons confined between layers in semi-conductors. In DMC
a group of walkers is used to represent a high-dimensional vector and the
computation is carried out by having each walker do a random walk in the
phase-space. During the computation, some of these walkers may be dupli-
cated or deleted according to a branching factor, i.e., the set of walkers is
dynamic in time. A DMC simulation may be regarded as a statistical ex-
periment where each walker represent one sample of the experiment, and the
accuracy of the simulation increases with the number of walkers.

DMC is in its nature quite trivially parallelized. There are no interactions
between walkers and the order in which the walkers walk is not significant,
making it trivial to split the total set of walkers into sub-sets of walkers.
The main obstacle to parallelize the DMC simulation is that the branching
factor depends on the total number of walkers, and this number needs to
be synchronized after each step in the walk. For more information about
the DMC algorithm, see [7, 8]. DMC has most commonly been parallelized
with MPI to run on a single cluster of machines. While this is a limiting
parallelization technique when compared to a Grid parallelization, it serves
as a good baseline for the results shown in Section 5.

Figure 1 shows an example DMC simulation, which is based on 30k walk-
ers over 200 timesteps. Each walker consists of 100 particles interacting with
each other in three dimensions, so the full simulation handles 3 million par-

2

Figure 1: DMC simulation of 30k random walkers, over 200 timesteps. From left to right
the figures show timesteps 1, 50, 100, 150 and 200 respectively. The round outliers seen
in the middle three panels correspond to single walkers that each contain 100 interacting
particles. The evolution from an initial state with a gaussian density to a closer packed
system is apparent.

Figure 2: Number of random walkers per timestep in our baseline DMC simulation (open
circles), and the time in seconds taken by each timestep (closed circles). The transient
behaviour has stabilized by timestep 30.

3

ticles. Figure 2 shows the evolution with timestep of the number of random
walkers in the simulation (open circles) and the time in seconds per timestep
(closed circles) when run on an MPI–enabled cluster utilizing 16 CPUs. As
expected, we see both that after an initial instability the number of walk-
ers increases smoothly with timestep, and that the simulation time is well
correlated with the number of walkers.

This simulation will be compared to GaMPI performance in Section 5.
Two observations will be of importance here. First we note that even for 30k
walkers on a powerful system, the simulation took an average of more than
10 minutes per timestep for a total simulation time of more than 30 hours.
As Figure 2 also shows, adding more walkers to the simulation will increase
the time significantly. To quantify this, a test run with 120k walkers on 16
CPUs gave an average of approximately one hour per timestep. Secondly, we
see that after a relaxation time of approximately 30 timesteps, our particu-
lar system reaches smooth and predictable behaviour. For our performance
tests, we can therefore restrict the simulations to 50 timesteps without loss
of generality. We therefore aim to use GaMPI to run more walkers in a
comparable time, run each timestep more efficiently, or both.

3. Adapting the DMC simulations for use on a computing grid

Having established baseline results for a given DMC simulation on a stan-
dard single–cluster implementation, we have constructed a system — called
GaMPI — for running the same simulation on an international computing
grid. This section describes the elements we have integrated, namely the
grid itself (NorduGrid), its middleware (ARC), a leading edge grid storage
system (Chelonia), and an extendible grid job definition toolkit (Ganga).

3.1. ARC and NorduGrid

The Advanced Resource Connector (ARC) is an open source software
solution enabling production-quality computational and data grids, main-
tained and developed by the NorduGrid collaboration [1]. ARC software is
currently deployed across more than 70 sites in 13 countries, and across a
variety of architectures and system flavours. ARC provides all fundamental
Grid services such as an information system, resource discovery and moni-
toring, job submission and management, brokering and data– and resource
management.

4

For the present work, we take NorduGrid to mean a general, widely dis-
tributed computing grid that forms the basis of our further tests. In principle
all ARC–connected resources were available to us, though for practical rea-
sons the present paper restricts testing to three clusters in Norway, Sweden
and the Ukraine.

The clusters used for the test were Titan at the University of Oslo, Nor-
way, Ritsem at the University of Ume̊a, Sweden, and Bitp at the Bogolyubov
Institute for Theoretical Physics in the Ukraine. They ran ARC over various
linux flavours, and made available 4000, 500 and 100 CPUs respectively.
The clusters also ran different internal file systems, making the test sites very
heterogeneous.

All clusters were running normally during the GaMPI tests, and the jobs
to be described below were submitted as a normal part of the grid job quotas
of the sites.

In analogy with a standard MPI system, ARC provides access to a dis-
tributed cluster with a large number of CPUs.

3.2. Chelonia

Chelonia [3, 9] is one of the new components of the web-service based
ARC. It is a light-weight, self-healing storage solution with a global hierar-
chical name-space. And, vital to our use case, Chelonia is accessible from
the Grid using the ARC data tools and Python API.

Chelonia consists of a cataloging service (the Librarian), a metadata store
(the A-Hash), a storage element front-end (the Shepherd) and a front-end
coordination service (the Bartender). The functionality used in this paper
are the putFile, getFile and delFile methods to upload, download and
delete files from Chelonia using their logical names, list to get the content
of a file collection and move and unlink to create and remove hard links to
files.

In the MPI system analogy, Chelonia then plays the role of the MPI
protocol, allowing the parallel processes to communicate when needed.

3.3. Ganga

The final link in the chain is the Ganga job definition and submission
toolkit [4]. It is a python–based, highly flexible frontend that allows grid
users to work with processes on their local machine, on a batch system or
on several grid flavours from within the same interface. A “job” in Ganga
is a python object with information on what application to run, what input

5

data is needed and where it can be found, what output the job will produce
and where to place it, where to run the job (locally, batch system or grid),
etc. A job configuration that has been tested on a local machine can then be
reused for grid running by changing a single data member of the job object.

One of the grid flavours that Ganga can interact with is ARC. Ganga was
therefore ideally suited to be configured as the main controller in the GaMPI
setup to be described below.

In the final piece of the MPI analogy, Ganga is the glue core process that
sends and controls MPI jobs on the cluster.

4. GaMPI description

This section describes GaMPI in more detail. In brief, it is a system for
running the DMC simulation described in Section 2 on a computing grid, and
to test the resulting performance. The technical implementation we created
for this is sketched in Figure 3, and uses the components described in the
previous section. NorduGrid clusters are used for moving the walkers, Ganga
for submitting and monitoring jobs, Chelonia as storage pool from which the
Grid jobs could get new walkers and upload moved walkers.

In somewhat more detail, the workflow of GaMPI can be described as
follows:

1. A master job is running inside Ganga, which creates, submits and mon-
itors the grid jobs. After initializing the submission of the grid jobs (the
slaves) the master leaves the management of the grid jobs to Ganga.

2. The master splits the required number of walkers into blocks. The
number of blocks is independent of the number of slaves. The walker
blocks are uploaded, named with the prefix walker block, to a walker
pool in Chelonia. Additionally, the master uploads an empty file named
do timestep.

3. The slaves check if the file do timestep exists and, if it does, try
to download a block of walkers, chosen randomly from the files with
prefix walker block. When all the walkers in the block are moved and
diffusion and branching is done on the walker block, the slave uploads
the walker block with the prefix moved walker block.

4. The main variables of interest after a timestep are the number of walk-
ers (which is dynamic due to the branching part of DMC) and the
ground state energy after moving the walkers. Chelonia supports arbi-
trary metadata for a file, enabling these two variables to be appended

6

Figure 3: The communication flow between Ganga (laptop), Chelonia (top cloud) and
ARC (bottom cloud), and between the services internally in Chelonia. Communication
between Ganga and the grid is carried out by exchanging files through the Chelonia cloud.
Internally, Chelonia is set up with two sets of Bartender-Librarian-Shepherd and a ring of
three A-Hash replicas

7

to the metadata of the walker block file. This way, the master can sim-
ply do a stat on the walker block files to calculate the global energy
and number of walkers, without actually downloading all the walkers.

5. The master monitors the walker pool, and as soon as there are only
moved walker blocks in the walker pool, the master removes the file
named do timestep, thus telling the slaves that they can poll the
walker pool less frequently.

6. The master then checks the metadata of the files to get the ground
state energy and the number of walkers, thus avoiding a full download
of all walker blocks. Each timestep involves calculating a trial energy,
which is a best estimate of the ground state energy. The best estimate
of the ground state energy is the mean of the energy per walker. For
every time-step the master acquires this mean from the walker blocks
and refreshes the energy in the metadata. When the energy is updated,
the master renames the walker blocks with prefix walker block and
again uploads the do timestep file.

7. After repeating steps (1) to (5) for the required number of time steps,
the master uploads the file stop. As soon as the slaves see the stop
file, they end their work and exit.

To avoid that more than one slave works on the same walker block, the
slaves will try to rename the walker block to have the prefix .walker block
before downloading it. In Chelonia, renaming is an atomic operation and
it is not allowed to overwrite an already existing file. Hence, only the first
slave to rename the walker block will get the walkers, thus limiting data
transfer and avoiding multiple slaves working on the same task. It should be
mentioned that a way to further reduce the amount of network load could
be to introduce caching on the slaves where each slave maintained a local
walker pool, and tried to reserve these files first. However, GaMPI being in
a proof-of-concept state at the moment, caching is not yet implemented and
the gain remains to be seen.

After a number of time-steps, the walker blocks may be unbalanced. The
master, knowing the number of walkers per walker block, checks after each
time-step if any walker block is more than 50% above or below the mean of
the block-sizes. If so, the master downloads the walker blocks and iterates
through them, taking as much from the largest walker block as needed for
the smallest walker block to be at the mean of walker blocks. To avoid
superfluous file transfers the iteration stops as soon as no walker blocks are

8

above or below 10% of the mean.
Figure 3 shows the communication flow between the components of GaMPI.

Here, Ganga and the grid jobs communicate by exchanging files through Chel-
onia. Chelonia itself is set up with two sets of Bartender-Librarian-Shepherd
and a ring of three A-Hash replicas. In this setup, any of the two Bartenders
can be used and will yield the same result on queries, and an uploaded file
can end up on either of the two Shepherds. However, each of the Shepherds
contacts only one Bartender and one Librarian. The reason for such a setup
is that a Shepherd will reuse the connection to the first Bartender/Librarian
it successfully contacts. With only two of each service, there is a great chance
of both Shepherds constantly communicating with the same Librarian and/or
Bartender. Thus, to balance the load between the services, each Shepherd
gets assigned one Librarian and Bartender. This means that if one Librarian
or one Bartender stops, one of the Shepherds will stop. While this is not
optimal in a production setup, it may make sense in a simple setup where
one set of Shepherd, Librarian and Bartender is run on the same machine,
as is the case for the results shown below.

5. DMC and performance results on the grid

This section presents performance results on running the DMC simulation
described in Section 2 via the GaMPI framework described above. Three ma-
jor test series were run, and are described in turn below. The first establishes
a baseline result on an MPI cluster and then shows that the same perfor-
mance can be achieved using our GaMPI setup on the grid. The second test
studies the scaling of GaMPI performance with the number of grid jobs run
in parallel, and the third studies the scaling to more complex simulations by
increasing the number of random walkers.

5.1. From cluster to grid

For the first test we ran three identical simulations, each with 30k walkers,
50 timesteps and 16 CPUs or grid jobs. The jobs were sent (a) to a single
MPI–enabled cluster, (b) to the same cluster but using the GaMPI setup,
and (c) to a set of three clusters in three different countries.

The results are presented in Table 1. Our performance metric is the
average walltime per timestep that the simulations used, in addition to the
maximum and minimum time taken by a single timestep. The max and min
values indicate both variations in actual computing time due to a varying

9

Time per iteration for 30000 walkers, 16 CPUs

Case Description Minimum (s) Average (s) Maximum (s)

a MPI, single cluster 735 790 838
b GaMPI, single cluster 545 778 1191
c GaMPI, three clusters 738 885 1157

Table 1: Timings per iteration (time-step) for running 50 iteration of diffusion
Monte Carlo using regular MPI on a single cluster, using GaMPI on the same
cluster, and running GaMPI with grid jobs distributed between three clusters in
three different countries. In all runs 16 CPUs were used in parallel. Note that the
timings do not take into account the number of walkers in each time-step. Values
are for timesteps 30 through 50.

number of walkers per block, and in the load on the system used in each
case. To capture the realistic variation between relatively similar timesteps,
we calculate the average and find max/min values for timesteps 30 through
50 only. Figure 2 illustrates that after the initial 30 timesteps the system has
reached a relatively stable, only slowly expanding state.

Table 1 shows that for our baseline test (a) on a normal MPI cluster,
the average time per step was somewhat in excess of 10 minutes. Tests (b)
and (c) show an approximately identical behaviour, with comparable average
times but with larger variations between timesteps. This means that there is
no net performance drop in going from a standard MPI system to a grid– and
Chelonia–storage–based implementation, but that GaMPI is more vulnerable
to e.g. the load on the clusters or the network connections. Test (c) proves
that the simulations can also be run over a wide area network without a
major performance hit. For DMC–style MC calculations, a very significant
fraction of the process time is spent doing pure calculations, meaning that
changing the interprocess communication protocol should not significantly
impact the absolute performance. This is consistent with the results in this
section.

5.2. Scaling with number of CPUs

The second test series involved scaling up the number of CPUs, or in
our case parallel grid jobs, used. The baseline, called case (d) in Table 2,
is similar to case (c) of the first test, with 16 parallel processes on three
computing clusters connected via ARC and Chelonia. However, to tax the
systems we here increased the number of random walkers to 60k. Cases (e)

10

Time per iteration for 60000 walkers

Case Processes Minimum (s) Average (s) Maximum (s)

d 16 1388 1656 1993
e 32 785 1073 1454
f 60 692 802 1060

Table 2: Timings per iteration (time-step) for running 50 iteration of diffusion
Monte Carlo using GaMPI with 16, 32 and 60 distributed grid jobs. The initial
number of walkers is kept constant. Values are for timesteps 30 through 50.

and (f) then employed 32 and 60 parallel processes respectively.1

Results are shown in Table 2, where we again give average time per
timestep (fourth column), as well as maximum and minimum times for a
single step. The results are also illustrated in Figure 4, where the average
times are shown as red circles and the max and min times are indicated by
the red hatched band.

While the variations between individual steps are still large, as expected
on heterogeneous systems running steps with a varying number of walkers,
there is a systematic decrease in average times with the number of processes.
This comes from each process having to process fewer walkers per timestep.
The total simulation time, T = tAverage · Nsteps, was reduced from 19 to 10
hours when going from 16 to 60 parallel processes.

5.3. Scaling the system size

For the third test we performed a scaling from small to large systems, in
our case meaning changing the number of random walkers in the simulation.
To keep our performance metric meaningful, we also varied the number of
processes but kept the ratio Nwalkers/Nprocesses approximately constant.2

Both the test cases and results are presented in Table 3. Timing results
are also shown as blue triangles and a blue hatched band in Figure 4. Our
largest system (i), 120k walkers, was simulated through 50 timesteps in 17
hours, using 60 parallel processes. The smallest system (g), corresponding

1Using 60 and not 64 CPUs for case (f) comes from a known limit in Chelonia. All
components of Chelonia are designed to be replicated to ensure scaling, but since this would
introduce additional uncertainties we opted to reduce the number of parallel threads to
60 and rather stay with a single storage instance.

2The deviation from constant comes from the limitation to 60 processes discussed in a
previous footnote.

11

Mean time for increasing number of walkers and CPUs

Case Description Minimum (s) Average (s) Maximum (s)

g 16 CPUs, 30k walkers 738 885 1157
h 32 CPUs, 60k walkers 785 1073 1454
i 60 CPUs, 120k walkers 1245 1387 1705

Table 3: Timings per iteration (time-step) for running 50 iteration of diffusion
Monte Carlo using GaMPI with 16, 32 and 60 distributed grid jobs. The ratio of
initial walkers and CPUs is kept constant. Values are for timesteps 30 — 50.

to the single–cluster MPI baseline result above, took 9 hours but processed
only 30k walkers.

Figure 5 gives a graphic illustration of going from 30k (top row) to 120k
(bottom row) walkers. The left plots show the gaussian initial state of the
DMC system, the middle plots show the 25th timestep and the right plots
show the walker positions after the 50th timestep. In all cases it is even
visually clear that the increased number of walkers in the simulation will
lead to a better determination of the ground state energy, which is the goal
of the exercise. See ref. [7] for more detail.

6. Conclusions

A diffusion Monte Carlo simulation has been successfully run on a world-
wide computing grid, using a combination of the ARC grid middleware, Chel-
onia storage and the Ganga grid job control interface (GaMPI).

We have shown not only that it is technically feasible to run a large
set of complex MC simulations that require inter–process communication
in this environment, but also that there is no appreciable performance loss
associated with going from MPI communications to a grid–based storage, for
a system that can be properly modularized. When scaling to larger numbers
of parallel CPUs we see a smooth decrease in the time spent per timestep for a
given simulation. Also we see no unexpected performance issues when scaling
to more complex simulations, beyond what is expected from the increased
need for inter-process communication.

The goal of this exercise was to run a DMC simulation on the grid, either
going beyond the number of random walkers feasible on a 16 CPU cluster
in a reasonable timeframe, or making each timestep of the simulation more
efficient. We have shown that both can be done. Having proven the concept

12

Figure 4: Average time for timesteps 30 through 50 for the data series shown in
tables 2 (cases d, e, f, circles) and 3 (cases g, h, i, triangles), versus the number of
grid processes. Maximum and minimum times are indicated by the hashed bands.

of running MPI–type simulations on a grid, it is our intention to go on to
use the GaMPI setup for studies of more realistic physical systems.

References

[1] Ellert, M. et al., Future Generation Computer Systems 23 (2007) 219 .

[2] Nilsen, J. K., Toor, S., Nagy, Z., Mohn, B., and Read, A. L., Submitted
to Future Generation Computing Systems (2010).

[3] Nagy, Z., Nilsen, J. K., Toor, S., and Mohn, B., (2010), To appear in the
proceedings of the Cracow Grid Workshop 2009.

[4] Moscicki, J. et al., Comp. Phys. Comm. 180 (2009) 2303.

[5] DuBois, J. and Glyde, H., Phys. Rev. A 68 (2003).

[6] Harju, A., Journal of Low Temperature Physics 140 (2005) 181.

[7] Nilsen, J. K., Comp. Phys. Comm. 177 (2007) 799.

13

(a) 30k, step 1 (b) 30k, step 25 (c) 30k, step 50

(d) 120k, step 1 (e) 120k, step 25 (f) 120k, step 50

Figure 5: Time evolution of the random walker DMC system, for 30k walkers (top row)
and 120k walkers (bottom row).

14

[8] Nilsen, J. K., Cai, X., Hoyland, B., and Langtangen, H. P., Submitted
to Computational Science & Discovery (2010).

[9] http://www.nordugrid.org/chelonia/, Chelonia Web page.

15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

