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Abstra
tThe obje
t-oriented (OO) programming style is be
oming more and more popular, alsoamong s
ientists. Several CERN 
omputer libraries have been translated from the For-tran programming language to C++ re
ently, and it is expe
ted that future analysistools for parti
le physi
s experiments will be programmed using an OO language. Thisthesis des
ribes the translation of the Fortran 77 alrm
 program (written by A. L. Read)into C++. The program will perform statisti
al analyses of sear
hes for new parti
lesat the LHC/ATLAS experiment. The theory behind the program and its new, obje
toriented stru
ture are explained, and tests are 
ondu
ted to make sure that the C++version of the program works.
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1 Introdu
tionThe program alrm
, written by A. L. Read in the Fortran 77 programming language,is a tool for analysing data from parti
le physi
s experiments. It is parti
ularly usefulin sear
hes for new physi
s where the statisti
s is low, the measurements bordering onthe sensitivity limit of the measuring equipment. The term �low statisti
s� means thatthere are few ba
kground and/or signal 
andidates re
orded, so that the high statisti
sapproximations of �normal� analysis methods will be invalid.Unfortunately, while the alrm
 program is indeed very useful and has been used inanalysing data from sear
h experiments at LEP (Large Ele
tron Positron 
ollider)[16℄,the 
ode of the Fortran 77 version has been rather di�
ult for the typi
al user tounderstand and apply. This has been a problem, espe
ially sin
e making 
hanges tothe original setup of the program has meant that the user has been for
ed to 
hangelarge and important parts of the 
ode. This 
omes about mainly be
ause of the Fortranpro
edural style of programming.Programs written in versions of the Fortran language older than Fortran 90/95,
onsist mainly of one single �blo
k� of 
ode. When run, su
h a program will progressin a linear way, steadily working through subroutine and fun
tion 
alls. There is away of grouping and separating some variables from the main �blo
k� by using 
ommonblo
ks, but mainly the program 
onsists of one long �le of 
ode. The 
onsequen
e is,as has already been mentioned, that if the users want to add to or take away from the
ode, or just make some 
hanges to a feature, they have to make big and 
ompli
atedadjustments.Obje
t oriented (OO) programming has be
ome more and more popular, also ins
ienti�
 programming proje
ts. The advantages are many; some of them will be men-tioned in a later 
hapter of this thesis. One of the main advantages, however, is thatOO programs are modular. It is a lot easier to understand and to make 
hanges to aprogram that is split into several independent parts than to a program where almostevery bit of 
ode is dependent on the others. Consequently, some of the main reasonsfor wanting an obje
t oriented version of alrm
, from now on 
alled alrm
++, are thatit would be easier to use, understand, expand and develop. Also, the programs that thealrm
 program might have to intera
t with (libraries, analysis tools et
), are now beingtranslated from Fortran to C++. This pro
ess has already started at CERN [7℄ andDELPHI [18℄.This thesis is 
on
erned with the translation of the alrm
 program from Fortran 77 toobje
t oriented C++. The Fortran alrm
 program provides the user with several waysof analysing data, represented by a number of Fortran subroutines. In this thesis onlyone of these analysis types, the �ex
lude_signal� of the Fortran version, is 
onsidered.In addition to the translation and adaption of the Fortran program to OO C++,there has been a need for a graphi
al user interfa
e. This feature might make the 
ru
ial�rst 
onta
t with the program easier, and will in
orporate help fun
tions so that the userwill not have to turn to the 
ode to �nd out what kind of input the program demands.In the �rst part of this thesis some of the uses of the program are mentioned, andobje
t oriented programming and the CLs method are explained. This is the ba
kgroundmaterial needed to understand how the alrm
++ program works. Later in the thesis, Iexplain the stru
ture and layout of the C++ version, and I give a detailed explanation
3



of how the physi
s and statisti
s theory is implemented in the program. I then test thealrm
++ program to see if it is working, and if it reprodu
es the results of the Fortranalrm
. Finally, I dis
uss the new program and its future.The thing to bear in mind is that this thesis is also meant to be a user guide tothe alrm
++ program. This has of 
ourse a�e
ted the stru
ture and the 
ontents of thethesis. In the Appendi
es, for example, I have in
luded a user's guide on how to 
ompileand use the program, and a des
ription of the format of the input �le expe
ted by theprogram.
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2 The uses of the alrm
++ program2.1 The DELPHI Higgs sear
hesThe DELPHI experiment (DEte
tor with Lepton, Photon and Hadron Identi�
ation) atLEP 
ondu
ted sear
hes for the Higgs parti
le at 
entre of mass energies between 200and 209 GeV. The experimental data 
onsisted of very few observed 
andidates, and the
on
lusion was drawn at the end of the analysis that the data showed no eviden
e for aHiggs signal [1℄. However, a 95% 
on�den
e level lower mass limit of 114.3 GeV=
2 wasset. The 
on�den
e level was estimated using the statisti
al method the alrm
 programis based on.
2.2 NOMADThe neutrino os
illation �e ! �� sear
h at the NOMAD (Neutrino Os
illation MAgneti
Dete
tor) dete
tor [3℄ has found only a small number of 
andidates. The results 
onsist ofseveral di�erent de
ay 
hannels, ea
h with very little, if any, observed data. These datahave been analysed using another method than the one used in the alrm
++ program.When 
omparing the results of the method of the published arti
le [3℄ with the resultswe get when the same data is fed into the alrm
++ program, we see that the resultsdi�er. This 
ase will be dis
ussed further in Chapter 7.
2.3 The ATLAS proje
tAt CERN, the European organisation for nu
lear resear
h, the LHC (Large HadronCollider) is presently under 
onstru
tion in the existing LEP tunnel. Some of the pro-spe
ts of this new ma
hinery is to in
rease the present day 
entre-of-mass energies andluminosities for the pp and heavy ion 
ollisions that the LHC will provide.The LHC proje
t will in
lude four large experiments. The ATLAS (A Toroidal Lh
ApparatuS) and CMS experiments will be doing pre
ision measurements and sear
hesfor new physi
s. LHCb will be dedi
ated to the physi
s of b hadrons and CP violation,and ALICE will be a heavy ion experiment.The LHC is the largest, most 
omplex and expensive parti
le physi
s proje
t so far.What do people expe
t to learn from the LHC experiments that will justify these 
osts?The physi
s motivations are many; physi
ists wish to perform more pre
ise measure-ments, to understand the origin of the parti
le masses, to look for new physi
s beyondthe Standard Model and to answer many of the questions left open by earlier experi-ments. ATLAS in parti
ular will 
ontinue the ongoing sear
hes for new physi
s. Thisin
ludes sear
hing for the Standard Model Higgs boson, parti
les predi
ted by the Supersymmetry (SUSY) theory and other physi
s beyond the Standard Model. At ATLAS,the �rst few years of running will be a period of low luminosity, with few events pro-du
ed. In this period, the alrm
++ program may be used as an analysis tool in sear
hesfor parti
le signals.Another example where the alrm
++ program might be useful, is in sear
h experi-ments where the ba
kground is small but non-zero, and the parti
le is very heavy and
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thus not produ
ed in great quantities, produ
ing a small signal. The sear
h for theheavy Z' is an example of su
h an experiment.
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3 Obje
t-oriented programming: A qui
k overviewObje
t-oriented (OO) designs are be
oming more and more popular, but the transitionfrom languages like Fortran and C to the OO languages of Java and C++ 
an bedi�
ult. The idea of obje
ts as �bla
k boxes� that take 
are of themselves and intera
tvia messages only 
an seem strange and foreign to many programmers not used to OOprogramming. However, the basi
s are quite simple on
e you have grasped the 
on
eptsof 
lasses and inheritan
e. To explain these terms, I will start by des
ribing obje
ts.
3.1 Obje
tsObje
ts have both a behaviour (they do things) and a state (that is 
hanged when theydo things). For example, a 
at 
ould be an obje
t. It has a state; it 
ould be awake orsleeping, and it has a behaviour; falling asleep, whi
h 
hanges its state from awake tosleeping [10℄. To make a 
at-obje
t sleep, we would need to send it the message �fallasleep�. From our point of view, the existen
e of this message would be all we neededto know about the obje
t. We would not need to know about all the 
omplex details ofhow it falls asleep, that is, 
losing its eyelids, 
hanging its breathing and so on.
3.2 ClassesNow we have a domesti
 
at that is able to fall asleep. But what if we wanted somethingmore exoti
, like a leopard? We make a new obje
t 
alled �leopard�. It 
an also fallasleep, and it has a state, let us 
all it �awareness�, that 
an be �asleep� or �awake�, justlike the 
at. But our leopard is bigger and its fur has a di�erent pattern. So we addtwo more states, usually 
alled variables, to our leopard obje
t; size and pattern. Butof 
ourse, the domesti
 
at has a size and a pattern too. We see that the states andthe behaviours of the 
at and the leopard are the same, so in order to save time andmake things neat and tidy, we would try to make a 
ommon set of states that 
ould bespe
i�ed for ea
h obje
t. In other words, we would abstra
t out the 
ommon attributes,ignore the parti
ular values of these attributes and make a blueprint for our obje
ts.This abstra
tion, or blueprint, is 
alled a 
lass. A 
lass des
ribes a set of obje
ts thatshare a 
ommon stru
ture and a 
ommon behaviour[1℄. So let us make a 
lass for ourobje
ts 
alled �Felidae�, whi
h is the Latin name of the 
at family. This 
lass 
ontainsthe variables �awareness�, �size� and �pattern�, and also the behaviour �fall asleep�. Ifwe want to make a new obje
t, for example a lion, we use the Felidae 
lass and simply�ll in the parti
ular values of the lion. An obje
t is also 
alled an instan
e of a 
lass,meaning that the lion is an instan
e of the 
lass Felidae.
3.3 MethodsTo 
hange a variable, we must send a message to the obje
t a
tivating its behaviour.The behaviour is 
alled a �method� (known to Fortran programmers as a fun
tion orsubroutine) and the pro
ess of sending a message is referred to as 
alling a method.Obje
ts intera
t and 
ommuni
ate by 
alling ea
h other's methods. A method 
anre
eive values or return a value when it is 
alled (or both), but there are no di�eren
es
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between a method with or without these options. This is di�erent from the Fortranprogramming language, where a method is 
alled a subroutine or a fun
tion dependingon its 
hara
teristi
s.
3.4 Inheritan
eTo 
ontinue our real world example of animals, what if we wanted a human obje
tinstead of a 
at? We 
ould make a 
lass Human, and make the obje
ts Peter and Anne.These obje
ts would have basi
ally the same variables and methods as the 
ats, butthere would be some di�eren
es as well. The number of legs, for example, and thehumans would have less fur and round pupils. To save ourselves from a lot of work, itwould be ni
e to be able to make a 
lass 
alled �Mammal� that would summarise all the
ommon features of humans and 
ats, and then 
reate the Human and Felidae 
lassesas sub 
lasses of Mammal. This would mean that we 
ould reuse the 
ode written inthis parent, or super, 
lass.Our stru
ture now looks like this: We have a super 
lass 
ontaining the variables andmethods of all mammals, and two sub-
lasses that spe
ify the parti
ularities of humansand 
ats with their own variables and methods. When we make an obje
t of a sub-
lass,we 
an insert the spe
i�
 information of that individual into the obje
t's variables.
3.5 PointersThis gives us a stru
ture with lots of unorganised obje
ts that are just �oating around.How should we best organise and a

ess these obje
ts? The answer is pointers. Whende
laring an obje
t, you 
an also make a pointer to it that 
an easily be stored in somekind of table, array or ve
tor. If the pointers are stored in an iterative devi
e, it willbe easy to a

ess all the obje
ts using a loop. A pointer is, as the name suggests,something that �points� to the desired variable or obje
t. Having these pointers, it ispossible to a

ess the variables of the obje
ts dire
tly from outside the obje
t. However,it is 
onsidered more obje
t oriented to make methods that simply return or set thedesired variables. The advantage of making su
h �get� and �set� methods is that if youwant to 
hange the inner workings of a 
lass, you 
an do that without 
hanging whatthe user sees from the outside.
3.6 VisualisationThe most e�
ient way of providing information about the stru
ture of an OO program,is to make a graphi
al representation. The parts needed to make su
h a stru
ture mapis shown in Figure 1. The 
lasses and their obje
ts are usually 
onne
ted with a straightline to show whi
h obje
t belongs to whi
h 
lass. The pointers are 
onne
ted to whatthey are pointing at by an arrow.The visualisation of an OO stru
ture usually does not show all the obje
ts' methodsand variables, only the parts that are ne
essary to understand the stru
ture of theprogram.
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Figure 1: The parts of an OO stru
ture.
3.7 Example : The ForestAs an example, let us 
onsider a forest. By de�nition a forest 
ontains many trees. Ea
htree has its own height, leaves and so on. By making a 
lass Tree that 
ontains all thesevariables, we 
reate a forest of three tree-obje
ts using the 
lass as a blueprint. For ea
hof the trees, we make an obje
t of 
lass Tree and assign the tree's spe
i�
 values to itsvariables. This example is illustrated in Figure 2.

Figure 2: OO stru
ture of example Forest.
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3.8 Slightly More Compli
ated Example : FriendsAnne has a lot of friends. They all have a name, a date of birth, a telephone number, anaddress and so on, and Anne is having problems remembering these names and numbers.She wants to make a register 
ontaining all this information.Her �rst de
ision is to make an obje
t for ea
h of her friends. She makes a blueprint,a 
lass, 
alled Friend. This 
lass 
ontains all the variables of a friend; name, address,et
. It has methods to set and get these variables from outside the obje
t. She alsomakes another 
lass 
alled Register that will have only one obje
t from whi
h the Friendobje
ts will be organised. This has to do with the 
on
epts of OO. The organisationof obje
ts and other stru
tures 
ould easily be done, for instan
e, from inside a main()method. But by putting all the 
ode inside obje
ts, we get a program that is easy to
hange later and that looks like a �bla
k box� when seen from the outside.Making an obje
t of 
lass Friend from inside the obje
t of Register, Anne makes apointer to the Friend obje
t as well. The making of pointer and obje
t 
ould look likethis (C++):Friend *myFriend = new Friend();Let us have a look at this expression. �Friend� is the name of the 
lass that we aremaking an obje
t of. �myFriend� is the name of the new obje
t variable. The ��� meansthat �myFriend� is not only a name, but also a pointer to the obje
t. The right side ofthe equation means what it says: We are making a new obje
t, or instan
e, of the 
lassFriend.The pointer to the new Friend obje
t 
an now be stored in a lo
ation of an array.When Anne wants to a

ess the obje
ts, she 
an easily loop through the array frominside the Register obje
t.

Figure 3: The OO stru
ture of example Friends. Only one of the variables and one ofthe methods of the Friend obje
ts are shown.
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3.9 AdvantagesSome of the advantages of OO-programming are:� Modularity; the sour
e 
ode for an obje
t 
an be written and maintained inde-pendently of the sour
e 
ode for other obje
ts. Also, an obje
t 
an be easily passedaround in the system. You 
an give an obje
t to someone else, and it will stillwork.� Information hiding; an obje
t has an interfa
e that other obje
ts 
an use to 
om-muni
ate with it. The obje
t 
an maintain private information and methods that
an be 
hanged at any time without a�e
ting the other obje
ts that depend on it.You don't need to understand the inner workings of an obje
t in order to use it.� Inheritan
e provides spe
ialised behaviours in addition to the 
ommon variablesand methods provided by a super
lass. Through the use of sub 
lasses, program-mers 
an reuse the 
ode in the super
lass many times.� Type safety; when a method is 
alled with arguments in the C++ and Java lan-guages, it is required that the argument types (integer, double pre
ision, 
hara
ter,et
) must mat
h the ones of the method that is being 
alled.
3.10 DisadvantagesThe most noti
eable disadvantage of employing an OO stru
ture is that the programmay be slower than, say, a Fortran program. This problem 
an be minimised by op-timisation of the 
ode, but the fa
t remains that if speed is the important thing, thenOO programming may not be what you are looking for. However, the advantages of theprevious paragraph mostly outweigh this fa
tor.Another disadvantage has to do with the fa
t that OO programming, and the pro-gramming languages that are adapted to it, are relatively new and still under develop-ment. The 
onsequen
e is that there are few really good books on the subje
t 
overingthe latest features and the more spe
ialised options. Also, the 
ompilers are not asoptimised as, for example, modern Fortran 
ompilers.
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4 The CLs methodThe CLs method is a statisti
al method that has been used to analyse data from theexperiments at LEP [16℄. It is based on a likelihood ratio Q, and the 
on�den
e levelsCLsb and CLb, all explained later in this text.
4.1 The statisti
al 
on
eptsMany physi
s experiments are 
ondu
ted to test the validity of a theory. This meansthat the theory must in
lude an observable or a parameter that 
an be measured dire
tlyor indire
tly, respe
tively, in an experiment. A simple observable of a sear
h for a newparti
le would be the number of dete
ted 
andidates mat
hing some prede�ned 
riteria.In the language of statisti
s, an analysis of sear
h results 
an be done as a hypothesistest. The null hypothesis is that there is no new parti
le, no signal (only ba
kground)and the alternate hypothesis says that there is. To reje
t one of these hypotheses, wewill need rules to rank the experimental results from the least to the most signal-like.This 
an be a

omplished by de�ning a test-statisti
, or fun
tion of the observables andmodel parameters (parti
le mass, produ
tion rate, et
) of the known ba
kground andhypotheti
al signal [16℄. Having ranked an ensemble of Gedanken experiments, we usethem to reje
t or a

ept the null hypothesis by de�ning ranges of the values of the test-statisti
. These are 
alled reje
tion and a

eptan
e regions respe
tively. This is donein su
h a way so that we minimise the possibility that we a

identally reje
t the nullhypothesis when it is 
orre
t (type I error), or keep it when we should have reje
ted it(type II error).To summarise; a test of the null hypothesis is a 
ourse of a
tion spe
ifying the setof values of a random variable 
alled the test-statisti
 for whi
h the null hypothesis isto be reje
ted. The set of values for whi
h the null hypothesis is to be reje
ted is 
alledthe reje
tion region of the test [5℄.
4.2 The likelihood ratioThe test-statisti
 (
alled Q) of the type of sear
h experiments we are interested in, isde�ned as the likelihood ratio. The likelihood ratio is the ratio of the probability densit-ies for the two alternate hypotheses for an experimental result, L(s+b)L(b) . If an experiment
onsists of N
han independent 
hannels, the total likelihood ratio is a produ
t of the
hannel likelihood ratios. A 
hannel, as de�ned by alrm
++, is a parti
le intera
tionresulting in a spe
i�
 end produ
t. For an experiment where events are both 
ountedand have a distin
tive measured property, the likelihood ratio 
an be written as:

Q = QN
hani=1 exp�(si+bi)(si+bi)nini!QN
hani=1 exp�bi bniini!
Qnij=1 siSi(xij)+biBi(xij)si+biQnij=1Bi(xij) ; (1)

whi
h 
an be simpli�ed to
Q = e�stot N
hanYi=1 niYj=1 1 + siSi(xij)biBi(xij)! ; (2)

12



where ni is the number of observed 
andidates in ea
h 
hannel, xij is the value of thedis
riminating variable measured for ea
h of the 
andidates, si and bi are the number ofexpe
ted signal and ba
kground 
andidates per 
hannel and stot is the total number ofsignal 
andidates for all 
hannels. Si and Bi are the probability distribution fun
tions(p.d.f.'s) of the dis
riminating variable for the signal and ba
kground of 
hannel i [16℄.If the p.d.f.'s for the dis
riminating variable are identi
al for signal and ba
kground, orif they are not measured, the likelihood ratio 
an be simpli�ed further to
Q = e�stot N
hanYi=1 �1 + sibi�ni : (3)

If we need to �nd the value of Q numeri
ally, the fa
t that the likelihood ratio 
an be
omputed by 
ounting weighted 
andidates will prove useful. We 
an write lnQ as
lnQ = �stot + nXk=1nkwk; (4)

where n is the total number of 
andidates observed in all 
hannels, and the weight wkof ea
h 
andidate is wk = ln 1 + skSk(xk)bkBk(xk)! : (5)A mu
h used fun
tion of the likelihood ratio is �2 lnQ. In the high statisti
s limitthe probability density distribution of this fun
tion is expe
ted to 
onverge toward the4�2 p.d.f. However, the �2 lnQ p.d.f. is not always given analyti
ally, meaning thatit must be 
onstru
ted using Monte Carlo simulations. In Figure 4, an example of thep.d.f.'s of �2 lnQ for the signal+ba
kground and the ba
kground hypotheses are shown.

Figure 4: An example of distributions of �2 lnQ for the signal+ba
kground (red) andba
kground (blue) hypotheses.
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4.3 Con�den
e levelsAn answer of �true� or �false� to a hypothesis test will not be of mu
h use if we don'tspe
ify the signi�
an
e of the reje
tion or a

eptan
e. The signi�
an
e is expressed in theterms of a 
on�den
e level (CL). This value tells us the probability that the true value ofthe test-statisti
 lies within a 
ertain region 
alled the 
on�den
e interval. In our 
ase,this interval 
ould be the a

eptan
e or reje
tion regions. To �nd the 
on�den
e level,it is ne
essary to 
ompare the test-statisti
 for the observed values of an experiment totest-statisti
s obtained theoreti
ally, where the latter should have a set of a

eptan
eand reje
tion values spe
i�ed.The pro
edure of Chapter 4.2 of �nding the likelihoods makes it easy to 
al
ulatethe 
on�den
e levels of reje
tion and a

eptan
e. A

ording to the CLs method, the
on�den
e in the signal + ba
kground hypothesis is de�ned as the probability thatthe real value of Q lies in the interval from �1 up to and in
luding the value ofthe experimental value of the test-statisti
, Qobs, given that the signal+ba
kgroundhypothesis is true. Thus the 
on�den
e in the signal+ba
kground hypothesis 
an bewritten as: CLs+b = Ps+b(Q � Qobs) (6)where Ps+b(Q � Qobs) = Z Qobs�1 dPs+bdQ dQ: (7)Note that dPs+bdQ is the p.d.f. of the test-statisti
 for signal+ba
kground experiments.The 
on�den
e in the ba
kground-only hypothesis is de�ned asCLb = Pb(Q � Qobs) (8)and the 
on�den
e in the signal hypothesis is given asCLs � CLs+bCLb : (9)This is not a �real� 
on�den
e, but a ratio of 
on�den
es that is an approximation to the
on�den
e in a �signal only� hypothesis. The signal hypothesis is 
onsidered ex
ludedat 
on�den
e level CL where 1� CLs � CL: (10)In Equation (4), we saw that lnQ 
ould be expressed as a sum of weighted 
andidates.Numeri
ally, it is mu
h less time 
onsuming to 
ompute this sum than the produ
t ofEquation (2). From the de�nition of CLs+b, we see that Ps+b(Q � Qobs) = Ps+b(lnQ �lnQobs), whi
h enables us to use the value of lnQ dire
tly in our 
al
ulations.In Figure 5, the 
on�den
e levels are displayed graphi
ally. From the de�nition ofCLs+b, Equation (7), we see that the integration of the p.d.f. of Q has integration limitsfrom �1 to the observed value of Q. Sin
e Q is a fun
tion that in
reases for in
reasinglysignal-like experiments, �2 lnQ must have the opposite 
hara
teristi
. This means thatintegration is now performed from the observed value to 1 as 
an be seen in Figure 5,and Equation (6) 
an be written asCLs+b = Ps+b(�2 lnQ � �2 lnQobs): (11)
14



Figure 5: The distributions of Figure 4, with an observed value of �2 lnQ. CLs+b liesin the pink area and the green+pink area shows CLb.
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5 The stru
ture of the alrm
++ program5.1 The OO designThe basi
 layout of the alrm
++ program is rather simple. The idea was to make anobje
t for ea
h 
hannel entered by the user. The 
on
ept of a �
hannel�, de�ned inChapter 4, should be explained further here by an example. The pro
ess Z0 ! e+e� isa 
hannel, and Z0 ! �+�� is another. If we 
hoose to ignore the light lepton �avour,these two 
hannels 
an be 
ombined into the new 
hannel Z0 ! l+l�, where the �l� isshort for �lepton�.To make an obje
t for ea
h 
hannel, it is ne
essary to make a 
lass Channel asa 
hannel obje
t blueprint (see Chapter 3 on OO programming). The 
hannel obje
ts
ontain a lot of variables and methods. The latter are mostly to get or set variables fromoutside the obje
ts. Pointers to these obje
ts are stored in a array 
alled �
hannels�.It is the 
hannel information that is analysed by the program. The methods exe
utingthis analysis are 
ontained in the 
lasses Analysis and Ex
lude. Class Analysis is a super
lass 
ontaining all methods that will be used by more than one analysis type. The onlyanalysis type implemented so far is the analysis �Ex
lude�. The Ex
lude 
lass is asub 
lass of 
lass Analysis, whi
h means that it inherits all the methods and variablesof Analysis. It also 
ontains the spe
i�
 methods of the analysis type (expressed inthe Fortran subroutine ex
lude_signal). Inside 
lass Ex
lude there is a pointer to the�
hannels� array.There is one more 
lass in this stru
ture; 
lass Histogram. This is the 
lass asso
i-ated with Root, an obje
t oriented data analysis framework developed at CERN. TheHistogram 
lass uses the Root libraries to make a TTree [6℄ in whi
h the �nal resultsof the analysis are stored. The TTree is a stru
ture similar in many ways to an ntuple,a well-known data stru
ture to users of PAW [8℄. After the TTree has been �lled, it iswritten to a �le with the extension .root. This �le 
an be opened in the Root frameworkand the 
ontents viewed as histograms. The stru
ture of the C++ program is displayedin Figure 6.
5.2 The user interfa
eThe user interfa
e is written in Java. The 
lass 
ontrolling most of the interfa
e is 
lassJavaCpp, and the other four 
lasses also 
ontributing are the 
lasses Wel
ome, Analysis,Help and About. The obje
t of JavaCpp 
ontains the main interfa
e frame, whi
huses the obje
ts of the other 
lasses to display various GUI (Graphi
 User Interfa
e)
omponents. There is also a 
lass AnalysisJava that takes 
are of the intera
tion betweenthe Java interfa
e and the C++ program. This 
lass plays a major role when the userprovided input is transfered from the Java interfa
e to the C++ program. Figure 7 showsthe interfa
e window and Figure 8 shows the stru
ture of the Java interfa
e program.
5.3 How does it all work?The stru
ture of the Java interfa
e and the 
onne
tion to the C++ program is a little
ompli
ated. The Java �le 
ontaining the Java �main()� method is AnalysisJava.java and
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Figure 6: The OO stru
ture the alrm
++ program.

Figure 7: The Java user interfa
e of the alrm
++ program
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Figure 8: The OO stru
ture of the alrm
++ Java interfa
e.
the role of the 
lass 
ontained in this �le will be explained later. The method �main()�makes an obje
t of 
lass JavaCpp. As this obje
t is 
reated, its 
onstru
tor puts togetherthe GUI 
omponents in the frame obje
t and displays it all on the s
reen. The user willsee a window pop up on the monitor. This window is divided into se
tions. There is amenu bar on top, with a �File� drop down menu, and a main area where the a
tual GUI
omponents are displayed. This area 
onsists of a so-
alled Tabbed Pane. By 
li
kingon the tabs on the left side of the main area, obje
ts of 
lasses Wel
ome, Analysis, Helpand About are 
reated and displayed. The obje
t of 
lass Analysis provides the userwith a way of feeding information into the program su
h as the name and path of aninput �le.To use both the Java and the 
ommand line interfa
e, the user must provide someinformation about the 
hannels he or she wants to analyse. There are two ways of feedingthis input into the program. The standard way is to make a �le of a �xed format thatwill be dis
ussed later (see Appendix B). Both the 
ommand line and the Java interfa
eask for the name and path of su
h a �le. The Java interfa
e also has a pop up windowoption where the user 
an �ll in a form to provide the 
hannel information (see Figure9). When the user has provided all ne
essary information, the 
omputing part of theprogram 
an begin. In the 
ommand line version this is done by pressing �enter�, andin the Java version by 
li
king a �Run Analysis� button. The 
ommand line version
alls the method �ex
lude()�, in the obje
t of 
lass Ex
lude, dire
tly. The Java interfa
eversion 
alls a method in 
lass Analysis that splits up the tasks of allowing the interfa
eto be used and running the analysis into two di�erent �threads�, or sequential �ows of
ontrol. These two threads will run independent of ea
h other and at the same time.The priority of the interfa
e thread is set to a higher value than that of the analysis tostop the interfa
e from �freezing� while the C++ program runs.
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Figure 9: The pop up window where the user 
an �ll in the 
hannel information, one
olumn for ea
h 
hannel.
The Java thread running the C++ program starts with a 
all to the method �run()�in the obje
t of 
lass AnalysisJava. The 
lass AnalysisJava de
lares the C++ method�startCpp()� native, so that the method �run()� 
an 
all it. �startCpp()� itself is 
on-tained in the �le 
ppJava.

 and is 
alled by �run()� via the �
onversion implementa-tion� in �le AnalysisJava.

. The implementation a

esses the data 
ontained withinthe Java strings and passes it to the 
orresponding C++ stru
ture (
onst 
har*). The�startCpp()� method makes an obje
t of 
lass Ex
lude and 
alls its method �ex
lude()�.Using the Java interfa
e is optional and the �le main.

 provides a 
ommand lineinterfa
e. This is a �le 
ontaining a C++ �main()� method that writes some output tos
reen, asks for input and makes an obje
t of 
lass Ex
lude.This is where the numeri
al 
omputations of the analysis starts for both the Javaand the 
ommand line interfa
e versions. This pro
edure, and the 
oupling to the theoryof Chapter 4, will be des
ribed in the next 
hapter.
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6 Coupling to theory6.1 What does the analysis do?The only analysis type available at the moment is the �Ex
lude� option. This is a
ounting analysis, demanding an input �le with user provided information about ea
h
hannel 
on
erning ba
kground, e�
ien
y, bran
hing ratio, number of 
andidates ob-served et
 (see Appendix B). These values are used by the program to generate theprobability density fun
tions (p.d.f.'s) of the signal+ba
kground and the ba
kgroundonly hypotheses of Chapter 4. The p.d.f.'s are generated by applying a Monte Carlo(MC) algorithm.Using the p.d.f.'s, the alrm
++ program employs the CLs method des
ribed inChapter 4 to 
ompute numeri
ally �2 lnQ's, the 
on�den
es of the ba
kground andba
kground + signal hypothesis and several other values. To understand how the the-ory is adapted to a numeri
al approa
h in the program, it is ne
essary to take a detailedlook at the di�erent methods and obje
ts used in the pro
ess.
6.2 How to �nd the 
on�den
es numeri
allyTo �nd the 
on�den
es of the ba
kground and signal+ba
kground hypotheses, we seefrom Figure 5 of Chapter 4 that it is ne
essary to �nd the areas under the p.d.f.'s where�2 lnQ is equal to or larger than �2 lnQobs. To �nd this area, we would like to useEquation (7), integrating the probability density fun
tions numeri
ally in the program.However, we remember from Chapter 4 that these probability density fun
tions are ingeneral not given analyti
ally.To solve this problem, we must remember that the p.d.f.'s are a
tually made up ofthe probability densities, or relative frequen
ies, of the values of �2 lnQ. To �nd thearea under a p.d.f. for a spe
i�
 interval on the axis of abs
issa, we need to somehow�nd, numeri
ally, the total relative frequen
y for all of the values in this interval. Therelative frequen
y of the interval where �2 lnQ � �2 lnQobs is the fra
tion of �2 lnQ'sthat satis�es �2 lnQ � �2 lnQobs 
ompared to the total number of �2 lnQ's.The �2 lnQ p.d.f.'s 
an be simulated by generating a large number of Monte Carloexperiments. Ea
h of these experiments must 
ontain one value of �2 lnQ. Together,the values of the �2 lnQ's of all the experiments make up a distribution. However, anexperiment does not just randomly 
hoose a value of �2 lnQ. In stead, the variablesthat make up �2 lnQ in ea
h MC experiment are produ
ed using a 
ombination of theuser input and random numbers. This way, ea
h of the 
omposite variables a
quirea distribution around its input value; a distribution of the input values si and bi ofEquation (2) are 
reated by inserting the observed values into a Poisson distribution,from whi
h one random number is generated for ea
h MC experiment.When these partially random variables have been set in a MC experiment, a valueof �2 lnQ 
an be 
omputed. This value is 
ompared to the �2 lnQobs, the value of�2 lnQ 
al
ulated using the user input. Every time a �random� �2 lnQ is greater thanor equal to �2 lnQobs, it is re
orded. When a 
ertain, user spe
i�ed number of �2 lnQ'shave been produ
ed and 
ompared to �2 lnQobs, the number of �2 lnQ � �2 lnQobs isdivided by the total number of �2 lnQ's 
al
ulated. This is the relative frequen
y of
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the �2 lnQ's that are greater than or equal to �2 lnQobs, whi
h we remember is alsoequal to the area we wanted to �nd under the p.d.f., sin
e the entire area of a p.d.f. isequal to one. Be
ause of this property of a p.d.f., we have been able to simplify ourtwo-dimensional problem of 
omputing an area to a one-dimensional problem.The ba
kground and signal+ba
kground distributions are, in theory, produ
ed sep-arately in the program. However, to minimise the number of 
al
ulations needed toprodu
e these distributions, the theoreti
ally 
omputed �2 lnQ's are used to generateboth distribution fun
tions. This is done by exploiting the fa
t that the tail of onedistribution is more or less �hidden� under the other distribution (see Figure 4). To �ndpoints on the tails we produ
e a weight, making sure its value is less than one, and useea
h theoreti
ally produ
ed �2 lnQ twi
e. First to �nd a point on one distribution fun
-tion, and se
ond to �nd a point on the tail of the other distribution, using the weight.The weights are ne
essary be
ause the two distributions are not equal, and a �2 lnQprodu
ed for one distribution needs to be �s
aled down� to �t the other distribution.The relation between the two distributions is L(b) = 1QL(s+ b). We see that the weightis a
tually the inverse of the value of the likelihood ratio Q. This means that when wegenerate a value of �2 lnQ that satis�es �2 lnQ � �2 lnQobs, this is stored as one�hit� by the signal+ba
kground hypothesis, and a s
aled down �hit� by the ba
kgroundhypothesis. This prin
iple is illustrated in Figure 10.

Figure 10: A point on the ba
kground hypothesis p.d.f. (blue), 
orresponding to aMC generated value of �2 lnQMC , is �s
aled down� (green arrow) to �nd a point onthe signal+ba
kground hypothesis p.d.f. (red), and a point on the signal+ba
kgroundhypothesis p.d.f. is �s
aled down� (light purple arrow) to �nd a point on the ba
kgroundhypothesis p.d.f.
6.3 Step by step through the programWhen the user has 
hosen the �Ex
lude� analysis, the program will open a user providedinput �le (see Appendix B) and read the 
hannel information. When all the user
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Figure 11: Close-up view of the most important variables and methods in the obje
tsof the Ex
lude and Channel 
lasses.
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provided information has been stored in the 
hannel obje
ts, the method �ex
lude()�is 
alled.
Method �ex
lude()�Method �ex
lude()� starts with de
laring an obje
t of 
lass TTree, found in the Rootlibrary [6℄. Most of the 
ommuni
ation between the alrm
++ program and the Root
lasses is handled by the obje
t of 
lass Histogram. A TTree is a stru
ture somewhatsimilar to an ntuple, but unlike an ntuple it 
an hold all kinds of data, like arrays orobje
ts. The bran
hes of the TTree obje
t are �lled with variables that will be 
omputedduring the analysis.The �rst main method to be 
alled by �ex
lude()� is �smear_
orr_e�_and_bg(true)�,whi
h is 
alled to initialise a list of the error sour
es of the experiment, if provided bythe user. The next step is to �nd the sum of all signal and ba
kground 
andidates, stotand btot. The si of Equation (2) for ea
h 
hannel is given assi = Li � �i � Bi � �i; (12)where L is the luminosity, � is the 
ross se
tion, B is the bran
hing fra
tion and � is thee�
ien
y. �getSbTotals()� �nds the stot sum by 
alling a method in ea
h 
hannel obje
tthat returns the value of the si.Method �getClImpunb()�The method doing most of the work in the analysis is �getClImpunb()�. The name ofthis method is short for �get CL, improved, unbinned�, a name that was 
onstru
tedduring the development of the original Fortran 77 subroutine. �getClImpunb()� is 
alledfrom �ex
lude()� after �getSbTotals()�, and this is where the �2 lnQ's are 
omputed andused.The method �rst �nds the values of stot and btot by 
alling �getSbTotals()�, whi
hadds together the nominal (user spe
i�ed) si's and bi's. The method �altlnq(type_data)�returns the value of the sum Pnk=1 nkwk of Equation 4. The option type_data meansthat the observed 
andidates are used when the weights wk are 
al
ulated. By 
ombiningthese results, we �nd �2 lnQobs.The next step is to make a loop whi
h generates and pro
esses a set of nexps MCexperiments. Inside this loop, 
alled the nexps loop, are many method 
alls and 
om-putations, the �rst one being a 
all to �generateM
Trial(
onf_sb)�. This is the �rststep in a pro
ess where unweighted signal+ba
kground experiments and weighted ba
k-ground experiments are generated, as des
ribed above. The 
onf_sb option requeststhat the method generates a random number of both signal and ba
kground 
andid-ates for ea
h 
hannel, using a Poisson distribution with the user provided values asthe distribution parameter. The resulting number of 
andidates are stored in the vari-ables nxsm
 and nxbm
, their sum in nxm
, for ea
h 
hannel. �generateM
Trial()� 
allsmethod �smear_
orr_e�_and_bg()� to randomise the 
hannel values of the e�
ien
yand ba
kground if there are any error sour
es de�ned by the user.�getClImpunb()� 
alls the method �getSbTotals()� again, to �nd the new stot and btotafter the possible 
hanges in the ba
kground and signal values 
aused by23



�smear_
orr_e�_and_bg()�. Two values of �2 lnQ are 
omputed at this stage, �2 lnQand �2 lnQnom. �2 lnQnom is 
al
ulated using the stot of the user input values and theother by using the value of stot generated by the last 
all to �getSbTotals()�. Theargument of the �altlnq()� 
all, type_m
, ensures that the weights of Equation 4 arefound using the new values of sk and bk and the variable nxm
 (random number of
andidates for the 
hannel).�2 lnQ is used in the 
omputation of a weight wt = e�0:5�2 lnQ = 1Q . If the weightis less than or equal to one, �2 lnQnom is 
ompared to �2 lnQobs. If �2 lnQnom isgreater than or equal to �2 lnQobs, the variable wt_sb_less is in
reased by one and theweight is added to the variable wt_b_less. If, on the other hand, �2 lnQnom is less than�2 lnQobs, wt_b_greater is in
reased by the weight. Either way, the 2 lnQnom 1 is storedin both the ba
kground and the signal+ba
kground experiment arrays (q_b_expts andq_sb_expts), the weight 1Q is stored in the ba
kground weight array (wt_b_expts) andthe weight 1 is stored in the signal+ba
kground weight array (wt_sb_expts).The next part of the nexps loop is a generation of unweighted ba
kground experi-ments and weighted signal+ba
kground experiments. The �rst 
all is again for �gener-ateM
Trial()�, but with argument 
onf_b instead of 
onf_sb. The di�eren
e is that onlythe number of ba
kground 
andidates is generated as a random value of a Poisson distri-bution. After the new stot and btot have been 
al
ulated, the new values of the �2 lnQ'sare found using �altlnq(type_m
)�. The weight is 
omputed and 
ompared to one, asbefore, and �2 lnQ is 
ompared to �2 lnQobs. This time, the variable wt_sb_less isin
reased by the weight and the variable wt_b_less by one if the generated experiment�2 lnQ is greater than or equal to the observed value. The weight and 2 lnQ are storedin the various arrays des
ribed above. This 
ompletes the nexps loop.Now we have enough information to 
ompute CLsb, CLs and CLb. From thede�nitions in Equations (6) and (8), we know that CLsb and CLb are de�ned as theprobabilities of �2 lnQ being greater than or equal to �2 lnQobs, given that the sig-nal+ba
kground, or the ba
kground only hypothesis is true, respe
tively. The numeri
alway of �nding these probabilities, as we remember from Chapter 6.2, is to divide thenumber of times (with weights) this 
ondition was met during the nexps loop, with thetotal number of generated experiments. CLs is given in Equation (9) as the ratio of thesignal+ba
kground and the ba
kground 
on�den
e levels.Having been �lled with their appropriate values, the experiment arrays of 2 lnQ forboth the ba
kground and the signal+ba
kground hypotheses are sorted in as
endingorder. Their weight arrays are also sorted, so that the weights follow the order of theexperiment arrays.The method goes on to generate a set of nexps unweighted test experiments. Theseare signal+ba
kground experiments that are generated to test what the 
on�den
eswould be like if there was a signal at some unexpe
ted lo
ation. The test experi-ment generation is done using the method �generate_sigtest_trial()�, whi
h produ
esa random number of 
andidates for both signal and ba
kground similar to the method�generateM
Trial()�, and the method �altlnq()�. The test experiment 2 lnQ's are storedin array q_sigtest_expts. Both the sum of all �2 lnQ's and the sum of the (�2 lnQ)2'sare 
omputed. Using these two sums, we 
an �nd the mean and the varian
e of the1due to histori
al reasons, the absolute value of �2 lnQ is used
24



results.The array q_sigtest_expts is sorted in as
ending order, and we loop through thearray, 
al
ulating the ratio of the iteration variable and the total number of simulatedexperiments (nexps). By 
omparing this ratio to the standard normal distribution prob-abilities at -2, -1, 0, 1 and 2 standard deviations, we �nd the values of 2 lnQ at thesepoints. These values are stored in the array xi2_exp_sigtest.In order to �nd the values of dis
overy 
on�den
es and potentials, we want to in-tegrate the ba
kground and the signal+ba
kground distributions from the top. Whenexe
uting a loop starting at the top of the weight arrays, whi
h were sorted earlier tofollow the sorted values of the 2 lnQ's, we a
tually move from negative values of �2 lnQtoward positive values. As we 
an see in Figure 5, this means that we 
ompute thevalues of 1� CLb and 1� CLs+b.The a
tual loop is on the form of a while loop, starting at the number of MC ex-periments 
ondu
ted and des
ending toward zero. At the top of the loop, the relativefrequen
y, or probability density, of ea
h 2 lnQ for both hypotheses are found by di-viding the weight of the 2 lnQ by the sum of all the weights. The variables wtbtot andwtsbtot 
ontinuously hold the sum of all these relative frequen
ies, thus 
ontaining theupdated values of 1 � CLb and 1 � CLsb of the ba
kground and signal+ba
kgroundhypothesis respe
tively. As wtbtot, whi
h is identi
al with the signi�
an
e (1 � CLb),rea
hes the standard normal distribution probabilities at -5, -4, -3, and -2 standarddeviations, the 
orresponding values of wtsb (1 � CLsb) are stored in the variablesp_dis
_5s, p_dis
_4s, p_dis
_3s and p_dis
_2s. These variables represent the dis-
overy potentials, the probabilities of making dis
overies at various signi�
an
e levelsif the signal+ba
kground hypothesis is true. If the signal+ba
kground and the ba
k-ground distributions lie 
lose together on the �2 lnQ axis, the dis
overy potentials willhave small values. If the distributions are only slightly overlapping, or not at all, thevalues will be 
lose to one. These two situations are illustrated in Figure 12.As wtsbtot (1 � CLsb) rea
hes the standard normal distribution probabilities at -2,-1, 0, 1 and 2 standard deviations, the 
orresponding values of wtbtot (1�CLb), wtbtotwtsbtotand 2 lnQ are stored in arrays m_
l_b_exp_sb, m_
l_b_p_exp_sb and xi2_exp_sbrespe
tively. The value of CLb at CLs=0.05 is stored in the variable 
l_b_exp_sb.And �nally, in the last part of the while loop, the 
on�den
es for the di�erent fre-quen
y 
ontours of the test experiments are 
omputed by 
omparing all the 2 lnQ's ofthe MC experiments (2 lnQMC's) with the xi2_exp_sigtest array found earlier. Whenthe �2 lnQMC's rea
h the point where they are equal to the various entries of thexi2_exp_sigtest array, 1�CLb, CLsb and CLs are stored in the arraysm_
l_b_exp_sigtest,
l_sb_exp_sigtest and 
l_s_exp_sigtest respe
tively.The while loop 
ontained an integration of 1 � CL's. To �nd the CL's, we needto exe
ute a for loop iterating from zero up to the number of Monte Carlo simulatedba
kground experiments. As in the while loop, this is a integration pro
ess wherethe relative frequen
y, or probability density, of ea
h 2 lnQ for the ba
kground and thesignal+ba
kground hypotheses are found by dividing the weight of the 2 lnQ by the sumof all the weights. The variables 
ls and 
lsb now hold the updated values of the CLband the CLsb areas under the ba
kground and signal+ba
kground p.d.f.'s respe
tively.The variable qb holds the 
orresponding 2 lnQ value. The 2 lnQ's are found in the
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q_b_expts array, whi
h was sorted in as
ending order earlier in the method.By 
omparing ea
h 2 lnQ with the previous, the MC experiments with equal valuesof 2 lnQ are a

essed in a nested for loop as one �blo
k� of experiments. This is ne
essaryto ensure that the integration to �nd the 
on�den
es in
lude all the experiments for ea
hstep on the �2 lnQ axis, and to make sure that identi
al experiments get identi
al valuesof integrated 
on�den
es. (see Figure 13). For ea
h of the members in the blo
k of equal2 lnQ values, the average value of CLb for the signal+ba
kground hypothesis and itssquare is 
al
ulated and stored in variables 
lbtot and 
lbsq. To �nd the false ex
lusionrates, the probability of ex
luding the signal and the signal+ba
kground hypotheseswhen they should be a

epted, we identify the two experiments where CLs and thenCLsb are approximately equal to 5%, and look at the value of CLsb. The false signalex
lusion rate, 
lsb at 
ls � 0.05, is stored in fe_rate, and the false signal+ba
kgroundex
lusion rate 
lsb when 
lsb rea
hes 5%, is stored in fe_rate_sb. If the smallest CLsor CLsb is greater than 5% the 
orresponding false ex
lusion rate is of 
ourse zero.The method pro
eeds by analysing the statisti
s of the signal+ba
kground experi-ments. The variables wexpt_signal and wexpt_signal_sq a

umulates values to be usedlater to �nd the average value of �2 lnQ if the signal+ba
kground hypothesis is true,and its square. An alternate version of CLs used by the ALEPH 
ollaboration, 
ls_aleph[13℄, is also 
al
ulated.The value of 
ls is 
ontinuously tested to �nd the 90%, 95% and 99% ex
lusion(CLs � 10%; 5%; 1%). For ea
h of these tests, the weight of the ba
kground hypothesisdistribution, wtb, is stored in the variables wt99, wt95 and wt90.Next, we look at the statisti
s of the ba
kground experiments. We �nd the average
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Figure 13: A histogram showing the frequen
ies with whi
h the randomly generated�2 lnQ's o

ur. A numeri
al integration 
onsists of �nding the sum of all the �2 lnQ'sfrequen
ies. All experiments with equal values of �2 lnQ must therefore be in
luded inea
h integration step.
value of CLsb for the ba
kground hypothesis by a

umulating 
lsb*wtb in variable 
lsbtot.In variable 
lbbtot, the average value of CLs for the ba
kground hypothesis is found bya

umulating 
ls*wtb, and 
lstot_aleph holds the sum of all 
ls_aleph*wtb's. We �ndthe average value of CLs given that the ba
kground hypothesis is true, in variablewexpt_infty, .Continuing our analysis of the ba
kground experiments, we 
he
k the value of 
lb to�nd the �ve points where it rea
hes the standard normal distribution probabilities at-2, -1, 0, 1 and 2 standard deviations. At ea
h of these points, we store the values ofCLsb, CLs and 2 lnQ in arrays 
l_sb_exp_b, 
l_s_exp_b and xi2_exp_b respe
tively.In the last part of method �getClImpunb�, we make the �nal 
al
ulations of expe
tedvalues and un
ertainties. As an example, to �nd the expe
ted ba
kground 
on�den
efor signal+ba
kground experiments and its estimated un
ertainty from the a

umulatedstatisti
s, we divide 
lbtot with the sum of all the ba
kground experiment weights. Theresult is stored in variable 
l_b_infty. The un
ertainty, or the standard deviation, isfound by employing the formula rPni=1(xi��x)2n�1 , where n is the sum of all the ba
kgroundweights and x and �x are, in this situation, 
lb and its average value. Most of the othervariables found during the exe
ution of method �getClImpunb()�are treated the sameway; they are divided by the sum of the appropriate weights to �nd average values, andtheir un
ertainties are 
al
ulated.
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The outputWhen method �getClImpunb()� is �nally �nished and all TTree bran
h variables areset, the results need to be displayed in some way. The method �ex
lude()� 
alls twoother methods to make outputs of the results. The �rst one is method �ex
ludeFile()�,a method that prints all variables of interest to �le �ex
lude.res�. The se
ond method is
alled ��nishHistos()�, and it �lls the TTree and writes it to the Root �le �likem
.root�.The results are also displayed on the 
omputer s
reen, in the shell or in the form of apop-up window, depending on whi
h interfa
e the user has 
hosen.
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7 Test resultsIn this 
hapter I will present the results of two analyses performed with both the alrm
and the alrm
++ programs, and one analysis performed with the alrm
++ program only.The goal is both to show that alrm
++ works, and that it reprodu
es the results of theoriginal Fortran program.
7.1 Test analysisWhile it was still under 
onstru
tion, I used a simple test analysis of six 
hannels to testthe alrm
++ program. Ea
h 
hannel had values for the observed number of 
andidates,whether or not the 
hannel should be used when running an analysis, whether the massinformation should be used, the number of ba
kground 
andidates, the e�
ien
y, thebran
hing ratio and the luminosity. The input is shown below (the input variables andthe format of the alrm
++ input �le is des
ribed in detail in Appendix B).

Observed 1 0 1 5 0 1Use 
hannel 1 1 1 1 1 1Use mass 0 0 0 0 0 0Ba
kground 0.675 0.440 0.583 5.340 0.410 0.730E�
ien
y 0.0256 0.0425 0.1217 0.5223 0.0125 0.0226Bran
hing ratio 0.1 0.1 0.1 0.1 0.1 0.1Luminosity 1.0 1.0 1.0 1.0 1.0 1.0
The analysis was performed with 10000 Monte Carlo experiments. The output ofboth programs are shown in the table below. The output variables are explained inAppendix C.

Variable name alrm
++ alrm
stot 0.07472 0.0747btot 8.178 8.1780CLsb 0.546093 0.551525CLb 0.557638 0.562975CLs 0.979296 0.979661�2 lnQ, from user input -0.00296659 -0.00296658CL_s_infty 0.975514 0.975605-2lnQ_b_infty -0.000238418 -0.0008964161-CLb 0.442362 0.437022001Dis
overy potential, 3 sigma 0.00300535 0.0031Dis
overy potential, 4 sigma 0.000200356 0.0002Dis
overy potential, 5 sigma 0.000100178 0.000129



We see that the values of stot and btot for the two di�erent programs were equal. Thealrm
++ values of the other variables 
ame 
lose to the alrm
 values, but they were notexa
tly the same. This was expe
ted for several reasons. The alrm
 and the alrm
++programs use di�erent random generators to produ
e random numbers, whi
h of 
ourseresults in di�erent random numbers. Also, the variable types have been 
hanged. This issomething that 
omes about in the 
ause of translation; the REAL, REAL*4, INTEGERand so on of Fortran 77 have been translated mostly into the C++ variable types doubleand int. In addition, some of the values that are 
al
ulated during an analysis are verysmall, meaning that they are greatly in�uen
ed even by small �u
tuations in the randomnumbers.
7.2 Simple analysis testA simple 
he
k to see if the program is working, is to set the number of observed
andidates to zero. From Chapter 5, we see that the �2 lnQ's of the Monte Carlogenerated experiments are 
al
ulated using random numbers produ
ed by a Poissondistribution to �nd the number of 
andidates for the 
hannels. We know from Equation(2) and (4) that when the number of 
andidates of the user input is equal to zero, onlythe �2 lnQ's where the random number of 
andidates are also equal to zero will satisfythe 
ondition �2 lnQ � �2 lnQobs.The probability of obtaining a spe
i�
 number of 
andidates , ni, from the randomnumber generation is given by the Poisson probability fun
tionP (ni) =Yni e�(si+bi)(si + bi)nini! : (13)The symbols of this equation are explained in Chapter 4. We see thatP (ni = 0) =Yni e�(si+bi): (14)For the signal+ba
kground hypothesis,P (ni = 0) =Yni e�(si+bi) = e�(stot+btot); (15)and for the ba
kground hypothesis,P (ni = 0) =Yni e�(bi) = e�btot: (16)
The ratio of these two probabilities, whi
h 
orresponds by de�nition to the ratio of CLs+bCLb ,is e�stot. From Equation 12 we see that when the luminosity, 
ross se
tion, bran
hingratio and e�
ien
y are all equal to one, as we assume is the 
ase here, stot = numberof 
hannels, N
han. As a result, CLs will have the value e�N
han . An example of three
hannels would give CLs � 0:05 (5%). The alrm
++ input values of this example isshown below.
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Observed 0 0 0Use 
hannel 1 1 1Use mass 0 0 0Ba
kground 1.0 1.0 1.0E�
ien
y 1 1 1Bran
hing ratio 1.0 1.0 1.0Luminosity 1.0 1.0 1.0
The analysis was performed with 100000 Monte Carlo experiments. The results ofalrm
 and alrm
++ is displayed in the table below.

Variable name alrm
++ alrm
stot 3 3btot 3 3CLsb 0.00269843 0.00247875CLb 0.054324 0.0497871CLs 0.0497871 0.0497871�2 lnQ, from user input -6 -6CL_s_infty 0.263642 0.265931-2lnQ_b_infty -1.86152 1.835581-CLb 0.945676 0.950212955Dis
overy potential, 3 sigma 0.128108 0.1226Dis
overy potential, 4 sigma 0.0188541 0.0185Dis
overy potential, 5 sigma 0.001267 0.0013
Both the alrm
 and the alrm
++ program �nds approximately 5% 
on�den
e in thesignal hypothesis. As in the previous example, there are some di�eren
es between thetwo programs in the values of the other variables.

7.3 Neutrino os
illationsThe NOMAD neutrino os
illation �e ! �� sear
h [3℄ is a good example of an experimentwhere the alrm
 program 
an be used in the �nal stage of the analysis. The data
onsists of thirteen di�erent 
hannels (using the alrm
++ de�nition of Chapter 5). Allthe 
hannels have very few or no observed 
andidates. The experimental results and theNOMAD method of 
al
ulating the signal 
on�den
e are des
ribed in [3℄ and [9℄. To seewhat results the CLs method and the alrm
++ program give 
ompared to [3℄, we needto insert the experiment data into the program.In [3℄, the results are given in the form of an upper limit on the probability of a �eos
illating to a �� at 90% 
on�den
e: Pos
(�e ! �� ) < 2:6 � 10�2 at 90% CL. The CL31



value is the average value of the 
on�den
e in the signal hypothesis. The sensitivity isgiven as Pos
 = 4:3� 10�2.Be
ause the alrm
 program was originally designed to make use of one analysismethod in parti
ular, its input variable names do not mat
h the ones of the analysismethod of [3℄. For example, the variable Pos
 had to be inserted in the 
ross se
tionvariable of the input �le to �s
ale� the input 
ontrol variables to mat
h the NOMADdata. This is a weakness of the original program that has been, unfortunately, passedon to the new alrm
++ program. The experimental results of [3℄ had to be interpretedso that the their values 
ould be introdu
ed to the program through the 
orre
t 
ontrolvariables.In the alrm
++ program, the median of the 
on�den
e in the sensitivity [9℄ (whenthere is no signal, only ba
kground) is represented by the third element of array
l_s_exp_b, and the average value is represented by the variable CL_s_infty. The
on�den
e in the signal hypothesis is, as usual, CLs.To �nd the median value of the sensitivity at 90% CL using the alrm
++ program, thevalue of the 
ross se
tion 
ontrol variable was �rst adjusted until the value of the outputvariable 
l_s_exp_b[2℄ was approximately 0.10 (10%). Later the same adjustmentswere made to �nd the 
ross se
tion values where CL_s_infty and CLs � 0.10.The input of the alrm
++ program whi
h gives 
l_s_exp_b[2℄ � 0.10 is shownbelow.
Observed 0 1 4 0 0 32 0 5 5 0 1 0Use 
hannel 1 1 1 1 1 11 1 1 1 1 1 1Use mass 0 0 0 0 0 00 0 0 0 0 0 0Ba
kground 1.19 0.42 3.01 1.45 0.28 2.700.50 1.80 5.0 6.5 0.5 0.1 0.4E�
ien
y 3.9 4.5 12.1 10.9 23.3 12.64.5 20.1 45.7 25.9 1.8 2.1 1.8Bran
hing ratio 1.0 1.0 1.0 1.0 1.0 1.01.0 1.0 1.0 1.0 1.0 1.0 1.0Luminosity 1.0 1.0 1.0 1.0 1.0 1.01.0 1.0 1.0 1.0 1.0 1.0 1.0Cross se
tion 0.04267 0.04267 0.04267 0.04267 0.04267 0.042670.04267 0.04267 0.04267 0.04267 0.04267 0.04267 0.04267

The output, where 
l_s_exp_b[2℄ is very 
lose to 0.10, is shown below. The programwas performed with 100000 Monte Carlo experiments.
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Variable name alrm
++stot 7.21976btot 23.85CLsb 0.0267006CLb 0.371901CLs 0.0717951�2 lnQ, from user input -3.88761CL_s_infty 0.145795-2lnQ_b_infty -2.759271-CLb 0.628099Dis
overy potential, 3 sigma 0.224919Dis
overy potential, 4 sigma 0.0483331Dis
overy potential, 5 sigma 0.0052645
l_s_exp_b[2℄ 0.100076
The value of the median of the sensitivity at 90% 
on�den
e a

ording to the alrm
++program analysis, is about 0.0427. This is approximately the same value as the NOMADvalue of 0.043. When the value of the average CL (CL_s_infty)rea
hed 10%, however,the sensitivity value was 0.05035. This value is greater than the NOMAD value.alrm
++ gave an upper limit on the probability Pos
(�e ! �� ) at 90% CL of 0.038,whi
h is a greater value than the NOMAD value of 0.026.We see that the upper limit on the probability of the neutrino os
illation �e ! ��be
omes greater when we use the alrm
++ program to analyse the NOMAD data. Still,the point of this example was not to re-analyse the NOMAD data, but to show that it isa
tually possible to use the alrm
++ program to analyse the data from su
h experiments.I will therefore not try to explore this topi
 further, or draw any 
on
lusions as to whi
hstatisti
al analysis method is the better to use in this 
ase.
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8 Con
lusions and outlookFrom the test results of the previous 
hapter, and from other tests 
ondu
ted in thepro
ess of translation from Fortran 77 to C++, it seems 
lear that the alrm
++ works,and is able to reprodu
e the results of the old Fortran version. However, there are
ertain aspe
ts of the translated version that need to be mentioned.
8.1 Problems and resultsThe alrm
++ program is mainly obje
t oriented in its stru
ture, although some partsof the 
ode are not quite optimal in this respe
t. For example, the 
al
ulations of skand bk of Formula (5) in method �altlnq()� 
ould be delegated to the 
hannel obje
ts.The reason that this has not been done, is mainly that 
hanging these parts of the
ode would make su
h a large impa
t on the program stru
ture that it would be tootime 
onsuming for a 
and. s
ient. assignment. Being at least mostly obje
t oriented,however, the program is modular and 
an easily be 
hanged or expanded.The user interfa
e, written in Java, is optional and is expe
ted to make it easierfor new users to understand and use the program. It has a help se
tion providinginformation about the input �le and the analysis. The Java interfa
e window is shownin Figure 7.There have been problems for new users related to the 
onne
tion between the C++program and the Java interfa
e. The most 
ommon problem seems to be that the Javaprogram is unable to �nd the C++ shared library (see Appendix A). The 
ompilation ofthe interfa
e and alrm
++ 
ombination 
an also be di�
ult, and is likely to be dependenton operating system and 
ompiler versions.Not all features of the C++ program version have been tested yet. There are pos-sibilities in the program for letting the user provide error values and error sour
es, butthis has not been fully implemented. Another feature not yet tested is the possibility ofletting the user 
hoose to in
lude information about, for example, parti
le masses. Thiswould require that signal and ba
kground probability distributions be spe
i�ed in themethods �sigprob()� and �ba
kprob()�. These distributions will, hopefully, be in
ludedin future expanded versions of the program.One of the disadvantages of obje
t oriented programming, mentioned in Chapter 3,is that the 
omputational speed may be less than for non-OO stru
tures. This is truefor the alrm
++ program, whi
h was about twenty times slower than the alrm
 programin April 2002. Be
ause of the restri
tions in the duration of a 
and. s
ient. assignment,I have not had time to optimise and improve the C++ program, so that when thetranslation was �nished, there was a lot that 
ould be done to make the program workfaster 2.2My supervisor, Alex Read, has done some optimising and has managed to get the di�eren
e in
omputational speed down from 20 times slower than the Fortran program to about 1.2 times slower.Many of the main bottlene
ks were lo
ated at points where arrays were de
lared and deleted, andmoving these operations proved to be quite e�e
tive.
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8.2 The futureSo far only one analysis type (MC 
omputations of 
on�den
es for 
ounting experimentsat a �xed point of the model parameter(s)) has been implemented, but the program is de-signed for more. The idea is that the super 
lass Analysis (see Chapter 3) should 
ontainall the 
ommon methods that all analysis types use, while its sub 
lasses should 
ontainthe spe
i�
 methods of the various analyses. Figure 14 shows super 
lass Analysis withthree sub 
lasses, ea
h of them asso
iated with an obje
t 
ontaining the analysis typemethods.

Figure 14: The super 
lass Analysis with three sub 
lasses, their obje
ts 
ontaininganalysis type methods.
When using the 
ommand line version of the C++ program, it is the �main()� methodthat initialises the various obje
ts and 
alls the major methods. To adapt the programto work with a di�erent form of input or slightly di�erent pro
edures, the �main()�method 
ould be repla
ed by a 
ustomised version.A test was made to see if the results of a simulation of the Higgs sear
h pro
essH ! 

 [11℄ with approximately 80 
hannels (with several thousand events per 
hannel)
ould be analysed by the alrm
++ program. The test showed that this 
ould not be doneby the 
urrent program in a �nite amount of time, and so adapting the program to readsu
h input and analyse it is a 
hallenge for the future.Also for the future is the an addition to the program of a feature whi
h allows theuser to feed information about the parameters of the test signal MC experiments. Atpresent date, the user 
an only provide the observed values of the various parameters.The 
ompilation and run-time problems of the Java user interfa
e might be solvedin the future by making a 
ompletely new interfa
e, or providing a more user friendly
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ompilation �re
ipe�. A suggestion of using s
ripting [14℄ to solve the problems seemspromising.The alrm
++ program is a work in progress. It has been re-organised and obje
t ori-ented, while still reprodu
ing the results of the �ex
lude_signal� analysis of the Fortranversion, but there is a lot more to be done. There is still a need for further optimisa-tion and obje
t orienting, and for expansion and adaption. Hopefully, this work will be
ontinued in the future.
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A How to use the alrm
++ programA.1 PreparationsThe program uses the external libraries of Root [6℄ and CLHEP [7℄, both available atthe CERN home pages. The paths to these libraries must be set in the environmentvariable LD_LIBRARY_PATH and in the 
ompilation 
ommand or Make�le.When using the Java interfa
e version, the C++ �les must be 
ompiled as a sharedlibrary [2℄. The path of this shared library must be set in the Java �le AnalysisJava.java.
A.2 Compilation and the Make�leWhen all the ne
essary �les have been 
opied and the library paths have been foundand set, it is time for the 
ompilation. The easiest way would be to 
ompile onlythe C++ �les �rst to get a working sample of the 
ommand line version. This is anormal C++ 
ompilation, using a C++ 
ompiler with the external libraries of Rootand CLHEP in
luded. The program has so far been 
ompiled with the g++ 
ompiler,and all standard C++ libraries have been in
luded. The pro
edure is des
ribed in mostC++ tutorials.To use the Java interfa
e, some 
hanges must be made from the 
ommand line versionby the user. The 
ompilation will be di�erent, as the Java �les must be 
ompiled witha java 
ompiler, the C++ �les with a C++ 
ompiler (with the option -shared) and the�in between� 
lass AnalysisJava.
lass (produ
ed by the java 
ompiler) with the javah
ommand with the option -jni (�javah -jni AnalysisJava�). The �shared� option makesa shared library of all the C++ �les. The shared library is loaded at the start of ea
hsession in the obje
t of 
lass AnalysisJava. As mentioned in the Preparations, this meansthat the name and path of the shared library must be 
orre
t in this �le.An example of a Make�le for 
ompilation of both the 
ommand line and the Javainterfa
es is in
luded below. The shared library is 
alled nativeC.so, and the exe
utable
ommand line �le is 
alled alrm
++:# The Ma
ros#MAKEFILE = makefileFILE = alrm
++OFILES = nativeC.soCC = g++LN = -lm -lCLHEP -lCint -lCore -lTree -ldl -lg2
 -lstd
++LIBS = -L./ -L/usr/lib -L/mn/susy/parti
le/
lhep-1.7.0.0/i386_redhat71/lib-L/mn/susy/parti
le/root-v3.01.06/i386_redhat71/lib/INCLUDE = -I./ -I/mn/susy/parti
le/
lhep-1.7.0.0/i386_redhat71/in
lude-I/mn/susy/parti
le/root-v3.01.06/i386_redhat71/in
lude/IDIRS = -I/mn/heli
ity/lo
al/fys/epf/jdk1.3.1_02/jre/lib/i386/DEBUG = -g -O0# Obje
t files, it pays of in stru
ture to trun
ate with ba
kslash (\)
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OBJC = main.o 
hannel.o analysis.o ex
lude.o histogram.oOBJJ = 
hannel.o analysis.o ex
lude.o histogram.o 
ppJava.o AnalysisJava.oINCC = analysis.h ex
lude.h histogram.h 
hannel.h arrayComp.hINCJ = 
ppJava.h jni.h AnalysisJava.h.SUFFIXES: .

 .o# Rule for ea
h subroutine.

.o:$(CC) $(LIBS) $(INCLUDE) $(DEBUG) -
 $<MAIN = $(FILE)# targetall: $(MAIN) java lib# MAINs dependen
ies, 
ompile ea
h subroutine a

ording to Rule$(MAIN): $(OBJC) $(MAKEFILE)$(OBJC): $(INCC)$(OBJJ): $(INCC) $(INCJ)# Compile Main and link$(MAIN): $(OBJC)$(CC) $(STDOPT) $(DEBUG) $(INCLUDE) $(LIBS) -o $� $(OBJC) $(LN)#Make libraries$(OFILES): $(OBJJ)$(CC) $(CCFLAGS) $(INCLUDE) $(LIBS) -shared -o nativeC.so$(OBJJ) $(LN)lib: libAnalysisJava.solibAnalysisJava.so: AnalysisJava.h $(OFILES) AnalysisJava.o$(CC) $(CCFLAGS) $(INCLUDE) $(LIBS) -shared -o libAnalysisJava.so$(OFILES) $(CPPDEFINES) $(CCLIBS) $(IDIRS) $(LN) AnalysisJava.ojava: JavaCpp.
lass AnalysisJava.
lass AnalysisJava.hJavaCpp.
lass: JavaCpp.javajava
 JavaCpp.javaAnalysisJava.h: AnalysisJava.
lass
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javah -jni AnalysisJavatou
h AnalysisJava.hAnalysisJava.
lass: AnalysisJava.javajava
 AnalysisJava.java
A.3 Spe
ial problemsThere are some fa
tors that the user should be aware of when using the alrm
++ pro-gram. These are listed below.� The 
ompilation of shared libraries and of javah -jni is likely to be dependent onthe operating system. The program has so far been tested only within a LinuxRed Hat environment.� If the program 
an't �nd the shared library, it might be ne
essary to add the pathof this library to the LD_LIBRARY_PATH or similar.� There is a strange di�eren
e between the 
ommand line and the Java interfa
eversion. The format of the input �le is the same in both 
ases, but the 
ommasof the �double� variables must be written as �.� for the 
ommand line and �,� forthe Java version. This is a strange di�eren
e that originally did not seem to haveany logi
al explanation. Just lately, it has been suggested that this is due to thelo
ale feature of the Java language, whi
h adjusts the 
omma standard a

ordingto the 
ountry of residen
e.� There is a problem if a variable that is de�ned as an integer in the program isgiven as a double in the input. If this happens, the program will read the numberas zero, 
ausing problems in the 
omputation.
A.4 OutputWhen the program has �nished, there will be two output �les; one text �le 
ontainingthe variables 
omputed by the program, and a .root �le 
ontaining a Root TTree �lledwith result data. The latter 
an be opened and viewed in Root. An example of a Roots
ript that opens the �le and displays the variable �
l_sb� as a histogram is shownbelow. The s
ript is 
ontained in a �le 
alled �display.
�. The �le is exe
uted in theRoot environment by typing �.x display.
�.
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int display(){ //Reset all variables in session:gROOT->Reset();//Open file:TFile *p = new TFile("likem
.root","READ");//View file 
ontentsp->ls();//Read file Tree to new session Tree:TTree *tree = T;//Make a 
anvas to display histograms:TCanvas *
an = new TCanvas("
","C",0,0,600,400);//Draw variable 
l_sb as a histogram:tree->Draw("
l_sb");return 0;}
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B Input �le formatThe Java interfa
e should be used for global information input. This 
ould be thenumber of Monte Carlo experiments you want the program to simulate, the s
an range(not yet implemented), et
 of the analysis type you want to run. The input �le should
ontain information about the individual 
hannel(s) you want to analyse.The �rst line of the input �le should 
ontain the number of 
hannels you want toanalyse. The rest of the lines should all start with a 
ontrol variable (see list of 
ontrolvariables below), and then the values of that variable for ea
h 
hannel, with a spa
e ortab in between. The variables are not 
ase sensitive.
B.1 The 
ontrol variables:E�
ien
y: The nominal signal dete
tion e�
ien
y per sear
h 
hannel. Default = 1.0.Ba
kground: The nominal integrated ba
kground rate per sear
h 
hannel.Default = 0.0.Observed: The number of 
andidates observed per 
hannel. Default = 0.Luminosity: The integrated luminosity per sear
h 
hannel. Default = 1.0.Bran
hing: The bran
hing ratio per sear
h 
hannel. Default = 1.0.Cross se
tion: Cross se
tion per sear
h 
hannel. Default = 1.0.Use
han: True/False per 
hannel to enable/disable it in the analysis. This way, it ispossible to study individual 
hannels or subsets of 
hannels on
e a multi
hannel sear
hhas been 
on�gured. True = 1, false = 0. Default = 0.Usemass: True/False per 
hannel to enable/disable the use of the p.d.f. of the dis-
riminant for enabled 
hannels. Usemass is a synonym for usepdf (re
onstru
ted massis a typi
al dis
riminant) in the Fortran version. True = 1, false = 0. Default = 0 .The �true� option is not yet implemented.Betype: The ba
kground error type per 
hannel 0=No errors, 1=Normal distribution,2=Poisson distribution, 3=Binomial distribution. Default = 0.Not yet implemented.Bep1: First parameter for generating ba
kground errors per 
hannel (the interpretationdepends on the error type, see betype): Normal distribution (1) = Standard deviation.Binomial distribution (2) = Number of events in parent sample. Poisson distribution(3) = Number of events sele
ted from parent sample. Default = -1.Not yet implemented.
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Eetype: The e�
ien
y error type per 
hannel: 0 = No errors, 1 = Normal distribution,2 = Binomial distribution, 3 = Poisson distribution. Default = 0.Not yet implemented.Eep1: First parameter for generating e�
ien
y errors per 
hannel. The interpretationdepends on the error type (see eetype); Normal distribution (1) = Standard deviation,Binomial distribution (2) = Number of events in parent sample, Poisson distribution(3) = Number of events sele
ted from parent sample. Default = -1.Not yet implemented.Usesmear: True/False per 
hannel to enable/disable the systemati
 un
ertainties forenabled 
hannels. True = 1, false = 0. Default = 0.The �true� option is not yet implemented.
Example �leBelow is an example �le of six 
hannels, using some of the 
ontrol variables.6OBSERVED 1 0 1 5 0 1USECHAN 1 1 1 1 1 1USEMASS 0 0 0 0 0 0BACKGROUND 0.675 0.440 0.583 5.340 0.410 0.730EFFICIENCY 0.0256 0.0425 0.1217 0.5223 0.0125 0.0226BRANCH 0.1 0.1 0.1 0.1 0.1 0.1BETY 1 1 1 1 1 1BEP1 0.26 0.21 0.24 0.73 0.20 0.27EETY 1 1 1 1 1 1EEP1 0.015 0.015 0.015 0.015 0.015 0.015LUMI 1.0 1.0 1.0 1.0 1.0 1.0
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C Lists of methods and variablesFollowing is a referen
e list of the most important methods of 
lass Analysis, and theirpurpose:readFile: Reads the input �le (see Appendix B), makes the 
hannel obje
ts of 
lassChannel and stores the user input in the variables of the 
hannel obje
ts.unsmearBa
kground: Sets the ba
kground to the nominal (user input) ba
kground.getSbTotals: Finds stot and btot, the expe
ted number of all signal and ba
kground
andidates of all 
hannels.getClImpunb: Finds all 
on�den
es and their un
ertainties.unsmearE�
ien
y: Sets the e�
ien
y to the nominal (user input) e�
ien
y.altlnq: Finds the sum of Equation (4).generateM
Trial: Generates random values for the number of signal and/or ba
k-ground 
andidates per 
hannel.smear_
orr_e�_and_bg: Generates e�
ien
ies and number of ba
kground 
andid-ates with a set of random �u
tuations if there are any error sour
es de�ned.First 
all: Makes a list of all user input error sour
es.generate_sigtest_trial: As generateM
Trial, for unweighted signal experiments.The output �le �ex
lude.res� 
ontains a lot of variables and their values. This is a ref-eren
e list of these output variables:s_exp: The number of expe
ted signal 
andidates for all 
hannels. The variable stot ofEquation (2).b_exp: The number of expe
ted ba
kground 
andidates for all 
hannels.CL_sb: The probability that the results are less signal-like than the observed values,given that the signal+ba
kground hypothesis is true. The de�nition of this variable isgiven in Equation (6).CL_b : The probability that the results are less signal-like than the observed values,given that the ba
kground-only hypothesis is true. The de�nition of this variable isgiven in Equation (8).CL_s: The probability that the results are less signal-like than the observed values,given that the signal hypothesis is true. This is not a true 
on�den
e level, but a ratio
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of 
on�den
es that provides a good approximation. The de�nition of this variable isgiven in Equation (9).-2lnQ observed: The value of �2 lnQ 
al
ulated using the user input (observed) val-ues.CL_s_infty: The expe
ted average value of CLs for the ba
kground only hypothesis.-2lnQ_b_infty: The 
orresponding value of �2 lnQ.Dis
overy potentials; 3,4,5 sigma (p_dis
_3s, p_dis
_4s, p_dis
_5s): Theprobabilities of making dis
overies (1� CLsb) when 1� CLb (the signi�
an
e) is equalto the standard normal distribution probabilities at 3, 4 and 5 standard deviations, ifthe signal+ba
kground hypothesis is true.1-CLb (
l_b_
omp): See CLb. The de�nition of variable CLb is given in Equation(8).
l_b_exp_sb: The expe
ted average value of CLb given that the signal+ba
kgroundhypothesis is true.m_
l_b_exp_sb[℄: The expe
ted value of 1 � CLb when 1 � CLsb is equal to thestandard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, ifthe signal+ba
kground hypothesis is true.m_
l_b_p_exp_sb[℄: The expe
ted values of 1�CLb1�CLsb when 1�CLsb is equal to thestandard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, ifthe signal+ba
kground hypothesis is true.m_
l_b_p_exp_b[℄: The expe
ted values of 1�CLb1�CLsb when 1� CLsb is equal to thestandard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, ifthe ba
kground hypothesis is true.
l_sb_exp_b[℄: The values of CLsb when CLb is equal to the standard normal dis-tribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the ba
kground hy-pothesis is true.
l_s_exp_b[℄: The values of CLs when CLb is equal to the standard normal distribu-tion probabilities at -2, -1, 0, 1 and 2 standard deviations, if the ba
kground hypothesisis true.xi2_exp_b[℄: The expe
ted values of �2 lnQ when CLb is equal to the standard nor-mal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the ba
kgroundhypothesis is true.
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xi2_exp_sb[℄: The expe
ted values of �2 lnQ when CLsb is equal to the standardnormal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the sig-nal+ba
kground hypothesis is true.
l_s_exp_sb: The expe
ted value of CLs for the median value of 1 � CLsb if thesignal+ba
kground hypothesis is true.xi2_exp_sigtest[℄: The values of �2 lnQ when the test signal distribution is equalto the standard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations.m_
l_b_exp_sigtest[℄: The values of 1 � CLb when the values of the simulatedba
kground �2 lnQ's are equal to the xi2_exp_sigtest[℄'s.
l_sb_exp_sigtest[℄: The values of CLsb where the values of the simulated ba
k-ground �2 lnQ's are equal to the xi2_exp_sigtest[℄'s.
l_s_exp_sigtest[℄: The values of CLs where the values of the simulated ba
kground�2 lnQ's are equal to the xi2_exp_sigtest[℄'s.p_dis
_5s_p, p_dis
_4s_p, p_dis
_3s_p and p_dis
_2s_p: Dis
overy po-tentials. The values of 1�CLsb, when 1�CLb1�CLsb is equal to the standard normal distributionprobabilities at 2, 3, 4 and 5 standard deviations, given that the signal+ba
kground hy-pothesis is true.
l_b_infty: The average value of CLb for the ba
kground only hypothesis.d_
l_b_infty: The error (standard deviation) of 
l_b_infty
l_bb_infty: The average value of CLb if the ba
kground only hypothesis is true.d_
l_bb_infty: The error (standard deviation) of 
l_bb_inftywexpt_sigtest: The average value of �2 lnQ for the test signal experiments.wexpt_sigtest_rms: The error (standard deviation) of wexpt_sigtest.wexpt_signal: The average value of �2 lnQ if the signal+ba
kground hypothesis istrue.wexpt_signal_rms: The error (standard deviation) of wexpt_signal.p_ex
l_90: The probability of ex
luding the null hypothesis for CLs = 10% giventhat the signal hypothesis is false.p_ex
l_95: The probability of ex
luding the null hypothesis for CLs = 5% given that
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the signal hypothesis is false.p_ex
l_99: The probability of ex
luding the null hypothesis for CLs = 1% given thatthe signal hypothesis is false.p_ex
l_95_aleph: The sum of the ba
kground weights of the Monte Carlo generatedexperiments for CLs_aleph = 5%
l_sb_infty: The average value of CLsb for the ba
kground only hypothesis.d_
l_sb_infty: The error (standard deviation) of 
l_sb_infty.
l_s_infty: The average value of CLs for the ba
kground only hypothesis.d_
l_s_infty: The error (standard deviation) of 
l_s_infty.wexpt_infty: The value of CLs when the ba
kground hypothesis is true.wexpt_infty_rms: The error (standard deviation) of wexpt_infty.fe_rate: False ex
lusion rate; the value of CLsb when CLs is 5%.fe_rate_sb: False ex
lusion rate; the value of CLsb when CLsb is 5%.d_
l_sb: Not yet implemented.d_
l_b: Not yet implemented.
l_s_aleph: A spe
ialised value of CLs for the ALEPH experiment.
l_s_aleph_infty: The expe
ted value of CLs_aleph when the ba
kground hypo-thesis is true.
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