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AbstratThe objet-oriented (OO) programming style is beoming more and more popular, alsoamong sientists. Several CERN omputer libraries have been translated from the For-tran programming language to C++ reently, and it is expeted that future analysistools for partile physis experiments will be programmed using an OO language. Thisthesis desribes the translation of the Fortran 77 alrm program (written by A. L. Read)into C++. The program will perform statistial analyses of searhes for new partilesat the LHC/ATLAS experiment. The theory behind the program and its new, objetoriented struture are explained, and tests are onduted to make sure that the C++version of the program works.
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1 IntrodutionThe program alrm, written by A. L. Read in the Fortran 77 programming language,is a tool for analysing data from partile physis experiments. It is partiularly usefulin searhes for new physis where the statistis is low, the measurements bordering onthe sensitivity limit of the measuring equipment. The term �low statistis� means thatthere are few bakground and/or signal andidates reorded, so that the high statistisapproximations of �normal� analysis methods will be invalid.Unfortunately, while the alrm program is indeed very useful and has been used inanalysing data from searh experiments at LEP (Large Eletron Positron ollider)[16℄,the ode of the Fortran 77 version has been rather di�ult for the typial user tounderstand and apply. This has been a problem, espeially sine making hanges tothe original setup of the program has meant that the user has been fored to hangelarge and important parts of the ode. This omes about mainly beause of the Fortranproedural style of programming.Programs written in versions of the Fortran language older than Fortran 90/95,onsist mainly of one single �blok� of ode. When run, suh a program will progressin a linear way, steadily working through subroutine and funtion alls. There is away of grouping and separating some variables from the main �blok� by using ommonbloks, but mainly the program onsists of one long �le of ode. The onsequene is,as has already been mentioned, that if the users want to add to or take away from theode, or just make some hanges to a feature, they have to make big and ompliatedadjustments.Objet oriented (OO) programming has beome more and more popular, also insienti� programming projets. The advantages are many; some of them will be men-tioned in a later hapter of this thesis. One of the main advantages, however, is thatOO programs are modular. It is a lot easier to understand and to make hanges to aprogram that is split into several independent parts than to a program where almostevery bit of ode is dependent on the others. Consequently, some of the main reasonsfor wanting an objet oriented version of alrm, from now on alled alrm++, are thatit would be easier to use, understand, expand and develop. Also, the programs that thealrm program might have to interat with (libraries, analysis tools et), are now beingtranslated from Fortran to C++. This proess has already started at CERN [7℄ andDELPHI [18℄.This thesis is onerned with the translation of the alrm program from Fortran 77 toobjet oriented C++. The Fortran alrm program provides the user with several waysof analysing data, represented by a number of Fortran subroutines. In this thesis onlyone of these analysis types, the �exlude_signal� of the Fortran version, is onsidered.In addition to the translation and adaption of the Fortran program to OO C++,there has been a need for a graphial user interfae. This feature might make the ruial�rst ontat with the program easier, and will inorporate help funtions so that the userwill not have to turn to the ode to �nd out what kind of input the program demands.In the �rst part of this thesis some of the uses of the program are mentioned, andobjet oriented programming and the CLs method are explained. This is the bakgroundmaterial needed to understand how the alrm++ program works. Later in the thesis, Iexplain the struture and layout of the C++ version, and I give a detailed explanation
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of how the physis and statistis theory is implemented in the program. I then test thealrm++ program to see if it is working, and if it reprodues the results of the Fortranalrm. Finally, I disuss the new program and its future.The thing to bear in mind is that this thesis is also meant to be a user guide tothe alrm++ program. This has of ourse a�eted the struture and the ontents of thethesis. In the Appendies, for example, I have inluded a user's guide on how to ompileand use the program, and a desription of the format of the input �le expeted by theprogram.
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2 The uses of the alrm++ program2.1 The DELPHI Higgs searhesThe DELPHI experiment (DEtetor with Lepton, Photon and Hadron Identi�ation) atLEP onduted searhes for the Higgs partile at entre of mass energies between 200and 209 GeV. The experimental data onsisted of very few observed andidates, and theonlusion was drawn at the end of the analysis that the data showed no evidene for aHiggs signal [1℄. However, a 95% on�dene level lower mass limit of 114.3 GeV=2 wasset. The on�dene level was estimated using the statistial method the alrm programis based on.
2.2 NOMADThe neutrino osillation �e ! �� searh at the NOMAD (Neutrino Osillation MAgnetiDetetor) detetor [3℄ has found only a small number of andidates. The results onsist ofseveral di�erent deay hannels, eah with very little, if any, observed data. These datahave been analysed using another method than the one used in the alrm++ program.When omparing the results of the method of the published artile [3℄ with the resultswe get when the same data is fed into the alrm++ program, we see that the resultsdi�er. This ase will be disussed further in Chapter 7.
2.3 The ATLAS projetAt CERN, the European organisation for nulear researh, the LHC (Large HadronCollider) is presently under onstrution in the existing LEP tunnel. Some of the pro-spets of this new mahinery is to inrease the present day entre-of-mass energies andluminosities for the pp and heavy ion ollisions that the LHC will provide.The LHC projet will inlude four large experiments. The ATLAS (A Toroidal LhApparatuS) and CMS experiments will be doing preision measurements and searhesfor new physis. LHCb will be dediated to the physis of b hadrons and CP violation,and ALICE will be a heavy ion experiment.The LHC is the largest, most omplex and expensive partile physis projet so far.What do people expet to learn from the LHC experiments that will justify these osts?The physis motivations are many; physiists wish to perform more preise measure-ments, to understand the origin of the partile masses, to look for new physis beyondthe Standard Model and to answer many of the questions left open by earlier experi-ments. ATLAS in partiular will ontinue the ongoing searhes for new physis. Thisinludes searhing for the Standard Model Higgs boson, partiles predited by the Supersymmetry (SUSY) theory and other physis beyond the Standard Model. At ATLAS,the �rst few years of running will be a period of low luminosity, with few events pro-dued. In this period, the alrm++ program may be used as an analysis tool in searhesfor partile signals.Another example where the alrm++ program might be useful, is in searh experi-ments where the bakground is small but non-zero, and the partile is very heavy and
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thus not produed in great quantities, produing a small signal. The searh for theheavy Z' is an example of suh an experiment.
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3 Objet-oriented programming: A quik overviewObjet-oriented (OO) designs are beoming more and more popular, but the transitionfrom languages like Fortran and C to the OO languages of Java and C++ an bedi�ult. The idea of objets as �blak boxes� that take are of themselves and interatvia messages only an seem strange and foreign to many programmers not used to OOprogramming. However, the basis are quite simple one you have grasped the oneptsof lasses and inheritane. To explain these terms, I will start by desribing objets.
3.1 ObjetsObjets have both a behaviour (they do things) and a state (that is hanged when theydo things). For example, a at ould be an objet. It has a state; it ould be awake orsleeping, and it has a behaviour; falling asleep, whih hanges its state from awake tosleeping [10℄. To make a at-objet sleep, we would need to send it the message �fallasleep�. From our point of view, the existene of this message would be all we neededto know about the objet. We would not need to know about all the omplex details ofhow it falls asleep, that is, losing its eyelids, hanging its breathing and so on.
3.2 ClassesNow we have a domesti at that is able to fall asleep. But what if we wanted somethingmore exoti, like a leopard? We make a new objet alled �leopard�. It an also fallasleep, and it has a state, let us all it �awareness�, that an be �asleep� or �awake�, justlike the at. But our leopard is bigger and its fur has a di�erent pattern. So we addtwo more states, usually alled variables, to our leopard objet; size and pattern. Butof ourse, the domesti at has a size and a pattern too. We see that the states andthe behaviours of the at and the leopard are the same, so in order to save time andmake things neat and tidy, we would try to make a ommon set of states that ould bespei�ed for eah objet. In other words, we would abstrat out the ommon attributes,ignore the partiular values of these attributes and make a blueprint for our objets.This abstration, or blueprint, is alled a lass. A lass desribes a set of objets thatshare a ommon struture and a ommon behaviour[1℄. So let us make a lass for ourobjets alled �Felidae�, whih is the Latin name of the at family. This lass ontainsthe variables �awareness�, �size� and �pattern�, and also the behaviour �fall asleep�. Ifwe want to make a new objet, for example a lion, we use the Felidae lass and simply�ll in the partiular values of the lion. An objet is also alled an instane of a lass,meaning that the lion is an instane of the lass Felidae.
3.3 MethodsTo hange a variable, we must send a message to the objet ativating its behaviour.The behaviour is alled a �method� (known to Fortran programmers as a funtion orsubroutine) and the proess of sending a message is referred to as alling a method.Objets interat and ommuniate by alling eah other's methods. A method anreeive values or return a value when it is alled (or both), but there are no di�erenes
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between a method with or without these options. This is di�erent from the Fortranprogramming language, where a method is alled a subroutine or a funtion dependingon its harateristis.
3.4 InheritaneTo ontinue our real world example of animals, what if we wanted a human objetinstead of a at? We ould make a lass Human, and make the objets Peter and Anne.These objets would have basially the same variables and methods as the ats, butthere would be some di�erenes as well. The number of legs, for example, and thehumans would have less fur and round pupils. To save ourselves from a lot of work, itwould be nie to be able to make a lass alled �Mammal� that would summarise all theommon features of humans and ats, and then reate the Human and Felidae lassesas sub lasses of Mammal. This would mean that we ould reuse the ode written inthis parent, or super, lass.Our struture now looks like this: We have a super lass ontaining the variables andmethods of all mammals, and two sub-lasses that speify the partiularities of humansand ats with their own variables and methods. When we make an objet of a sub-lass,we an insert the spei� information of that individual into the objet's variables.
3.5 PointersThis gives us a struture with lots of unorganised objets that are just �oating around.How should we best organise and aess these objets? The answer is pointers. Whendelaring an objet, you an also make a pointer to it that an easily be stored in somekind of table, array or vetor. If the pointers are stored in an iterative devie, it willbe easy to aess all the objets using a loop. A pointer is, as the name suggests,something that �points� to the desired variable or objet. Having these pointers, it ispossible to aess the variables of the objets diretly from outside the objet. However,it is onsidered more objet oriented to make methods that simply return or set thedesired variables. The advantage of making suh �get� and �set� methods is that if youwant to hange the inner workings of a lass, you an do that without hanging whatthe user sees from the outside.
3.6 VisualisationThe most e�ient way of providing information about the struture of an OO program,is to make a graphial representation. The parts needed to make suh a struture mapis shown in Figure 1. The lasses and their objets are usually onneted with a straightline to show whih objet belongs to whih lass. The pointers are onneted to whatthey are pointing at by an arrow.The visualisation of an OO struture usually does not show all the objets' methodsand variables, only the parts that are neessary to understand the struture of theprogram.
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Figure 1: The parts of an OO struture.
3.7 Example : The ForestAs an example, let us onsider a forest. By de�nition a forest ontains many trees. Eahtree has its own height, leaves and so on. By making a lass Tree that ontains all thesevariables, we reate a forest of three tree-objets using the lass as a blueprint. For eahof the trees, we make an objet of lass Tree and assign the tree's spei� values to itsvariables. This example is illustrated in Figure 2.

Figure 2: OO struture of example Forest.
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3.8 Slightly More Compliated Example : FriendsAnne has a lot of friends. They all have a name, a date of birth, a telephone number, anaddress and so on, and Anne is having problems remembering these names and numbers.She wants to make a register ontaining all this information.Her �rst deision is to make an objet for eah of her friends. She makes a blueprint,a lass, alled Friend. This lass ontains all the variables of a friend; name, address,et. It has methods to set and get these variables from outside the objet. She alsomakes another lass alled Register that will have only one objet from whih the Friendobjets will be organised. This has to do with the onepts of OO. The organisationof objets and other strutures ould easily be done, for instane, from inside a main()method. But by putting all the ode inside objets, we get a program that is easy tohange later and that looks like a �blak box� when seen from the outside.Making an objet of lass Friend from inside the objet of Register, Anne makes apointer to the Friend objet as well. The making of pointer and objet ould look likethis (C++):Friend *myFriend = new Friend();Let us have a look at this expression. �Friend� is the name of the lass that we aremaking an objet of. �myFriend� is the name of the new objet variable. The ��� meansthat �myFriend� is not only a name, but also a pointer to the objet. The right side ofthe equation means what it says: We are making a new objet, or instane, of the lassFriend.The pointer to the new Friend objet an now be stored in a loation of an array.When Anne wants to aess the objets, she an easily loop through the array frominside the Register objet.

Figure 3: The OO struture of example Friends. Only one of the variables and one ofthe methods of the Friend objets are shown.
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3.9 AdvantagesSome of the advantages of OO-programming are:� Modularity; the soure ode for an objet an be written and maintained inde-pendently of the soure ode for other objets. Also, an objet an be easily passedaround in the system. You an give an objet to someone else, and it will stillwork.� Information hiding; an objet has an interfae that other objets an use to om-muniate with it. The objet an maintain private information and methods thatan be hanged at any time without a�eting the other objets that depend on it.You don't need to understand the inner workings of an objet in order to use it.� Inheritane provides speialised behaviours in addition to the ommon variablesand methods provided by a superlass. Through the use of sub lasses, program-mers an reuse the ode in the superlass many times.� Type safety; when a method is alled with arguments in the C++ and Java lan-guages, it is required that the argument types (integer, double preision, harater,et) must math the ones of the method that is being alled.
3.10 DisadvantagesThe most notieable disadvantage of employing an OO struture is that the programmay be slower than, say, a Fortran program. This problem an be minimised by op-timisation of the ode, but the fat remains that if speed is the important thing, thenOO programming may not be what you are looking for. However, the advantages of theprevious paragraph mostly outweigh this fator.Another disadvantage has to do with the fat that OO programming, and the pro-gramming languages that are adapted to it, are relatively new and still under develop-ment. The onsequene is that there are few really good books on the subjet overingthe latest features and the more speialised options. Also, the ompilers are not asoptimised as, for example, modern Fortran ompilers.
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4 The CLs methodThe CLs method is a statistial method that has been used to analyse data from theexperiments at LEP [16℄. It is based on a likelihood ratio Q, and the on�dene levelsCLsb and CLb, all explained later in this text.
4.1 The statistial oneptsMany physis experiments are onduted to test the validity of a theory. This meansthat the theory must inlude an observable or a parameter that an be measured diretlyor indiretly, respetively, in an experiment. A simple observable of a searh for a newpartile would be the number of deteted andidates mathing some prede�ned riteria.In the language of statistis, an analysis of searh results an be done as a hypothesistest. The null hypothesis is that there is no new partile, no signal (only bakground)and the alternate hypothesis says that there is. To rejet one of these hypotheses, wewill need rules to rank the experimental results from the least to the most signal-like.This an be aomplished by de�ning a test-statisti, or funtion of the observables andmodel parameters (partile mass, prodution rate, et) of the known bakground andhypothetial signal [16℄. Having ranked an ensemble of Gedanken experiments, we usethem to rejet or aept the null hypothesis by de�ning ranges of the values of the test-statisti. These are alled rejetion and aeptane regions respetively. This is donein suh a way so that we minimise the possibility that we aidentally rejet the nullhypothesis when it is orret (type I error), or keep it when we should have rejeted it(type II error).To summarise; a test of the null hypothesis is a ourse of ation speifying the setof values of a random variable alled the test-statisti for whih the null hypothesis isto be rejeted. The set of values for whih the null hypothesis is to be rejeted is alledthe rejetion region of the test [5℄.
4.2 The likelihood ratioThe test-statisti (alled Q) of the type of searh experiments we are interested in, isde�ned as the likelihood ratio. The likelihood ratio is the ratio of the probability densit-ies for the two alternate hypotheses for an experimental result, L(s+b)L(b) . If an experimentonsists of Nhan independent hannels, the total likelihood ratio is a produt of thehannel likelihood ratios. A hannel, as de�ned by alrm++, is a partile interationresulting in a spei� end produt. For an experiment where events are both ountedand have a distintive measured property, the likelihood ratio an be written as:

Q = QNhani=1 exp�(si+bi)(si+bi)nini!QNhani=1 exp�bi bniini!
Qnij=1 siSi(xij)+biBi(xij)si+biQnij=1Bi(xij) ; (1)

whih an be simpli�ed to
Q = e�stot NhanYi=1 niYj=1 1 + siSi(xij)biBi(xij)! ; (2)
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where ni is the number of observed andidates in eah hannel, xij is the value of thedisriminating variable measured for eah of the andidates, si and bi are the number ofexpeted signal and bakground andidates per hannel and stot is the total number ofsignal andidates for all hannels. Si and Bi are the probability distribution funtions(p.d.f.'s) of the disriminating variable for the signal and bakground of hannel i [16℄.If the p.d.f.'s for the disriminating variable are idential for signal and bakground, orif they are not measured, the likelihood ratio an be simpli�ed further to
Q = e�stot NhanYi=1 �1 + sibi�ni : (3)

If we need to �nd the value of Q numerially, the fat that the likelihood ratio an beomputed by ounting weighted andidates will prove useful. We an write lnQ as
lnQ = �stot + nXk=1nkwk; (4)

where n is the total number of andidates observed in all hannels, and the weight wkof eah andidate is wk = ln 1 + skSk(xk)bkBk(xk)! : (5)A muh used funtion of the likelihood ratio is �2 lnQ. In the high statistis limitthe probability density distribution of this funtion is expeted to onverge toward the4�2 p.d.f. However, the �2 lnQ p.d.f. is not always given analytially, meaning thatit must be onstruted using Monte Carlo simulations. In Figure 4, an example of thep.d.f.'s of �2 lnQ for the signal+bakground and the bakground hypotheses are shown.

Figure 4: An example of distributions of �2 lnQ for the signal+bakground (red) andbakground (blue) hypotheses.
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4.3 Con�dene levelsAn answer of �true� or �false� to a hypothesis test will not be of muh use if we don'tspeify the signi�ane of the rejetion or aeptane. The signi�ane is expressed in theterms of a on�dene level (CL). This value tells us the probability that the true value ofthe test-statisti lies within a ertain region alled the on�dene interval. In our ase,this interval ould be the aeptane or rejetion regions. To �nd the on�dene level,it is neessary to ompare the test-statisti for the observed values of an experiment totest-statistis obtained theoretially, where the latter should have a set of aeptaneand rejetion values spei�ed.The proedure of Chapter 4.2 of �nding the likelihoods makes it easy to alulatethe on�dene levels of rejetion and aeptane. Aording to the CLs method, theon�dene in the signal + bakground hypothesis is de�ned as the probability thatthe real value of Q lies in the interval from �1 up to and inluding the value ofthe experimental value of the test-statisti, Qobs, given that the signal+bakgroundhypothesis is true. Thus the on�dene in the signal+bakground hypothesis an bewritten as: CLs+b = Ps+b(Q � Qobs) (6)where Ps+b(Q � Qobs) = Z Qobs�1 dPs+bdQ dQ: (7)Note that dPs+bdQ is the p.d.f. of the test-statisti for signal+bakground experiments.The on�dene in the bakground-only hypothesis is de�ned asCLb = Pb(Q � Qobs) (8)and the on�dene in the signal hypothesis is given asCLs � CLs+bCLb : (9)This is not a �real� on�dene, but a ratio of on�denes that is an approximation to theon�dene in a �signal only� hypothesis. The signal hypothesis is onsidered exludedat on�dene level CL where 1� CLs � CL: (10)In Equation (4), we saw that lnQ ould be expressed as a sum of weighted andidates.Numerially, it is muh less time onsuming to ompute this sum than the produt ofEquation (2). From the de�nition of CLs+b, we see that Ps+b(Q � Qobs) = Ps+b(lnQ �lnQobs), whih enables us to use the value of lnQ diretly in our alulations.In Figure 5, the on�dene levels are displayed graphially. From the de�nition ofCLs+b, Equation (7), we see that the integration of the p.d.f. of Q has integration limitsfrom �1 to the observed value of Q. Sine Q is a funtion that inreases for inreasinglysignal-like experiments, �2 lnQ must have the opposite harateristi. This means thatintegration is now performed from the observed value to 1 as an be seen in Figure 5,and Equation (6) an be written asCLs+b = Ps+b(�2 lnQ � �2 lnQobs): (11)
14



Figure 5: The distributions of Figure 4, with an observed value of �2 lnQ. CLs+b liesin the pink area and the green+pink area shows CLb.
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5 The struture of the alrm++ program5.1 The OO designThe basi layout of the alrm++ program is rather simple. The idea was to make anobjet for eah hannel entered by the user. The onept of a �hannel�, de�ned inChapter 4, should be explained further here by an example. The proess Z0 ! e+e� isa hannel, and Z0 ! �+�� is another. If we hoose to ignore the light lepton �avour,these two hannels an be ombined into the new hannel Z0 ! l+l�, where the �l� isshort for �lepton�.To make an objet for eah hannel, it is neessary to make a lass Channel asa hannel objet blueprint (see Chapter 3 on OO programming). The hannel objetsontain a lot of variables and methods. The latter are mostly to get or set variables fromoutside the objets. Pointers to these objets are stored in a array alled �hannels�.It is the hannel information that is analysed by the program. The methods exeutingthis analysis are ontained in the lasses Analysis and Exlude. Class Analysis is a superlass ontaining all methods that will be used by more than one analysis type. The onlyanalysis type implemented so far is the analysis �Exlude�. The Exlude lass is asub lass of lass Analysis, whih means that it inherits all the methods and variablesof Analysis. It also ontains the spei� methods of the analysis type (expressed inthe Fortran subroutine exlude_signal). Inside lass Exlude there is a pointer to the�hannels� array.There is one more lass in this struture; lass Histogram. This is the lass assoi-ated with Root, an objet oriented data analysis framework developed at CERN. TheHistogram lass uses the Root libraries to make a TTree [6℄ in whih the �nal resultsof the analysis are stored. The TTree is a struture similar in many ways to an ntuple,a well-known data struture to users of PAW [8℄. After the TTree has been �lled, it iswritten to a �le with the extension .root. This �le an be opened in the Root frameworkand the ontents viewed as histograms. The struture of the C++ program is displayedin Figure 6.
5.2 The user interfaeThe user interfae is written in Java. The lass ontrolling most of the interfae is lassJavaCpp, and the other four lasses also ontributing are the lasses Welome, Analysis,Help and About. The objet of JavaCpp ontains the main interfae frame, whihuses the objets of the other lasses to display various GUI (Graphi User Interfae)omponents. There is also a lass AnalysisJava that takes are of the interation betweenthe Java interfae and the C++ program. This lass plays a major role when the userprovided input is transfered from the Java interfae to the C++ program. Figure 7 showsthe interfae window and Figure 8 shows the struture of the Java interfae program.
5.3 How does it all work?The struture of the Java interfae and the onnetion to the C++ program is a littleompliated. The Java �le ontaining the Java �main()� method is AnalysisJava.java and
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Figure 6: The OO struture the alrm++ program.

Figure 7: The Java user interfae of the alrm++ program
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Figure 8: The OO struture of the alrm++ Java interfae.
the role of the lass ontained in this �le will be explained later. The method �main()�makes an objet of lass JavaCpp. As this objet is reated, its onstrutor puts togetherthe GUI omponents in the frame objet and displays it all on the sreen. The user willsee a window pop up on the monitor. This window is divided into setions. There is amenu bar on top, with a �File� drop down menu, and a main area where the atual GUIomponents are displayed. This area onsists of a so-alled Tabbed Pane. By likingon the tabs on the left side of the main area, objets of lasses Welome, Analysis, Helpand About are reated and displayed. The objet of lass Analysis provides the userwith a way of feeding information into the program suh as the name and path of aninput �le.To use both the Java and the ommand line interfae, the user must provide someinformation about the hannels he or she wants to analyse. There are two ways of feedingthis input into the program. The standard way is to make a �le of a �xed format thatwill be disussed later (see Appendix B). Both the ommand line and the Java interfaeask for the name and path of suh a �le. The Java interfae also has a pop up windowoption where the user an �ll in a form to provide the hannel information (see Figure9). When the user has provided all neessary information, the omputing part of theprogram an begin. In the ommand line version this is done by pressing �enter�, andin the Java version by liking a �Run Analysis� button. The ommand line versionalls the method �exlude()�, in the objet of lass Exlude, diretly. The Java interfaeversion alls a method in lass Analysis that splits up the tasks of allowing the interfaeto be used and running the analysis into two di�erent �threads�, or sequential �ows ofontrol. These two threads will run independent of eah other and at the same time.The priority of the interfae thread is set to a higher value than that of the analysis tostop the interfae from �freezing� while the C++ program runs.
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Figure 9: The pop up window where the user an �ll in the hannel information, oneolumn for eah hannel.
The Java thread running the C++ program starts with a all to the method �run()�in the objet of lass AnalysisJava. The lass AnalysisJava delares the C++ method�startCpp()� native, so that the method �run()� an all it. �startCpp()� itself is on-tained in the �le ppJava. and is alled by �run()� via the �onversion implementa-tion� in �le AnalysisJava.. The implementation aesses the data ontained withinthe Java strings and passes it to the orresponding C++ struture (onst har*). The�startCpp()� method makes an objet of lass Exlude and alls its method �exlude()�.Using the Java interfae is optional and the �le main. provides a ommand lineinterfae. This is a �le ontaining a C++ �main()� method that writes some output tosreen, asks for input and makes an objet of lass Exlude.This is where the numerial omputations of the analysis starts for both the Javaand the ommand line interfae versions. This proedure, and the oupling to the theoryof Chapter 4, will be desribed in the next hapter.
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6 Coupling to theory6.1 What does the analysis do?The only analysis type available at the moment is the �Exlude� option. This is aounting analysis, demanding an input �le with user provided information about eahhannel onerning bakground, e�ieny, branhing ratio, number of andidates ob-served et (see Appendix B). These values are used by the program to generate theprobability density funtions (p.d.f.'s) of the signal+bakground and the bakgroundonly hypotheses of Chapter 4. The p.d.f.'s are generated by applying a Monte Carlo(MC) algorithm.Using the p.d.f.'s, the alrm++ program employs the CLs method desribed inChapter 4 to ompute numerially �2 lnQ's, the on�denes of the bakground andbakground + signal hypothesis and several other values. To understand how the the-ory is adapted to a numerial approah in the program, it is neessary to take a detailedlook at the di�erent methods and objets used in the proess.
6.2 How to �nd the on�denes numeriallyTo �nd the on�denes of the bakground and signal+bakground hypotheses, we seefrom Figure 5 of Chapter 4 that it is neessary to �nd the areas under the p.d.f.'s where�2 lnQ is equal to or larger than �2 lnQobs. To �nd this area, we would like to useEquation (7), integrating the probability density funtions numerially in the program.However, we remember from Chapter 4 that these probability density funtions are ingeneral not given analytially.To solve this problem, we must remember that the p.d.f.'s are atually made up ofthe probability densities, or relative frequenies, of the values of �2 lnQ. To �nd thearea under a p.d.f. for a spei� interval on the axis of absissa, we need to somehow�nd, numerially, the total relative frequeny for all of the values in this interval. Therelative frequeny of the interval where �2 lnQ � �2 lnQobs is the fration of �2 lnQ'sthat satis�es �2 lnQ � �2 lnQobs ompared to the total number of �2 lnQ's.The �2 lnQ p.d.f.'s an be simulated by generating a large number of Monte Carloexperiments. Eah of these experiments must ontain one value of �2 lnQ. Together,the values of the �2 lnQ's of all the experiments make up a distribution. However, anexperiment does not just randomly hoose a value of �2 lnQ. In stead, the variablesthat make up �2 lnQ in eah MC experiment are produed using a ombination of theuser input and random numbers. This way, eah of the omposite variables aquirea distribution around its input value; a distribution of the input values si and bi ofEquation (2) are reated by inserting the observed values into a Poisson distribution,from whih one random number is generated for eah MC experiment.When these partially random variables have been set in a MC experiment, a valueof �2 lnQ an be omputed. This value is ompared to the �2 lnQobs, the value of�2 lnQ alulated using the user input. Every time a �random� �2 lnQ is greater thanor equal to �2 lnQobs, it is reorded. When a ertain, user spei�ed number of �2 lnQ'shave been produed and ompared to �2 lnQobs, the number of �2 lnQ � �2 lnQobs isdivided by the total number of �2 lnQ's alulated. This is the relative frequeny of
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the �2 lnQ's that are greater than or equal to �2 lnQobs, whih we remember is alsoequal to the area we wanted to �nd under the p.d.f., sine the entire area of a p.d.f. isequal to one. Beause of this property of a p.d.f., we have been able to simplify ourtwo-dimensional problem of omputing an area to a one-dimensional problem.The bakground and signal+bakground distributions are, in theory, produed sep-arately in the program. However, to minimise the number of alulations needed toprodue these distributions, the theoretially omputed �2 lnQ's are used to generateboth distribution funtions. This is done by exploiting the fat that the tail of onedistribution is more or less �hidden� under the other distribution (see Figure 4). To �ndpoints on the tails we produe a weight, making sure its value is less than one, and useeah theoretially produed �2 lnQ twie. First to �nd a point on one distribution fun-tion, and seond to �nd a point on the tail of the other distribution, using the weight.The weights are neessary beause the two distributions are not equal, and a �2 lnQprodued for one distribution needs to be �saled down� to �t the other distribution.The relation between the two distributions is L(b) = 1QL(s+ b). We see that the weightis atually the inverse of the value of the likelihood ratio Q. This means that when wegenerate a value of �2 lnQ that satis�es �2 lnQ � �2 lnQobs, this is stored as one�hit� by the signal+bakground hypothesis, and a saled down �hit� by the bakgroundhypothesis. This priniple is illustrated in Figure 10.

Figure 10: A point on the bakground hypothesis p.d.f. (blue), orresponding to aMC generated value of �2 lnQMC , is �saled down� (green arrow) to �nd a point onthe signal+bakground hypothesis p.d.f. (red), and a point on the signal+bakgroundhypothesis p.d.f. is �saled down� (light purple arrow) to �nd a point on the bakgroundhypothesis p.d.f.
6.3 Step by step through the programWhen the user has hosen the �Exlude� analysis, the program will open a user providedinput �le (see Appendix B) and read the hannel information. When all the user
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Figure 11: Close-up view of the most important variables and methods in the objetsof the Exlude and Channel lasses.
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provided information has been stored in the hannel objets, the method �exlude()�is alled.
Method �exlude()�Method �exlude()� starts with delaring an objet of lass TTree, found in the Rootlibrary [6℄. Most of the ommuniation between the alrm++ program and the Rootlasses is handled by the objet of lass Histogram. A TTree is a struture somewhatsimilar to an ntuple, but unlike an ntuple it an hold all kinds of data, like arrays orobjets. The branhes of the TTree objet are �lled with variables that will be omputedduring the analysis.The �rst main method to be alled by �exlude()� is �smear_orr_e�_and_bg(true)�,whih is alled to initialise a list of the error soures of the experiment, if provided bythe user. The next step is to �nd the sum of all signal and bakground andidates, stotand btot. The si of Equation (2) for eah hannel is given assi = Li � �i � Bi � �i; (12)where L is the luminosity, � is the ross setion, B is the branhing fration and � is thee�ieny. �getSbTotals()� �nds the stot sum by alling a method in eah hannel objetthat returns the value of the si.Method �getClImpunb()�The method doing most of the work in the analysis is �getClImpunb()�. The name ofthis method is short for �get CL, improved, unbinned�, a name that was onstrutedduring the development of the original Fortran 77 subroutine. �getClImpunb()� is alledfrom �exlude()� after �getSbTotals()�, and this is where the �2 lnQ's are omputed andused.The method �rst �nds the values of stot and btot by alling �getSbTotals()�, whihadds together the nominal (user spei�ed) si's and bi's. The method �altlnq(type_data)�returns the value of the sum Pnk=1 nkwk of Equation 4. The option type_data meansthat the observed andidates are used when the weights wk are alulated. By ombiningthese results, we �nd �2 lnQobs.The next step is to make a loop whih generates and proesses a set of nexps MCexperiments. Inside this loop, alled the nexps loop, are many method alls and om-putations, the �rst one being a all to �generateMTrial(onf_sb)�. This is the �rststep in a proess where unweighted signal+bakground experiments and weighted bak-ground experiments are generated, as desribed above. The onf_sb option requeststhat the method generates a random number of both signal and bakground andid-ates for eah hannel, using a Poisson distribution with the user provided values asthe distribution parameter. The resulting number of andidates are stored in the vari-ables nxsm and nxbm, their sum in nxm, for eah hannel. �generateMTrial()� allsmethod �smear_orr_e�_and_bg()� to randomise the hannel values of the e�ienyand bakground if there are any error soures de�ned by the user.�getClImpunb()� alls the method �getSbTotals()� again, to �nd the new stot and btotafter the possible hanges in the bakground and signal values aused by23



�smear_orr_e�_and_bg()�. Two values of �2 lnQ are omputed at this stage, �2 lnQand �2 lnQnom. �2 lnQnom is alulated using the stot of the user input values and theother by using the value of stot generated by the last all to �getSbTotals()�. Theargument of the �altlnq()� all, type_m, ensures that the weights of Equation 4 arefound using the new values of sk and bk and the variable nxm (random number ofandidates for the hannel).�2 lnQ is used in the omputation of a weight wt = e�0:5�2 lnQ = 1Q . If the weightis less than or equal to one, �2 lnQnom is ompared to �2 lnQobs. If �2 lnQnom isgreater than or equal to �2 lnQobs, the variable wt_sb_less is inreased by one and theweight is added to the variable wt_b_less. If, on the other hand, �2 lnQnom is less than�2 lnQobs, wt_b_greater is inreased by the weight. Either way, the 2 lnQnom 1 is storedin both the bakground and the signal+bakground experiment arrays (q_b_expts andq_sb_expts), the weight 1Q is stored in the bakground weight array (wt_b_expts) andthe weight 1 is stored in the signal+bakground weight array (wt_sb_expts).The next part of the nexps loop is a generation of unweighted bakground experi-ments and weighted signal+bakground experiments. The �rst all is again for �gener-ateMTrial()�, but with argument onf_b instead of onf_sb. The di�erene is that onlythe number of bakground andidates is generated as a random value of a Poisson distri-bution. After the new stot and btot have been alulated, the new values of the �2 lnQ'sare found using �altlnq(type_m)�. The weight is omputed and ompared to one, asbefore, and �2 lnQ is ompared to �2 lnQobs. This time, the variable wt_sb_less isinreased by the weight and the variable wt_b_less by one if the generated experiment�2 lnQ is greater than or equal to the observed value. The weight and 2 lnQ are storedin the various arrays desribed above. This ompletes the nexps loop.Now we have enough information to ompute CLsb, CLs and CLb. From thede�nitions in Equations (6) and (8), we know that CLsb and CLb are de�ned as theprobabilities of �2 lnQ being greater than or equal to �2 lnQobs, given that the sig-nal+bakground, or the bakground only hypothesis is true, respetively. The numerialway of �nding these probabilities, as we remember from Chapter 6.2, is to divide thenumber of times (with weights) this ondition was met during the nexps loop, with thetotal number of generated experiments. CLs is given in Equation (9) as the ratio of thesignal+bakground and the bakground on�dene levels.Having been �lled with their appropriate values, the experiment arrays of 2 lnQ forboth the bakground and the signal+bakground hypotheses are sorted in asendingorder. Their weight arrays are also sorted, so that the weights follow the order of theexperiment arrays.The method goes on to generate a set of nexps unweighted test experiments. Theseare signal+bakground experiments that are generated to test what the on�deneswould be like if there was a signal at some unexpeted loation. The test experi-ment generation is done using the method �generate_sigtest_trial()�, whih produesa random number of andidates for both signal and bakground similar to the method�generateMTrial()�, and the method �altlnq()�. The test experiment 2 lnQ's are storedin array q_sigtest_expts. Both the sum of all �2 lnQ's and the sum of the (�2 lnQ)2'sare omputed. Using these two sums, we an �nd the mean and the variane of the1due to historial reasons, the absolute value of �2 lnQ is used
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results.The array q_sigtest_expts is sorted in asending order, and we loop through thearray, alulating the ratio of the iteration variable and the total number of simulatedexperiments (nexps). By omparing this ratio to the standard normal distribution prob-abilities at -2, -1, 0, 1 and 2 standard deviations, we �nd the values of 2 lnQ at thesepoints. These values are stored in the array xi2_exp_sigtest.In order to �nd the values of disovery on�denes and potentials, we want to in-tegrate the bakground and the signal+bakground distributions from the top. Whenexeuting a loop starting at the top of the weight arrays, whih were sorted earlier tofollow the sorted values of the 2 lnQ's, we atually move from negative values of �2 lnQtoward positive values. As we an see in Figure 5, this means that we ompute thevalues of 1� CLb and 1� CLs+b.The atual loop is on the form of a while loop, starting at the number of MC ex-periments onduted and desending toward zero. At the top of the loop, the relativefrequeny, or probability density, of eah 2 lnQ for both hypotheses are found by di-viding the weight of the 2 lnQ by the sum of all the weights. The variables wtbtot andwtsbtot ontinuously hold the sum of all these relative frequenies, thus ontaining theupdated values of 1 � CLb and 1 � CLsb of the bakground and signal+bakgroundhypothesis respetively. As wtbtot, whih is idential with the signi�ane (1 � CLb),reahes the standard normal distribution probabilities at -5, -4, -3, and -2 standarddeviations, the orresponding values of wtsb (1 � CLsb) are stored in the variablesp_dis_5s, p_dis_4s, p_dis_3s and p_dis_2s. These variables represent the dis-overy potentials, the probabilities of making disoveries at various signi�ane levelsif the signal+bakground hypothesis is true. If the signal+bakground and the bak-ground distributions lie lose together on the �2 lnQ axis, the disovery potentials willhave small values. If the distributions are only slightly overlapping, or not at all, thevalues will be lose to one. These two situations are illustrated in Figure 12.As wtsbtot (1 � CLsb) reahes the standard normal distribution probabilities at -2,-1, 0, 1 and 2 standard deviations, the orresponding values of wtbtot (1�CLb), wtbtotwtsbtotand 2 lnQ are stored in arrays m_l_b_exp_sb, m_l_b_p_exp_sb and xi2_exp_sbrespetively. The value of CLb at CLs=0.05 is stored in the variable l_b_exp_sb.And �nally, in the last part of the while loop, the on�denes for the di�erent fre-queny ontours of the test experiments are omputed by omparing all the 2 lnQ's ofthe MC experiments (2 lnQMC's) with the xi2_exp_sigtest array found earlier. Whenthe �2 lnQMC's reah the point where they are equal to the various entries of thexi2_exp_sigtest array, 1�CLb, CLsb and CLs are stored in the arraysm_l_b_exp_sigtest,l_sb_exp_sigtest and l_s_exp_sigtest respetively.The while loop ontained an integration of 1 � CL's. To �nd the CL's, we needto exeute a for loop iterating from zero up to the number of Monte Carlo simulatedbakground experiments. As in the while loop, this is a integration proess wherethe relative frequeny, or probability density, of eah 2 lnQ for the bakground and thesignal+bakground hypotheses are found by dividing the weight of the 2 lnQ by the sumof all the weights. The variables ls and lsb now hold the updated values of the CLband the CLsb areas under the bakground and signal+bakground p.d.f.'s respetively.The variable qb holds the orresponding 2 lnQ value. The 2 lnQ's are found in the
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q_b_expts array, whih was sorted in asending order earlier in the method.By omparing eah 2 lnQ with the previous, the MC experiments with equal valuesof 2 lnQ are aessed in a nested for loop as one �blok� of experiments. This is neessaryto ensure that the integration to �nd the on�denes inlude all the experiments for eahstep on the �2 lnQ axis, and to make sure that idential experiments get idential valuesof integrated on�denes. (see Figure 13). For eah of the members in the blok of equal2 lnQ values, the average value of CLb for the signal+bakground hypothesis and itssquare is alulated and stored in variables lbtot and lbsq. To �nd the false exlusionrates, the probability of exluding the signal and the signal+bakground hypotheseswhen they should be aepted, we identify the two experiments where CLs and thenCLsb are approximately equal to 5%, and look at the value of CLsb. The false signalexlusion rate, lsb at ls � 0.05, is stored in fe_rate, and the false signal+bakgroundexlusion rate lsb when lsb reahes 5%, is stored in fe_rate_sb. If the smallest CLsor CLsb is greater than 5% the orresponding false exlusion rate is of ourse zero.The method proeeds by analysing the statistis of the signal+bakground experi-ments. The variables wexpt_signal and wexpt_signal_sq aumulates values to be usedlater to �nd the average value of �2 lnQ if the signal+bakground hypothesis is true,and its square. An alternate version of CLs used by the ALEPH ollaboration, ls_aleph[13℄, is also alulated.The value of ls is ontinuously tested to �nd the 90%, 95% and 99% exlusion(CLs � 10%; 5%; 1%). For eah of these tests, the weight of the bakground hypothesisdistribution, wtb, is stored in the variables wt99, wt95 and wt90.Next, we look at the statistis of the bakground experiments. We �nd the average
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Figure 13: A histogram showing the frequenies with whih the randomly generated�2 lnQ's our. A numerial integration onsists of �nding the sum of all the �2 lnQ'sfrequenies. All experiments with equal values of �2 lnQ must therefore be inluded ineah integration step.
value of CLsb for the bakground hypothesis by aumulating lsb*wtb in variable lsbtot.In variable lbbtot, the average value of CLs for the bakground hypothesis is found byaumulating ls*wtb, and lstot_aleph holds the sum of all ls_aleph*wtb's. We �ndthe average value of CLs given that the bakground hypothesis is true, in variablewexpt_infty, .Continuing our analysis of the bakground experiments, we hek the value of lb to�nd the �ve points where it reahes the standard normal distribution probabilities at-2, -1, 0, 1 and 2 standard deviations. At eah of these points, we store the values ofCLsb, CLs and 2 lnQ in arrays l_sb_exp_b, l_s_exp_b and xi2_exp_b respetively.In the last part of method �getClImpunb�, we make the �nal alulations of expetedvalues and unertainties. As an example, to �nd the expeted bakground on�denefor signal+bakground experiments and its estimated unertainty from the aumulatedstatistis, we divide lbtot with the sum of all the bakground experiment weights. Theresult is stored in variable l_b_infty. The unertainty, or the standard deviation, isfound by employing the formula rPni=1(xi��x)2n�1 , where n is the sum of all the bakgroundweights and x and �x are, in this situation, lb and its average value. Most of the othervariables found during the exeution of method �getClImpunb()�are treated the sameway; they are divided by the sum of the appropriate weights to �nd average values, andtheir unertainties are alulated.
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The outputWhen method �getClImpunb()� is �nally �nished and all TTree branh variables areset, the results need to be displayed in some way. The method �exlude()� alls twoother methods to make outputs of the results. The �rst one is method �exludeFile()�,a method that prints all variables of interest to �le �exlude.res�. The seond method isalled ��nishHistos()�, and it �lls the TTree and writes it to the Root �le �likem.root�.The results are also displayed on the omputer sreen, in the shell or in the form of apop-up window, depending on whih interfae the user has hosen.
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7 Test resultsIn this hapter I will present the results of two analyses performed with both the alrmand the alrm++ programs, and one analysis performed with the alrm++ program only.The goal is both to show that alrm++ works, and that it reprodues the results of theoriginal Fortran program.
7.1 Test analysisWhile it was still under onstrution, I used a simple test analysis of six hannels to testthe alrm++ program. Eah hannel had values for the observed number of andidates,whether or not the hannel should be used when running an analysis, whether the massinformation should be used, the number of bakground andidates, the e�ieny, thebranhing ratio and the luminosity. The input is shown below (the input variables andthe format of the alrm++ input �le is desribed in detail in Appendix B).

Observed 1 0 1 5 0 1Use hannel 1 1 1 1 1 1Use mass 0 0 0 0 0 0Bakground 0.675 0.440 0.583 5.340 0.410 0.730E�ieny 0.0256 0.0425 0.1217 0.5223 0.0125 0.0226Branhing ratio 0.1 0.1 0.1 0.1 0.1 0.1Luminosity 1.0 1.0 1.0 1.0 1.0 1.0
The analysis was performed with 10000 Monte Carlo experiments. The output ofboth programs are shown in the table below. The output variables are explained inAppendix C.

Variable name alrm++ alrmstot 0.07472 0.0747btot 8.178 8.1780CLsb 0.546093 0.551525CLb 0.557638 0.562975CLs 0.979296 0.979661�2 lnQ, from user input -0.00296659 -0.00296658CL_s_infty 0.975514 0.975605-2lnQ_b_infty -0.000238418 -0.0008964161-CLb 0.442362 0.437022001Disovery potential, 3 sigma 0.00300535 0.0031Disovery potential, 4 sigma 0.000200356 0.0002Disovery potential, 5 sigma 0.000100178 0.000129



We see that the values of stot and btot for the two di�erent programs were equal. Thealrm++ values of the other variables ame lose to the alrm values, but they were notexatly the same. This was expeted for several reasons. The alrm and the alrm++programs use di�erent random generators to produe random numbers, whih of ourseresults in di�erent random numbers. Also, the variable types have been hanged. This issomething that omes about in the ause of translation; the REAL, REAL*4, INTEGERand so on of Fortran 77 have been translated mostly into the C++ variable types doubleand int. In addition, some of the values that are alulated during an analysis are verysmall, meaning that they are greatly in�uened even by small �utuations in the randomnumbers.
7.2 Simple analysis testA simple hek to see if the program is working, is to set the number of observedandidates to zero. From Chapter 5, we see that the �2 lnQ's of the Monte Carlogenerated experiments are alulated using random numbers produed by a Poissondistribution to �nd the number of andidates for the hannels. We know from Equation(2) and (4) that when the number of andidates of the user input is equal to zero, onlythe �2 lnQ's where the random number of andidates are also equal to zero will satisfythe ondition �2 lnQ � �2 lnQobs.The probability of obtaining a spei� number of andidates , ni, from the randomnumber generation is given by the Poisson probability funtionP (ni) =Yni e�(si+bi)(si + bi)nini! : (13)The symbols of this equation are explained in Chapter 4. We see thatP (ni = 0) =Yni e�(si+bi): (14)For the signal+bakground hypothesis,P (ni = 0) =Yni e�(si+bi) = e�(stot+btot); (15)and for the bakground hypothesis,P (ni = 0) =Yni e�(bi) = e�btot: (16)
The ratio of these two probabilities, whih orresponds by de�nition to the ratio of CLs+bCLb ,is e�stot. From Equation 12 we see that when the luminosity, ross setion, branhingratio and e�ieny are all equal to one, as we assume is the ase here, stot = numberof hannels, Nhan. As a result, CLs will have the value e�Nhan . An example of threehannels would give CLs � 0:05 (5%). The alrm++ input values of this example isshown below.
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Observed 0 0 0Use hannel 1 1 1Use mass 0 0 0Bakground 1.0 1.0 1.0E�ieny 1 1 1Branhing ratio 1.0 1.0 1.0Luminosity 1.0 1.0 1.0
The analysis was performed with 100000 Monte Carlo experiments. The results ofalrm and alrm++ is displayed in the table below.

Variable name alrm++ alrmstot 3 3btot 3 3CLsb 0.00269843 0.00247875CLb 0.054324 0.0497871CLs 0.0497871 0.0497871�2 lnQ, from user input -6 -6CL_s_infty 0.263642 0.265931-2lnQ_b_infty -1.86152 1.835581-CLb 0.945676 0.950212955Disovery potential, 3 sigma 0.128108 0.1226Disovery potential, 4 sigma 0.0188541 0.0185Disovery potential, 5 sigma 0.001267 0.0013
Both the alrm and the alrm++ program �nds approximately 5% on�dene in thesignal hypothesis. As in the previous example, there are some di�erenes between thetwo programs in the values of the other variables.

7.3 Neutrino osillationsThe NOMAD neutrino osillation �e ! �� searh [3℄ is a good example of an experimentwhere the alrm program an be used in the �nal stage of the analysis. The dataonsists of thirteen di�erent hannels (using the alrm++ de�nition of Chapter 5). Allthe hannels have very few or no observed andidates. The experimental results and theNOMAD method of alulating the signal on�dene are desribed in [3℄ and [9℄. To seewhat results the CLs method and the alrm++ program give ompared to [3℄, we needto insert the experiment data into the program.In [3℄, the results are given in the form of an upper limit on the probability of a �eosillating to a �� at 90% on�dene: Pos(�e ! �� ) < 2:6 � 10�2 at 90% CL. The CL31



value is the average value of the on�dene in the signal hypothesis. The sensitivity isgiven as Pos = 4:3� 10�2.Beause the alrm program was originally designed to make use of one analysismethod in partiular, its input variable names do not math the ones of the analysismethod of [3℄. For example, the variable Pos had to be inserted in the ross setionvariable of the input �le to �sale� the input ontrol variables to math the NOMADdata. This is a weakness of the original program that has been, unfortunately, passedon to the new alrm++ program. The experimental results of [3℄ had to be interpretedso that the their values ould be introdued to the program through the orret ontrolvariables.In the alrm++ program, the median of the on�dene in the sensitivity [9℄ (whenthere is no signal, only bakground) is represented by the third element of arrayl_s_exp_b, and the average value is represented by the variable CL_s_infty. Theon�dene in the signal hypothesis is, as usual, CLs.To �nd the median value of the sensitivity at 90% CL using the alrm++ program, thevalue of the ross setion ontrol variable was �rst adjusted until the value of the outputvariable l_s_exp_b[2℄ was approximately 0.10 (10%). Later the same adjustmentswere made to �nd the ross setion values where CL_s_infty and CLs � 0.10.The input of the alrm++ program whih gives l_s_exp_b[2℄ � 0.10 is shownbelow.
Observed 0 1 4 0 0 32 0 5 5 0 1 0Use hannel 1 1 1 1 1 11 1 1 1 1 1 1Use mass 0 0 0 0 0 00 0 0 0 0 0 0Bakground 1.19 0.42 3.01 1.45 0.28 2.700.50 1.80 5.0 6.5 0.5 0.1 0.4E�ieny 3.9 4.5 12.1 10.9 23.3 12.64.5 20.1 45.7 25.9 1.8 2.1 1.8Branhing ratio 1.0 1.0 1.0 1.0 1.0 1.01.0 1.0 1.0 1.0 1.0 1.0 1.0Luminosity 1.0 1.0 1.0 1.0 1.0 1.01.0 1.0 1.0 1.0 1.0 1.0 1.0Cross setion 0.04267 0.04267 0.04267 0.04267 0.04267 0.042670.04267 0.04267 0.04267 0.04267 0.04267 0.04267 0.04267

The output, where l_s_exp_b[2℄ is very lose to 0.10, is shown below. The programwas performed with 100000 Monte Carlo experiments.
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Variable name alrm++stot 7.21976btot 23.85CLsb 0.0267006CLb 0.371901CLs 0.0717951�2 lnQ, from user input -3.88761CL_s_infty 0.145795-2lnQ_b_infty -2.759271-CLb 0.628099Disovery potential, 3 sigma 0.224919Disovery potential, 4 sigma 0.0483331Disovery potential, 5 sigma 0.0052645l_s_exp_b[2℄ 0.100076
The value of the median of the sensitivity at 90% on�dene aording to the alrm++program analysis, is about 0.0427. This is approximately the same value as the NOMADvalue of 0.043. When the value of the average CL (CL_s_infty)reahed 10%, however,the sensitivity value was 0.05035. This value is greater than the NOMAD value.alrm++ gave an upper limit on the probability Pos(�e ! �� ) at 90% CL of 0.038,whih is a greater value than the NOMAD value of 0.026.We see that the upper limit on the probability of the neutrino osillation �e ! ��beomes greater when we use the alrm++ program to analyse the NOMAD data. Still,the point of this example was not to re-analyse the NOMAD data, but to show that it isatually possible to use the alrm++ program to analyse the data from suh experiments.I will therefore not try to explore this topi further, or draw any onlusions as to whihstatistial analysis method is the better to use in this ase.
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8 Conlusions and outlookFrom the test results of the previous hapter, and from other tests onduted in theproess of translation from Fortran 77 to C++, it seems lear that the alrm++ works,and is able to reprodue the results of the old Fortran version. However, there areertain aspets of the translated version that need to be mentioned.
8.1 Problems and resultsThe alrm++ program is mainly objet oriented in its struture, although some partsof the ode are not quite optimal in this respet. For example, the alulations of skand bk of Formula (5) in method �altlnq()� ould be delegated to the hannel objets.The reason that this has not been done, is mainly that hanging these parts of theode would make suh a large impat on the program struture that it would be tootime onsuming for a and. sient. assignment. Being at least mostly objet oriented,however, the program is modular and an easily be hanged or expanded.The user interfae, written in Java, is optional and is expeted to make it easierfor new users to understand and use the program. It has a help setion providinginformation about the input �le and the analysis. The Java interfae window is shownin Figure 7.There have been problems for new users related to the onnetion between the C++program and the Java interfae. The most ommon problem seems to be that the Javaprogram is unable to �nd the C++ shared library (see Appendix A). The ompilation ofthe interfae and alrm++ ombination an also be di�ult, and is likely to be dependenton operating system and ompiler versions.Not all features of the C++ program version have been tested yet. There are pos-sibilities in the program for letting the user provide error values and error soures, butthis has not been fully implemented. Another feature not yet tested is the possibility ofletting the user hoose to inlude information about, for example, partile masses. Thiswould require that signal and bakground probability distributions be spei�ed in themethods �sigprob()� and �bakprob()�. These distributions will, hopefully, be inludedin future expanded versions of the program.One of the disadvantages of objet oriented programming, mentioned in Chapter 3,is that the omputational speed may be less than for non-OO strutures. This is truefor the alrm++ program, whih was about twenty times slower than the alrm programin April 2002. Beause of the restritions in the duration of a and. sient. assignment,I have not had time to optimise and improve the C++ program, so that when thetranslation was �nished, there was a lot that ould be done to make the program workfaster 2.2My supervisor, Alex Read, has done some optimising and has managed to get the di�erene inomputational speed down from 20 times slower than the Fortran program to about 1.2 times slower.Many of the main bottleneks were loated at points where arrays were delared and deleted, andmoving these operations proved to be quite e�etive.
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8.2 The futureSo far only one analysis type (MC omputations of on�denes for ounting experimentsat a �xed point of the model parameter(s)) has been implemented, but the program is de-signed for more. The idea is that the super lass Analysis (see Chapter 3) should ontainall the ommon methods that all analysis types use, while its sub lasses should ontainthe spei� methods of the various analyses. Figure 14 shows super lass Analysis withthree sub lasses, eah of them assoiated with an objet ontaining the analysis typemethods.

Figure 14: The super lass Analysis with three sub lasses, their objets ontaininganalysis type methods.
When using the ommand line version of the C++ program, it is the �main()� methodthat initialises the various objets and alls the major methods. To adapt the programto work with a di�erent form of input or slightly di�erent proedures, the �main()�method ould be replaed by a ustomised version.A test was made to see if the results of a simulation of the Higgs searh proessH !  [11℄ with approximately 80 hannels (with several thousand events per hannel)ould be analysed by the alrm++ program. The test showed that this ould not be doneby the urrent program in a �nite amount of time, and so adapting the program to readsuh input and analyse it is a hallenge for the future.Also for the future is the an addition to the program of a feature whih allows theuser to feed information about the parameters of the test signal MC experiments. Atpresent date, the user an only provide the observed values of the various parameters.The ompilation and run-time problems of the Java user interfae might be solvedin the future by making a ompletely new interfae, or providing a more user friendly
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ompilation �reipe�. A suggestion of using sripting [14℄ to solve the problems seemspromising.The alrm++ program is a work in progress. It has been re-organised and objet ori-ented, while still reproduing the results of the �exlude_signal� analysis of the Fortranversion, but there is a lot more to be done. There is still a need for further optimisa-tion and objet orienting, and for expansion and adaption. Hopefully, this work will beontinued in the future.
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A How to use the alrm++ programA.1 PreparationsThe program uses the external libraries of Root [6℄ and CLHEP [7℄, both available atthe CERN home pages. The paths to these libraries must be set in the environmentvariable LD_LIBRARY_PATH and in the ompilation ommand or Make�le.When using the Java interfae version, the C++ �les must be ompiled as a sharedlibrary [2℄. The path of this shared library must be set in the Java �le AnalysisJava.java.
A.2 Compilation and the Make�leWhen all the neessary �les have been opied and the library paths have been foundand set, it is time for the ompilation. The easiest way would be to ompile onlythe C++ �les �rst to get a working sample of the ommand line version. This is anormal C++ ompilation, using a C++ ompiler with the external libraries of Rootand CLHEP inluded. The program has so far been ompiled with the g++ ompiler,and all standard C++ libraries have been inluded. The proedure is desribed in mostC++ tutorials.To use the Java interfae, some hanges must be made from the ommand line versionby the user. The ompilation will be di�erent, as the Java �les must be ompiled witha java ompiler, the C++ �les with a C++ ompiler (with the option -shared) and the�in between� lass AnalysisJava.lass (produed by the java ompiler) with the javahommand with the option -jni (�javah -jni AnalysisJava�). The �shared� option makesa shared library of all the C++ �les. The shared library is loaded at the start of eahsession in the objet of lass AnalysisJava. As mentioned in the Preparations, this meansthat the name and path of the shared library must be orret in this �le.An example of a Make�le for ompilation of both the ommand line and the Javainterfaes is inluded below. The shared library is alled nativeC.so, and the exeutableommand line �le is alled alrm++:# The Maros#MAKEFILE = makefileFILE = alrm++OFILES = nativeC.soCC = g++LN = -lm -lCLHEP -lCint -lCore -lTree -ldl -lg2 -lstd++LIBS = -L./ -L/usr/lib -L/mn/susy/partile/lhep-1.7.0.0/i386_redhat71/lib-L/mn/susy/partile/root-v3.01.06/i386_redhat71/lib/INCLUDE = -I./ -I/mn/susy/partile/lhep-1.7.0.0/i386_redhat71/inlude-I/mn/susy/partile/root-v3.01.06/i386_redhat71/inlude/IDIRS = -I/mn/heliity/loal/fys/epf/jdk1.3.1_02/jre/lib/i386/DEBUG = -g -O0# Objet files, it pays of in struture to trunate with bakslash (\)
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OBJC = main.o hannel.o analysis.o exlude.o histogram.oOBJJ = hannel.o analysis.o exlude.o histogram.o ppJava.o AnalysisJava.oINCC = analysis.h exlude.h histogram.h hannel.h arrayComp.hINCJ = ppJava.h jni.h AnalysisJava.h.SUFFIXES: . .o# Rule for eah subroutine..o:$(CC) $(LIBS) $(INCLUDE) $(DEBUG) - $<MAIN = $(FILE)# targetall: $(MAIN) java lib# MAINs dependenies, ompile eah subroutine aording to Rule$(MAIN): $(OBJC) $(MAKEFILE)$(OBJC): $(INCC)$(OBJJ): $(INCC) $(INCJ)# Compile Main and link$(MAIN): $(OBJC)$(CC) $(STDOPT) $(DEBUG) $(INCLUDE) $(LIBS) -o $� $(OBJC) $(LN)#Make libraries$(OFILES): $(OBJJ)$(CC) $(CCFLAGS) $(INCLUDE) $(LIBS) -shared -o nativeC.so$(OBJJ) $(LN)lib: libAnalysisJava.solibAnalysisJava.so: AnalysisJava.h $(OFILES) AnalysisJava.o$(CC) $(CCFLAGS) $(INCLUDE) $(LIBS) -shared -o libAnalysisJava.so$(OFILES) $(CPPDEFINES) $(CCLIBS) $(IDIRS) $(LN) AnalysisJava.ojava: JavaCpp.lass AnalysisJava.lass AnalysisJava.hJavaCpp.lass: JavaCpp.javajava JavaCpp.javaAnalysisJava.h: AnalysisJava.lass
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javah -jni AnalysisJavatouh AnalysisJava.hAnalysisJava.lass: AnalysisJava.javajava AnalysisJava.java
A.3 Speial problemsThere are some fators that the user should be aware of when using the alrm++ pro-gram. These are listed below.� The ompilation of shared libraries and of javah -jni is likely to be dependent onthe operating system. The program has so far been tested only within a LinuxRed Hat environment.� If the program an't �nd the shared library, it might be neessary to add the pathof this library to the LD_LIBRARY_PATH or similar.� There is a strange di�erene between the ommand line and the Java interfaeversion. The format of the input �le is the same in both ases, but the ommasof the �double� variables must be written as �.� for the ommand line and �,� forthe Java version. This is a strange di�erene that originally did not seem to haveany logial explanation. Just lately, it has been suggested that this is due to theloale feature of the Java language, whih adjusts the omma standard aordingto the ountry of residene.� There is a problem if a variable that is de�ned as an integer in the program isgiven as a double in the input. If this happens, the program will read the numberas zero, ausing problems in the omputation.
A.4 OutputWhen the program has �nished, there will be two output �les; one text �le ontainingthe variables omputed by the program, and a .root �le ontaining a Root TTree �lledwith result data. The latter an be opened and viewed in Root. An example of a Rootsript that opens the �le and displays the variable �l_sb� as a histogram is shownbelow. The sript is ontained in a �le alled �display.�. The �le is exeuted in theRoot environment by typing �.x display.�.
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int display(){ //Reset all variables in session:gROOT->Reset();//Open file:TFile *p = new TFile("likem.root","READ");//View file ontentsp->ls();//Read file Tree to new session Tree:TTree *tree = T;//Make a anvas to display histograms:TCanvas *an = new TCanvas("","C",0,0,600,400);//Draw variable l_sb as a histogram:tree->Draw("l_sb");return 0;}
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B Input �le formatThe Java interfae should be used for global information input. This ould be thenumber of Monte Carlo experiments you want the program to simulate, the san range(not yet implemented), et of the analysis type you want to run. The input �le shouldontain information about the individual hannel(s) you want to analyse.The �rst line of the input �le should ontain the number of hannels you want toanalyse. The rest of the lines should all start with a ontrol variable (see list of ontrolvariables below), and then the values of that variable for eah hannel, with a spae ortab in between. The variables are not ase sensitive.
B.1 The ontrol variables:E�ieny: The nominal signal detetion e�ieny per searh hannel. Default = 1.0.Bakground: The nominal integrated bakground rate per searh hannel.Default = 0.0.Observed: The number of andidates observed per hannel. Default = 0.Luminosity: The integrated luminosity per searh hannel. Default = 1.0.Branhing: The branhing ratio per searh hannel. Default = 1.0.Cross setion: Cross setion per searh hannel. Default = 1.0.Usehan: True/False per hannel to enable/disable it in the analysis. This way, it ispossible to study individual hannels or subsets of hannels one a multihannel searhhas been on�gured. True = 1, false = 0. Default = 0.Usemass: True/False per hannel to enable/disable the use of the p.d.f. of the dis-riminant for enabled hannels. Usemass is a synonym for usepdf (reonstruted massis a typial disriminant) in the Fortran version. True = 1, false = 0. Default = 0 .The �true� option is not yet implemented.Betype: The bakground error type per hannel 0=No errors, 1=Normal distribution,2=Poisson distribution, 3=Binomial distribution. Default = 0.Not yet implemented.Bep1: First parameter for generating bakground errors per hannel (the interpretationdepends on the error type, see betype): Normal distribution (1) = Standard deviation.Binomial distribution (2) = Number of events in parent sample. Poisson distribution(3) = Number of events seleted from parent sample. Default = -1.Not yet implemented.
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Eetype: The e�ieny error type per hannel: 0 = No errors, 1 = Normal distribution,2 = Binomial distribution, 3 = Poisson distribution. Default = 0.Not yet implemented.Eep1: First parameter for generating e�ieny errors per hannel. The interpretationdepends on the error type (see eetype); Normal distribution (1) = Standard deviation,Binomial distribution (2) = Number of events in parent sample, Poisson distribution(3) = Number of events seleted from parent sample. Default = -1.Not yet implemented.Usesmear: True/False per hannel to enable/disable the systemati unertainties forenabled hannels. True = 1, false = 0. Default = 0.The �true� option is not yet implemented.
Example �leBelow is an example �le of six hannels, using some of the ontrol variables.6OBSERVED 1 0 1 5 0 1USECHAN 1 1 1 1 1 1USEMASS 0 0 0 0 0 0BACKGROUND 0.675 0.440 0.583 5.340 0.410 0.730EFFICIENCY 0.0256 0.0425 0.1217 0.5223 0.0125 0.0226BRANCH 0.1 0.1 0.1 0.1 0.1 0.1BETY 1 1 1 1 1 1BEP1 0.26 0.21 0.24 0.73 0.20 0.27EETY 1 1 1 1 1 1EEP1 0.015 0.015 0.015 0.015 0.015 0.015LUMI 1.0 1.0 1.0 1.0 1.0 1.0
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C Lists of methods and variablesFollowing is a referene list of the most important methods of lass Analysis, and theirpurpose:readFile: Reads the input �le (see Appendix B), makes the hannel objets of lassChannel and stores the user input in the variables of the hannel objets.unsmearBakground: Sets the bakground to the nominal (user input) bakground.getSbTotals: Finds stot and btot, the expeted number of all signal and bakgroundandidates of all hannels.getClImpunb: Finds all on�denes and their unertainties.unsmearE�ieny: Sets the e�ieny to the nominal (user input) e�ieny.altlnq: Finds the sum of Equation (4).generateMTrial: Generates random values for the number of signal and/or bak-ground andidates per hannel.smear_orr_e�_and_bg: Generates e�ienies and number of bakground andid-ates with a set of random �utuations if there are any error soures de�ned.First all: Makes a list of all user input error soures.generate_sigtest_trial: As generateMTrial, for unweighted signal experiments.The output �le �exlude.res� ontains a lot of variables and their values. This is a ref-erene list of these output variables:s_exp: The number of expeted signal andidates for all hannels. The variable stot ofEquation (2).b_exp: The number of expeted bakground andidates for all hannels.CL_sb: The probability that the results are less signal-like than the observed values,given that the signal+bakground hypothesis is true. The de�nition of this variable isgiven in Equation (6).CL_b : The probability that the results are less signal-like than the observed values,given that the bakground-only hypothesis is true. The de�nition of this variable isgiven in Equation (8).CL_s: The probability that the results are less signal-like than the observed values,given that the signal hypothesis is true. This is not a true on�dene level, but a ratio
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of on�denes that provides a good approximation. The de�nition of this variable isgiven in Equation (9).-2lnQ observed: The value of �2 lnQ alulated using the user input (observed) val-ues.CL_s_infty: The expeted average value of CLs for the bakground only hypothesis.-2lnQ_b_infty: The orresponding value of �2 lnQ.Disovery potentials; 3,4,5 sigma (p_dis_3s, p_dis_4s, p_dis_5s): Theprobabilities of making disoveries (1� CLsb) when 1� CLb (the signi�ane) is equalto the standard normal distribution probabilities at 3, 4 and 5 standard deviations, ifthe signal+bakground hypothesis is true.1-CLb (l_b_omp): See CLb. The de�nition of variable CLb is given in Equation(8).l_b_exp_sb: The expeted average value of CLb given that the signal+bakgroundhypothesis is true.m_l_b_exp_sb[℄: The expeted value of 1 � CLb when 1 � CLsb is equal to thestandard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, ifthe signal+bakground hypothesis is true.m_l_b_p_exp_sb[℄: The expeted values of 1�CLb1�CLsb when 1�CLsb is equal to thestandard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, ifthe signal+bakground hypothesis is true.m_l_b_p_exp_b[℄: The expeted values of 1�CLb1�CLsb when 1� CLsb is equal to thestandard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, ifthe bakground hypothesis is true.l_sb_exp_b[℄: The values of CLsb when CLb is equal to the standard normal dis-tribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the bakground hy-pothesis is true.l_s_exp_b[℄: The values of CLs when CLb is equal to the standard normal distribu-tion probabilities at -2, -1, 0, 1 and 2 standard deviations, if the bakground hypothesisis true.xi2_exp_b[℄: The expeted values of �2 lnQ when CLb is equal to the standard nor-mal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the bakgroundhypothesis is true.
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xi2_exp_sb[℄: The expeted values of �2 lnQ when CLsb is equal to the standardnormal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the sig-nal+bakground hypothesis is true.l_s_exp_sb: The expeted value of CLs for the median value of 1 � CLsb if thesignal+bakground hypothesis is true.xi2_exp_sigtest[℄: The values of �2 lnQ when the test signal distribution is equalto the standard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations.m_l_b_exp_sigtest[℄: The values of 1 � CLb when the values of the simulatedbakground �2 lnQ's are equal to the xi2_exp_sigtest[℄'s.l_sb_exp_sigtest[℄: The values of CLsb where the values of the simulated bak-ground �2 lnQ's are equal to the xi2_exp_sigtest[℄'s.l_s_exp_sigtest[℄: The values of CLs where the values of the simulated bakground�2 lnQ's are equal to the xi2_exp_sigtest[℄'s.p_dis_5s_p, p_dis_4s_p, p_dis_3s_p and p_dis_2s_p: Disovery po-tentials. The values of 1�CLsb, when 1�CLb1�CLsb is equal to the standard normal distributionprobabilities at 2, 3, 4 and 5 standard deviations, given that the signal+bakground hy-pothesis is true.l_b_infty: The average value of CLb for the bakground only hypothesis.d_l_b_infty: The error (standard deviation) of l_b_inftyl_bb_infty: The average value of CLb if the bakground only hypothesis is true.d_l_bb_infty: The error (standard deviation) of l_bb_inftywexpt_sigtest: The average value of �2 lnQ for the test signal experiments.wexpt_sigtest_rms: The error (standard deviation) of wexpt_sigtest.wexpt_signal: The average value of �2 lnQ if the signal+bakground hypothesis istrue.wexpt_signal_rms: The error (standard deviation) of wexpt_signal.p_exl_90: The probability of exluding the null hypothesis for CLs = 10% giventhat the signal hypothesis is false.p_exl_95: The probability of exluding the null hypothesis for CLs = 5% given that
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the signal hypothesis is false.p_exl_99: The probability of exluding the null hypothesis for CLs = 1% given thatthe signal hypothesis is false.p_exl_95_aleph: The sum of the bakground weights of the Monte Carlo generatedexperiments for CLs_aleph = 5%l_sb_infty: The average value of CLsb for the bakground only hypothesis.d_l_sb_infty: The error (standard deviation) of l_sb_infty.l_s_infty: The average value of CLs for the bakground only hypothesis.d_l_s_infty: The error (standard deviation) of l_s_infty.wexpt_infty: The value of CLs when the bakground hypothesis is true.wexpt_infty_rms: The error (standard deviation) of wexpt_infty.fe_rate: False exlusion rate; the value of CLsb when CLs is 5%.fe_rate_sb: False exlusion rate; the value of CLsb when CLsb is 5%.d_l_sb: Not yet implemented.d_l_b: Not yet implemented.l_s_aleph: A speialised value of CLs for the ALEPH experiment.l_s_aleph_infty: The expeted value of CLs_aleph when the bakground hypo-thesis is true.
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