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Abstract

The object-oriented (OO) programming style is becoming more and more popular, also
among scientists. Several CERN computer libraries have been translated from the For-
tran programming language to C++ recently, and it is expected that future analysis
tools for particle physics experiments will be programmed using an OO language. This
thesis describes the translation of the Fortran 77 alrmc program (written by A. L. Read)
into C++. The program will perform statistical analyses of searches for new particles
at the LHC/ATLAS experiment. The theory behind the program and its new, object
oriented structure are explained, and tests are conducted to make sure that the C++
version of the program works.
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1 Introduction

The program alrmc, written by A. L. Read in the Fortran 77 programming language,
is a tool for analysing data from particle physics experiments. It is particularly useful
in searches for new physics where the statistics is low, the measurements bordering on
the sensitivity limit of the measuring equipment. The term “low statistics” means that
there are few background and/or signal candidates recorded, so that the high statistics
approximations of “normal” analysis methods will be invalid.

Unfortunately, while the alrmc program is indeed very useful and has been used in
analysing data from search experiments at LEP (Large Electron Positron collider)[16],
the code of the Fortran 77 version has been rather difficult for the typical user to
understand and apply. This has been a problem, especially since making changes to
the original setup of the program has meant that the user has been forced to change
large and important parts of the code. This comes about mainly because of the Fortran
procedural style of programming.

Programs written in versions of the Fortran language older than Fortran 90/95,
consist mainly of one single “block” of code. When run, such a program will progress
in a linear way, steadily working through subroutine and function calls. There is a
way of grouping and separating some variables from the main “block” by using common
blocks, but mainly the program consists of one long file of code. The consequence is,
as has already been mentioned, that if the users want to add to or take away from the
code, or just make some changes to a feature, they have to make big and complicated
adjustments.

Object oriented (OO) programming has become more and more popular, also in
scientific programming projects. The advantages are many; some of them will be men-
tioned in a later chapter of this thesis. One of the main advantages, however, is that
OO programs are modular. It is a lot easier to understand and to make changes to a
program that is split into several independent parts than to a program where almost
every bit of code is dependent on the others. Consequently, some of the main reasons
for wanting an object oriented version of alrmc, from now on called alrmc++, are that
it would be easier to use, understand, expand and develop. Also, the programs that the
alrmc program might have to interact with (libraries, analysis tools etc), are now being
translated from Fortran to C++. This process has already started at CERN [7| and
DELPHI [18].

This thesis is concerned with the translation of the alrmc program from Fortran 77 to
object oriented C++. The Fortran alrmc program provides the user with several ways
of analysing data, represented by a number of Fortran subroutines. In this thesis only
one of these analysis types, the “exclude signal” of the Fortran version, is considered.

In addition to the translation and adaption of the Fortran program to OO C++,
there has been a need for a graphical user interface. This feature might make the crucial
first contact with the program easier, and will incorporate help functions so that the user
will not have to turn to the code to find out what kind of input the program demands.

In the first part of this thesis some of the uses of the program are mentioned, and
object oriented programming and the C'L; method are explained. This is the background
material needed to understand how the alrmc++ program works. Later in the thesis, I
explain the structure and layout of the C++ version, and I give a detailed explanation



of how the physics and statistics theory is implemented in the program. I then test the
alrmc++ program to see if it is working, and if it reproduces the results of the Fortran
alrmc. Finally, I discuss the new program and its future.

The thing to bear in mind is that this thesis is also meant to be a user guide to
the alrmc++ program. This has of course affected the structure and the contents of the
thesis. In the Appendices, for example, I have included a user’s guide on how to compile
and use the program, and a description of the format of the input file expected by the
program.



2 The uses of the alrmc++ program

2.1 The DELPHI Higgs searches

The DELPHI experiment (DEtector with Lepton, Photon and Hadron Identification) at
LEP conducted searches for the Higgs particle at centre of mass energies between 200
and 209 GeV. The experimental data consisted of very few observed candidates, and the
conclusion was drawn at the end of the analysis that the data showed no evidence for a
Higgs signal [1]. However, a 95% confidence level lower mass limit of 114.3 GeV/c? was
set. The confidence level was estimated using the statistical method the alrmc program
is based on.

2.2 NOMAD

The neutrino oscillation v, — v, search at the NOMAD (Neutrino Oscillation MAgnetic
Detector) detector [3] has found only a small number of candidates. The results consist of
several different decay channels, each with very little, if any, observed data. These data
have been analysed using another method than the one used in the alrmc++ program.
When comparing the results of the method of the published article [3] with the results
we get when the same data is fed into the alrmc++ program, we see that the results
differ. This case will be discussed further in Chapter 7.

2.3 The ATLAS project

At CERN, the European organisation for nuclear research, the LHC (Large Hadron
Collider) is presently under construction in the existing LEP tunnel. Some of the pro-
spects of this new machinery is to increase the present day centre-of-mass energies and
luminosities for the pp and heavy ion collisions that the LHC will provide.

The LHC project will include four large experiments. The ATLAS (A Toroidal Lhc
ApparatuS) and CMS experiments will be doing precision measurements and searches
for new physics. LHCb will be dedicated to the physics of b hadrons and CP violation,
and ALICE will be a heavy ion experiment.

The LHC is the largest, most complex and expensive particle physics project so far.
What do people expect to learn from the LHC experiments that will justify these costs?
The physics motivations are many; physicists wish to perform more precise measure-
ments, to understand the origin of the particle masses, to look for new physics beyond
the Standard Model and to answer many of the questions left open by earlier experi-
ments. ATLAS in particular will continue the ongoing searches for new physics. This
includes searching for the Standard Model Higgs boson, particles predicted by the Super
symmetry (SUSY) theory and other physics beyond the Standard Model. At ATLAS,
the first few years of running will be a period of low luminosity, with few events pro-
duced. In this period, the alrmc++ program may be used as an analysis tool in searches
for particle signals.

Another example where the alrmc++ program might be useful, is in search experi-
ments where the background is small but non-zero, and the particle is very heavy and



thus not produced in great quantities, producing a small signal. The search for the
heavy Z’ is an example of such an experiment.



3 Object-oriented programming: A quick overview

Object-oriented (OO) designs are becoming more and more popular, but the transition
from languages like Fortran and C to the OO languages of Java and C++ can be
difficult. The idea of objects as “black boxes” that take care of themselves and interact
via messages only can seem strange and foreign to many programmers not used to OO
programming. However, the basics are quite simple once you have grasped the concepts
of classes and inheritance. To explain these terms, I will start by describing objects.

3.1 Objects

Objects have both a behaviour (they do things) and a state (that is changed when they
do things). For example, a cat could be an object. It has a state; it could be awake or
sleeping, and it has a behaviour; falling asleep, which changes its state from awake to
sleeping [10]. To make a cat-object sleep, we would need to send it the message “fall
asleep”. From our point of view, the existence of this message would be all we needed
to know about the object. We would not need to know about all the complex details of
how it falls asleep, that is, closing its eyelids, changing its breathing and so on.

3.2 Classes

Now we have a domestic cat that is able to fall asleep. But what if we wanted something
more exotic, like a leopard? We make a new object called “leopard”. It can also fall
asleep, and it has a state, let us call it “awareness”, that can be “asleep” or “awake”, just
like the cat. But our leopard is bigger and its fur has a different pattern. So we add
two more states, usually called variables, to our leopard object; size and pattern. But
of course, the domestic cat has a size and a pattern too. We see that the states and
the behaviours of the cat and the leopard are the same, so in order to save time and
make things neat and tidy, we would try to make a common set of states that could be
specified for each object. In other words, we would abstract out the common attributes,
ignore the particular values of these attributes and make a blueprint for our objects.
This abstraction, or blueprint, is called a class. A class describes a set of objects that
share a common structure and a common behaviour|1]. So let us make a class for our
objects called “Felidae”, which is the Latin name of the cat family. This class contains
the variables “awareness”, “size” and “pattern”, and also the behaviour “fall asleep”. If
we want to make a new object, for example a lion, we use the Felidae class and simply
fill in the particular values of the lion. An object is also called an instance of a class,
meaning that the lion is an instance of the class Felidae.

3.3 Methods

To change a variable, we must send a message to the object activating its behaviour.
The behaviour is called a “method” (known to Fortran programmers as a function or
subroutine) and the process of sending a message is referred to as calling a method.
Objects interact and communicate by calling each other’s methods. A method can
receive values or return a value when it is called (or both), but there are no differences



between a method with or without these options. This is different from the Fortran
programming language, where a method is called a subroutine or a function depending
on its characteristics.

3.4 Inheritance

To continue our real world example of animals, what if we wanted a human object
instead of a cat? We could make a class Human, and make the objects Peter and Anne.
These objects would have basically the same variables and methods as the cats, but
there would be some differences as well. The number of legs, for example, and the
humans would have less fur and round pupils. To save ourselves from a lot of work, it
would be nice to be able to make a class called “Mammal” that would summarise all the
common features of humans and cats, and then create the Human and Felidae classes
as sub classes of Mammal. This would mean that we could reuse the code written in
this parent, or super, class.

Our structure now looks like this: We have a super class containing the variables and
methods of all mammals, and two sub-classes that specify the particularities of humans
and cats with their own variables and methods. When we make an object of a sub-class,
we can insert the specific information of that individual into the object’s variables.

3.5 Pointers

This gives us a structure with lots of unorganised objects that are just floating around.
How should we best organise and access these objects? The answer is pointers. When
declaring an object, you can also make a pointer to it that can easily be stored in some
kind of table, array or vector. If the pointers are stored in an iterative device, it will
be easy to access all the objects using a loop. A pointer is, as the name suggests,
something that “points” to the desired variable or object. Having these pointers, it is
possible to access the variables of the objects directly from outside the object. However,
it is considered more object oriented to make methods that simply return or set the
desired variables. The advantage of making such “get” and “set” methods is that if you
want to change the inner workings of a class, you can do that without changing what
the user sees from the outside.

3.6 Visualisation

The most efficient way of providing information about the structure of an OO program,
is to make a graphical representation. The parts needed to make such a structure map
is shown in Figure 1. The classes and their objects are usually connected with a straight
line to show which object belongs to which class. The pointers are connected to what
they are pointing at by an arrow.

The visualisation of an OO structure usually does not show all the objects’ methods
and variables, only the parts that are necessary to understand the structure of the
program.
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Figure 1: The parts of an OO structure.

3.7 Example : The Forest

As an example, let us consider a forest. By definition a forest contains many trees. Each
tree has its own height, leaves and so on. By making a class Tree that contains all these
variables, we create a forest of three tree-objects using the class as a blueprint. For each
of the trees, we make an object of class Tree and assign the tree’s specific values to its
variables. This example is illustrated in Figure 2.

class Tree

________
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! 1
! 1
! 1
! 1
! 1
! 1
! 1
\

height

leaves

height
>

leaves

>

height
>

leaves

>

Figure 2: OO structure of example Forest.



3.8 Slightly More Complicated Example : Friends

Anne has a lot of friends. They all have a name, a date of birth, a telephone number, an
address and so on, and Anne is having problems remembering these names and numbers.
She wants to make a register containing all this information.

Her first decision is to make an object for each of her friends. She makes a blueprint,
a class, called Friend. This class contains all the variables of a friend; name, address,
etc. It has methods to set and get these variables from outside the object. She also
makes another class called Register that will have only one object from which the Friend
objects will be organised. This has to do with the concepts of OO. The organisation
of objects and other structures could easily be done, for instance, from inside a main()
method. But by putting all the code inside objects, we get a program that is easy to
change later and that looks like a “black box” when seen from the outside.

Making an object of class Friend from inside the object of Register, Anne makes a
pointer to the Friend object as well. The making of pointer and object could look like
this (C++):

Friend *myFriend = new Friend();

Let us have a look at this expression. “Friend” is the name of the class that we are
making an object of. “myFriend” is the name of the new object variable. The “x” means
that “myFriend” is not only a name, but also a pointer to the object. The right side of
the equation means what it says: We are making a new object, or instance, of the class
Friend.

The pointer to the new Friend object can now be stored in a location of an array.
When Anne wants to access the objects, she can easily loop through the array from
inside the Register object.

class Register

class Friend

N ————

ORI

Figure 3: The OO structure of example Friends. Only one of the variables and one of
the methods of the Friend objects are shown.
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3.9 Advantages

Some of the advantages of OO-programming are:

e Modularity; the source code for an object can be written and maintained inde-
pendently of the source code for other objects. Also, an object can be easily passed
around in the system. You can give an object to someone else, and it will still
work.

e Information hiding; an object has an interface that other objects can use to com-
municate with it. The object can maintain private information and methods that
can be changed at any time without affecting the other objects that depend on it.
You don’t need to understand the inner workings of an object in order to use it.

e Inheritance provides specialised behaviours in addition to the common variables
and methods provided by a superclass. Through the use of sub classes, program-
mers can reuse the code in the superclass many times.

e Type safety; when a method is called with arguments in the C++ and Java lan-
guages, it is required that the argument types (integer, double precision, character,
etc) must match the ones of the method that is being called.

3.10 Disadvantages

The most noticeable disadvantage of employing an OO structure is that the program
may be slower than, say, a Fortran program. This problem can be minimised by op-
timisation of the code, but the fact remains that if speed is the important thing, then
OO programming may not be what you are looking for. However, the advantages of the
previous paragraph mostly outweigh this factor.

Another disadvantage has to do with the fact that OO programming, and the pro-
gramming languages that are adapted to it, are relatively new and still under develop-
ment. The consequence is that there are few really good books on the subject covering
the latest features and the more specialised options. Also, the compilers are not as
optimised as, for example, modern Fortran compilers.
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4 The C'L, method

The C'L, method is a statistical method that has been used to analyse data from the
experiments at LEP [16]. It is based on a likelihood ratio ), and the confidence levels
CL, and CLy, all explained later in this text.

4.1 The statistical concepts

Many physics experiments are conducted to test the validity of a theory. This means
that the theory must include an observable or a parameter that can be measured directly
or indirectly, respectively, in an experiment. A simple observable of a search for a new
particle would be the number of detected candidates matching some predefined criteria.

In the language of statistics, an analysis of search results can be done as a hypothesis
test. The null hypothesis is that there is no new particle, no signal (only background)
and the alternate hypothesis says that there is. To reject one of these hypotheses, we
will need rules to rank the experimental results from the least to the most signal-like.
This can be accomplished by defining a test-statistic, or function of the observables and
model parameters (particle mass, production rate, etc) of the known background and
hypothetical signal [16]. Having ranked an ensemble of Gedanken experiments, we use
them to reject or accept the null hypothesis by defining ranges of the values of the test-
statistic. These are called rejection and acceptance regions respectively. This is done
in such a way so that we minimise the possibility that we accidentally reject the null
hypothesis when it is correct (type I error), or keep it when we should have rejected it
(type II error).

To summarise; a test of the null hypothesis is a course of action specifying the set
of values of a random variable called the test-statistic for which the null hypothesis is
to be rejected. The set of values for which the null hypothesis is to be rejected is called
the rejection region of the test [5].

4.2 The likelihood ratio

The test-statistic (called @) of the type of search experiments we are interested in, is
defined as the likelihood ratio. The likelihood ratio is the ratio of the probability densit-
ies for the two alternate hypotheses for an experimental result, ﬁést)b). If an experiment
consists of N, independent channels, the total likelihood ratio is a product of the
channel likelihood ratios. A channel, as defined by alrmc++, is a particle interaction
resulting in a specific end product. For an experiment where events are both counted

and have a distinctive measured property, the likelihood ratio can be written as:

_ = ng! j=1 si+b 1
@ 1 Venan xp”"1 b ITjL Bi(zy) W

[ Neren exp (5 T8i) (5, 4b;)"s IT; 5iSi(zi;)+biBi(zij)

which can be simplified to

Nenan i 8193 (i
I N

i=1 j=1 i-Di
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where n; is the number of observed candidates in each channel, z;; is the value of the
discriminating variable measured for each of the candidates, s; and b; are the number of
expected signal and background candidates per channel and s;.; is the total number of
signal candidates for all channels. S; and B; are the probability distribution functions
(p.d.f’s) of the discriminating variable for the signal and background of channel i [16].
If the p.d.f.’s for the discriminating variable are identical for signal and background, or
if they are not measured, the likelihood ratio can be simplified further to

Nchan S: n;
Q=c ] (1 + _’) | (3)
i=1 bi

If we need to find the value of ) numerically, the fact that the likelihood ratio can be
computed by counting weighted candidates will prove useful. We can write In () as

InQ = —Sit + ) npwi, (4)

k=1

where n is the total number of candidates observed in all channels, and the weight wy
of each candidate is
SkSk(l‘k))

kak(Zk) (5)

A much used function of the likelihood ratio is —21In Q. In the high statistics limit
the probability density distribution of this function is expected to converge toward the
Ax? p.d.f. However, the —2InQ p.d.f. is not always given analytically, meaning that
it must be constructed using Monte Carlo simulations. In Figure 4, an example of the
p.d.f.’s of —21n @ for the signal-+background and the background hypotheses are shown.

wk:ln<1—|-

Probability density

0 -2In@

Figure 4: An example of distributions of —21In @ for the signal+background (red) and
background (blue) hypotheses.
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4.3 Confidence levels

An answer of “true” or “false” to a hypothesis test will not be of much use if we don’t
specify the significance of the rejection or acceptance. The significance is expressed in the
terms of a confidence level (CL). This value tells us the probability that the true value of
the test-statistic lies within a certain region called the confidence interval. In our case,
this interval could be the acceptance or rejection regions. To find the confidence level,
it is necessary to compare the test-statistic for the observed values of an experiment to
test-statistics obtained theoretically, where the latter should have a set of acceptance
and rejection values specified.

The procedure of Chapter 4.2 of finding the likelihoods makes it easy to calculate
the confidence levels of rejection and acceptance. According to the C Ly method, the
confidence in the signal + background hypothesis is defined as the probability that
the real value of @) lies in the interval from —oc up to and including the value of
the experimental value of the test-statistic, (., given that the signal+background
hypothesis is true. Thus the confidence in the signal+background hypothesis can be
written as:

CLstp = Poyp(Q < Qobs) (6)

where

Qobs dPS
Perb(Q S Qobs) = /700 W%

Note that % is the p.d.f. of the test-statistic for signal+background experiments.
The confidence in the background-only hypothesis is defined as

dQ. (7)

CLy = Py(Q < Qobs) (8)
and the confidence in the signal hypothesis is given as
CLs+b
CL, = . 9
CL, (9)

This is not a “real” confidence, but a ratio of confidences that is an approximation to the
confidence in a “signal only” hypothesis. The signal hypothesis is considered excluded
at confidence level CL where

1-CL,<CL. (10)

In Equation (4), we saw that In @) could be expressed as a sum of weighted candidates.
Numerically, it is much less time consuming to compute this sum than the product of
Equation (2). From the definition of C'Lg,, we see that Py 5(Q < Qups) = Psip(InQ <
In Q,ps), which enables us to use the value of In @ directly in our calculations.

In Figure 5, the confidence levels are displayed graphically. From the definition of
CLgp, Equation (7), we see that the integration of the p.d.f. of ) has integration limits
from —oo to the observed value of (). Since @ is a function that increases for increasingly
signal-like experiments, —21In ) must have the opposite characteristic. This means that
integration is now performed from the observed value to co as can be seen in Figure 5,
and Equation (6) can be written as

CLs—I—b = Ps+b(_2an > —21In Qobs)- (11)
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Probahility density

0-2InQ(obs) -2InG

Figure 5: The distributions of Figure 4, with an observed value of —2In Q). CL,,; lies
in the pink area and the green+pink area shows C L.
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5 The structure of the alrmc++ program

5.1 The OO design

The basic layout of the alrmc++ program is rather simple. The idea was to make an
object for each channel entered by the user. The concept of a “channel”, defined in
Chapter 4, should be explained further here by an example. The process Z° — ete™ is
a channel, and Z° — p*p~ is another. If we choose to ignore the light lepton flavour,
these two channels can be combined into the new channel Z° — [*]~, where the “1” is
short for “lepton”.

To make an object for each channel, it is necessary to make a class Channel as
a channel object blueprint (see Chapter 3 on OO programming). The channel objects
contain a lot of variables and methods. The latter are mostly to get or set variables from
outside the objects. Pointers to these objects are stored in a array called “channels”.

It is the channel information that is analysed by the program. The methods executing
this analysis are contained in the classes Analysis and Exclude. Class Analysis is a super
class containing all methods that will be used by more than one analysis type. The only
analysis type implemented so far is the analysis “Exclude”. The Exclude class is a
sub class of class Analysis, which means that it inherits all the methods and variables
of Analysis. It also contains the specific methods of the analysis type (expressed in
the Fortran subroutine exclude signal). Inside class Exclude there is a pointer to the
“channels” array.

There is one more class in this structure; class Histogram. This is the class associ-
ated with Root, an object oriented data analysis framework developed at CERN. The
Histogram class uses the Root libraries to make a TTree |6] in which the final results
of the analysis are stored. The TTree is a structure similar in many ways to an ntuple,
a well-known data structure to users of PAW [8]. After the TTree has been filled, it is
written to a file with the extension .root. This file can be opened in the Root framework
and the contents viewed as histograms. The structure of the C++ program is displayed
in Figure 6.

5.2 The user interface

The user interface is written in Java. The class controlling most of the interface is class
JavaCpp, and the other four classes also contributing are the classes Welcome, Analysis,
Help and About. The object of JavaCpp contains the main interface frame, which
uses the objects of the other classes to display various GUI (Graphic User Interface)
components. There is also a class AnalysisJava that takes care of the interaction between
the Java interface and the C++ program. This class plays a major role when the user
provided input is transfered from the Java interface to the C++ program. Figure 7 shows
the interface window and Figure 8 shows the structure of the Java interface program.

5.3 How does it all work?

The structure of the Java interface and the connection to the C++ program is a little
complicated. The Java file containing the Java “main()” method is AnalysisJava.java and

16
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-~

exclude
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I
1
I
I

N

array channels

00GQL

main()

f

N

N ——-

class Histogram

N ———

Figure 6: The OO structure the alrmc++ program.

£/ BLRME 4 Likellhood Ratio Monte Carla | L=
File
I Welcome | | .
| i Analysis
Enter path and name of an input file : |
l
| No of channels -

Options
Wmcexps; no of MC trials:

Scan range from

B mass min

View defauit values:

Choose an analysis:

..or choose no of channels to be entered by hand:

| 1o

| B mass max

Nexps; no of MC experim...

View

| Confidence level:

: Exclude

d

Run analysis

Figure 7: The Java user interface of the alrmc++ program
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class AnalysisTava Analysi .
lysisJava.cc: Y
""""" conversion Java — C++ startCppQ /ﬂ:lter to

1 object of class
! R d Exclude

1

1

1

class Analysis

- class Welcome

Figure 8: The OO structure of the alrmc++ Java interface.

the role of the class contained in this file will be explained later. The method “main()”
makes an object of class JavaCpp. As this object is created, its constructor puts together
the GUI components in the frame object and displays it all on the screen. The user will
see a window pop up on the monitor. This window is divided into sections. There is a
menu bar on top, with a “File” drop down menu, and a main area where the actual GUI
components are displayed. This area consists of a so-called Tabbed Pane. By clicking
on the tabs on the left side of the main area, objects of classes Welcome, Analysis, Help
and About are created and displayed. The object of class Analysis provides the user
with a way of feeding information into the program such as the name and path of an
input file.

To use both the Java and the command line interface, the user must provide some
information about the channels he or she wants to analyse. There are two ways of feeding
this input into the program. The standard way is to make a file of a fixed format that
will be discussed later (see Appendix B). Both the command line and the Java interface
ask for the name and path of such a file. The Java interface also has a pop up window
option where the user can fill in a form to provide the channel information (see Figure
9).

When the user has provided all necessary information, the computing part of the
program can begin. In the command line version this is done by pressing “enter”, and
in the Java version by clicking a “Run Analysis” button. The command line version
calls the method “exclude()”, in the object of class Exclude, directly. The Java interface
version calls a method in class Analysis that splits up the tasks of allowing the interface
to be used and running the analysis into two different “threads”, or sequential flows of
control. These two threads will run independent of each other and at the same time.
The priority of the interface thread is set to a higher value than that of the analysis to
stop the interface from “freezing” while the C++ program runs.
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= ALRMC - Channels [=mx
Channel information
Branching: 1.0 ’1.0 | ’1.0 | ’140
Efficiency: v0.0 | ’0.0 | ’0.0 | v040
Background: 1.0 | ’1.0 | ’1.0 | v140
Observed: 1 | ’1 | vl | vl
Luminosity: 1.0 | ’1.0 | vl.O | v1,0
Cross sectio... (1.0 | ’1.0 | v1.0 | v1.0
Eetype: 0 v0 | vo | vO
Eepl: 0 0 o o
Betype: 0 0 o o
Bepl: 0.0 0.0 '0.0 0.0
Usemass: 0 0 0 ‘ 0
UUsechan: 1 ‘1 | ’1 | ’1
UUsesmear: 0 0 | 0 | 0
Submit info

Figure 9: The pop up window where the user can fill in the channel information, one
column for each channel.

The Java thread running the C++ program starts with a call to the method “run()”
in the object of class AnalysisJava. The class AnalysisJava declares the C++ method
“startCpp()” native, so that the method “run()” can call it. “startCpp()” itself is con-
tained in the file cppJava.cc and is called by “run()” via the “conversion implementa-
tion” in file AnalysisJava.cc. The implementation accesses the data contained within
the Java strings and passes it to the corresponding C++ structure (const char*). The
“startCpp()” method makes an object of class Exclude and calls its method “exclude()”.

Using the Java interface is optional and the file main.cc provides a command line
interface. This is a file containing a C++ “main()” method that writes some output to
screen, asks for input and makes an object of class Exclude.

This is where the numerical computations of the analysis starts for both the Java
and the command line interface versions. This procedure, and the coupling to the theory
of Chapter 4, will be described in the next chapter.
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6 Coupling to theory

6.1 What does the analysis do?

The only analysis type available at the moment is the “Exclude” option. This is a
counting analysis, demanding an input file with user provided information about each
channel concerning background, efficiency, branching ratio, number of candidates ob-
served etc (see Appendix B). These values are used by the program to generate the
probability density functions (p.d.f.’s) of the signal+background and the background
only hypotheses of Chapter 4. The p.d.f.’s are generated by applying a Monte Carlo
(MC) algorithm.

Using the p.d.f.’s, the alrmc++ program employs the C'L; method described in
Chapter 4 to compute numerically —21n @’s, the confidences of the background and
background -+ signal hypothesis and several other values. To understand how the the-
ory is adapted to a numerical approach in the program, it is necessary to take a detailed
look at the different methods and objects used in the process.

6.2 How to find the confidences numerically

To find the confidences of the background and signal+background hypotheses, we see
from Figure 5 of Chapter 4 that it is necessary to find the areas under the p.d.f.’s where
—2In @ is equal to or larger than —21In @),s. To find this area, we would like to use
Equation (7), integrating the probability density functions numerically in the program.
However, we remember from Chapter 4 that these probability density functions are in
general not given analytically.

To solve this problem, we must remember that the p.d.f.’s are actually made up of
the probability densities, or relative frequencies, of the values of —2In (. To find the
area under a p.d.f. for a specific interval on the axis of abscissa, we need to somehow
find, numerically, the total relative frequency for all of the values in this interval. The
relative frequency of the interval where —21In Q) > —21n Qs is the fraction of —21InQ’s
that satisfies —2In @ > —21In Qs compared to the total number of —21In @’s.

The —21In @) p.d.f.’s can be simulated by generating a large number of Monte Carlo
experiments. Each of these experiments must contain one value of —21n (). Together,
the values of the —21In Q’s of all the experiments make up a distribution. However, an
experiment does not just randomly choose a value of —21In (). In stead, the variables
that make up —21In @) in each MC experiment are produced using a combination of the
user input and random numbers. This way, each of the composite variables acquire
a distribution around its input value; a distribution of the input values s; and b; of
Equation (2) are created by inserting the observed values into a Poisson distribution,
from which one random number is generated for each MC experiment.

When these partially random variables have been set in a MC experiment, a value
of —2In(@Q can be computed. This value is compared to the —21InQ,,, the value of
—21In @ calculated using the user input. Every time a “random” —21n () is greater than
or equal to —21n Q) s, it is recorded. When a certain, user specified number of —21n Q’s
have been produced and compared to —21In Qp,, the number of —2InQ > —21n Q. is
divided by the total number of —21InQ’s calculated. This is the relative frequency of
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the —21In @’s that are greater than or equal to —21n Q) s, which we remember is also
equal to the area we wanted to find under the p.d.f., since the entire area of a p.d.f. is
equal to one. Because of this property of a p.d.f., we have been able to simplify our
two-dimensional problem of computing an area to a one-dimensional problem.

The background and signal+background distributions are, in theory, produced sep-
arately in the program. However, to minimise the number of calculations needed to
produce these distributions, the theoretically computed —21n @)’s are used to generate
both distribution functions. This is done by exploiting the fact that the tail of one
distribution is more or less “hidden” under the other distribution (see Figure 4). To find
points on the tails we produce a weight, making sure its value is less than one, and use
each theoretically produced —2In @) twice. First to find a point on one distribution func-
tion, and second to find a point on the tail of the other distribution, using the weight.
The weights are necessary because the two distributions are not equal, and a —21In Q)
produced for one distribution needs to be “scaled down” to fit the other distribution.
The relation between the two distributions is £(b) = %E(s +0b). We see that the weight
is actually the inverse of the value of the likelihood ratio Q. This means that when we
generate a value of —21In (@) that satisfies —2In@) > —21In Q.,, this is stored as one
“hit” by the signal+background hypothesis, and a scaled down “hit” by the background
hypothesis. This principle is illustrated in Figure 10.

Probability density

0 -2ln@

Figure 10: A point on the background hypothesis p.d.f. (blue), corresponding to a
MC generated value of —2InQ ¢, is “scaled down” (green arrow) to find a point on
the signal+background hypothesis p.d.f. (red), and a point on the signal+background
hypothesis p.d.f. is “scaled down” (light purple arrow) to find a point on the background
hypothesis p.d.f.

6.3 Step by step through the program

When the user has chosen the “Exclude” analysis, the program will open a user provided
input file (see Appendix B) and read the channel information. When all the user

21



class Analysis class Channel

- —— - —

- ——— -
N - -

I
I
I
I
- /

T
class X_ B Q p T
o <>

Exclude_
7

\
! I
1
1
| \ f br eff \
\\ _____ J © O
\ b lumi
channels o
n_o nxsme
nexps stot > N
S N — e hume
btot
O unsmearBackground()
| | J
exclude() unsmearEfficiency()
| |
makeRandomSignal()
getSbhTotals() |

| | makeRandomBKg()

getClimpunb() I |
] makeRandomSigtest()

Ialtlnq(] ] retumSigtest()
[ |

generateMcTrial() retumstoty)
[ ] [ |

smear_corr_eff and_bg()

I 1
generate_sigtest_trial() k /
\_ —/

Figure 11: Close-up view of the most important variables and methods in the objects
of the Exclude and Channel classes.

22



provided information has been stored in the channel objects, the method “exclude()”
is called.

Method “exclude()”

Method “exclude()” starts with declaring an object of class TTree, found in the Root
library [6]. Most of the communication between the alrmc++ program and the Root
classes is handled by the object of class Histogram. A TTree is a structure somewhat
similar to an ntuple, but unlike an ntuple it can hold all kinds of data, like arrays or
objects. The branches of the TTree object are filled with variables that will be computed
during the analysis.

The first main method to be called by “exclude()” is “smear corr eff and bg(true)”,
which is called to initialise a list of the error sources of the experiment, if provided by
the user. The next step is to find the sum of all signal and background candidates, s;;
and by,;. The s; of Equation (2) for each channel is given as

S; :‘Ci'gi'Bi'Eia (12)

where L is the luminosity, o is the cross section, B is the branching fraction and e is the
efficiency. “getSbTotals()” finds the s;,; sum by calling a method in each channel object
that returns the value of the s;.

Method “getClImpunb()”

The method doing most of the work in the analysis is “getCllmpunb()”. The name of
this method is short for “get CL, improved, unbinned”, a name that was constructed
during the development of the original Fortran 77 subroutine. “getCllmpunb()” is called
from “exclude()” after “getSbTotals()”, and this is where the —21n Q’s are computed and
used.

The method first finds the values of s;,; and b;,; by calling “getSbTotals()”, which
adds together the nominal (user specified) s;’s and b;’s. The method “altlng(type data)”
returns the value of the sum Y} _; nywy of Equation 4. The option type data means
that the observed candidates are used when the weights wy, are calculated. By combining
these results, we find —21n ) s.

The next step is to make a loop which generates and processes a set of nexps MC
experiments. Inside this loop, called the nexps loop, are many method calls and com-
putations, the first one being a call to “generateMcTrial(conf sb)”. This is the first
step in a process where unweighted signal+background experiments and weighted back-
ground experiments are generated, as described above. The conf sb option requests
that the method generates a random number of both signal and background candid-
ates for each channel, using a Poisson distribution with the user provided values as
the distribution parameter. The resulting number of candidates are stored in the vari-
ables nzsmc and nzbme, their sum in nzme, for each channel. “generateMcTrial()” calls
method “smear corr_eff and bg()” to randomise the channel values of the efficiency
and background if there are any error sources defined by the user.

“getCllmpunb()” calls the method “getShTotals()” again, to find the new s;,; and by,
after the possible changes in the background and signal values caused by
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“smear corr_eff and bg()”. Two values of —21n @) are computed at this stage, —21n Q)
and —2In Qnom. —21n Qpom is calculated using the s;,; of the user input values and the
other by using the value of s;,; generated by the last call to “getSbTotals()”. The
argument of the “altlng()” call, type mec, ensures that the weights of Equation 4 are
found using the new values of s; and by and the variable nzmc (random number of
candidates for the channel).

—21InQ is used in the computation of a weight wt = e %°2@ = L If the weight
is less than or equal to one, —21n @,y is compared to —2In Q. If —2InQrom is
greater than or equal to —21In ) s, the variable wt_sb _less is increased by one and the
weight is added to the variable wt b less. If, on the other hand, —2In Q),,, is less than
—2In Qus, wt_ b greater is increased by the weight. Either way, the 21n Q,.o, ! is stored
in both the background and the signal+background experiment arrays (¢ b expts and
q sb expts), the weight é is stored in the background weight array (wt b expts) and
the weight 1 is stored in the signal+background weight array (wt sb expts).

The next part of the nexps loop is a generation of unweighted background experi-
ments and weighted signal+background experiments. The first call is again for “gener-
ateMcTrial()”, but with argument conf b instead of conf sb. The difference is that only
the number of background candidates is generated as a random value of a Poisson distri-
bution. After the new s;,; and b;,; have been calculated, the new values of the —21nQ’s
are found using “altlnq(type_mc)”. The weight is computed and compared to one, as
before, and —21n Q) is compared to —21In Q. This time, the variable wt sb_less is
increased by the weight and the variable wt b less by one if the generated experiment
—21n @ is greater than or equal to the observed value. The weight and 2 1n ) are stored
in the various arrays described above. This completes the nexps loop.

Now we have enough information to compute CLg, CLs and CL,. From the
definitions in Equations (6) and (8), we know that C'Ly, and CL;, are defined as the
probabilities of —21n () being greater than or equal to —21In Q).,, given that the sig-
nal+background, or the background only hypothesis is true, respectively. The numerical
way of finding these probabilities, as we remember from Chapter 6.2, is to divide the
number of times (with weights) this condition was met during the nexps loop, with the
total number of generated experiments. C'L; is given in Equation (9) as the ratio of the
signal+background and the background confidence levels.

Having been filled with their appropriate values, the experiment arrays of 21In @) for
both the background and the signal+background hypotheses are sorted in ascending
order. Their weight arrays are also sorted, so that the weights follow the order of the
experiment arrays.

The method goes on to generate a set of nexps unweighted test experiments. These
are signal+background experiments that are generated to test what the confidences
would be like if there was a signal at some unexpected location. The test experi-
ment generation is done using the method “generate sigtest trial()”, which produces
a random number of candidates for both signal and background similar to the method
“generateMcTrial()”, and the method “altlng()”. The test experiment 21n @)’s are stored
in array q_sigtest expts. Both the sum of all —21n Q’s and the sum of the (—21n Q)?’s
are computed. Using these two sums, we can find the mean and the variance of the

Ldue to historical reasons, the absolute value of —21n Q is used
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results.

The array q sigtest expts is sorted in ascending order, and we loop through the
array, calculating the ratio of the iteration variable and the total number of simulated
experiments (nezps). By comparing this ratio to the standard normal distribution prob-
abilities at -2, -1, 0, 1 and 2 standard deviations, we find the values of 2In (@) at these
points. These values are stored in the array zi2_ exp sigtest.

In order to find the values of discovery confidences and potentials, we want to in-
tegrate the background and the signal+background distributions from the top. When
executing a loop starting at the top of the weight arrays, which were sorted earlier to
follow the sorted values of the 21n ()’s, we actually move from negative values of —21n @
toward positive values. As we can see in Figure 5, this means that we compute the
values of 1 — CLy and 1 — C'Lg .

The actual loop is on the form of a while loop, starting at the number of MC ex-
periments conducted and descending toward zero. At the top of the loop, the relative
frequency, or probability density, of each 21n () for both hypotheses are found by di-
viding the weight of the 21In () by the sum of all the weights. The variables wtbtot and
wtsbtot continuously hold the sum of all these relative frequencies, thus containing the
updated values of 1 — CL, and 1 — C'Lg, of the background and signal+background
hypothesis respectively. As wtbtot, which is identical with the significance (1 — C'Ly),
reaches the standard normal distribution probabilities at -5, -4, -3, and -2 standard
deviations, the corresponding values of wtsb (1 — CLg) are stored in the variables
p_disc_bs, p_disc_4s, p_disc_3s and p_disc_ 2s. These variables represent the dis-
covery potentials, the probabilities of making discoveries at various significance levels
if the signal+background hypothesis is true. If the signal+background and the back-
ground distributions lie close together on the —21n ) axis, the discovery potentials will
have small values. If the distributions are only slightly overlapping, or not at all, the
values will be close to one. These two situations are illustrated in Figure 12.

As wtsbtot (1 — C'Lg) reaches the standard normal distribution probabilities at -2,
-1, 0, 1 and 2 standard deviations, the corresponding values of wtbtot (1 — C'Ly), ﬂtsbgfjt
and 21In () are stored in arrays m_cl_ b _exp sb, m_cl_b_p exp sb and xi2_ exp sb
respectively. The value of C'L, at C'L;=0.05 is stored in the variable c/_b_exp sb.

And finally, in the last part of the while loop, the confidences for the different fre-
quency contours of the test experiments are computed by comparing all the 21n Q’s of
the MC experiments (21n Qy¢’s) with the zi2 exp sigtest array found earlier. When
the —21In @y ¢’s reach the point where they are equal to the various entries of the
xi2_exp sigtest array, 1—CLy, C'Lg, and C'Lg are stored in the arrays m_ ¢l b exp sigtest,
cl_sb_exp sigtest and cl_s_ exp sigtest respectively.

The while loop contained an integration of 1 — C'L’s. To find the CL’s, we need
to execute a for loop iterating from zero up to the number of Monte Carlo simulated
background experiments. As in the while loop, this is a integration process where
the relative frequency, or probability density, of each 21n @ for the background and the
signal+background hypotheses are found by dividing the weight of the 21n ) by the sum
of all the weights. The variables cls and clsb now hold the updated values of the C'L,
and the CLg, areas under the background and signal+background p.d.f.’s respectively.
The variable ¢b holds the corresponding 21n () value. The 2In(@Q’s are found in the
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g _b_expts array, which was sorted in ascending order earlier in the method.

By comparing each 21n ) with the previous, the MC experiments with equal values
of 21n () are accessed in a nested for loop as one “block” of experiments. This is necessary
to ensure that the integration to find the confidences include all the experiments for each
step on the —2In () axis, and to make sure that identical experiments get identical values
of integrated confidences. (see Figure 13). For each of the members in the block of equal
21In @) values, the average value of C'L, for the signal-+background hypothesis and its
square is calculated and stored in variables clbtot and clbsq. To find the false exclusion
rates, the probability of excluding the signal and the signal+background hypotheses
when they should be accepted, we identify the two experiments where C'L, and then
CLg, are approximately equal to 5%, and look at the value of C'Ly. The false signal
exclusion rate, clsb at cls ~ 0.05, is stored in fe_rate, and the false signal+background
exclusion rate clsb when clsb reaches 5%, is stored in fe rate sb. If the smallest C'L;
or C'Lg, is greater than 5% the corresponding false exclusion rate is of course zero.

The method proceeds by analysing the statistics of the signal+background experi-
ments. The variables wezpt signal and wezpt signal_ sq accumulates values to be used
later to find the average value of —21n @ if the signal+background hypothesis is true,
and its square. An alternate version of C' L used by the ALEPH collaboration, cls_aleph
[13], is also calculated.

The value of cls is continuously tested to find the 90%, 95% and 99% exclusion
(CL, <10%,5%,1%). For each of these tests, the weight of the background hypothesis
distribution, wtb, is stored in the variables wt99, wt95 and wt90.

Next, we look at the statistics of the background experiments. We find the average
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Figure 12: Left:

The signal+background p.d.f.

(solid line) and background p.d.f.

(dashed line) overlap. The values of the discovery potentials are small. Right: The
p.d.f.’s do not overlap, and the values of the discovery potentials are close to one. (The
axes are arbitrary.)
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-2lhQ,

Figure 13: A histogram showing the frequencies with which the randomly generated
—2In @’s occur. A numerical integration consists of finding the sum of all the —21n Q’s
frequencies. All experiments with equal values of —2In ) must therefore be included in
each integration step.

value of C' L, for the background hypothesis by accumulating clsb *wtb in variable clsbtot.
In variable clbbtot, the average value of C'L, for the background hypothesis is found by
accumulating cls*wtb, and clstot_ aleph holds the sum of all cls_aleph*wtb’s. We find
the average value of C'L, given that the background hypothesis is true, in variable
wexpt infty, .

Continuing our analysis of the background experiments, we check the value of clb to
find the five points where it reaches the standard normal distribution probabilities at
-2, -1, 0, 1 and 2 standard deviations. At each of these points, we store the values of
CLgw, CLsand 2In@ in arrays cl_sb_exp b, cl_s exp b and zi2 exp b respectively.

In the last part of method “getCllmpunb”, we make the final calculations of expected
values and uncertainties. As an example, to find the expected background confidence
for signal+background experiments and its estimated uncertainty from the accumulated
statistics, we divide clbtot with the sum of all the background experiment weights. The
result is stored in variable c¢l_b_infty. The uncertainty, or the standard deviation, is

/ Z:zl(ac,-fa’c)z

found by employing the formula , where n is the sum of all the background

n—1
weights and x and 7 are, in this situation, clb and its average value. Most of the other
variables found during the execution of method “getClImpunb()”are treated the same
way; they are divided by the sum of the appropriate weights to find average values, and

their uncertainties are calculated.
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The output

When method “getCllmpunb()” is finally finished and all TTree branch variables are
set, the results need to be displayed in some way. The method “exclude()” calls two
other methods to make outputs of the results. The first one is method “excludeFile()”,
a method that prints all variables of interest to file “exclude.res”. The second method is
called “finishHistos()”, and it fills the TTree and writes it to the Root file “likemc.root”.
The results are also displayed on the computer screen, in the shell or in the form of a
pop-up window, depending on which interface the user has chosen.
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7 'Test results

In this chapter I will present the results of two analyses performed with both the alrmc
and the alrmc++ programs, and one analysis performed with the alrmc++ program only.
The goal is both to show that alrmc++ works, and that it reproduces the results of the
original Fortran program.

7.1 Test analysis

While it was still under construction, I used a simple test analysis of six channels to test
the alrmc++ program. Each channel had values for the observed number of candidates,
whether or not the channel should be used when running an analysis, whether the mass
information should be used, the number of background candidates, the efficiency, the
branching ratio and the luminosity. The input is shown below (the input variables and
the format of the alrmc++ input file is described in detail in Appendix B).

Observed 1 0 1 5 0 1
Use channel 1 1 1 1 1 1
Use mass 0 0 0 0 0 0
Background 0.675 | 0.440 | 0.583 | 5.340 | 0.410 | 0.730
Efficiency 0.0256 | 0.0425 | 0.1217 | 0.5223 | 0.0125 | 0.0226
Branching ratio 0.1 0.1 0.1 0.1 0.1 0.1
Luminosity 1.0 1.0 1.0 1.0 1.0 1.0

The analysis was performed with 10000 Monte Carlo experiments. The output of
both programs are shown in the table below. The output variables are explained in
Appendix C.

‘ Variable name H alrmc++ ‘ alrmc ‘
Stot 0.07472 0.0747
btot 8.178 8.1780
CLg 0.546093 0.551525
CL, 0.557638 0.562975
CL, 0.979296 0.979661
—2In Q, from user input -0.00296659 | -0.00296658
CL s infty 0.975514 0.975605
-2InQ b _infty -0.000238418 | -0.000896416
1-CLb 0.442362 0.437022001
Discovery potential, 3 sigma || 0.00300535 0.0031
Discovery potential, 4 sigma || 0.000200356 0.0002
Discovery potential, 5 sigma || 0.000100178 0.0001
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We see that the values of s;,; and b, for the two different programs were equal. The
alrmc++ values of the other variables came close to the alrmc values, but they were not
exactly the same. This was expected for several reasons. The alrmc and the alrmc++
programs use different random generators to produce random numbers, which of course
results in different random numbers. Also, the variable types have been changed. This is
something that comes about in the cause of translation; the REAL, REAL*4, INTEGER
and so on of Fortran 77 have been translated mostly into the C++ variable types double
and int. In addition, some of the values that are calculated during an analysis are very
small, meaning that they are greatly influenced even by small fluctuations in the random
numbers.

7.2 Simple analysis test

A simple check to see if the program is working, is to set the number of observed
candidates to zero. From Chapter 5, we see that the —2In(@’s of the Monte Carlo
generated experiments are calculated using random numbers produced by a Poisson
distribution to find the number of candidates for the channels. We know from Equation
(2) and (4) that when the number of candidates of the user input is equal to zero, only
the —21n @)’s where the random number of candidates are also equal to zero will satisfy
the condition —2In Q) > —21nQ ,.

The probability of obtaining a specific number of candidates , n;, from the random
number generation is given by the Poisson probability function

ef(smei) (Si + bl)nl

P = [ (13
The symbols of this equation are explained in Chapter 4. We see that
P(n; =0) H e~ (sitbi) (14)
For the signal+background hypothesis,
nz — 0 H e (si+b;) e*(Sf,of,-l—bf,of,)’ (15)

and for the background hypothesis,
P(n; =0) He b) — gbrot, (16)

The ratio of these two probabilities, which corresponds by definition to the ratio of & ””,
is e7**. From Equation 12 we see that when the luminosity, cross section, branchlng
ratio and efficiency are all equal to one, as we assume is the case here, s;,; = number
of channels, Nopan. As a result, CL, will have the value e Veren. An example of three
channels would give CLs ~ 0.05 (5%). The alrmc++ input values of this example is
shown below.
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Observed 0 0 0

Use channel 1 1 1
Use mass 0 0 0
Background 1.0 1.0] 1.0
Efficiency 1 1 1

Branching ratio | 1.0 | 1.0 | 1.0
Luminosity 1.0 1.0] 1.0

The analysis was performed with 100000 Monte Carlo experiments. The results of
alrmc and alrmc++ is displayed in the table below.

Variable name H alrmc++ alrmc
Stot 3 3
btot 3 3
CLg, 0.00269843 | 0.00247875
CL, 0.054324 0.0497871
CL, 0.0497871 | 0.0497871
—21n Q, from user input -6 -6
CL s infty 0.263642 0.265931
-2lnQ b _infty -1.86152 1.83558
1-CLb 0.945676 | 0.950212955
Discovery potential, 3 sigma || 0.128108 0.1226
Discovery potential, 4 sigma || 0.0188541 0.0185
Discovery potential, 5 sigma || 0.001267 0.0013

Both the alrmc and the alrmc++ program finds approximately 5% confidence in the
signal hypothesis. As in the previous example, there are some differences between the
two programs in the values of the other variables.

7.3 Neutrino oscillations

The NOMAD neutrino oscillation v, — v, search [3] is a good example of an experiment
where the alrmc program can be used in the final stage of the analysis. The data
consists of thirteen different channels (using the alrmc++ definition of Chapter 5). All
the channels have very few or no observed candidates. The experimental results and the
NOMAD method of calculating the signal confidence are described in [3] and [9]. To see
what results the C'L, method and the alrmc++ program give compared to [3]|, we need
to insert the experiment data into the program.

In [3], the results are given in the form of an upper limit on the probability of a v,
oscillating to a v, at 90% confidence: Py (v, — v,) < 2.6 x 1072 at 90% CL. The CL
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value is the average value of the confidence in the signal hypothesis. The sensitivity is
given as P,,. = 4.3 x 1072,

Because the alrmc program was originally designed to make use of one analysis
method in particular, its input variable names do not match the ones of the analysis
method of [3]. For example, the variable P,,. had to be inserted in the cross section
variable of the input file to “scale” the input control variables to match the NOMAD
data. This is a weakness of the original program that has been, unfortunately, passed
on to the new alrmc++ program. The experimental results of [3| had to be interpreted
so that the their values could be introduced to the program through the correct control
variables.

In the alrmc++ program, the median of the confidence in the sensitivity [9] (when
there is no signal, only background) is represented by the third element of array
cl s exp b, and the average value is represented by the variable CL s infty. The
confidence in the signal hypothesis is, as usual, C'L;.

To find the median value of the sensitivity at 90% CL using the alrmc++ program, the
value of the cross section control variable was first adjusted until the value of the output
variable ¢l s exp b[2] was approximately 0.10 (10%). Later the same adjustments
were made to find the cross section values where CL s infty and C L, = 0.10.

The input of the alrmc++ program which gives ¢l s exp b/2] ~ 0.10 is shown
below.

Observed 0 1 4 0 0 3
2 0 5 5 0 1 0
Use channel 1 1 1 1 1 1
1 1 1 1 1 1 1
Use mass 0 0 0 0 0 0
0 0 0 0 0 0 0
Background 1.19 0.42 3.01 1.45 0.28 2.70
0.50 1.80 5.0 6.5 0.5 0.1 0.4
Efficiency 3.9 4.5 12.1 10.9 23.3 12.6
4.5 20.1 45.7 25.9 1.8 2.1 1.8
Branching ratio 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
Luminosity 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
Cross section 0.04267 | 0.04267 | 0.04267 | 0.04267 | 0.04267 | 0.04267
0.04267 0.04267 | 0.04267 | 0.04267 | 0.04267 | 0.04267 | 0.04267

The output, where ¢l_s exp b[2] is very close to 0.10, is shown below. The program
was performed with 100000 Monte Carlo experiments.
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Variable name H alrmc++ ‘

Stot 7.21976
btot 23.85

CLg 0.0267006

CL, 0.371901

CL; 0.0717951

—21n Q, from user input -3.88761
CL_s_infty 0.145795

-2lnQ b _infty -2.75927
1-CLb 0.628099

Discovery potential, 3 sigma || 0.224919
Discovery potential, 4 sigma || 0.0483331
Discovery potential, 5 sigma || 0.0052645
cl s exp Db[2] 0.100076

The value of the median of the sensitivity at 90% confidence according to the alrmc++
program analysis, is about 0.0427. This is approximately the same value as the NOMAD
value of 0.043. When the value of the average CL (CL s _infty)reached 10%, however,
the sensitivity value was 0.05035. This value is greater than the NOMAD value.

alrmc++ gave an upper limit on the probability P,s.(v. — v,) at 90% CL of 0.038,
which is a greater value than the NOMAD value of 0.026.

We see that the upper limit on the probability of the neutrino oscillation v, — v,
becomes greater when we use the alrmc++ program to analyse the NOMAD data. Still,
the point of this example was not to re-analyse the NOMAD data, but to show that it is
actually possible to use the alrmc++ program to analyse the data from such experiments.
I will therefore not try to explore this topic further, or draw any conclusions as to which
statistical analysis method is the better to use in this case.
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8 Conclusions and outlook

From the test results of the previous chapter, and from other tests conducted in the
process of translation from Fortran 77 to C+-+, it seems clear that the alrmc++ works,
and is able to reproduce the results of the old Fortran version. However, there are
certain aspects of the translated version that need to be mentioned.

8.1 Problems and results

The alrmc++ program is mainly object oriented in its structure, although some parts
of the code are not quite optimal in this respect. For example, the calculations of s
and by of Formula (5) in method “altlng()” could be delegated to the channel objects.
The reason that this has not been done, is mainly that changing these parts of the
code would make such a large impact on the program structure that it would be too
time consuming for a cand. scient. assignment. Being at least mostly object oriented,
however, the program is modular and can easily be changed or expanded.

The user interface, written in Java, is optional and is expected to make it easier
for new users to understand and use the program. It has a help section providing
information about the input file and the analysis. The Java interface window is shown
in Figure 7.

There have been problems for new users related to the connection between the C++
program and the Java interface. The most common problem seems to be that the Java
program is unable to find the C++ shared library (see Appendix A). The compilation of
the interface and alrmc++ combination can also be difficult, and is likely to be dependent
on operating system and compiler versions.

Not all features of the C++ program version have been tested yet. There are pos-
sibilities in the program for letting the user provide error values and error sources, but
this has not been fully implemented. Another feature not yet tested is the possibility of
letting the user choose to include information about, for example, particle masses. This
would require that signal and background probability distributions be specified in the
methods “sigprob()” and “backprob()”. These distributions will, hopefully, be included
in future expanded versions of the program.

One of the disadvantages of object oriented programming, mentioned in Chapter 3,
is that the computational speed may be less than for non-OO structures. This is true
for the alrmc++ program, which was about twenty times slower than the alrmc program
in April 2002. Because of the restrictions in the duration of a cand. scient. assignment,
I have not had time to optimise and improve the C++ program, so that when the
translation was finished, there was a lot that could be done to make the program work
faster 2.

2My supervisor, Alex Read, has done some optimising and has managed to get the difference in
computational speed down from 20 times slower than the Fortran program to about 1.2 times slower.
Many of the main bottlenecks were located at points where arrays were declared and deleted, and
moving these operations proved to be quite effective.
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8.2 The future

So far only one analysis type (MC computations of confidences for counting experiments
at a fixed point of the model parameter(s)) has been implemented, but the program is de-
signed for more. The idea is that the super class Analysis (see Chapter 3) should contain
all the common methods that all analysis types use, while its sub classes should contain
the specific methods of the various analyses. Figure 14 shows super class Analysis with
three sub classes, each of them associated with an object containing the analysis type
methods.

class Analysis
e - \

|
1
|
I —————
I\<, \
1 I
1 |
\ 7
iy A Sl |
class / |
AnalysisType1 class |
s \ N Arlalzsi_smpez |

7 \ \ P

_______

L pe— -

Figure 14: The super class Analysis with three sub classes, their objects containing
analysis type methods.

When using the command line version of the C++ program, it is the “main()” method
that initialises the various objects and calls the major methods. To adapt the program
to work with a different form of input or slightly different procedures, the “main()”
method could be replaced by a customised version.

A test was made to see if the results of a simulation of the Higgs search process
H — ~v |11] with approximately 80 channels (with several thousand events per channel)
could be analysed by the alrmc++ program. The test showed that this could not be done
by the current program in a finite amount of time, and so adapting the program to read
such input and analyse it is a challenge for the future.

Also for the future is the an addition to the program of a feature which allows the
user to feed information about the parameters of the test signal MC experiments. At
present date, the user can only provide the observed values of the various parameters.

The compilation and run-time problems of the Java user interface might be solved
in the future by making a completely new interface, or providing a more user friendly
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compilation “recipe”. A suggestion of using scripting [14] to solve the problems seems
promising.

The alrmc++ program is a work in progress. It has been re-organised and object ori-
ented, while still reproducing the results of the “exclude signal” analysis of the Fortran
version, but there is a lot more to be done. There is still a need for further optimisa-
tion and object orienting, and for expansion and adaption. Hopefully, this work will be
continued in the future.

36



A How to use the alrmc++ program

A.1 Preparations

The program uses the external libraries of Root [6] and CLHEP [7], both available at
the CERN home pages. The paths to these libraries must be set in the environment
variable LD LIBRARY PATH and in the compilation command or Makefile.

When using the Java interface version, the C++ files must be compiled as a shared
library [2]. The path of this shared library must be set in the Java file AnalysisJava.java.

A.2 Compilation and the Makefile

When all the necessary files have been copied and the library paths have been found
and set, it is time for the compilation. The easiest way would be to compile only
the C++ files first to get a working sample of the command line version. This is a
normal C++ compilation, using a C++ compiler with the external libraries of Root
and CLHEP included. The program has so far been compiled with the g++ compiler,
and all standard C-++ libraries have been included. The procedure is described in most
C+-+ tutorials.

To use the Java interface, some changes must be made from the command line version
by the user. The compilation will be different, as the Java files must be compiled with
a java compiler, the C++ files with a C++ compiler (with the option -shared) and the
“in between” class AnalysisJava.class (produced by the java compiler) with the javah
command with the option -jni (“javah -jni AnalysisJava”). The “shared” option makes
a shared library of all the C++ files. The shared library is loaded at the start of each
session in the object of class AnalysisJava. As mentioned in the Preparations, this means
that the name and path of the shared library must be correct in this file.

An example of a Makefile for compilation of both the command line and the Java
interfaces is included below. The shared library is called nativeC.so, and the executable
command line file is called alrmc++-:

# The Macros
#MAKEFILE = makefile
FILE = alrmc++
OFILES = nativeC.so
CC = gt++

LN = -Im -1CLHEP -1Cint -1Core -1Tree -1dl -1g2c -lstdc++
LIBS = -L./ -L/usr/1ib -L/mn/susy/particle/clhep-1.7.0.0/i386_redhat71/1lib
-L/mn/susy/particle/root-v3.01.06/i386_redhat71/1ib/
INCLUDE = -I./ -I/mn/susy/particle/clhep-1.7.0.0/1386_redhat71/include
-I/mn/susy/particle/root-v3.01.06/i386_redhat71/include/
IDIRS -I/mn/helicity/local/fys/epf/jdk1.3.1_02/jre/1ib/i386/
DEBUG = -g -00

# Object files, it pays of in structure to truncate with backslash (\)
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0BJC =

0BJJ

INCC
INCJ

main.o channel.o analysis.o exclude.o histogram.o
channel.o analysis.o exclude.o histogram.o cppJava.o AnalysisJava.o

analysis.h exclude.h histogram.h channel.h arrayComp.h
cppJava.h jni.h AnalysisJava.h

.SUFFIXES: .cc .o

# Rule for each subroutine
.CC.0:
$(cCc) $(LIBS) $(INCLUDE) $(DEBUG) -c $<

MAIN = $(FILE)

# target
all: $(MAIN) java 1lib

# MAINs dependencies, compile each subroutine according to Rule
$(MAIN): $(0BJC) $(MAKEFILE)

$(0BJC): $(INCC)

$(0BJJ): $(INCC) $(INCJ)

# Compile Main and link
$(MAIN) : $(0BJIC)
$(CcC) $(STDOPT) $(DEBUG) $(INCLUDE) $(LIBS) -o $@ $(0BJC) $(LN)

#Make libraries

$(OFILES): $(0BJJ)

$(CC) $(CCFLAGS) $(INCLUDE) $(LIBS) -shared -o nativeC.so
$(0BJJ) $(LN)

lib: libAnalysisJava.so

libAnalysisJava.so: AnalysisJava.h $(OFILES) AnalysisJava.o
$(CC) $(CCFLAGS) $(INCLUDE) $(LIBS) -shared -o libAnalysisJava.so
$ (OFILES) $(CPPDEFINES) $(CCLIBS) $(IDIRS) $(LN) AnalysisJava.o

java: JavaCpp.class AnalysisJava.class AnalysisJava.h

JavaCpp.class: JavaCpp.java
javac JavaCpp.java

AnalysisJava.h: AnalysisJava.class
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javah -jni AnalysisJava
touch AnalysisJava.h

AnalysisJava.class: AnalysisJava.java
javac AnalysisJava.java

A.3 Special problems

There are some factors that the user should be aware of when using the alrmc++ pro-
gram. These are listed below.

e The compilation of shared libraries and of javah -jni is likely to be dependent on
the operating system. The program has so far been tested only within a Linux
Red Hat environment.

e [f the program can’t find the shared library, it might be necessary to add the path
of this library to the LD LIBRARY PATH or similar.

e There is a strange difference between the command line and the Java interface
version. The format of the input file is the same in both cases, but the commas
of the “double” variables must be written as “.” for the command line and “,” for
the Java version. This is a strange difference that originally did not seem to have
any logical explanation. Just lately, it has been suggested that this is due to the
locale feature of the Java language, which adjusts the comma standard according
to the country of residence.

e There is a problem if a variable that is defined as an integer in the program is
given as a double in the input. If this happens, the program will read the number
as zero, causing problems in the computation.

A.4 Output

When the program has finished, there will be two output files; one text file containing
the variables computed by the program, and a .root file containing a Root TTree filled
with result data. The latter can be opened and viewed in Root. An example of a Root
script that opens the file and displays the variable “cl sb” as a histogram is shown
below. The script is contained in a file called “display.c”. The file is executed in the
Root environment by typing “.x display.c”.
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int display()

{
//Reset all variables in session:
gROOT->Reset () ;
//0Open file:
TFile *p = new TFile("likemc.root","READ");
//View file contents
p->1sQ0);
//Read file Tree to new session Tree:
TTree *tree = T;
//Make a canvas to display histograms:
TCanvas *can = new TCanvas("c","C",0,0,600,400);
//Draw variable cl_sb as a histogram:
tree->Draw("cl_sb");
return O;
}
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B Input file format

The Java interface should be used for global information input. This could be the
number of Monte Carlo experiments you want the program to simulate, the scan range
(not yet implemented), etc of the analysis type you want to run. The input file should
contain information about the individual channel(s) you want to analyse.

The first line of the input file should contain the number of channels you want to
analyse. The rest of the lines should all start with a control variable (see list of control
variables below), and then the values of that variable for each channel, with a space or
tab in between. The variables are not case sensitive.

B.1 The control variables:

Efficiency: The nominal signal detection efficiency per search channel. Default = 1.0.

Background: The nominal integrated background rate per search channel.
Default = 0.0.

Observed: The number of candidates observed per channel. Default = 0.
Luminosity: The integrated luminosity per search channel. Default = 1.0.
Branching: The branching ratio per search channel. Default = 1.0.
Cross section: Cross section per search channel. Default = 1.0,

Usechan: True/False per channel to enable/disable it in the analysis. This way, it is
possible to study individual channels or subsets of channels once a multichannel search
has been configured. True = 1, false = 0. Default = 0.

Usemass: True/False per channel to enable/disable the use of the p.d.f. of the dis-
criminant for enabled channels. Usemass is a synonym for usepdf (reconstructed mass
is a typical discriminant) in the Fortran version. True = 1, false = 0. Default = 0 .
The “true” option is not yet implemented.

Betype: The background error type per channel 0=No errors, 1=Normal distribution,
2=Poisson distribution, 3=Binomial distribution. Default = 0.
Not yet implemented.

Bep1: First parameter for generating background errors per channel (the interpretation
depends on the error type, see betype): Normal distribution (1) = Standard deviation.
Binomial distribution (2) = Number of events in parent sample. Poisson distribution
(3) = Number of events selected from parent sample. Default = -1.

Not yet implemented.
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Eetype: The efficiency error type per channel: 0 = No errors, 1 = Normal distribution,
2 = Binomial distribution, 3 = Poisson distribution. Default = 0.
Not yet implemented.

Eepl: First parameter for generating efficiency errors per channel. The interpretation
depends on the error type (see eetype); Normal distribution (1) = Standard deviation,
Binomial distribution (2) = Number of events in parent sample, Poisson distribution
(3) = Number of events selected from parent sample. Default = -1.

Not yet implemented.

Usesmear: True/False per channel to enable/disable the systematic uncertainties for
enabled channels. True = 1, false = 0. Default = 0.
The “true” option is not yet implemented.

Example file

Below is an example file of six channels, using some of the control variables.

6

OBSERVED 1 0 1 5 0 1

USECHAN 1 11111

USEMASS 0 0 0 0 0 O

BACKGROUND 0.675 0.440 0.583 5.340 0.410 0.730
EFFICIENCY 0.0256 0.0425 0.1217 0.5223 0.0125 0.0226
BRANCH 0.1 0.1 0.1 0.1 0.1 0.1

BETY 111111

BEP1 0.26 0.21 0.24 0.73 0.20 0.27

EETY 111111
EEP1 0.015 0.015 0.015 0.015 0.015 0.015
LUMI 1.01.01.01.01.0 1.0
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C Lists of methods and variables

Following is a reference list of the most important methods of class Analysis, and their
purpose:

readFile: Reads the input file (see Appendix B), makes the channel objects of class
Channel and stores the user input in the variables of the channel objects.

unsmearBackground: Sets the background to the nominal (user input) background.

getSbTotals: Finds s;; and b, the expected number of all signal and background
candidates of all channels.

getClImpunb: Finds all confidences and their uncertainties.
unsmearEfficiency: Sets the efficiency to the nominal (user input) efficiency.
altlng: Finds the sum of Equation (4).

generateMcTrial: Generates random values for the number of signal and/or back-
ground candidates per channel.

smear corr eff and bg: Generates efficiencies and number of background candid-
ates with a set of random fluctuations if there are any error sources defined.
First call: Makes a list of all user input error sources.

generate sigtest trial: As generateMcTrial, for unweighted signal experiments.

The output file “exclude.res” contains a lot of variables and their values. This is a ref-
erence list of these output variables:

s _exp: The number of expected signal candidates for all channels. The variable s;,; of
Equation (2).

b exp: The number of expected background candidates for all channels.

CL__sb: The probability that the results are less signal-like than the observed values,
given that the signal+background hypothesis is true. The definition of this variable is
given in Equation (6).

CL_ b : The probability that the results are less signal-like than the observed values,
given that the background-only hypothesis is true. The definition of this variable is

given in Equation (8).

CL_s: The probability that the results are less signal-like than the observed values,
given that the signal hypothesis is true. This is not a true confidence level, but a ratio
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of confidences that provides a good approximation. The definition of this variable is
given in Equation (9).

-2InQ observed: The value of —21n @ calculated using the user input (observed) val-
ues.

CL_s_infty: The expected average value of C'L, for the background only hypothesis.
-2InQ b _infty: The corresponding value of —21n ().

Discovery potentials; 3,4,5 sigma (p disc_3s, p_disc_4s, p_disc_5s): The
probabilities of making discoveries (1 — C'Lg,) when 1 — C'L;, (the significance) is equal
to the standard normal distribution probabilities at 3, 4 and 5 standard deviations, if
the signal+background hypothesis is true.

1-CLb (cl_b_comp): See C'L,. The definition of variable C'L; is given in Equation
(8).

cl b exp sb: The expected average value of C'L; given that the signal+background
hypothesis is true.

m_cl b _exp sb[]: The expected value of 1 — CL, when 1 — C'Lg, is equal to the
standard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if
the signal+background hypothesis is true.
m cl b p exp sbl]: The expected values of llngL:'b when 1 — CLy, is equal to the
standard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if
the signal+background hypothesis is true.

m cl b p exp b[]: The expected values of % when 1 — C'Lg, is equal to the
standard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if

the background hypothesis is true.

cl sb _exp b[]: The values of CLy when CL, is equal to the standard normal dis-
tribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the background hy-
pothesis is true.

cl s exp_ b][|: The values of CL; when C'L; is equal to the standard normal distribu-
tion probabilities at -2, -1, 0, 1 and 2 standard deviations, if the background hypothesis
is true.

xi2 exp bl[]: The expected values of —21In (@) when C'L; is equal to the standard nor-

mal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the background
hypothesis is true.
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xi2 exp sb[]: The expected values of —2In(@Q) when CL, is equal to the standard
normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations, if the sig-
nal+background hypothesis is true.

cl s exp sb: The expected value of C'L, for the median value of 1 — CLy, if the
signal+background hypothesis is true.

xi2 exp sigtest[]: The values of —2In(@ when the test signal distribution is equal
to the standard normal distribution probabilities at -2, -1, 0, 1 and 2 standard deviations.

m _cl b exp sigtest[]: The values of 1 — C'L, when the values of the simulated
background —21n @Q’s are equal to the xi2 exp_sigtest]|’s.

cl sb exp sigtest[]: The values of C'Ly, where the values of the simulated back-
ground —21n @’s are equal to the xi2_exp sigtest|]’s.

cl s exp_ sigtest[]: The values of C L, where the values of the simulated background
—2In@’s are equal to the xi2 exp sigtest||’s.

p disc 5s p,p disc 4s p,p disc 3s pandp disc 2s p: Discovery po-
tentials. The values of 1—C'L,, when lljg LL”b is equal to the standard normal distribution
probabilities at 2, 3, 4 and 5 standard deviations, given that the signal+background hy-

pothesis is true.

cl b infty: The average value of C'L; for the background only hypothesis.

d cl b _infty: The error (standard deviation) of cl_b_ infty

cl bb infty: The average value of C'L, if the background only hypothesis is true.
d cl bb infty: The error (standard deviation) of cl_bb_ infty

wexpt sigtest: The average value of —21n () for the test signal experiments.
wexpt sigtest rms: The error (standard deviation) of wexpt sigtest.

wexpt signal: The average value of —21In () if the signal+background hypothesis is
true.

wexpt signal rms: The error (standard deviation) of wexpt signal.

p_excl 90: The probability of excluding the null hypothesis for CL, = 10% given
that the signal hypothesis is false.

p_excl 95: The probability of excluding the null hypothesis for C L, = 5% given that
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the signal hypothesis is false.

p_excl 99: The probability of excluding the null hypothesis for CL; = 1% given that
the signal hypothesis is false.

p_excl 95 aleph: The sum of the background weights of the Monte Carlo generated
experiments for CL, aleph — 5%

cl sb infty: The average value of C'Ly, for the background only hypothesis.
d cl sb_infty: The error (standard deviation) of cl_sb_infty.

cl s infty: The average value of C'L, for the background only hypothesis.
d cl s infty: The error (standard deviation) of cl_s_ infty.

wexpt _infty: The value of C'L, when the background hypothesis is true.
wexpt infty rms: The error (standard deviation) of wexpt infty.

fe rate: False exclusion rate; the value of C'Ly, when CLj is 5%.

fe rate sb: False exclusion rate; the value of C Ly when CLyg, is 5%.

d cl sb: Not yet implemented.

d cl b: Not yet implemented.

cl s aleph: A specialised value of C'L, for the ALEPH experiment.

cl s aleph infty: The expected value of CL,_aleph when the background hypo-
thesis is true.
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