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Abstract

This thesis outlines an alternative to the well known Jetcharge method, thus
christened The Netcharge Method, for use in B, mixing analysises. The
aim of the method is to increase the efficiency of classifying the production
flavor, or sign of the charge, of b quarks in Z° — bb decays. The core of the
Netcharge method is an Artificial Neural Network. Various net-structures
and input variables are trained and tested. Results better than the Jetcharge
method are obtained even though the parameter choices and net-structures
can be optimized further.
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Chapter 1

Introduction

An introduction to CERN and the DELPHI detector is given, along with a
brief description of the contents of this thesis.

1.1 CERN

In 1949 the french physicist Louis de Broglie proposed the creation of a
European science laboratory. The aim was to unite European nuclear physics,
which was in a bad state after the destructive war. On September 29 1954
the Conseil Européen pour la Recherche Nucléaire, or European Organization
for Nuclear Research, was formally established with 11 member states. The
CERN laboratory complex was located in Meyrin, a quiet countryside a few
kilometers outside Geneva, not far from the french border (figure 1.1).

Today CERN focus more at particle physics than nuclear research, this is
reflected by the change of name to Furopean Laboratory for Particle Physics.
There are currently 19 member states and CERN host several thousand users,
roughly 50% of the worlds particle physicists, many from non-member states
like the USA, India, Japan and Russia. Thus it is suitable to label CERN as
the first worldscale collaborating particle physics laboratory.

In addition to particle physics CERN is the birthplace of the much hyped
World Wide Web, originally developed in 1990-91.

1.2 The accelerator complex

This section will briefly list some details about the accelerator complex at
CERN. But first a quick look at why so much energy is needed to detect
those tiny particles.



1.2.1 Particles as probes

The energy in particle physics experiments today are usually several orders of
magnitude larger than just a few decades ago. The reason for this is closely
related to the wave-particle duality of Quantum Mechanics (QM). According
to QM all particles can be assigned a wave property [1], with a wavelength
given by A = %, where h is the Planck constant. Just as photons are used
to probe structures in optical microscopes one can use the particles to probe
matter. But to be able to probe a given structure the wavelength must be
shorter than the size of the structure.

For smaller structures the wavelength of the particle must be lowered,
which amounts to increasing its momentum. Modern experiments probe the
quark structure, at scales down to 1071"m, a quick calculation gives:

8, o—1
E=h S —66310%7s. 22000™ 19910797 ~ 100GeV
A 10717m
Thus modern accelerators need to accelerate particles up to 100 GeV in order
to probe the inner structure of matter.

This may look like a perfect way of probing matter, if one wants to
investigate even smaller structures just turn up the voltage to increase the
energy of the probing particles. But there is one serious catch: During
acceleration particles radiate photons and thereby lose energy.

1.2.2 Synchrotron radiation

In linear accelerators energy loss due to acceleration is rather small, because
the actual acceleration only takes place in certain intervals. However, in
circular accelerators the particles are accelerated most of the time, partly to
increase their momenta but mainly to deflect their paths so that they travel
around the ring. It is the bending of the particles that causes the synchrotron
radiation, a kind of bremsestrahlung, which is the main source of energy loss
at CERN’s Large Electron Positron collider. The energy loss, AE, due to
synchrotron radiation is proportinal to the energy of the particle [2]

EN*1
AEO<<—> —

mo/ P

Here mg 1s the rest mass of the particle, £ its energy and p the bending radius
of the accelerator. From this formula it is clear that an increase in the energy
by a factor 2 would increase the energy loss by a factor 16. Equivalently
lighter particles will lose much more energy from synchrotron radiation than
heavier, in fact an electron will lose a factor (%)4 ~ (1840)4 ~ 10'® more
than a proton with the same energy. )

To reduce the energy loss at high energy circular accelerators one have
two possibilities. Either one can use heavy particles, like protons, which is



the solution chosen for the future Large Hadron Collider (LHC) at CERN,
where protons will be accelerated to 7 TeV. The other way of reducing the
energy loss is by using a very large bending radius, since AFE is inversly
proportional to p. This was applied for the construction of LEP.

Figure 1.1: CERN is located near the point where the small and the large
circle, indicating the SPS and LEP rings, coincides. The dotted line is the
border between France and Switzerland, Geneva airport is seen near the
bottom. The large dots on the LEP ring represents detectors, the dot closest
to the airport indicates the position of DELPHI.

1.2.3 SPS and LEP

At CERN the first really large circular accelerator was the Super Proton
Synchrotron (SPS), built in the 1970’s, which could accelerate protons up
to 400 GeV. To be able to do so it needed a circumference of 6 km. It was
too large to fit inside the Swiss border, but the french government allowed
CERN to build the SPS under french territory. The famous UA1 experiment,
which made the first observations of the W and Z bosons in 1983, was in
connection with the SPS.

But there are some drawbacks with hadron colliders, linked to the fact
that hadrons are compound particles. The main problem is that the total
momentum of the particle is shared by its constituent quarks. In a collision
usually only two of the quarks will interact, the rest are spectators. Thus
only a small fraction of the total energy is available to create new particles.
Secondly, a hadron collision will result in more noise. The debris of particles



created by the spectator quarks will fill up the detector with unwanted tracks.
For these reasons CERN decided to build a large electron positron collider.

From 1983 to 1988 the Large Electron Positron (LEP) collider was the
largest civil-engineering undertaking in Europe. The total circumference of
the ring is 26.6589 km, by far the largest in the world. It is located between
80 and 170 meters below the ground and reach from the Geneva airport,
in Switzerland, to the Jura mountains, in France. Along the tunnel there
are eight caves, or pits, four of them contain the current LEP experiments:
ALEPH, DELPHI, L3 and OPAL.

From its start-up in August 1989 until the fall 1995 LEP accelerated
electrons and positrons to a total center of mass energy of 91.2 GeV, this
era is known as LEP1. The energy was not chosen at random, it is exactly
what is needed to create a real Z° boson. During the six years of LEP1 each
of the experiments at LEP collected millions of Z° decays, from which very
precise measurements of electroweak parameters could be made. One of the
most important results from LEP1 is that there are only three light neutrino
generations [3] so, unless there is a neutrino with mass above 45 GeV/c?,
there are only three generations of quarks and leptons (section 2.1).

Other important results include precise measurements of the the running
coupling constants, the weak mixing angle (sin” §,,), lepton universality and
the hadronic branching fractions [4]. And as a curiosity the mass of the top
quark was predicted to be 177 GeV, though with rather huge errors, from the
LEP measurements [5]. This is in good agreement with direct measurements
made at Fermilab.

In October 1995 the LEP energy was ramped up to 130 GeV as the first
step in the LEP2 era. At LEP2 the energies will be increased in steps up
to probably 195 GeV in 1998. The main goals at LEP2 are to look for the
Higgs boson and possibly light supersymmetric particles, or to exlude such
particles from the mass region covered by LEP2. When the LEP era ends in
2000-1 the LEP tunnel will be reused for the LHC project scheduled to start
running in 2004.

1.3 The DELPHI detector

DELPHI, a DEtector with Lepton, Photon and Hadron Identification, is
designed as a general purpose detector with special emphasis on powerful
particle identification over a 47 solid angle. This means that DELPHI is
built around the interaction point (IP), where the e* and e~ beams from
LEP collide, with different subdetectors placed in layers radially outwards
from the IP. Fully assembled DELPHI is three stories high and located 80
meters below the surface, in pit 8, along the LEP tunnel. Figure 1.2 should
indicate the dimensions.

The analogy with an onion is often used when describing modern particle
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Figure 1.2: Cut-through view of the DELPHI detector

detectors, and DELPHI is no exception. The subdetectors of DELPHI are
located in layers radially outwards from the beampipe which pass through
the center of DELPHI. Each of the subdetectors has a unique task. Based
on the information from one or several of them DELPHI can classify many
different particles to a high degree of certainty. In DELPHI the z-axis is
parallell to the beam, while the radius R and azimuth angle ¢ are in the
plane perpendicular to the beam and 6 is the polar angle, with §=0 along z.

The main DELPHI subdetectors, from the center and outwards [6]:

Vertex Detector (VD) : Consists of 3 coaxial cylindrical layers of silicon
strip detectors, with average radii of 6.3, 9.0 and 10.9 cm. The VD
provides both R¢ and Rz information and is used for impact parameter
measurements and precise vertex reconstruction.

Inner Detector (ID) : Consists of an inner drift chamber with jet-chamber
geometry providing R¢ information. Surrounding the drift chamber are
5 cylindrical layers of multi-wire proportional chambers, providing Rz



information. The ID is used for vertex reconstruction and fast trigger
information.

Time Projection Chamber (TPC) : Is a drift chamber where both end-
plates are divided in 6 azimuthal sectors, each sector containing sense
wires and pads for more precise R¢ determination. The z information
i1s computed from the drift time along the chamber. The TPC is the
main tracking device in DELPHI.

Ring Imaging CHerenkov detector (RICH) : Consists of a liquid and
a gaseous radiator where particles can produce Cherenkov light cones.
The light cones are reflected in mirrors and focused onto a photo-
sensitive time projection chamber where photoelectrons are created
and detected as ring images. This technology was very new at the
time DELPHI was proposed but has turned out successful. The RICH
can separate kaons, pions and protons from 1 GeV and up to 25 GeV.

Outer Detector (OD) : Consists of 5 layers of drift tubes located between
radii 197 and 206 cm. The OD provides both R¢ and Rz information.
It is essential for fast trigger information and to improve the momentum
resolution.

High density Projection Chamber (HPC) : Consists of 144 modules
arranged in 6 rings. Each HPC module is a small TPC with layers of
high density material in the gas volume. In this volume high energy
electrons will create showers and the electron energy can be computed,
with a precision of a few percent, based on the shape of the showers.

Hadron Calorimeter (HCAL) : Is installed in the return yoke of the
DELPHI magnet and consists of 19000 streamer tubes. Hadrons will
interact strongly with the dense material of the return yoke and create
showers that will be detected in the streamer tubes. Electrons will not
penetrate this far and muons will give very faint signals since they have
no strong interaction, so the showers will be from hadrons. The energy
resolution is of the order 25%

MUon Chambers (MUC) : Because muons do not interact strongly and
are 200 times more massive than electrons they pass through most of
the subdetectors with almost no energy loss. In addition the iron of
the HCAL provides a filter for muons because the bulk of hadrons are
stopped by this material. Hence the MUC is located as the outermost
subdetector of DELPHI. The efficiency of detecting muons in MUC are
between 80 and 90% with a misidentification of a few percent.

There are similar subdetectors in the forward and backward directions of
DELPHI to cover most of the 6 region. To measure the momentum of tracks,



in the TPC and OD, a highly uniform 1.2 T magnetic field is provided by a
superconducting solenoid, with a 5000 A circulating current. The solenoid
1s located outside the HPC and cooled to 4.5 K by a high pressure flow of
liquid helium. In addition to these particle identification detectors DELPHI
has two subdetectors dedicated to measure the beam energy and luminosity:

Small angle TIle calorimeter (STIC) : Is a sampling lead-scintillator
calorimeter. It is formed by two cylindrical detectors located along the
beampipe, on both sides of the interaction point, in a distance of 2.2
meters. In 1994 STIC replaced SAT (Small Angle Tile calorimeter) as
the main monitor for energy and luminosity in DELPHI. STIC gives
an energy resolution of 2.7% at LEP1 beam energy.

Very Small Angle Tagger (VSAT) : Is located close to the beampipe,
but 7.7 meters away from the interaction point, inside the LEP tunnel.
It is used for relative luminosity measurements and provides fast beam
background information.

The LEP bunch-crossing interval is 11 gs, which means that each second 90
thousand collisions occur in the center of DELPHI. In order to pick out the
interesting events, without missing too many of the subsequent collisions, the
trigger chain in DELPHI must work very fast. If an event is interesting the
next one will be skipped to give the software time to read out the information,
if not the event will be erased and the next one treated by the triggers when
1t arrives.

In summary DELPHI is a general purpose detector with a high efficiency
of collecting interesting events. At the end of LEP1 it detected thousands of
Z° decays each day of running and all in all several million Z° decays have
been collected by DELPHI, providing material for very precise tests of the
electroweak theory.

1.4 Concerning the thesis

This thesis was written using natural units, that i1s units where the speed of
light and % 1s set to one, c=h=1. Natural units are very popular in the HEP
community because they simplify many formulas and give different physical
quantities the same dimension.

Chapter 2 contains the basic theory behind B mixing while chapter 3
gives a brief summary of two experimental methods, used particularly in
B physics, and some measurements of B mixing. In chapter 4 the basic
theory behind neural networks is briefly discussed, with emphasis on feed-
forward networks. In chapter 5 some important quantities, which will be
used throughout the analysis, are defined. In chapters 6 and 7 the two parts
of the analysis are outlined and results for different netstructures given. In
chapter 8 the analysis is summarized and the conclusions drawn.



Chapter 2

Physical formalism

This chapter outlines the basic physical formalism used in this thesis, i.e. the
concept of mixing, sometimes refered to as oscillations, in addition to a brief
look at the standard model to clearify the notion of mesons.

2.1 Mesons

The standard model [7] of particle physics lists 6 quarks and 6 leptons, each
with a corresponding anti-particle, as the fundamental building blocks of
nature. Figure 2.1 shows the three known generations of quarks and leptons,
the anti-particles are left out.

ITEY
Cnd s p Qs

el T e
eptons
Q=-1 \ € /AT
Figure 2.1: The three generations of elementary particles in the standard

model. The charge is given in units of the elementary charge, the neutrinoes
(v) being neutral.

The anti-particles are equal to the particles in the sense that they have
the same mass and follow the same laws of nature. The difference is that their
quantum numbers (like charge, flavor, etc.) are reversed. An anti-particle is



usually denoted with a bar above the particle name, thus the anti-b quark is
labeled b.

According to the standard model, or more precisely Quantum Chromo
Dynamics [8], all quarks carry color. There are three different colors, R, G
and B. This has nothing to do with the macroscopic property color, but is
a name given to an intrinsic property of quarks. The important thing is
that nature appears to be colorless, thus free quarks can not be observed.
The requirement of colorless states force nature to group the quarks in two
possible ways [9)].

1. Three quarks with different colors: ¢r + g¢ + g5
2. One quark and one anti-quark with color and anti-color: ¢. + gz

Here ¢ € [R,G, B]. Particles from the first group are known as baryons,
while particles from the second group are known as mesons. Protons and
neutrons of atomic physics are examples of baryons, while pions and kaons
are examples of mesons. This thesis will only be concerned with mesons,
especially mesons containing a b or a b quark, known as B mesons:

Bq:(z) Bq:(‘Z) (2.1)

In section 2.3 a phenomenon known as B mixing will be described, it can only
occur among neutral B mesons due to conservation of the electric charge.
According to definition (2.1) the ¢ quark must have the same absolute value
of its charge as the b quark to form a neutral B meson. From figure 2.1 it 1s
clear that only the s and d quarks, with charge —e/3, qualify for this. Thus
the only neutral B mesons one can form are BS and B?, with corresponding
anti-particles. With the given definition it is the B] meson that contains the
b quark, while Bg contains the b quark.

In chapter 3 a brief summary of some special features and measurements
concerning B mesons will be discussed.

2.2 Time evolution of an unstable particle

To obtain quantities that can be measured in experiments one have to apply
Quantum Mechanics. In order to do so the problem must be defined in the
proper formalism, which amounts to finding the Hamilton operator H of the
system. Then one must solve the Schrodinger equation

¥
i %) = H|E) (2.2)

where |¥) is a wave function describing the time evolution of the system. For
an unstable particle the hamiltonian is H = (M — 1?7 /2), where M is the



mass operator and ? represents the decay width. The solution of Eq (2.2),
using this expression for H, is

21wy = (M- )|y

U
o|¥) : .
o = —i(M —z?/2)/3t

U
In [¥(t)) = In |¥o) — i(M — 47 /2) - t (2.3)

In the integration it was used that H is time independent and thus can be
placed outside the integrand. The time integration was performed from time
t=0 to t, with the initial condition |¥(t=0)) = |¥,). By exponentiating
Eq (2.3) one can find an expression for the time evolution of |¥)

(1)) = e T/ W) (2.4)

This gives |¥(¢)]° o« e Tt = e7%/7, hence it makes sense to define 7 = T as

the lifetime of the unstable particle.

2.3 B mixing

After the discovery of the b quark scientists started to look for mixing among
neutral B mesons, in analogy with mixing among neutral kaons [10]. This
section briefly outlines the basic formalism of B mixing. Experiments and
results related to B mixing are mentioned in section 3.4.

In this section |B°) will denote the BY state and |B°) the B state, the
resulting formalism will be the same whether q=d or q=s. These two states
are CP conjugate, which means that by performing a combined charge and
parity transformation (CP) on one of the states it should turn into the other:
CP|B®) = ;| B°) and CP|B°) = ,|B°), where 7, and 7, are arbitrary phase
factors usually set to -1. Neutral B mesons are split in two mass eigenstates,
a light and a heavy, which can be written as linear combinations of the CP
conjugate states [11]:

|Br) =q-|B%) +p-|B°) |Br)=q-|B%) —p-|B°)  (25)

2.3.1 Mixing formulas

In the Standard Model mixing occur via second order weak interactions (the
strong interaction conserves the b flavor and thus can not explain mixing).
There are two possible box diagrams, shown in figure 2.2. Since the quark

10



q u,c,t b

Figure 2.2: Second order box diagrams for B mixing in the Standard Model

couplings are proportional to the square of the mass it is obvious that the
heaviest quark, the top, give the most dominant contribution. Thus indirectly
the size of the mixing can reveal much about the mass of the top.

For the B°B° system, where B® = B° transitions can occur, the total
wave function can be written

¥) = ( IgZ§ ) (2.6)

The hamiltonian H must be non-Hermitian to allow for particle decay, if
H = 'H! the number of particles would have been conserved through unitarity.
It is also clear that H;; = Has because of CPT invariance, and that Hyy # 0
and Hz; # 0 due to non-conservation of the quark flavor (to allow for B
mixing). Finally the imaginary parts of M, and 71, must be nonzero to
allow for CP violation. In summary [12]

s [ M=il2 Mis = itn)2
S —i15,/2 M —i?)2

But the indirect CP violation, due to different widths of the |Br) and |Bg)
mass eigenstates, are expected to be small. Thus to a good approximation the
imaginary parts of My, and 75 can be set to zero, making the hamiltonian
symmetric along both diagonals. The resulting Schrodinger equation is

.0 B M—17/2 My —i715/2
o) = (gt 0, M) e e
where |¥(¢)) is given by Eq (2.6). Without indirect CP violation the ratio
2] equals 1 [11], which modifies the mass eigenstates of Eq (2.5) to
1

|Br) = \/% -(|1B%) +1B%) Br) = 75 (IB°) —1B%)  (28)

These are also eigenstates for the hamiltonian in Eq (2.7). This can be shown
by expressing H in its (| B®), |B°)) basis:

H = H11|B®)(B®| 4+ Has| B®)(B°| + Ha1|B®)(B°| + H12| B®) (B’

11



= H, - (|B°)(B°| + |B°)(B°|) + H. - (|1B°)(B°| + | B®)(B°))
Where Hi = M —i7/2 and Hy, = My —171,/2 has been used. By using
this expression for H it is straight forward to show that

H|Br) = (H1 + H)|Br) = €1|Br)

H|Bg) = (H1 — H:)|Br) = e¢x|Bm)

where €, and eg are the eigenvalues of H with respect to the eigenstates |Br)

and |Bg). It can be shown that ez = M —171/2 and eg = Mg — 17 g/2.
Let the initial state |¢)(t=0)) = | B°) which from Eq (2.8) can be expressed

as |B%) = %(|BL> + |Bg)). Then in the same fashion as Eqs (2.2) - (2.4)

one can solve Eq (2.7)

1 —1Ht
7z (Bo) +1Ba))

By using that |B) and |Bpg) are eigenstates of H the next step follows
naturally.

[$(t)) = e |B°) =

[(t)) = % : <|BL>e—ieLt n |BH>e—ith>

= % . <|BL>e—i(ML—irL/2)t + |BH>e—i(MH—i1"H/2)t>

The final step is to use Eq (2.8) to obtain an expression in |B°) and |B°)

[(t)) = L (e—i(ML—irL/2)t n e—i(MH—iFH/2)t> B%)
2

+ % (e—i(ML—iFLﬂ)t — e‘i(MH_iFHmt) 1B°)

To clearify this result it is useful to define

Ap_p(t) = 5 (e‘“ML‘”TL” + e—“MH—”TH)t) (2.9)
Ap_p(t) = <e—z<ML—z%L>t - e—z<MH—lFTH>t> (2.10)

so that the solution can be written as
19(t)) = Ap_B(t)|B°) + Ap_5(t)|B%) (2.11)

According to the standard interpretation of Quantum Mechanics, the
sixty year old Copenhagen Interpretation, the abstract wave function |¥(¢))
1s just the probability amplitude of finding a particle with the given quantum
numbers at the given position and time. From Eq (2.11) one can verify that
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Ap_p(t) = (B°|¥(t)) and Ag_5(t) = (B°(t)). One can therefor interpret
Ap_p(t) and Ag_5(t) as the probability amplitudes of finding a B and a
B respectively, in the final state after a time t.

Thus in order to find the mixing probability it is necessary to compute
the norm of the amplitude in Eq (2.10).

Ppo_po(t) = |Ap_5(t)|" = [Ap_5(t)]' - [Ap_5(t)]

1 [ei(ML-H'FTL)t B ei(MH+iFTH)t] ' [e—i(ML—iFTL)t B e—i(MH—iFTH)t]

4
_ iﬁ%)t. Bty (P Tey, (2.12)
e—i(MH—ML)t . ei(MH—ML)t]
1
Pgo_,po(t) = 3 e Tt [1 — cos(Am-t)] (2.13)

Where Am = Mg — Mg, AT =g —?pand ? = (?g + 71)/2. Due to
A?/? <1072 the two e (A1/2) terms in Eq (2.12) was approximated by 1,
to get from Eq (2.12) to (2.13)

In a similar fashion one can obtain an expression for the probability of a
non-mixed state, i.e. that the final state is a B°:

Peo_pol(t) = % ce T (14 cos(Amt)] (2.14)
The mixing probability found in Eq (2.13) was in the case of an initial | B?)
state and a final |B°), but it would turn out exactly the same if it was an
initial |B°) and a final | B%) state. So this mixing probability is valid for both
B° and B initial state mesons.

In the given situation, with an initial B° and two possible final states, B°
and B°, it would be desirable that the time-integrated probabilities add up
to unity. But that is not the case, instead [{Pgo_po(t) + Pgo_po(t)}dt = {.
So, in order to normalize the probabilities it is necessary to multiply Eqs
(2.13) and (2.14) by a factor 7.

1
PBg_,Bg(t) = §?q et [1 — cos(Amgt)] (2.15)

1
PBg_,Bg(t) = §?q e [1 4 cos(Amgt)] (2.16)

The probability that an initial Bg meson will decay, at a proper time t, as
either a Bg or as a BY, is given by Eqs (2.15) and (2.16), respectively. The
interesting thing is that Am, gives the oscillation frequency, the larger Am,
is the larger the frequency is and if Am, is zero there would simply be no
oscillation. Because of this feature it is common to give results for Am, in

units of frequency, which is inverse time, instead of energy or mass.
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2.3.2 Time-integrated mixing formulas

Because the lifetime of the B meson is very short (section 3.1), compared to
the time resolution in macroscopic measuring devices, early analysises of B
mixing used a time-integrated method. Defining z, = &A™ and integrating

Fq
the probabilities of Eqs (2.15) and (2.16), one obtains:

e ] _ (Amg/7)* 2]
w_ [ _ 24 (Amg/?,)"  2+z
X :/0 Ppo_po(t)dt = T Bt = AT e (2.18)

Now the mixed and un-mixed time-integrated probabilities add up to unity,
Xy + x5 = 1, which they should. The formulas are valid both for By mesons
(q=d) and for B, mesons (q=s), but they turn out to be usefull only in the
B, case. The reason for this is that x7" is sensitive only for small mixing.

0.4 X" =x%12(1+ %%
03}

02}

01}

Figure 2.3: The integrated mixing probability x™

When z, > 1 the system experience full mizing and, as figure 2.3 shows, the
integrated mixing variable x7" is saturated with a value close to % In this
situation even large changes in z, will have minimal effects on the x7* value.
On the other hand, when z, < 1, the x* has a steep gradient and will be
very sensitive to even small changes in z,.

Thus it i1s clear that the time-integrated method is most sensitive, and
thus only useful, for low mixing. In practice z, < 1 is a good criteria for

when the time-integrated method works well.

14



Chapter 3

Experimental methods and
measurements

This chapter serves as a little summary of methods used in B physics, to
classify B mesons and the sign of the b quarks involved. A brief summary of
observed quantities in the B sector, is also given. The chapter ends with a
section outlining the physics motivation behind this analysis.

3.1 The B sector

The b quark, also known as bottom or beauty, was announced discovered by
Leon Lederman and his team at Fermilab on June 30 1977. They discovered
the b quark through the upsilon resonance at 9.46 GeV [13], which is the
lowest bound energy state of bottomonium (b+b quark).

The b quark [14] has a mass of between 4.1 GeV and 4.5 GeV, which
is more than twice the mass of the charm quark and 4 times heavier than
a proton. Together with a lighter quark the b quark can form mesons. B
mesons have an important common feature: The long lifetime, of the order
picoseconds® [15].

In section 2.1 the quark structure of neutral B mesons were outlined.
The mass of such a meson depends on which quark the b quark is forming
the meson with. Because the s quark is slightly heavier than the d quark
the B, meson will be slightly heavier than the B; meson: Mp, ~ 5.38 GeV
and Mp, ~ 5.28 GeV. This makes it possible to design an experiment with
just enough center of mass energy to produce B; mesons but not B,. This
difference in production threshold was explored in the 1980’s, looking for B
mixing where it is important to separate the signals from B; and B,.

1Upon first encounter a picosecond, or 10712 second, may seem like a short time. But
it should be compared to the time scale of the strong interaction, in which the B mesons
are formed. That scale is of the order 10722 second, hence a B meson typically lives for
about 3000 “strong years”.
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3.2 How to classify a B event

When looking for B mesons in experiments two obvious physical quantities,
illustrated in figure 3.1, comes to mind:

1. The large mass Mp

2. The long lifetime 75

PV 2VTX

‘ meson‘<O meson

Figure 3.1: Qualitative comparison of collimination of decay tracks from a
B meson and a lighter D meson. Both mesons decay at a secondary vertex,
but the B meson gives rise to more spread out tracks in its jet than the D.

Due to its long lifetime the B meson will fly a considerable distance [15],
c-7p = 449um, from the Primary Vertex (PV). In high energy experiments
it can be boosted up to several millimeters, before it decays in a Secondary
Vertex (2VTX). This leads to large impact parameters, with respect to the
PV, of the particles coming from the B decay.

The large mass, Mp, of the B meson forces the jet from a B decay to
spread out like figure 3.1 indicates. The reason is that Nature wants to
conserve the tnvariant mass, P,P*, where P is the 4-momentum:

PMPN = Et20t - Pt2ot = M123 (3-1)

The B meson 1s much heavier than the sum of masses of the particles coming
from its decay, so in order to conserve the invariant mass the decay-particles
are spread out in the jet. Then a larger fraction of each particle momentum
will be transverse with respect to the original quark direction, and thus can
cancel out large momentum components from other particles in the jet. In
this manner the total momentum P,,; can be made sufficiently low to conserve
the large invariant mass according to Eq (3.1). In the case of a light meson
decay the invariant mass is small, hence the total momentum can approach
the total energy to a greater extent - which again means that the jet can be
more collimated.

Several methods have been developed to classify, or tag as physicists
prefer to say, B events. A popular one is based on semileptonic decays, i.e.

16



a quark decaying to a lepton and someting else. Using energy-momentum
conservation it is possible to show that the transverse momentum p;, with
respect to the jet axis, of a lepton from a semileptonic decay, must obey
P < %mq [16]. Here my is the mass of the decaying quark. Thus a larger
quark will in general give rise to more isolated leptons, that is leptons with
larger transverse momenta. Because a ¢ quark has mass m, ~ 1.5 GeV
leptons from a semileptonic ¢ decay should have p; < 0.75 GeV, while from
a B decay they should have p; < %mb ~ 2.2 GeV. Thus by requiring for
example p; > 1.0 GeV one can inhance a sample with B events.

A common problem with the old tagging methods are that they all lack
good efficiencies. Semileptonic tagging only works with semileptonic decays,
1t is useless in hadronic decays. Thus a more efficient method was sought for.
In the recent 2-3 years a highly efficient, but more complex, method called
Lifetime Tag has been developed.

3.2.1 The Lifetime Tag

The Lifetime Tag [17] explores the most obvious feature of a B event, the
large track impact parameters, to construct a variable on which one can make
continous cuts to obtain exactly the efficiency or sample purity one needs for
a given analysis.

The lifetime signed impact parameter d is defined as the shortest distance
between the track, when extrapolated back towards PV, and the PV. The

sign 1s positive if the angle between the track and the jet axis is less than T

2
and negative if not. This is visualized in figure 3.2 where a > 7 gives d < 0

while in the case of a < 7 one gets d > 0.

%

Figure 3.2: Defining the signed impact parameter d.

However, due to finite resolution and flaws in the measuring devices and
methods there is an error in the impact parameter. This error will vary
with time. In order to find a good variable, independent of how well the
measurement was performed, the signed impact parameter is divided by its
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error: S = g, where S is known as the significance and o is the error in the
impact parameter.

With this definition tracks with negative significance are either badly
reconstructed (don’t belong to the jet) or comes directly from PV. Tracks
coming from PV have a 50% chance of being assigned a negative significance,
depending on which side of the center coordinates the extrapolated track
pass. Hence tracks with S < 0 are background in a B analysis.

To construct a method one simply assumes that without B events present
the significance distribution, f(.S), is symmetric around S=0. f(S) will
typically have a peak at S=0 and falling rapidly for large values of S. When
B events, with their large positive significance values, are added there will be
a surplus of large positive S values as compared to the expected background
from the negative S distribution. This surplus will increase with increasing
S value, and by integrating it one can form a good variable. Thus when f(.5)
is properly normalized one can integrate the negative part of the distribution
from —oo to a certain value Sp2:

Jses, F(S)dS  if So <0
P(SO) —
P(—So) if S >0

The interpretation of P(S,) is that it is the probability that a track from PV
will have S > So. From the definition it is clear that P(.Sp) is close to unity
for small values of S¢ and close to zero for large.

P(S) is used as the b-tag track probability. Since tracks from a B decay
usually have large positive significance values, S, the probability, P(Ss), that
they originate from PV is small. Hence by cutting hard on P(S;) one can
increase the chances of finding tracks from a B decay.

An even better tagging variable is the N-track probability, Py, where the
track probabilities of all tracks in the event have been combined into:

PN—H Z lnH

1 =1IIY, P(S;) is the product of the N tracks’ track probabilities. The Py
variable has the pleasant property that it is uniformly distributed on [0,1]. By
a sufficiently low cut on Py one can obtain purities of more than 90% while
a loose cut will give a higher efficiency (but resulting in more contamination
from the background). It is by far the best B-tagging method today.

In this thesis the single track b-tag probability P(S) was used because
the neural networks were fed with information from one track at a time (see
section 6.2.4).

’In practice tracks with impact parameters larger than 2mm are cut away to remove
kaons and other longlived particles.
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3.3 Jetcharge

When a quark decays it will give rise to a debris of particles travelling in
approximately the same direction as the quark did before its decay. This
debris of particles is called a jet, it can be both very collimated but also very
spread out. To reconstruct the sign of the charge of the quark that produced
the jet the Jetcharge method has been developed.

The idea behind jetcharge is that tracks with high momenta, which are
more likely to carry information from the original quark, should count more
than softer tracks. Hence in the algorithm the charge of each track is weighted
by the momentum of the track. By computing the jetcharge, based on all
the tracks from a jet, one should on the average get a value with the same
sign as the quark that produced the jet.

In a B mixing analysis all events are Z° — bb, thus each event can be split
in two hemispheres containing one quark jet each. In DELPHI the following
algorithm is used to compute the jetcharge of each jet:

 Xq(p; &)
Qjet — T— / =  S\RK
Ej (Pj : es)

Where g; and p; are the charge and momentum of track j, €; the sphericity
axis of the event, which contains the jet, and x = 0.6. This structure and

(3.2)

choice of k are based on several years of optimization in DELPHI, and is used
in their current B, mixing analysis [20]. Other experiments use variations of
the same formula, ALEPH with an interesting application of rapidity [21].

Given a sample of events one can compute the jetcharge of each of the two
hemispheres. By using a cut like |Qjet| > Qcut it is possible to increase the
fraction of hemispheres where the sign of the charge is correctly classified. By
increasing (., the fraction of correctly classified hemispheres will increase,
but with the negative effect of reducing the efficiency. As will be made clear
in section 5.3 1t is important to both have a high fraction of correct classified
hemispheres and a high efficiency in a B mixing analysis. This means that
one can not cut too hard on the jetcharge. The DELPHI B, oscillation team
currently cuts at Q. = 0.10, which gives them an efficiency of 67.5% and a
purity of 68.8% [20].

3.4 Observing B mixing

Because physicists in the early 1980’s expected a light top quark (why should
the top be so much heavier than the 5 other quarks?) they predicted a small,
maybe not observable, mixing in the BY system. UA1, at CERN, observed
a positive signal from B® — B® mixing but ascribed most of the effect to the
B? meson, which they could not distinguish from BY.
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However, the ARGUS experiment at DESY and CLEO at Brookhaven
started running on the 7(4S) resonance of 10.58 GeV. This is below the
B, threshold which means they had just enough center of mass energy to
create a By meson and its anti-particle, but no B, mesons. Without the
contamination from B, ARGUS made the first observation of sizable mixing
of B; mesons, which they published in 1987 [18].

Because the mixing in the By sector is fairly small, 4 < 1, ARGUS used
a time-integrated analysis. They used the lepton sign from semileptonic B
decays to tag the B flavor in each hemisphere, and then simply count the
number of events with two equal lepton signs (Ny+;+ + Nj-;- = Nj+j+) and
with opposite signs (Ny+;-). A factor A &~ 1 was included due to effects from
different lifetimes and decay widths of the B mesons. Then ARGUS could
calculate [18], [19]

. Nl:l:l:l: . (]_ + )\)
N + Ny

m

X4 =0.174 + 0.053

Using Eq (2.17) this leads to z4 ~ 0.73, not far from the current value given
by the Particle Data Group [11]: z4 = 0.71 £ 0.06.

This unexpectedly large value of mixing in the By sector prompted Paolo
Franzini to write in his BB mizing: a review of recent progress [12]: “The
simplest interpretation of the ARGUS result in this context is that the top
quark is rather heavy”. Indeed that turned out to be the case, predicted by
BY mixing almost a decade before Fermilab observed their top events.

After the observation of sizable mixing among By mesons experiments started
to look for B, mixing which was expected to be larger. But unfortunately it
turns out that z, is very much larger than x4, maybe a factor 10 or more.
This gives a time-integrated value x7* ~ 0.5, i.e. in a region where it is highly
insensitive to variations in #,. Thus the time-integrated method fails in a B,
analysis.

3.5 B, mixing - physics motivation

In the B, sector mixing is much harder to measure, currently there is only
a lower limit. For their 1991-94 data DELPHI recently published =, > 5.1,
or more precisely Am, > 4.6 ps~! at 95% confidence level, in a conference
paper [20]. Because of the rapid oscillations it is important to have as much
statistics as possible to be able to pin down the oscillation frequency. The
time resolution in the detector is also of utter importance in an analysis like
this. Figure 3.3 indicates how the B, oscillations may look like compared to
the slow By; in plots (A) and (C) the B — BY curves are given while in (B)
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and (D) those for B? — B?. The plots were made using

P(¢) =5 e [1 — cos(y C)]
From Eq (2.14) it should be clear that ( = 7t = £, hence the oscillation
curves are plotted in units of B lifetime. As one can readily see from plots
(B) and (D) the oscillation period for the B, system is of the order one unit
of the B lifetime. To pin down this rapid oscillation the demand for statistics
is high.

The full analysis done on the B, mixing is rather complex and channel
dependent. It involves reconstructing the production flavor, using jetcharge,
then computing the proper lifetime of the B mesons and finally classifying
the decay flavor of the B through its semileptonic decay channels. Refer [19].

The important part to notice is that the B, analysis depends strongly on
the statistics. In appendix A.4 it is shown that the quantity \/e-(2p — 1) is
proportional to the statistical significance of a signal from oscillations. Thus
both the efficicency € and purity p of the sample should be as high as possible.
In section 3.3 jetcharge was briefly discussed, and the DELPHI efficiency of
67.5% for the jetcharge method listed.

Since a B, analysis depends on this efficiency one may pose the question
“Is it possible to improve the efficiency of classifying the production charge
of b quarks without jeopardizing the purity?”. Since the jetcharge itself is
so highly optimized it is unlikely that one can improve the figures much by
adjusting the algorithm in equation (3.2). But maybe a neural network can
perform better? Given that neural networks can access more information
than the momentum and charge, used in the jetcharge, this question was
interesting enough to trigger this analysis.

Thus the main goal of this thesis was to check if it is possible to improve the

jetcharge values, the purity and efficiency of classifying the production flavor
of b quarks, by using an Artificial Neural Network.
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Figure 3.3: The dotted lines are the oscillation curves and the continous
lines the damping exponential function. In these plots the initial sample
contained only B° mesons. Plots (A) and (B) show the development of the
fraction of B? in the sample, while plots (C) and (D) show the development
of the fraction of B®. The dimension along the abscissa is given in units of

B meson lifetime, while ¥:0.71 is the situation for BY — B9 mixing and

%zf) is a likely lower limit for the situation in B% — B mixing.
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Chapter 4

Introduction to neural networks

A brief introduction to the concept of neural networks, with emphasis on
feed-forward structures that use supervised learning, is given. The specific
choices made for this thesis are listed in appendix B.

4.1 Historical motivation

The idea of using networks to process information came about in the 1940’s,
though not strictly developed until medical scientists coined their model of
the human brain by the name neural network, in the 1950’s. This model
of the brain turned out to be too simple, but the idea of neural networks
was born. In the 1960’s the interest in neural networks fell dramatically
when scientists came to the conclusion that simulations of neural networks
would not be possible with the computer resources of that time. But with
the birth of semiconductor technology and microchips the computing power
development went into overdrive, bringing back the old ideas of simulating
neural networks.

The familiar personal computers or workstations are all part of a class of
computers commonly called Von Neumann machines. The traditional Von
Neumann machine has two distinct properties:

o Sequential execution of instructions from a store containing instructions
and data.

e Most of the store is empty most of the time.

Up to know these properties have been less critical than other factors. But
in the future, with the need for realtime simulations and large amounts of
data processing, these properties will turn into a bottleneck. At the future
LHC experiments one will have to do fast trigger decisions and crude online
measurements of millions of bytes of information, in a matter of microseconds.
Instead of having a Von Neumann machine, processing the data bit by bit,
a solution with massive parallel processing is needed.
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In environments, like the LHC, the neural network technology offers a
possible solution. It can store the information almost uniformly among the
weights in the network and due to its structure the neural network acts like
a huge cluster of parallel processing Von Neumann machines.

4.2 Neural network architecture

Neural networks consist of many small computing machines called neurons
or nodes. The internal connections between the neurons can have some
resistivity, often called weights. If the connection between two neurons are
weighted by a factor zero the connection is said to be broken. Each neuron
contains an activation function which, based on the total input to the neuron,
computes the neuron output.

W,

S ——=

W,
S

O,
£f2) —

H

W,

Figure 4.1: Oy is the output from neuron k, based on the three input signals
(S1, S2 and S3) with corresponding weights (Wy, W, and Ws).

Figure 4.1 illustrates how the neuron works. First the weighted input
signals, to the neuron, are summed up: Y = % ,(S; - W;). This sum is
passed along to the activation function f. This function will form the output
from the node, in some cases it incorporates a threshold so that if 3 is too
small the neuron will give zero output.

4.3 Feed-forward networks

There are many classes of neural networks and the simplest of them all is the
feed-forward structure used in this thesis. The reason why this structure is so
popular is partly because it is very easy to implement in computer software
and partly because it allows supervised learning. In supervised learning
the net is required to give some desired output for a certain class of input
patterns. This is very useful in problems where good simulations exist.

The feed-forward structure is simple in the sense that it is layered. When
a signal pass through the net it always pass from one layer to the next, not
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to other neurons in the same or the previous layer. This is illustrated in
figure 4.2. In a feed-forward structure the first layer of neurons is called the
input layer, that is the layer where the input patterns based on the data
sample are fed in. Then follows one ore more hidden layers, as the name
indicates these layers can not be accessed from outside the net. The final
layer is the output or outer layer, which may contain one or more output
neurons. This is where the network decision, for a given input pattern, can
be read out.

Feed-forward
—=
pd
mo_e
, OUTPUT
- |
T —= :
C : |
— : !
! |
—T= | :
! | !
Layers. First Hidden Outer

Figure 4.2: The structure of a feed-forward network

Because the input to the network is known, and the activation functions
are chosen by the user, the total output can be calculated as a function of
the weights. Thus by changing the internal weights of the network one can
adjust the total output to any desired value. This is the basic concept behind
the supervised learning.

4.4 The error measure

When training a neural network the main concern is with the average squared
training error, x%:

1 M S
2 — : tr— o 4.1
X 2Np pz:;;(p Op) ( )

where N, is the number of training patterns, t; 1s the desired target value,
for pattern p and output neuron ¢, and o; the true output value from output
neuron ¢ for the same input pattern p.
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4.5 Training a feed-forward network

When the activation functions are known the output from the network, for a
given input pattern, depends only on the weights. The problem of training
the network is then reduced to finding a set of weights that minimize Eq
(4.1).

But one is looking for a network solution that can recognize patterns it
has not seen before, it should be able to generalize data. Thus one can not
use x?=0 as a training criteria, this would be an overfit: The net would only
be able to recognize patterns from the training sample. Instead one must
look for a solution of the weights that gives a global minimum of x?, i.e. that
approximates %
recognize the general features of the test sample.

=0, where w is the vector of weights. Such a solution will

4.5.1 Back-propagation

To minimize x? one use a gradient descent method which is incorporated in

the back-propagation algorithm. The gradient 6)(2 = % is used to update
the weights in order to reach a minimum of y?%:
Awt+1 == —7’]6)(2 + OéA’lBt (4:2)

Where the t subscript indicates the time order. 7 is known as the learning
strength, it gives the step length in the weight update, while « is a momentum
term which insures stable learning by bringing in the previous weight update.

The back-propagation algorithm can be listed in a cockbook manner:

1. Calculate x? when feeding the signal from the input pattern forward
through the network

2. Calculate the gradient in a backward sweep through the network

3. Modify the weights according to: w;,1=w;+Aw;,1, where Aw;yq is
given by Eq (4.2)

4. Calculate x? as in point 1 but with the new weights. If it gets worse
lower  until x? improves

5. Go to 2

4.5.2 The input patterns

The input patterns must be chosen so that they display the particular features
one would like the net to learn. They are prepared in an N-dimensional array
which are fed into the N input neurons of the input layer. It is important
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to limit the number of variables, used in the input patterns, since the actual
training of the neural network is very time consuming. Finally one should
make sure that the input variables are normalized, to avoid saturating the
activation functions.

4.5.3 When to stop training

There is no way to know a priori how much a network should be trained. If it
1s trained too short it will not have had time to learn the general features of
the training sample, but if it is trained too long it will start to specialize on
the training sample. So one must try to find a golden mean, thus one should
monitor the training error development to see if it reaches a minimum value.
After a training session it is important to have a testing sample on which the
net can be tested. This will reveal if the net can generalize what it learned
from the training sample.
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Chapter 5

Preparing for the analysis

This chapter only briefly describes all the work that was put into extracting
and checking the simulated data, trying out different quality cuts and setting
up the necessary apparatus in order to compare the different outputs.

5.1 Extracting and checking the data

Simulated Z° — bb events, stored in DST format at Shift (the DELPHI
offline area), were used as data for this analysis. The data were generated
by a Monte Carlo algorithm with full DELPHI detector response simulated,
known as DELSIM [26]. A Skelana[27] routine was used to extract the data
which then were stored in column-wise Ntuples to make cut manipulations
and tests easier. During the extraction three quality cuts were imposed to
remove badly reconstructed tracks and tracks with signatures compatible
with « conversions or V° candidates:

1. A track was only accepted if the error, og, on the reconstructed energy,
E, was less than 100% i.e. that og < E

2. Loose cuts on 4 conversion tags, from ELECID, imposed to remove 5y
conversions (gave 85% efficiency and 1.6% misidentifications)

3. A tight V° tag was used to identify and remove V° candidates:

(a) The angle, in the zy plane, between the V° momentum and the
line joining PV and 2VTX was required to be less than (0.01+ 0}'%)
rad. Here p;, measured in GeV, is the transverse momentum with
respect to the beam axis

(b) The radial separation, in the zy plane, of PV and 2VTX was
required to be greater than 1o

(c) The x? probability of the fit to a 2VTX had to be larger than 0.01
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Each event was split into two hemispheres by a plane normal to the sphericity
axis of the event (figure 5.1) so that the b quark ended up in one hemisphere
and the b in the other. Per definition all tracks with a momentum component
parallel to the sphericity axis were contained in hemisphere 1 and those that
were anti-parallel in hemisphere 2. The sphericity [28] is essentially a measure
of the summed P? with respect to the event axis. A two jet event has S =~ 0
while in isotropic events S ~ 1.

S

Figure 5.1: A plane normal to the sphericity axis S splits the event into two
hemispheres, with one B meson in each.

From the simulated data a total of 57261 events were accepted, 34700 of them
were stored as a training sample and the remaining 22561 as a test sample.
With the imposed quality cuts, especially the og cut, most of the wrongly
reconstructed tracks, with momentum above the beam energy, were removed.
But around 300 tracks with too high momentum survived the quality cuts,
they had to be treated with special care during the training and testing of
the nets (see section 6.2.2).

5.2 Defining the hadronic selection

A neural network trained to recognize B and B patterns should be able to
sort out the common hadronic features of Z° — bb events, making hadronic
cuts on the data sample superfluous. To test the neural networks for this
ability it was necessary to avoid using hadronic selection criterias during the
extraction of the simulated data. Instead the training and testing routines
were implemented so that the hadronic cuts could be switched on and off as
desired. With that solution it was possible to test how hadronic cuts affected
the neural network performance, when the cuts were imposed on the data
samples and when not.
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The following hadronic criterias were used in this analysis:

1. At least 5 charged tracks in each hemisphere
2. Each accepted track must have a momentum greater than 200 MeV

3. The momenta of wrongly reconstructed tracks are set to 10 GeV

Studies of the momentum distribution of Z° decays shows that the average
high-momentum track in multihadronic events has a momentum of around
10 GeV. Thus if a momentum value turns out to be above the beam energy,
due to bad track reconstruction, a good value to use instead is 10 GeV. This
justifies the third hadronic criterion.

Table 5.1 shows the percentage of tracks and hemispheres surviving each
of the two first hadronic criterias. The third criterion will only rescale the
momentum, in case it is too high, and thus will not affect the efficiency.

‘ Criterion H Tracks ‘ Hemispheres ‘
1: ntrack.ge.5 99.0% 96.3%
2: p(trk).gt.0.2 | 86.3% 99.9%
1+ 2 85.4% 96.3%

Table 5.1: Data surviving the hadronic selection

34700 events times two hemispheres result in 69400 training patterns,
but with 96.3% surviving the hadronic criterias only 66000 were used during
training. In the few cases where the hadronic criterias were not imposed on
the sample 69000 training patterns were used.

The 22561 events in the test sample amounted to 45122 test patterns, but
in case the hadronic criterias were imposed only 43534 patterns survived.

5.3 How to compare the results

This section outlines a few quantities useful when comparing the results from
the various nets and jetcharge, it also gives a brief description of how the
output is treated.

5.3.1 Defining three quantities ¢, p and A,

To be able to compare the performance of different neural networks, with
each other and with the standard Jetcharge method, three quantities were

defined:
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1. € : The mean tagging efficiency is the fraction of the B and B patterns
that have been classified (right or wrong) above a given cut value on
the output. Since no distinction between B and B is made this is a
mean value. € will be refered to as efficiency.

2. p: The mean tagging purity, a.k.a. mean correct tagging efficiency, is
the fraction of the classified events that are correct classified. Again
no distinction made between B and B so this is also a mean value.
Hereafter p will be refered to as purity for simplicity.

3. Apae o DELPHI refer to A = /e (2p — 1) as “proportional to the
statistical significance of a signal from oscillations”, where p and € are
those defined in points 1. and 2. (see appendix A.4). Because p and
e are functions of the cut, Q..:, on the output distributions so will A.
The maximum of this function, A,,4e, s an important quantity in B
mixing and hence used for comparison in this analysis.

Q

| : R
-1 0 --Shiftedmean +1

Figure 5.2: DELPHI jetcharge distribution (exaggerated shifted mean)

As figure 5.2 indicates the DELPHI jetcharge distribution has a shifted
mean, |Qhfted () 015| = 0. This is due to differences in the detector response
for negatively and positively charged particles. A zero bin, labelled nzero,
corresponding to this shift is calculated.

Because all the tests are done on simulated data the correct b flavor is
known ahead, then it is possible to plot the true distribution from the net for
a given flavor. A routine named abscut.f was written. It takes the B — B
information as input and returns the € and p information, in the form of two
histograms.

abscut.f is implemented to be very robust: It checks that the two input
histograms exists and that they have an equal number of bins (which is
required to make sense when calculating € and p). The input histograms are
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allowed to have any number of bins up to 1000, abscut .f will compute how
many bins the output histograms should have based on the input histograms.
From the ¢ and p information it also computes A,,,, and gives the value of
p for e=1. See program listing, appendix C.3.

5.3.2 Preparing the B and B information

B mesons contain a b quark, with charge +%, thus jetcharge from a B should
be positive on the average. For B mesons the jetcharge distribution should
have a negative mean value due to the —: charge of the b quark. The
netcharge is required to follow the same rules, so when a B pattern i1s fed
into the network the output should be positive and for B negative.

Similar to the jetcharge distributions it is possible to construct netcharge
distributions from a neural network output. Because the B-flavor of the
pattern that caused a specific output is known it is possible to plot the B
and B distributions of the netcharge.

The first thing abscut.f does is to integrate the B and B distributions,
from -1 to +1. The integrated B information is stored in an array named
bsum and the integrated B in bbsum. For compactness reasons these two
arrays will be denoted ¥, and 3, respectively. Then for a given entry in X,
one will find the integrated value of the B distribution from -1 up to a limit
on the netcharge corresponding to that entry. Similar for X,.

To estimate the error in each entry of the Y, and Y, arrays Binomial
statistics was used. This is shown in more detail in appendix A.1. Based on

Eq (A.3) the errors should be:

ou(8) = /2 =ru(0)

(5.1)

Where N, is the total and n,(6) the integrated number of B patterns up to
bin number § in the B distribution. Similar for oy. Thus o3(6) is the error
in ¥,(6) and ow(y) the error in Ty (7).

5.3.3 Right and wrong tagging

To compute the tagging purity and efficiency it is necessary to know how
many B and B patterns that were classified right and wrong. From figure 5.3
the number of right tags can be found by counting the number of B entries
above +Q.y; and the number of B below —Q..:, since the output should be
positive for a B input and negative for B. The number of wrong tags are

then the number of B below —Q.; and B above +Q...
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Figure 5.3: Illustration of the B and B distributions. The shifted mean is
identified by the nzero bin of the two distributions.

To find the number of right and wrong tags abscut.f calculates how
many bins away from nzero the cuts are, for example & bins. Then —Q .
is identified as bin number £, = nzero — k and +Q.s as Bn; = nzero + k.
The information corresponding to the cut values are then given by the two
integrated arrays using [3;, and Oy; as indexes.

Because the integration is from -1 to +1 the number of patterns below
—Qcut can be found directly from the ¥, and ¥, arrays with G, as index. The
number of patterns classified above the +Q,; is the difference between the
total number of patterns and the number in the cut bin. The total number
is simply read from the last position, €2, in both arrays.

e Number of wrong classified B patterns: X3(5i,)
e Number of right classified B patterns: Yos(Bio)
o Number of wrong classified B patterns: Yon(Q) — Tep(Bri — 1)
e Number of right classified B patterns: %3(2) — Zp(Bni — 1)
The digit, 1, must be included to count the cut bin on the positive side

(+Qcut) because the algorithm integrates from the negative side.

5.3.4 The mean tagging efficiency ¢

The mean tagging efficiency €(q), where ¢ = Qcu, is defined as the ratio
of the number of patterns that are classified, for a given cut, and the total
number of patterns. In other words how large fraction of the patterns that
has been classified for a given cut on the netcharge (or jetcharge). By using
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the four classification expressions from section 5.3.3 one can write down an
expression for the efficiency:

e(g) = 26(Bro) + Zs(Bio) + [E6(Q) — Xp(Bri — 1)] + [Z6s(Q) — Zip(Brs — 1))
9= S(2) + Tep(02)

U
Y6(Bi0) + Zob(Bio) + N — Tp(Bri — 1) — Zpp(Bri — 1)

(Quut) = = (52)

Where N = %,(2) 4+ Zp(Q) is the total number of patterns.

€(q) is a function of ¥, and X, which errors are known from Eq (5.1).
By computing the total differential one can find an expression for the error
in €. In appendix A.2 this is shown in detail, using Eq (A.10) the error, o,
in the efficiency is

0(Qeut) = %\/05(510)2 + 0(B10)” + 0u(Brs — 1)° + ow(Bri —1)°  (5.3)

5.3.5 The mean tagging purity p

The mean tagging purity, p(q), is defined as the ratio between the number of
correct classified patterns and all classified patterns, for a given cut ¢ = Qcys.
Another common name for this quantity is correct tag efficiency.

From section 5.3.3 the number of wrong classified patterns:

Yo (@) = Z(Bio) + [Z66(2) — Zep(Bri — 1)] (5.4)
The number of correct classified patterns:
5ri(q) = Bep(Bo) + [E(Q2) — Zp(Bri — 1)] (5.5)
The number of classified patterns is the sum of ¥,;(¢) and X, (g), thus:
Eri q
pla) = gD (55)

Yri(q) + Zur(q)
(i
(Q ) _ Ebb(/Blo) + [Eb(ﬂ) — Eb(ﬂhi _ 1)]
oL cut Y6(Bio) + Zob(Bio) + N — Tep(Bri — 1) — p(Bri — 1)

In the last equation N is used instead of ¥p(Q) + Xps(2), which is the total
number of patterns (both tagged and untagged). To estimate the error,

0p(Qeut), iIn p(Qcut) one progress just like for the e (section 5.3.4). Refer to
appendix A.3 for details, Eq (A.15) gives:

VEw? - [06(B2)” + (8] + B - [05(B1) + ow(B)’]
UP(cht) - N2

The following abbreviations are used: 81 = G, and [ = Bu; — 1.

(5.7)

(5.8)
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5.4 Final comments before the analysis

In experimental physics one o usually means one standard deviation away
from the statistical mean value. With a Gaussian distribution the standard
deviation is defined as the square root of the variance, thus one would expect
68.26% of the events to be within one ¢ from the mean value, 95.44% to be
within two o of the mean value etc.

In this thesis Binomial statistics were used, the error for a given quantity
was taken to be the square root of the expected variance. If one use the
o-notation from Gaussian statistics the errors listed in this thesis amounts
to one ¢. Thus if a measurement is N o lower than another measurement the
difference is A times as large as the error listed for the measurement.

This chapter has given a brief description of how the simulated data were
extracted and prepared, a few important quantities have also been defined.

e From Eq (5.1) the error for a given bin of ¥, and X4, the integrated
B and B distributions, can be computed

e Eqgs (5.2) and (5.3) give the mean tagging efficiency and its error
e Eqgs (5.7) and (5.8) give the mean tagging purity and its error

All these equations are implemented in abscut.f, a semi-robust Fortran 77
subroutine, that should be called from PAW. It takes the B — B distributions

as input and returns purity and efficiency information.
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Chapter 6

The analysis, part 1

The main approach of the analysis is displayed in this chapter, including input
variable definitions and test results from the various net configurations.

6.1 Where to start?

By some strange analogy with the training of a neural network the analysis
started out by simple trial and error, there was a lot of unknown territory
to cover. So instead of following a straight line to a goal the analysis was
subject to many changes, during the course of time, to sample as much of
the parameter space as possible in search for the optimal solution.
Assuming that Jetnet is a robust package most of its default values were
used throughout this analysis, the main emphasis was put on the learning
parameters (section B.1) and the normalization of the input variables.

6.2 Defining the input variables

Early on it was clear that a cut had to be made on the number of tracks,
from each hemisphere, used as input to the net. The reason is that the
number of input neurons equals the number of tracks times the number of
input variables associated with each track.

Most of the information from the B production is carried by a few hard
tracks, i.e. those with highest momentum. By sorting all the tracks in a
hemisphere according to their momenta one can define np,,.q as a certain
number of hard tracks and sum up the remaining in one pseudotrack. Then
it is possible to use a constant number of inputs to the net, no matter how
many tracks a hemisphere contains. During the analysis npq,.q could be set
to different values, thus varying the number of input tracks to the nets.

Let n;,, be the number of extracted input variables from each track, then
the total number of inputs, from each hemisphere, to the net is given by
Niot=(Nhard + 1) X Njnp, where “+1” comes from the combined pseudotrack.
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The number of input neurons in the net must equal N, so it is important
to limit the number of input variables, n;,,, and hard tracks, npq.q, in order
to reduce the size of the net and thus training time and RAM-usage.

6.2.1 Charge q

Together with the momentum the charge of a track is used, in the standard
jetcharge method, to reconstruct the production charge of the jet with which
the track is associated. Hence the charge and momentum of a track were
obvious input variables to the neural nets.

A great advantage with charge is that it is either -1 or +1, neutrals are not
used, so for the hard tracks it was used directly as input. For the pseudotrack
a jetcharge calculation was done, using the standard formula:

Opory — =3 (P €5)°
¥ (P &))"
In which the index j runs over all the non-hard tracks, g; is the charge and

p; the momentum of track j. €; is the sphericity axis of the event which the
hemisphere is part of. DELPHI use x = 0.6 in their latest B? paper [20].

(6.1)

6.2.2 Momentum p

Unlike charge the momentum can vary over a large range, from almost zero
to multiple GeV. In fact, due to the finite detector resolution, resulting in
a poorly reconstructed track, the momentum can be of the order 100 GeV.
This is of course an unphysical momentum value and most of the tracks with
such values were removed by the quality cuts, listed in section 5.1, during
extraction from the DST’s. But a few survived, so during training and testing
all remaining tracks, with momentum above the beam energy, were scaled to
10 GeV.

For a standard hard track, as well as those with a rescaled momentum
value, the momentum was normalized to the LEP1 beam energy, 45.6 GeV,
before used as input. For the pseudotrack a combined momentum variable,
inspired by the momentum term in the jetcharge, was defined as

Pooge =3 (95 - €)"° (6.2)

J

Where the sum runs over all the non-hard tracks. This variable was also
normalized to the beam energy before used as input to the neural nets.

6.2.3 Transverse momentum p;

The transverse momentum of a track in a B event is an important quantity,
which has been explored for years (see section 3.2). It gives rise to the
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large impact parameters which form the basis for the B-tagging mentioned
in section 6.2.4. To extend the B-patterns, used as input, the p; information
was added to see if that made it easier for the neural nets to form a good
decision surface.

The p; is defined as the transverse component of the momentum with
respect to the sphericity axis of the event, and it is normalized to the beam
energy. For the pseudotrack this variable was defined:

Pt,soft = Z (I_’;,J)n (63)

J

Like for P,,s: the sum is over all non-hard tracks and normalized to the beam
energy.

6.2.4 B-tag probability

The final variable used in this analysis explores the track probability, Pi.qck,
from the B-tagging described in section 3.2. It should be small for tracks
in a B event. Like any other probability this variable is normalized, but a
logarithmic transformation was still used to explore the region close to 0:

1Og(Ptrack)

log, = ——""2
6t log(Prmin)

(6.4)

P,.:»=1071% was the minimum allowed value for the track probability, if P;,4c
was smaller it was set to P,;,. The reason for this was partly to make
log, normalized, and partly because Pior < 107! is essentially zero (it is
nonsense to operate with even lower track probabilities). With this definition
log, € [0,1], close to 1 for tracks that are likely to come from a B.

For the pseudotrack a variable, inspired by the definition of the Ntrack
probability in section 3.2, was defined: [] = [[;(P;) where P; is the B-
tag probability of track j. Instead of using this product directly the same
logarithmic transformation, as for the hard tracks, was used and the result
was averaged over the number of soft tracks:

log(IT;(P5))  _ ¥;log(F)
Nsoft ° log(szn) Nsoft ° log(szn)

logsoft = (65)

Where n,,¢: is the number of soft, or non-hard, tracks and P,,;, has the same
value as for the hard tracks.

6.3 Training an Artificial Neural Network

In section 6.2 four potential input variables were outlined. In section 5.3 a
description of how to treat the output from the neural nets, for comparison
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measurements, was given. The logical next step would be to make an estimate
of how many hidden layers, hidden neurons and output neurons the problem
of separating B and B requires. Unfortunately it is not possible to calculate
those numbers a priori, leaving trial and error as the only alternative.

However the JetNet 3.0 write-up, and several papers on the topic, clearly
states that for most of the problems in HEP one hidden layer should be
sufficient to encode a solution. This was used to narrow down the number of
possible combinations of net structures: All nets used in this analysis had a
structure with one hidden layer.

In a DELPHI analysis using an ANN to separate quark flavors [24] they
had several distinct classes, one for each quark flavor. For each class they
assigned an output neuron which should “fire” only if a pattern from that
class was recognized. In the current analysis the aim was to classify the sign
of the charge of the b quark in the B meson. One can not really speak of
widely separate classes, thus only one output neuron was used. This output
neuron was required to give +1 for a B and -1 for a B pattern, corresponding
to a b and a b quark. Then the sign of the output from the net should match
the sign of the b quark inside the meson and thus justify the name netcharge
for the net-output, using the analogy with jetcharge.

It is important, at this point, to stress that the training and testing of
the neural networks were done with two different samples, one training and
one testing sample. It would be pointless to test a net with data it recognizes
from the training. This was implemented in the training and testing routines
at an early stage, so all test results in this analysis are really based on the
generalization performance of the different nets.

Throughout this analysis one training cycle will mean one loop through
the training sample. In JetNet the weights are updated every 10th pattern
and using the 66000 patterns in the training sample, that survived the cutsin
section 5.2, it turns out that 1000 training cycles equals 6.6 million updates
of the weights!

6.4 Using the p and ¢ information

To be able to test how well the nets behave, that the training works and the
program is free of serious bugs, it is important to have means of comparing
the results. By starting very simple, using only p and ¢ information as input,
the idea was to compare the output with that coming from jetcharge by using
the formalism outlined in section 5.3: For a given cut on the netcharge the
efficiency and purity of classifying the input-patterns, based on the testing
sample, can be calculated and compared with what the jetcharge gives for
the same cuts when it has been computed for the same data sample.

Figure 6.1 shows the total jetcharge distribution and the corresponding
B and B distributions from the jetcharge. The hadronic cuts of section 5.1
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Figure 6.1: Distributions based on Jetcharge

were imposed on the test sample before the DELPHI definition of jetcharge,
Eq (6.1), was applied to the remaining tracks in each hemisphere.

After extracting the B and B distributions the abscut.f routine was used
to determine the mean tagging purity and efficiency as functions of the cuts
on these distributions. The results obtained were p(e=1) = 0.619, that A4,
occurs for @.,;=0.13, with an error of 0.01 due to finite bin width, and that
p(Qcut=0.13) = 0.660 and €(Q.,;=0.13) = 0.644. This is in fair agreement
with the DELPHI paper [20] which list p(e=1) = 0.635, that A4, occured
for Qcut=0.10 and that p(Q.;=0.10) = 0.688 and €(Q.,;=0.10) = 0.675. The
small differences are probably due to DELPHI using a few more hadronic
selections than those used here, like cuts on the reconstructed energy.

As the test sample was found to give good results the next step was to
train a few nets using p and ¢ information. The choice fell on a structure with
10 input-tracks, amounting to 9 hard and one pseudotrack. This required a
total of 20 input neurons, 10 neurons were assigned to the hidden layer. This
20-10-1 net was trained for 1000 cycles and 15000 cycles.
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Figure 6.2: The average training error development during the 1000 cycles
training of the 20-10-1 net.

Figure 6.2 shows the development of the average training error per epoch!
for the first 1000 cycles of training, after that the average error changed very
little. In section 6.3 the number of weight updates for 1000 training cycles
was calculated to be 6.6 million, which should scale up to 99 million after
15000 cycles. Comparing with the DELPHI analysis [24], based on a 19-25-3
net, one finds that their figures are a factor 20 and 300 lower. But they do
underline that previous studies have shown that nets trained with kinematical
variables “takes considerably longer to train” than with eventshape variables.
Thus one should expect to need many weight updates.

Figure 6.4 shows the purity and efficiency histograms for the two nets
compared with the jetcharge. The nets are doing surprisingly well, though
jetcharge i1s giving a better efficiency for low cut values. From figure 6.5 it is
clear that in the purity-efficiency region where A,,,, is reached the jetcharge
is superior to the neural nets. Results are summarized in tables 6.1 and 6.4.

'In JetNet the default value of one epoch is 1000 training patterns, so there are 66 or
69 epochs in one training cycle, depending on whether the hadronic cuts are used or not.

41



Method H Amam ‘ cht ‘ p(ﬁ = ]_) ‘
1000 cycles 20-10-1 NN || 0.2399+0.0029 | 0.24 | 0.6098+0.0017
15000 cycles 20-10-1 NN || 0.24354+0.0033 | 0.17 | 0.6103+0.0017

Table 6.1: Results for the nets with ¢ and p input variables

6.5 Adding p; information

After a promising start, using p and g information as input, the next step
was to add p;. To limit the number of weights due to a new variable, p, as
defined in section 6.2.3, the number of hard tracks used as input was reduced.

In this thesis only one configuration with p, ¢ and p; information was
tested, simply due to time limitations: It had 21 input neurons, matching
6 input tracks and one combined pseudotrack, from each hemisphere. The
number of hidden neurons was increased to 25 to give the net more freedom
to encode a possible solution of the B — B separation problem. This net was
trained in two sessions, one for 1000 and another for 2000 cycles.

The purity versus efliciency plots in figure 6.6 show that the net, based
only on p and ¢ information, is just as good as the nets trained with the
additional p; information. In fact it is even better than the 21-25-1 net that
trained only 1000 cycles, the reason for this may be that the 21-25-1 net have
more degrees of freedom than the 20-10-1 and thus require more training to
find a good weight configuration.

In table 6.2 the A,,,, values are listed, with corresponding cut values
on the absolute netcharge. Comparison with table 6.1 shows that the 2000
cycles trained 21-25-1 net gives almost the same result as the 15000 cycles
trained 20-10-1 net.

‘ Method H Amam ‘ cht ‘ p(ﬁ = ]_) ‘
1000 cycles 21-25-1 NN || 0.2362+0.0029 | 0.25 | 0.6039+0.0017
2000 cycles 21-25-1 NN || 0.244140.0032 | 0.17 | 0.612440.0017

Table 6.2: Results for nets with p; information added

6.6 Adding beauty to the analysis

The last variable used as net-input in this analysis was the track probability
from the B-tagging package, as described in section 6.2.4. This brought the
total number of input variables up to four, thus increasing the size of the
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nets even more. To organize all the tests made with this number of variables
three structures can be singled out:

1. 28-35-1 structure with 6 hard tracks and one pseudotrack as input
2. 20-30-1 structure with 4 hard tracks and one pseudotrack as input

3. 32-45-1 structure with 7 hard tracks and one pseudotrack as input

Several versions of the 28-35-1 case were trained and tested. The hadronic
cuts, below, refer to the selections listed in Sec 5.1. For simplicity four cases
are defined. The update rules for o and 7, the JetNet training parameters
defined in section B.1, and the hadronic cuts were used unless something else
is stated:

A: 28-35-1 net trained 2000 cycles without hadronic cuts imposed

B: 28-35-1 net trained 2000 cycles with constant a and 75

C: 28-35-1 net trained 2000 cycles

D: 28-35-1 net trained 4000 cycles
By comparing A and C one should be able to see what kind of effects the
hadronic cuts have on the nets, while case B versus C should reveal how the
updating of the JetNet parameters a and 7 affects the performance of the
nets. Finally, the C and D cases may point out if the nets were overtrained.

Upon testing the nets and comparing cases A, B and C with each other
(figure 6.7) hardly any differences were found. The equal results in case A
and C indicates that the hadronic cuts did not help the nets. A reason for
this may be that the nets sort out most tracks, that would have been removed
by the hadronic cuts, as noise. The equality between case B and C is more
disturbing, at first glance this indicates that the updating rule for @ and 7§
have no effect on the net performance. The JetNet package is either so robust
that the nets learn no matter what one do about the parameters, or else the
given problem is so simple that the minimum of x? is found without tuning
the learning parameters.

When testing the neural nets in case C and D only minor differences were
observed, most clearly in the efficiency plots shown in figure 6.8. A,,,, in
case D turned out to be almost 1o better than case C, see table 6.3, so the
28-35-1 net was certainly not overtrained.

After the 28-35-1 cases a structure with a higher ratio of hidden to input
neurons was tested. For the 28-35-1 net this ratio was % = 1.25, a new ratio
of 1.5 was tried instead. To reduce the size of the net, and thus the training
time, the number of input neurons were reduced by using fewer input tracks
from each hemisphere. The choice fell on a 20-30-1 structure. Again the
hadronic cuts and updates of a and n were used, unless something else is

stated.
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Figure 6.3: Netcharge distribution from a 32-45-1 net based on g, p, p; and
B-tag information. Should be compared with the Jetcharge plots in figure 6.1

Three cases of the 20-30-1 structure were trained and tested.

&: 20-30-1 net trained 1000 cycles

v: 20-30-1 net trained 2000 cycles with constant o and 5

(: 20-30-1 net trained 2000 cycles
In figure 6.10 the purity versus efficiency plots for these three cases are shown.
It seems clear that case ¢ was trained too short, it is significantly below the
two others. But unlike the results for the 28-35-1 nets there was a positive
effect from updating a and 7, though not by much, as case ( is only slightly
better than case v. Table 6.3 shows that case ( gives the best value for
Az Compared to the results from the 28-35-1 structure the 20-30-1 nets
gave significantly better results, a 1.50 higher A,,,, value in the best case.

After the good results with the small 20-30-1 structure it was decided to
train a very large structure to see if more weights would make it easier for the
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‘ Method H Anas ‘ Qcut ‘ ple=1) ‘
case A || 0.243740.0030 | 0.20 | 0.610640.0017
case B 0.247240.0032 | 0.17 | 0.6124+0.0017
case C 0.244740.0029 | 0.22 | 0.6108+0.0017
case D 0.24694-0.0029 | 0.23 | 0.6124+0.0017
case ¢ 0.239040.0030 | 0.22 | 0.6065+£0.0017
case v 0.249840.0032 | 0.17 | 0.6143+0.0017
case ( 0.251640.0032 | 0.17 | 0.6145+0.0017
case 8 0.245140.0030 | 0.20 | 0.6100£0.0017

Table 6.3: Results for 4 variable input nets

net to solve the B — B separation problem. A 32-45-1 structure was chosen,
containing 1485 weights which is a factor 3 more than the promising 20-30-1
structure. The 32-45-1 net was trained 3000 cycles with the hadronic cuts
on the data and updates of o and 5 enabled (case 6). In figure 6.11 the net
is compared to the best 20-30-1 case, the 20-30-1 net is clearly better. By
increasing the number of training cycles the 32-45-1 net may improve, but
the cost of a much longer training time is probably higher than the gain from
an improved result: Table 6.3 shows that A, for the best 20-30-1 net (case
() is more than 20 better.

Instead of trying out further structures a last attempt was made on the
best case, the 20-30-1 net. It was trained for 3000 and 4000 cycles with the
hadronic cuts and « and 7 updates enabled. The 3000 cycles version gave
better results than case (, figure 6.12 shows how this net performs compared
to the jetcharge and table 6.4 lists the results. The 4000 cycles version had
a worse generalization performance than the 3000 cycles, it overtrained.

Jetcharge algorithm || 0.2567+0.0033 | 0.13 | 0.6185+0.0017
3000 cycles 20-30-1 || 0.253440.0031 | 0.19 | 0.6154+0.0017

Table 6.4: Results for the best 4 variable input net and the jetcharge

It is clear that the 20-30-1 structure is very close to the performance
of the jetcharge in separating B and B, but a nagging doubt was growing
stronger: Is the jetcharge an ultimate limat that the nets converge towards?
This question was not answered before the very late stages of this analysis,
and will be addressed in chapter 7.
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6.7 Plots from The analysis, part 1
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Figure 6.4: Comparing the tagging purity and efficiency for two nets, trained
with p and ¢ information, and the standard jetcharge. The purities and
efficiencies are plotted as functions of cuts on the net-output (or jetcharge).
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cycles, but in the case of v with constant JetNet parameters a and 7.
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Chapter 7

The analysis, part 2

In the previous chapter four basic input variables were explored, but no
neural network configuration with a better performance than the jetcharge
method was found. In this second part of the analysis a new approach is
taken: Redefine the input variables!.

7.1 Defining the new input variables

In chapter 6 the input variables p, p;, ¢ and log, were used separately, the
new approach is to weight p, p; and log, with ¢. Because ¢ € {—1,1} the new
variables will be € [—1,1], as long as they have been normalized. A natural
first approach was to try ¢-p, ¢-p: and ¢-log, as input variables, where p, p;
and log, are defined and normalized as in section 6.2.

Like in chapter 6 only a certain number of the hardest tracks were used
directly to generate input variables from each hemisphere. If more tracks
remained, after the np,.q4 tracks had been extracted, the information were
combined into a pseudotrack. For the hard tracks the new variables could be
used directly as input to the nets. For the pseudotrack a simple extension
was tried: 30;(q; - pi), 25(qi - pr,i) and 3;(gi - log, ;) where the three sums run
over the soft tracks.

These new definitions have reduced the number of input variables from
each track, from 4 to 3, the number of input neurons will be reduced by the
same factor. Hence the new variables have the positive side effect that they
lower the number of connections in the net, which again should lower the
training time.

In this part of the analysis the standard updates of # and «, as defined
by Egs (B.1) and (B.2), and the hadronic selection, as listed in section 5.1,
were used permanently. Only a few net-structures were explored, due to the
time constraints. Hence it is important to emphasize that the results in this
chapter most likely can be optimized further.

!Suggested by Ole Rghne, at CERN, in June 1996
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7.2 Never change a winning formula

From chapter 6 it is clear that the 20-30-1 structure, with only 4 hard tracks
and one combined pseudotrack, from each hemisphere, is a good choice. Thus
instead of starting from scratch, trying out new structures, that experience
was used. The first attempt was made with a 15-30-1 structure, taking
the same number of input tracks as the 20-30-1 net had done. This net was
trained 2000 cycles, and the test showed a significant improvement compared
to the nets trained with the old input variables. This is easily verified from
figure 7.2, which show that the new net gives results up to 20 better than
the best net with the old input variables. The good results are quantified in
table 7.1, A,.qc 1s almost 20 better than that of the best 20-30-1 net listed
in table 6.4.

T — A S——— A—

0 20 40 60 80 100
Nr. of Cycles

Figure 7.1: The average training error development during the 3000 cycles
training of the 15-23-1 net.

With this good start it was clear that the new variables certainly made
a huge difference. Two structures were briefly trained and tested with the
three new input variables: 15-23-1 and 24-40-1.
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The 15-23-1 structure was chosen because it has roughly the same ratio
of hidden to input neurons as the good 20-30-1 net of the previous chapter.
This structure was trained 1000, 2000 and 3000 cycles. As figure 7.1 shows
the average training error decreased steadily the first 2000 cycles but then
levelled out. Still the results did improve with the number of cycles, as can
be seen from table 7.1, but only slightly. The A,,,, value hardly changed at
all compared to the value for the 15-30-1 net.

In figures 7.3 and 7.4 the purity and efficiency plots based on the 3000
cycles trained net are compared to those from the standard jetcharge. The
neural net is better than the jetcharge, by 1-20, for a large range of cuts on
the output. This is even more visible in the p versus € plot in figure 7.5.
However in the interesting region for B-mixing, the A,,,, from the net is
only 1o higher than the jetcharge based value. Refer tables 6.4 and 7.1 for
comparison.

The 24-40-1 structure was chosen to see if the addition of three more
tracks, from each hemisphere, would make any difference. The 24 input
neurons would then correspond to 7 hard tracks and one pseudotrack. With
all the extra weights of the 24-40-1 structure, 1000 compared to the 552 of
the 15-23-1 net, it seemed likely that this net would require at least twice as
much training. 4000 and 6000 training cycles were used.

But as one can verify from table 7.1 this structure did not give as good
results as the 15-23-1 structure. Like in chapter 6, the best results were
obtained using only a few input tracks from each hemisphere. In addition
the 6000 cycles trained 24-40-1 structure did worse than the 4000 cycles
based version, caused by overtraining.

‘ Method H . ‘ Qeut ‘ ple=1) ‘
2000 cycles 15-30-1 || 0.259540.0032 | 0.17 | 0.616040.0017
1000 cycles 15-23-1 || 0.2596+0.0031 | 0.19 | 0.6156+0.0017
2000 cycles 15-23-1 || 0.259940.0031 | 0.18 | 0.617140.0017
3000 cycles 15-23-1 || 0.260440.0032 | 0.17 | 0.616840.0017
4000 cycles 24-40-1 || 0.259140.0031 | 0.20 | 0.616040.0017
6000 cycles 24-40-1 || 0.257740.0030 | 0.21 | 0.616140.0017

Table 7.1: Results based on the ¢-p, ¢-p; and ¢-log, input variables.
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7.3 Omitting the b-tag information

A final test was made by omitting the b-tag information to see what effect this
would have on the performance of the nets. A 14-23-1 structure was chosen
in order to be able to compare the results with those from the two structures
in section 7.2. Using the input variables ¢-p and g-p; three training sessions
with the 14-23-1 structure were launched; lasting 1000, 2000 and 3000 cycles.
When testing the nets their performance turned out to be significantly
worse than the nets with b-tag information. By comparing tables 7.1 and 7.2
it 1s clear that the nets without b-tag information give an A,,,, value about
20 lower than those with b-tag information. But the 14-23-1 structure still
performs better than the best net with the old input variables in chapter 6!

‘ Method H A ‘ Cut ‘ ple=1) ‘
1000 cycles 14-23-1 || 0.2549+£0.0030 | 0.21 | 0.614540.0017
2000 cycles 14-23-1 || 0.25484-0.0030 | 0.21 | 0.6149+0.0017
3000 cycles 14-23-1 || 0.25344-0.0030 | 0.21 | 0.6152+0.0017

Table 7.2: Results based on the ¢-p and g-p; input variables. No b-tag info.

An interesting thing one can read out of table 7.2 is that the 14-23-1 structure
reached its best weight configuration already after 1000 training cycles. From
that point and out the net started to specialize in remembering the training
sample, thus degrading the generalization performance.
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7.4 Plots from The analysis, part 2
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Figure 7.2: Purity versus efficiency plots for the best net with old input
variables, 20-30-1, and the first net based on new input variables: 15-30-1.
Both trained with the same number of input tracks from each hemisphere.
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Figure 7.3: The purity plot for the best net with the new input variables,
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Chapter 8

Conclusions

The aim of this analysis was to train and test neural networks to see if
they could perform the task of separating B and B patterns better than
the Jetcharge method mentioned in section 3.3. After deciding what kind of
neural net to use, the JetNet package of the feed-forward class, the analysis
can roughly be split into three questions:

1. How does the number of hard tracks, few versus many, used as input
to the net affect its performance?

2. Are the internal net-structure and parameters important when looking
for the optimal solution?

3. Which input variables are the nets most sensitive to, and can different
combinations of these affect the performance of the nets?

The three following sections will address these questions and try to answer
them, based on the experience from chapters 6 and 7. In the last section, of
this chapter, possible improvements to the given analysis will be discussed.

8.1 The number of hard tracks

How the number of hard tracks used as input, from each hemisphere, affected
the nets was first tested in section 6.6. From tables 6.3 and 6.4 it is clear
that the 20-30-1 net, with only 4 hard and one combined pseudotrack as
input, performs best. However, the 32-45-1 net was not fully tested so a
conclusive statement can not be drawn from those data. But with the new
input variables in section 7.2 things looks more definite. From table 7.1 it is
clear that the 15-23-1 net performs better than the 24-40-1 net, though the
differences are below one o.

Thus it is tempting to conclude that the number of hard tracks used as
input to a net should be limited to 4 or 5, which also has the positive effect of
reducing the training time and RAM-usage for the net. An explanation for
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this result may be that the B information is carried by the hardest tracks,
hence including many tracks will not help. An alternative explanation is
related to the software set up: The input array use npq.q tracks from each
hemisphere. If np,.4 1s close to the average charged track mulitplicity of B
hemispheres [25], (np) &~ 12, many entries in this array will be zero. Then
the net will be trained with many “zero-tracks” which may have the effect on
the net of pulling the B and B output distributions closer together. If this
effect is significant it is obvious that np,,.q must be set much smaller than
(ng), thus 4-6 seems reasonable.

8.2 The net-structure and parameters

With backup from the JetNet manual only one hidden layer was used, but one
can question if this really was sufficient. Too few hidden layers and neurons
would have given a poor generalization performance, the net would hardly
have been able to recognize the training sample. But the “one hidden layer”-
solution gave results better than the highly optimized Jetcharge method, so
there certainly were enough hidden neurons to encode a good discrimination
surface to separate the B and B patterns. In the other end of the spectrum
too many neurons would have given the net problems with making up its
mind. From the saturation measure, which can be read out from the JetNet
program and used to stop the training, the different layers of weights seemed
to have just enough freedom: The saturation usually went up by a factor 10
to 100 during training, this signals that the net is making up its mind. Thus
it looks as if one hidden layer was sufficient for the problem in this analysis.
Two hidden layers may have worked even better but only to the cost of a
much longer training time.

Once the different nets had been thoroughly trained, and then been fed
the testing sample, the differences in their A,,,, values seemed to depend
more on the input variables than the exact net-structure. Well-trained nets
using the old input variables, in chapter 6, gave A,,4, values within 1o of each
other. The same goes for well-trained nets using the new input variables, in
chapter 7. But the A,,,. value of the best net using the new input variables
was more than 20 better than the best net using the old input variables,
thus the number of hidden neurons and the exact structure seem to be less
important than the input variable definitions. But even though the number
of hidden neurons seem to be less important than other factors it looks as if
the best results can be obtained using more hidden than input neurons.

But what about the net-parameters? In this analysis only « and 7, the
JetNet learning parameters, were tested. This took place in chapter 6. First
for the 28-35-1 net, case B and C, and then for the 20-30-1 net, case v and (.

In all these cases the same number of training cycles were used, but B and
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v had constant values of a and 7, while C and { used the update rules from
section B.1. Then by comparing case B to C and case v to ( the effect from
the learning parameters should be visible. Table 6.3 shows that case B, with
constant a and 7, is better than case C, with the updates. For the 20-30-1
net it is the other way around: Case v, with constant a and %, performs
worse than case (, with the updates. These results seem to contradict each
other. But one should note that the results for case B and C are within 1o
of each other, and the same for case v to (, so this could just as well be
statistical fluctuations.

One explanation could have been that the 28-35-1 net has 1015 weights
against the 630 of the 20-30-1 net and thus require more training before a
good solution is reached. But even after 4000 cycles, with updates of « and 7,
labeled case D, the version with constant parameters throughout the training
performs better.

There are two possible conclusions to this section. Either the JetNet 3.0
package is so robust and well-written that the default values of the parameters
give fairly good results. Or else the problem of separating B and B, with
the given set of variables, is so simple that no fine-tuning of the learning
parameters are needed. Even though no single conclusion can be based on
these results the updates of a and n were used, per default, in chapter 7 since
the best net in chapter 6 was obtained with these updates enabled.

8.3 The input variables

In chapter 6 four input variables, g, p, p; and log,, were defined and used
to train nets in separating B and B patterns. In chapter 7 these variables
were recombined into ¢-p, ¢-p; and ¢-log, and then used as input to the nets.
Though no new information was added in chapter 7 the significantly better
results, more than 20, indicate that the nets are much more sensitive to these
variables than those defined in chapter 6.

The test done by removing the b-tag information from the new set of
input variables, in section 7.3, clearly indicates that the b-tag information is
important for the nets in order to separate the B and B patterns.

If one compares the variation in the performance of the nets, due to
changes in the input variable definitions and due to changes in the net-
structures or parameters, the conclusion must be that the input variables
are most important. Thus future improvements will most likely be done by
even more sensitive definitions of the input variables (and by adding new
information as well, of course). But to obtain optimal solutions one will also
have to adjust the net-structure and parameters.
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8.4 (General comments and reflections

There are many effects one must take into consideration when looking for
solid conclusions in this analysis, but there is in particular one conclusion
that the data strongly supports: The amount of required training.

In an older DELPHI analysis [24] it was noted that “a network based
on kinematical input variables could perform slightly better than a network
using eventshape variables, but takes considerably longer to train”. Indeed,
while the DELPHI analysis needed 300 thousand updates of the weights the
current analysis never used less than 1000 training cycles, or 6.6 million
weight updates. And it is evident from the tables in chapter 6 and 7 that
in most cases the neural nets would improve further even after the initial
6.6 million weight updates. Thus networks based on kinematical variables do
require more training.

One can take a closer look at how the learning took place by studying the
training error development. Strictly speaking plots of the average training
error, as a function of the number of training cycles, do not reveal how the
generalization performance develops. But they do show the activity of the
weight changes. Thus when the average training error levels out the weight
changes in the network is very small, which signals that the main part of the
learning process is over.

For the simple 20-10-1 net with only two input variables, refer figure 6.2,
most of the learning took place up to 400 cycles. After that point only minor
changes occured. For the more complex nets, with more weights and input
variables, it took more training for the nets to sort out the specific B and B
features. The 15-23-1 net, trained on the new input variables, learned most
of these features up 700-800 cycles. But as one can see from figure 7.1 the
net continued to learn even up to 2000 cycles, where the average training
error leveled out.

8.5 Final comments

Based on the results from chapters 6 and 7 it has been underlined that
the performance of the nets depend strongly on how the input variables are
defined, as compared to the dependency on the number of input tracks and
the specific net-structure and parameters. Thus a future development of
this analysis should search for additional information or more sensitive input
variable definitions.

e Additional information may include: Kaon, muon and lepton tags and
possibly eventshape variables
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e The nets were more sensitive to (¢g-p) than ¢ and p, but maybe even
better definitions of the input variables can be found: Like a jetcharge

inspired (g-p)", (g-p+)", (g-log,)" etc.

To find optimal solutions one would naturally have to continue with the
variation of the net-structures and number of input variables, and also look
closer on the use of the net-parameters. But this should come second to the
exploration of the input variables.

However, the JetNet 3.0 package seem to have fairly good default values,
so by using between 5 and 7 input tracks from each hemisphere and roughly
50% more hidden than input neurons one should get a good start. The best
net found in this analysis was a 15-23-1 structure trained and tested with
the input variable definitions from section 7.1. It was trained 3000 cycles
with hadronic cuts imposed on the data sample and updates on « and 7, as
defined in section B.1. The A,,q, value calculated from its B and B output
was lo higher than the A,,. value calculated from the jetcharge output,
though for a higher Q... But it has a purity at 100% efficiency about one o
lower than that from the jetcharge. Refer figure 7.5.

‘ Method H Amam ‘ cht ‘ p(ﬁ = ]_) ‘
jetcharge algorithm || 0.25674+0.0033 | 0.13 | 0.61854+0.0017
3000 cycles 15-23-1 || 0.260440.0032 | 0.17 | 0.6168+0.0017

Table 8.1: The best net compared with jetcharge

The main conclusion of this thesis is that the aim of finding a neural
network configuration that could perform the task of separating B and B
hemispheres better than the Jetcharge method has been achieved. But the
difference is still too small to be useful in a B? mixing analysis, thus further
improvements are needed.
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Appendix A

Statistics

¥, and Xy, denotes the integrated B and B distributions, from section 5.3.2.
The aim of this appendix is to outline the errors in ¥; and Y, and other
quantities, from chapter 5, that are based on the integrated distributions.

A.1 Errors in Y, and Xy

As figure A.1 shows the integration goes from -1 up to a certain limit on
the netcharge (or jetcharge). Let this limit correspond to bin ¢ in the given
distribution, then one can label the integrated value n(g). This would then
correspond to ¥p(g) in a B distribution or Xy(q) if it was a B distribution.
Let N be the total number of patterns in the given distribution.

= Integration

Figure A.1: Each distribution, both B and B, is integrated from -1 to +1.

The error in n(q) is defined as the square root of the variance given by
Binomial statistics, thus the first step is to find an expression for the variance

in n(q).
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From elementary statistics the following definition becomes useful [29]:

Let nq,ng,---,nt be a random sample from f,(n; p1,p2, - -,pr)-
Then an estimator p,=g(n,) is said to be unbiased for p, if the
expectation value (p,) = p, for g=1,-- -k

In this definition the subscripts correspond to the bin numbers, n, = n(q),
from the integrated distributions. Because n, follows Binomial statistics
its expectation value should be (n,)=N-p, where p, is the probability of
integrating an event up to bin ¢. From this statement and the above definition

one can easily show that p, = 5 is an unbiased estimator for p,:
. n 1
(Pg) = (57) = ~+(na) = P4 (A.1)
N N

A random distributed variable in Binomial statistics will have a variance
given by ¢* = N-p-(1 — p) where p is the probability of success and N the
number of trials. From this result an estimator for the variation in n, can be
given as:

oh=N- Pa - (1 —By) (A.2)
However, from Eq A.1 it is clear that 3¢ is a good estimator for p, so this
can be substituted into Eq A.2 giving:
2 Nq Nq
2 _nN.22. (1 _D"e
=Nttt

U
nq'[N - nq]
N

By using n(q) instead of n, and renaming o5 to o(g), just to emphasize its
dependence on the cut bin g, the error in the integrated distributions can be

o(q) = \/n(Q) 1V = nlg)] (A.3)

Eq (A.3) is valid for both B and B distributions as long as n(q) gives the
integrated number up to bin g and N the total number of the given B-flavor.

On =

written as

A.2 Error in the mean tagging efficiency ¢

In section 5.3.4 the mean tagging efficiency € was defined using the integrated
B — B information in 3 and 3. To calculate the error in €!, based on the
errors in X and Y, a useful theorem can be listed [30]:

!There is an alternative, and much quicker way of, of obtaining an error measure for
€. One simply forget about the B — B nature of the events and instead just counts the n

number of successes. Since n=e¢-N follow Binomial statistics é=% and oe=+/€-(1 —€)/N.
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Given a function R = R(z1, s, -, 2,), with a known error s; in
each of its x; variables, the error in R can be expressed as

= 6—R 2—I— + OR '2—|- + 8—R 2 (A.4)
SR = Oz 51 Oz; 5 Oz, Sn ’

R and sg can be identified as € and o, in the current problem. In section 5.3.4
¢ was written as a function of X4(Bi), Zes(Bi0), Ls(Bri—1) and Xps(Bri—1)-
These four variables will contribute to the total error and must correspond
to the ; variables in Eq (A.4).

To reduce the complexity of the calculations the error contributions due
to B and B terms are treated separately. In one part errors due to Ypp:

x*(q) = (% ' Ubb(ﬂlo))2 + (#(;Z)—l) - oun(Bri — 1))2 (A.5)

And in the other part errors due to X:

x(q) = (32%(20) : ab(ﬂzo))2 + (% - o5(Bni — 1))2 (A.6)

Eqgs (A.5) and (A.6) contain all the partial derivatives that can be calculated
from e, so in the spirit of Eq (A.4) one can set up the following formula for

the total error in e:
oe(q) = \/x*(q) + x*(9) (A7)

To calculate the partial derivatives of Eq (A.5) the expression for € given in
Eq (5.2), in section 5.3.4, was used. It gives

x?(q) = <% : Ubb(ﬂb)) + <_W1 - oup(Bri — 1)>
g
X(@) = 3 ol ) + o — 17 (43)

Similarly for Eq (A.6) one can obtain:

0 (i) + (i)

0

X'(9) = 73 - [04(810)” + o5(Bhi — 1)°] (A.9)
Using Eqs (A.8) and (A.9) in Eq (A.7) the error in €(q) can be written:

oe(q) = %\/05(510)2 + o05(B10)’ + 06(Bri — 1)> + ow(Bri —1)*  (A.10)
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A.3 Error in the mean tagging purity p

The mean tagging purity p(q) was defined in section 5.3.5. To calculate the
error in this quantity the same approach as for €(gq), in section A.2, was used.
The only difference is that every occurrence of € must be replaced by p. From
Eq (A.5) with e — p :

*(g) = (% . O'bb(/Blo))2 + (#&?_1) +ou(Bhi — 1))2
0

bb 89(‘1) 8Eri(Q) ’
x"(q) = (8Eri(q) ' O%u(Bio) ‘Ubb(ﬂlo))

o) Bwld) LY
+ (GEwr(Q) 8266(,8}”' — ]_) bb(/Bhl 1)) (A]_]_)

Next step is to use equations (5.4), (5.5) and (5.6) in Eq (A.11):

¥(g) = (Eﬁ\}EQ) 1. abb(ﬂzo)) i (_EA};@ (1) 0B — 1))
g
K@) = 37 ([Bur(0) - oGl + [Sila) - omlBri = D) (A12)

Where N = ¥,;(q) + Xur(g) is the number of classified patterns. With Eq
(A.12) the B part is taken care of. The error contribution from the B part
can be calculated from Eq (A.6), with e — p :

Bla) = ( 9p(q) ) ab(ﬂlo))Z + (# - oy(Bri — 1))2

0%4(Bi0) (Bri — 1)
)
(9)  9Zur(q) ’
(8 (0) 954(Bun) “”(5"’)) *
) 9%,:(q)

q o 2
(8zm<q> BTG — 1) TP 1>) (A.13)

Using equations (5.5), (5.4) and (5.6) in Eq (A.13):

x'(q) = (_2]]\72(‘1) 1- ab(ﬂzO))2 + (E?\,}gq) (—=1) - o(Bri — 1))2
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¥
K@) = w7 (5@ Bl + [Burla) - on(Bi ~ D) (A14)

Where N = %,:(¢) + Yur(q) is the number of classified patterns. The last
step is to modify Eq (A.7) by substituting p for ¢ and then inserting the
information from Eqs (A.12) and (A.14):

a,(9) = \/x%(q) + x(q)
|}

\/Ewﬂ [ou(B2)” + ows(Br)’] + Tni” - [00(B1)” + ows(B2)’]
N2

Where ¢ was omitted, for compactness reasons, 31 < B, and B, < Bn; — 1.

(A.15)

O, =
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A.4 Outlining /e-(2p — 1)

In the latest DELPHI paper on B? mixing [20] the authors refer to the
quantity /e - (2p — 1) as “proportional to the statistical significance of a
signal from oscillations”.

To arrive at this quantity one can start by looking at the signal, which is
limited by statistics in two ways: By how large a fraction of the events that
have been classified, i.e. the efficiency, and by how many of the events that
have been correctly classified, i.e. the purity.

Let € be the efficiency, p the purity and g the impurity. The impurity comes
from events wrongly tagged as signal events, thus p = 1 — p. To find the
“true” signal from oscillations those events wrongly tagged as signal events
must be subtracted from the tagged events:

s=ep—ep=c(p—p)=¢€-(2p—1) (A.16)

To get the statistical significance of a signal from oscillation, which is the aim
of this section, the background must be included. The significance is usually
defined as signal divided by the square root of the background, A = s/\/b, but
in a B-mixing analysis the signal will also be part of the background. Instead
one can use the conservative modification that A = s/v/s + b.

For a given analysis the signal and the background must add up to the
efficiency, and in combination with Eq (A.16) one gets:

stb=e=>b=c—s=¢-(1-2p+1)=2¢-(1—p) (A.17)

Using the expressions for s and b, from Eqs (A.16) and (A.17):

B s B e-(2p—1) _e-(2p—1)_ - B
A_\/3‘|'b_\/e-(2p—1)—|—26-(1—p)_ Ve Vet

This is the same quantity that DELPHI lists in their paper.
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Appendix B

JetNet 3.0

Jetnet 3.0 [22] is a versatile Artificial Neural Network Package written in
Fortran 77. With a total of 72 switches available one have much freedom in
composing a neural network and training it.

B.1 Specific choices

Because the output from the net should be either negative or positive an
activation function with that feature was needed: tanh was chosen.

According to the JetNet manual most of the problems in High Energy
Physics seem to have very simple discrimination surfaces so that one hidden
layer should be enough to encode a solution. Thus the “one hidden layer”
structure was used throughout the analysis.

In section 4.5.1 the JetNet learning parameters, a and 7, were mentioned.
They are important in the process of finding a minimum value of x?, and the
following update rules were adopted from an earlier DELPHI analysis[24]:

Ny = Ng—1 X (nmin) (B.1)

Ne—1

Q= a1 X (O‘W) (B.2)

Qg1

Range of the parameters: 7 € [0.0001,0.05] and « € [0.4,0.9]. The constants
have values k,=0.05 and k,=0.14 taken from the DELPHI analysis as well.

a and 7 are updated each epoch, which per JetNet default is after each
1000 patterns. If the training error is smaller than in the previous epoch the
parameters are updated according to Eqs (B.1) and (B.2). But if the error
increased 7 was increased by 20% (but was required to be below 0.01), and
a lowered by 20% (but was required to be above 0.04).
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B.2 CPU and RAM demanding training

Training an ANN is not a small task, it is usually both very CPU and RAM
demanding. Typical nets in this analysis required between 20 Mb and 50
Mb RAM, mainly due to the large input array. The time spent on training
the nets were usually of the order 10,000 to 20,000 CPU-seconds on a 91
Mb RAM, 266 MHz AlphaStation. But on smaller machines the training
sessions more often had to compete with other user processes, thus swapping
occured more frequently slowing down the training. In addition a lower clock
frequency will easily double or triple the training time.

Though the above figures will vary from machine to machine, depending
on the accessible RAM, a general statement like “training an ANN based on
the JetNet 3.0 package is very time consuming” should be underlined. A
wrong statement in a piece of code and a days work may be useless.
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Appendix C

Program listing

This appendix describes the main routines of the analysis and in a few cases
give excerpts of important code. However, the standard JetNet 3.0 code [22],
the Skelana structure [27] and Patchy technology [31] can be found elsewhere
and will be omitted here.

C.1 General source code

To extract information from the DST’s (identified by a PDLINPUT file) Patchy
technology, with its CAR and CRA files, was used in a combination with
Skelana. This was implemented in extract.car which used the quality cuts
from section 5.1 during the extraction, and afterwards it stored the results
as column-wise Ntuples in two hbook files: netch.hbo (training sample) and
tsample.hbo (test sample).

The training was performed by train.car which reads the training data
from netch.hbo. After the training session the final weight matrix of the
neural net was dumped to a file named jndat.dump.

The testing was performed by ntest.car which reads the test data from
tsample.hbo and the weights from jndat.dump. Test output were written
directly to the screen so it had to be piped into a suitable file (output.log)
during execution: UNIX-prompt> ntest> output.log

The jetcharge calculations were done with the help of a short CAR-file named
jetch.car in which the hadronic selections were applied.

Each time changes were made to the net-structure or input variables the
train.car and ntest.car files had to be modified. Thus after almost a year
of work on the thesis several dozen versions of these files existed, only the
latest versions can be found at: http://www.fys.uio.no/ bor/physrc/
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C.2 NTCOPY

Both ntest.car and train.car have a common Fortran subroutine called
NTCOPY which is invoked in the NTCOPY deck of the two CAR-files. This
subroutine copies the desired information from the Ntuples, forms the input
variables based on this information and put the results into suitable arrays
for the JetNet training or testing.

In this listing BCDE is a common block defined in extract.car, where the
entire Ntuple is declared and the hadronic selections are initialized according
to the values in section 5.2. pcut is the cut value of the momentum, crazyp
the value that momentum above beam energy is rescaled to and trkcut is
the minimum number of charged tracks per hemisphere. The datain and
dataout arrays are used to store the input variables and to feed the JetNet
input and output arrays.

SUBROUTINE NTCOPY(pos)
+CDE, BCDE.

INTEGER pos, qq

INTEGER nsoft, itrk

REAL pgsum, ptsum, gbtag

*
* Make cut on number of charged tracks and make sure
* that at least one of the tracks in the hemisphere
* has momentum above pcut
IF (ntrackl.GE.trkcut.AND.p1(1).GT.pcut) THEN
*
* Count the entry as accepted and normalize output value
pos = pos + 1
dataout (1, pos) = qqbarl / 5
*
* Reset input values
CALL vzero(datain(1l, 1, pos), nvar*alltr)
*
* Input values from hard tracks:
% e
*

DO itrk = 1, alltr-1
qq = ql(itrk)
* Use only tracks with momentum above cut value
IF (p1(itrk).GT.pcut) THEN
IF (p1(itrk).GT.beamen) THEN
datain(1l, itrk, pos) = qq*crazyp/beamen
ELSE
datain(1l, itrk, pos) = qq*pl(itrk)/beamen
ENDIF
* P_t information
datain(2, itrk, pos)
* Btag information
IF (btgl(itrk).LE.1.AND.btgl(itrk).GE.minb) THEN
datain(3, itrk, pos) = qq*log(btgl(itrk))/log(minb)
ELSEIF (btgl(itrk).LT.minb) THEN
datain(3, itrk, pos) = qq

qq*pt1(itrk)/beamen

ELSE
datain(3, itrk, pos) = 0.
print *,’===> btag above unity!! Value=’, btgl(itrk)
ENDIF
*
ELSE

datain(1l, itrk, pos)
datain(2, itrk, pos)
datain(3, itrk, pos)
ENDIF
ENDDO

inoan
[eReNe

Input values from soft tracks:

Use jetcharge to sum all soft tracks. ’soft tracks’
are defined as the remaining tracks when the (alltr-1)
number of hardest tracks have been used

* % ¥ * K * ¥
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nsoft = ntrackl - (alltr - 1)
IF (nsoft.GT.0) THEN
pgsum
ptsum
gbtag .
DO itrk alltr, ntrackl
qq = ql(itrk)
* Sum up tracks with momentum above pcut
IF (p1(itrk).GT.pcut) THEN
pgsum = pgsum + (qq*pl(itrk)/beamen)
ptsum = ptsum + (qq*pti(itrk)/beamen)
IF (btgl(itrk).LE.1.AND.btgl(itrk).GE.minb) THEN
gbtag = gbtag + (qq*log(btgl(itrk))/log(minb))
ELSEIF (btgl(itrk).LT.minb) THEN
gbtag = gbtag + qq

inoan
o oo

ELSE
print *,’==> btag above unity! Value=’, btgl(itrk)
ENDIF
ENDIF
ENDDO

*

* Store the information for the soft track
datain(1l, alltr, pos) = pgsum
datain(2, alltr, pos) = ptsum
datain(3, alltr, pos) = gbtag

ELSE
datain(1l, alltr, pos) = O.
datain(2, alltr, pos) = O.
datain(3, alltr, pos) = O.
ENDIF
*
ENDIF
*
RETURN

END

C.3 abscut.f

Fortran subroutine written to be called from PAW. It takes two histograms
as input, “id1” with the B distribution and “id2” with B. From those it
computes the purity and efficiency which it stores in histograms 88 and 89.
It also computes A,,q, and print some statistics when finished.

SUBROUTINE abscut4(idl,id2)
IMPLICIT NONE

ok ok koo ok ko ook ok ko ki kb ok ko ook ok ok sk ki sk ok ok ko ok o sk sk sk sk ok ok ko ok o ok sk sk ok sk ok ok ok ok
ok ok koo ok ko ook ok ko ki kb ok ko ook ok ok sk ki sk ok ok ko ok o sk sk sk sk ok ok ko ok o ok sk sk ok sk ok ok ok ok
Input: id1l and id2 are two filled histograms with
the same number of channels (or bins) and
with range from -1.0 to +1.0
id1l must contain the Bbar (OUT.LT.O0) and id2
the B (OUT.GT.0) information

*
*

Output: Histograms id3 and id4, displaying the integrated
B and Bbar distributions. Histograms id5 and idé,
displaying the tagging purity and mean tagging
efficienciy as functions of the cuts on the
"netcharge". Thus pur(Q) is the purity obtained when
cutting on netcharge at -Q and +Q removing the
events inbetween.

Notes: - The Delphi jetcharge is shifted, so this method
incorporates a Qshift. But currently the shift is
only 0.015, or of the order 1 bin!

LR B B B B R B B R

Created: March 7 1996
Modified: June 17 1996 *
kR R K KKK oK K o K KoK oK oK o K KKK oK K K K KoK oK oK K K KoK K o K K Kok ok ok o o K Kok ok ko o kK
kR R K KKK oK K o K KoK oK oK o K KKK oK K K K KoK oK oK K K KoK K o K K Kok ok ok o o K Kok ok ko o kK
*
*
*

* Ok ¥ ¥ F F K H K FOF K K O K OH K F ¥
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KK oK o K KK K K KK S K SRR KK o KoK o oK oK K K o K K o K o o oK oK oK Ko o Ko o ok o oK oK sk ok K o Kok o oK
* Variable declaration *
KK oK o K KK K K KK S K SRR KK o KoK o oK oK K K o K K o K o o oK oK oK Ko o Ko o ok o oK oK sk ok K o Kok o oK
*

INTEGER id1, id2, id3, id4, id5, id6

PARAMETER (id3=86, id4=87, id5=88, id6=89)

*
* External functions
LOGICAL hexist
*
* Local variables
INTEGER max_nx
PARAMETER (max_nx=1000)
*
* DELPHI has shifted the jetcharge |Q_mean_jet - 0.015[=0
REAL Qshift
PARAMETER (Qshift=0.02)
*
CHARACTER#100 chtitl, chtit2
INTEGER i, j, nmid, nzero, nhigh, nhem
INTEGER nx1, nyl, nwtl, locl,
$ nx2, ny2, nwt2, loc2
REAL nbp, nbbp, prtl, prt2, prt3, prt4
REAL xmil, xmal, ymil, ymal,
xmi2, xma2, ymi2, yma2
REAL bdis(max_nx), bbdis(max_nx)
REAL bbsum(max_nx), bsum(max_nx),
errb(max_nx), erbb(max_nx)
REAL tpur(max_nx), stp(max_nx)
REAL teff(max_nx), ste(max_nx)
*
INTEGER idmax
REAL maxmix, tmix, errm, nchcut
*
LOGICAL idl_exists, id2_exists
*
*
*
kR R K KKK oK K o K KoK oK oK o K KKK oK K K K KoK oK oK K K KoK K o K K Kok ok ok o o K Kok ok ko o kK
* Read input histograms - check for errors *

s ok sk stk sk ok ko stk o sk o stk sk s ok sk ok ok sk stk sk ok sk kol ok sk e kok stk s ok sk kel ok sk ok stk s ok sk ok
*
* Check that histograms exist in memory
idl_exists = HEXIST(idl)
IF (.WOT.id1_exists) THEN
PRINT #*, idl, ’ does not exist’

RETURN
ENDIF
*
id2_exists = HEXIST(id2)
IF (.NOT.id2_exists) THEN
PRINT #*, id2, ’ does not exist’
RETURN
ENDIF
*
* Get histogram definition for idi
CALL HGIVE(idl, chtitl, nx1, xmil, xmal, nyl, ymil,
$ ymal, nwtl, locl)
IF (nwt1.GT.100) THEN
PRINT *, ’Too many characters in title’, nwtil
RETURN
ENDIF
*
IF (nx1.GT.max_nx) THEN
PRINT *, ’Too many bins: ’, nxl
RETURN
ENDIF
* Get histogram definition for id2
CALL HGIVE(id2, chtit2, nx2, xmi2, xma2, ny2, ymi2,
$ yma2, nwt2, loc2)
IF (nwt2.GT.100) THEN
PRINT *, ’Too many characters in title’, nwt2
RETURN
ENDIF
IF (nx2.GT.max_nx) THEN
PRINT *, ’Too many bins: ’, nx2
RETURN
ENDIF
*

IF (nx2.NE.nx1) THEN

79



PRINT *, ’Error: Input histos have different ranges!’

RETURN

ENDIF
*
* Get contents of input histograms

CALL HUNPAK(id1, bbdis, ’ ’, 0)

CALL HUNPAK(id2, bdis, ’ ’, 0)
*
*
*
*
ks ok ok ok ks ok o ok oKk K sk ok sk sk o o o Kok K sk sk sk o ok ok K sk sk sk s o ko K sk sk s ok o ok
* Compute the desired quantities: *
* *
*  Purity = (Nr of correct tagged) / (Nr of tagged) *
*  Efficiency = (Ir of tagged) / (all tagged + untagged) *
*  Mixing Amplitude = SQRT(Efficiency) * (2%purity - 1) *
ks ok ok ok o ok ok o o o Kk K sk sk sk o o o Kk K sk ok sk sk o ko ok ok K sk sk sk s ko o ko K sk ok sk s ok o ok
*
* Find the middle bin of the nxl channels of the input histos

IF (MOD(nx1,2) .EQ. 1) THEN
nmid = (nx1-1)/2
PRINT *,’*#%* MODULUS(nx1,2) .EQ.1 #*x°

ELSE
nmid = nx1/2
ENDIF
*
* The shifted zero bin, |Q_mean_jet - shift| = 0, can be
* calculated by adding the shift to the middle bin (nmid)
nzero = nmid + INT(nmid * Qshift)
nhigh = 1. + Qshift
*
*
*
* Accumulate b- and bbar-histogram contents i.e. sum
* up the b and bbar distributions
bbsum(1) = bbdis(1)
bsum(1) = bdis(1)
*
DO i =1, nxi-1
bbsum(i+1) = bbsum(i) + bbdis(i+1)
bsum(i+1l) = bsum(i) + bdis(i+1)
ENDDO
*
IF (bbsum(nx1) .LE.O.OR.bsum(nx1) .LE.0) THEN
PRINT *, ’HNo events! ’
RETURN
ENDIF
*
* The total number of hemispheres in the histograms
nhem = bsum(nx1) + bbsum(nx1)
*
¥ mm e
*
* Compute the tagging purity, aka the mean 'correct
* tagging efficiency"
j=0
DO i = nzero, nxl-1
j=3+1
* Correct tagged (j = i - nzero + 1)
nbp = bbsum(nzero-j) + (bsum(nx1) - bsum(i))
* All tagged (i.e. outside the cut)
nbbp = nbp + bsum(nzero-j) + (bbsum(nx1) - bbsum(i))
*
IF (nbbp.GT.O0) THEN
tpur(j) = nbp / nbbp
ELSE
tpur(j) = 0.
ENDIF
ENDDO
*
* Now only events on the negative side are left since
* the shifted mean is on the positive side and we have
* summed symmetrically around the 'shifted mean bin"
j=3+1
DO i = j, nzero-1
* Correct tagged
nbp = bbsum(nzero-i)
* A1l tagged
nbbp = nbp + bsum(nzero-i)
*

IF (nbbp.GT.0) THEN
tpur(i) = nbp / nbbp
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ELSE
tpur(i) = 0.
ENDIF
ENDDO

Compute the "mean tagging efficiency' when nzero is
the shifted zero bin of the mean distribution
i=0
DO j nzero, 2, -1
i=i+1
Sum correct tagged Bbar and wrong tagged B below -Q_cut
prtl = bsum(nzero-i) + bbsum(nzero-i)
IF ((nzero+i).LE.nx1) THEN
There are still some bins left above +Q_cut which will
give the number of correct tagged B’s and wrong Bbar
prt2 = bsum(nxl) - bsum(nzero+i-1) +
bbsum(nx1) - bbsum(nzero+i-1)

ELSE
prt2 = 0.
ENDIF
teff(i) = (prtl + prt2) / nhem
ENDDO

teff(nzero) = 0.

Find the maximum value of the statistical significance
of a signal from oscillation: SQRT(eff) * (2%pur - 1)
maxmix = O.
DO i = 1, nzero
tmix = SQRT(teff(i)) * (2%tpur(i) - 1)
IF (maxmix.LT.tmix) THEN
idmax i
maxmix = tmix
ENDIF
ENDDO
nchcut = real(idmax)/real (nmid)

2k 3k 3 3k 3k 3 3k ok 3k ok 3k 3k 3k ok 3k sk ok ok 3K ok 3k ok 3k ok 3k ok ok ok ok sk ok sk 3k ok 3k ok 3k 3k 3k 3k ok ok ok sk ok 3k ok ok ok ok ok ok ok ok sk ok sk 3k ok 3k ok ok ok ok ok ok ok ok Kk ok

*

Compute the errors *

2k 3k 3 3k 3k 3 3k ok 3k ok 3k 3k 3k ok 3k sk ok ok 3K ok 3k ok 3k ok 3k ok ok ok ok sk ok sk 3k ok 3k ok 3k 3k 3k 3k ok ok ok sk ok 3k ok ok ok ok ok ok ok ok sk ok sk 3k ok 3k ok ok ok ok ok ok ok ok Kk ok

*

* % O * Ok K * ¥

The errors in bbsum and bsum (the integrated distributions) is
given by Binomial statistics with variance n(N-n)/N where N

is the total number and n the number of events integrated to
the bin where the error is calculated.

errb and erbb is the errors in the integrated b and bbar
distributions respectively, both for bin i.

DO i =1, nxi
erbb(i) = SQRT( bbsum(i) * (bbsum(nxl) - bbsum(i)) /
bbsum(nx1) )
errb(i) = SQRT( bsum(i) * (bsum(nx1l) - bsum(i)) /
bsum(nx1) )
ENDDO

The errors in the mean tagging purity
j=o0
DO i = nzero, nxl-1
j=j+1
Correct tagged patterns
nbp = bbsum(nzero-j) + (bsum(nx1) - bsum(i))
Wrong tagged patterns
nbbp = bsum(nzero-j) + (bbsum(nx1) - bbsum(i))

IF ((nbbp+nbp) .GT.0) THEN

prtl = nbbp**2
prt2 = (errb(i)**2) + (erbb(nzero-j)**2)
prt3 = nbp**2
prt4 = (errb(nzero-j)**2) + (erbb(i)#**2)

stp(j) = SQRT( (prti*prt2) + (prt3*prt4) ) / (nbbp+nbp)**2
IF (stp(j).GT..75) THEN

No reason to have error bars greater than 1.5

stp(j) = 0.75
ENDIF
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ELSE

stp(j) = 0.
ENDIF
ENDDO
*
j=jet
DO i = j, nzero-1
* Correct tagged
nbp = bbsum(nzero-i)
* Wrong tagged
nbbp = bsum(nzero-i)
*
IF ((nbbp+nbp) .GT.0) THEN
prtil = nbbp**2
prt2 = (erbb(nzero-i))#**2
prt3 = nbp**2
prt4 = (errb(nzero-i))#**2
stp(i) = SQRT( (prti*prt2) + (prt3*prt4) ) / (nbbp+nbp)**2
ELSE
stp(i) = 0.
ENDIF
ENDDO
*
K mmmm e m e
*
* The errors in the mean tagging efficiency
i=0
DO j = nzero, 2, -1
i=3i+1
prtl = (erbb(nzero-i)**2) + (errb(nzero-i)#**2)
IF ((nzero+i).LE.nx1) THEN
prt2 = (errb(nzero+i-1)**2) + (erbb(nzero+i-1)**2)
ELSE
prt2 = 0.
ENDIF
ste(i) = SQRT( prtl + prt2 ) / nhem
ENDDO
*
K mmmm e m—m e
*
* Normalize the integrated distributions (the error
* first since bsum(nx1l) and bbsum(nxl) will be 1 after
* normalization of the B and Bbar distributions!)
DO j =1, nxl
erbb(j) = erbb(j) / bbsum(nxi)
bbsum(j) = bbsum(j) / bbsum(nx1)
*
errb(j) = errb(j) / bsum(nx1)
bsum(j) = bsum(j) / bsum(nx1)
ENDDO
*
K mmmm e m—m e
*
* The errors in the calculated mixing amplitude:
prtl = ((2*tpur(idmax)) - 1) ** 2
prt2 = ste(idmax) **x 2
prt3 = (2xteff(idmax)) ** 2
prt4 = stp(idmax) **x 2
errm = SQRT( prtl*prt2 + prt3*prt4 )
*
*
*
A A AR AR KA A KA KA KoK KK A AR KKK KKK KKK KKK KK
* Prepare output and book the histograms *

34 34 ke ke ke ke ke ok ok ke ok ok ok 3k ok ok ko ok ok ok k3 ok ok ok ke ok ok ok ke ko ok ok ok ko ok ko 3k ok ok ok k ke dkok ok ok ok ok ok kok ok ok ok
*

*
* Book histograms
CALL hbook1(id3,’Integrated Bbar distribution’,nx1,-1.,1.,0.)
CALL hbook1(id4,’Integrated B distribution’,nx1,-1.,1.,0.)
CALL hbook1(id5,’Purity as function of cut on netcharge’,
nzero,0.,nhigh,0.)
CALL hbook1(id6, ’Mean tagging efficiency vs cut on netcharge’,
nzero,0.,nhigh,0.)
*
* Fill histograms together with the calculated errors
CALL HPAK(id3, bbsum)
CALL HPAKE(id3, erbb)
*
CALL HPAK(id4, bsum)
CALL HPAKE(id4, errb)
*

CALL HPAK(id5, tpur)
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*

110
111
112

CALL HPAKE(id5, stp)

CALL HPAK(id6, teff)
CALL HPAKE(id6, ste)

List the mixing information and the histogram information

WRITE(*,110)
WRITE(*,110)
WRITE(*,111)
WRITE(*,112)
WRITE(*,111)
WRITE(*,110)
WRITE(*,110)
WRITE(*,110)
WRITE(*,110)

y

routine: abscut4.f ----------—- ’
’Max mixing amplitude’,maxmix,’with error’,errm
’Occurs for a cut’,nchcut,’on absolute Netcharge’
’Purity=’,tpur(l),’at eff=100, err=’,stp(1)

y

’===> Qutput histograms: 86,87,88 and 89’
dmm rostad; modified 17.06.96 -—-———--—-- ’

FORMAT(’’ ,TR10,A)
FORMAT(’’ ,TR10,A,TR1,F6.4,TR1,A,TR1,F6.4)
FORMAT(’’ ,TR10,A,TR1,F5.3,TR1,A)

RETURN
END
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Appendix D

Glossary

2VTX: Is short for Secondary Vertex, the point where a long lived particle
from PV, like a B meson, decays and leaves a debris of new particles.

CUT: A short and handy word used throughout the HEP community. To
pose a “cut” means to select data restricted by certain criterias.

DST: A Data Summary Tape is the format in which simulated and real
data, from DELPHI, are stored.

HADRON: Particles containing quarks are commonly referred to as hadrons.
Thus both mesons (with 2 quarks) and baryons (with 3 quarks) are
hadrons.

HEP: High Energy Physics. Today Elementary Particle Physics and HEP 1s
essentially the same, because most of the particles labeled as elementary
only can be created with the help of huge accelerators, i.e. at high
energies, because of their large mass.

KAON: Is the common name for mesons containing one strange quark.

MESON: Means a light particle. This reflects that all particles labeled
mesons contain only two quarks while baryons, with three quarks, are
usually heavier.

NETCHARGE: Was invented for this thesis; “netcharge” is the short for
neural NETwork jetCHARGE-like output, which should hint towards

the similarities between this method and Jetcharge.

NTUPLE: Is a common way of storing large amounts of data in physics
analysises in the HEP community. It can be viewed as a matrix where,
for example, each row represents an event and each column a variable
(charge, energy, momentum, etc). This is a row-wise Ntuple. In a
column-wise Ntuple the elements of each column are stored sequentially,
thus a column can be viewed as one event.
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QUARK: Is the building blocks of atomic matter and of all non-elementary
particles (hadrons). The name is said to be derived from the line “Three
quarks for Muster Mark!” from James Joyce’s Finnegans Wake (1939),
but Murray Gell-Mann have said that he discovered this connection
only after the name was thought up. An alternative explanation for the
name “quark”: At the time, when Gell-Mann put forward his theory,
most physicists regarded the quarks as interesting mathematical objects
but questioned their physical reality. Hence question mark!

PAW: Physics Analysis Workstation is an important software tool in the
HEP community, it helps setting up data and visualize the results in
suitable plots or histograms. Huge Ntuples with data are treated with
the greatest ease by PAW.

PV: Is short for Primary Vertex, a.k.a. the interaction point, which is the
point where particles from the two beams (et and e™, for example)
collide, giving rise to an interesting event.

SKELANA: Is the SKELeton ANAlysis program used in DELPHI. With
this program much of the basic work, like reading DST files and filling
the standard common blocks with data, is done by the program freeing
the user to concentrate on cut selections and physics problems.
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mixing formulas, 13
B decay, 16 mixing in the BY sector, 20
b quark, 15 mixing in the B? sector, 20
b-tag probability, 18
beam energy, LEP1, 37 N-track probability, 18
box diagrams for mixing, 11 natural units, 7
netcharge, 84
CERN, 1 neural network, 23
cut, 84 neuron, 24
DELPHI, 4 node, 24
DST, 84 ntcopy, 77
Ntuple, 84

efficiency, 31
epoch, 41 output layer, 25
PAW, 85

feed-forward network, 24 .
primary vertex, 85

generalization performance, 39 pseudotrack, 36
purity, 31

hadron, 84

hadronic selection, 30 quality cuts, 28

hard track, 36 quark, 85

HEP, 84

saturation, 64

hidden layer, 25 secondary vertex 2VTX, 84

impact parameter, 17 sigma, 35
input layer, 25 significance, 18
invariant mass, 16 Skelana, 85

sphericity, 29
Jet, 19 SPS, 3
jetcharge, 19 supervised learning, 24
kaon, 84 test sample, 29

time-integrated mixing, 14
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training sample, 29
training time, 75

unphysical momentum values, 37
Von Neumann machines, 23

weights, in neural networks, 24
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