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AbstractThis thesis outlines an alternative to the well known Jetcharge method, thuschristened The Netcharge Method, for use in Bs mixing analysises. Theaim of the method is to increase the e�ciency of classifying the production
avor, or sign of the charge, of b quarks in Z0 ! b�b decays. The core of theNetcharge method is an Arti�cial Neural Network. Various net-structuresand input variables are trained and tested. Results better than the Jetchargemethod are obtained even though the parameter choices and net-structurescan be optimized further.
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Chapter 1IntroductionAn introduction to CERN and the DELPHI detector is given, along with abrief description of the contents of this thesis.1.1 CERNIn 1949 the french physicist Louis de Broglie proposed the creation of aEuropean science laboratory. The aim was to unite European nuclear physics,which was in a bad state after the destructive war. On September 29 1954the Conseil Europ�een pour la Recherche Nucl�eaire, or European Organizationfor Nuclear Research, was formally established with 11 member states. TheCERN laboratory complex was located in Meyrin, a quiet countryside a fewkilometers outside Geneva, not far from the french border (�gure 1.1).Today CERN focus more at particle physics than nuclear research, this isre
ected by the change of name to European Laboratory for Particle Physics.There are currently 19 member states and CERN host several thousand users,roughly 50% of the worlds particle physicists, many from non-member stateslike the USA, India, Japan and Russia. Thus it is suitable to label CERN asthe �rst worldscale collaborating particle physics laboratory.In addition to particle physics CERN is the birthplace of the much hypedWorld Wide Web, originally developed in 1990-91.1.2 The accelerator complexThis section will brie
y list some details about the accelerator complex atCERN. But �rst a quick look at why so much energy is needed to detectthose tiny particles. 1



1.2.1 Particles as probesThe energy in particle physics experiments today are usually several orders ofmagnitude larger than just a few decades ago. The reason for this is closelyrelated to the wave-particle duality of Quantum Mechanics (QM). Accordingto QM all particles can be assigned a wave property [1], with a wavelengthgiven by � = hp , where h is the Planck constant. Just as photons are usedto probe structures in optical microscopes one can use the particles to probematter. But to be able to probe a given structure the wavelength must beshorter than the size of the structure.For smaller structures the wavelength of the particle must be lowered,which amounts to increasing its momentum. Modern experiments probe thequark structure, at scales down to 10�17m, a quick calculation gives:E = h � c� = 6:63�10�34Js � 3:00�108ms�110�17m = 1:99 � 10�9J � 100GeVThus modern accelerators need to accelerate particles up to 100 GeV in orderto probe the inner structure of matter.This may look like a perfect way of probing matter, if one wants toinvestigate even smaller structures just turn up the voltage to increase theenergy of the probing particles. But there is one serious catch: Duringacceleration particles radiate photons and thereby lose energy.1.2.2 Synchrotron radiationIn linear accelerators energy loss due to acceleration is rather small, becausethe actual acceleration only takes place in certain intervals. However, incircular accelerators the particles are accelerated most of the time, partly toincrease their momenta but mainly to de
ect their paths so that they travelaround the ring. It is the bending of the particles that causes the synchrotronradiation, a kind of bremsestrahlung, which is the main source of energy lossat CERN's Large Electron Positron collider. The energy loss, �E, due tosynchrotron radiation is proportinal to the energy of the particle [2]�E / � Em0�4�1�Herem0 is the rest mass of the particle, E its energy and � the bending radiusof the accelerator. From this formula it is clear that an increase in the energyby a factor 2 would increase the energy loss by a factor 16. Equivalentlylighter particles will lose much more energy from synchrotron radiation thanheavier, in fact an electron will lose a factor (mpme )4 � (1840)4 � 1013 morethan a proton with the same energy.To reduce the energy loss at high energy circular accelerators one havetwo possibilities. Either one can use heavy particles, like protons, which is2



the solution chosen for the future Large Hadron Collider (LHC) at CERN,where protons will be accelerated to 7 TeV. The other way of reducing theenergy loss is by using a very large bending radius, since �E is inverslyproportional to �. This was applied for the construction of LEP.
Figure 1.1: CERN is located near the point where the small and the largecircle, indicating the SPS and LEP rings, coincides. The dotted line is theborder between France and Switzerland, Geneva airport is seen near thebottom. The large dots on the LEP ring represents detectors, the dot closestto the airport indicates the position of DELPHI.1.2.3 SPS and LEPAt CERN the �rst really large circular accelerator was the Super ProtonSynchrotron (SPS), built in the 1970's, which could accelerate protons upto 400 GeV. To be able to do so it needed a circumference of 6 km. It wastoo large to �t inside the Swiss border, but the french government allowedCERN to build the SPS under french territory. The famous UA1 experiment,which made the �rst observations of the W and Z bosons in 1983, was inconnection with the SPS.But there are some drawbacks with hadron colliders, linked to the factthat hadrons are compound particles. The main problem is that the totalmomentum of the particle is shared by its constituent quarks. In a collisionusually only two of the quarks will interact, the rest are spectators. Thusonly a small fraction of the total energy is available to create new particles.Secondly, a hadron collision will result in more noise. The debris of particles3



created by the spectator quarks will �ll up the detector with unwanted tracks.For these reasons CERN decided to build a large electron positron collider.From 1983 to 1988 the Large Electron Positron (LEP) collider was thelargest civil-engineering undertaking in Europe. The total circumference ofthe ring is 26.6589 km, by far the largest in the world. It is located between80 and 170 meters below the ground and reach from the Geneva airport,in Switzerland, to the Jura mountains, in France. Along the tunnel thereare eight caves, or pits, four of them contain the current LEP experiments:ALEPH, DELPHI, L3 and OPAL.From its start-up in August 1989 until the fall 1995 LEP acceleratedelectrons and positrons to a total center of mass energy of 91.2 GeV, thisera is known as LEP1. The energy was not chosen at random, it is exactlywhat is needed to create a real Z0 boson. During the six years of LEP1 eachof the experiments at LEP collected millions of Z0 decays, from which veryprecise measurements of electroweak parameters could be made. One of themost important results from LEP1 is that there are only three light neutrinogenerations [3] so, unless there is a neutrino with mass above 45 GeV/c2,there are only three generations of quarks and leptons (section 2.1).Other important results include precise measurements of the the runningcoupling constants, the weak mixing angle (sin2 �w), lepton universality andthe hadronic branching fractions [4]. And as a curiosity the mass of the topquark was predicted to be 177 GeV, though with rather huge errors, from theLEP measurements [5]. This is in good agreement with direct measurementsmade at Fermilab.In October 1995 the LEP energy was ramped up to 130 GeV as the �rststep in the LEP2 era. At LEP2 the energies will be increased in steps upto probably 195 GeV in 1998. The main goals at LEP2 are to look for theHiggs boson and possibly light supersymmetric particles, or to exlude suchparticles from the mass region covered by LEP2. When the LEP era ends in2000-1 the LEP tunnel will be reused for the LHC project scheduled to startrunning in 2004.1.3 The DELPHI detectorDELPHI, a DEtector with Lepton, Photon and Hadron Identi�cation, isdesigned as a general purpose detector with special emphasis on powerfulparticle identi�cation over a 4� solid angle. This means that DELPHI isbuilt around the interaction point (IP), where the e+ and e� beams fromLEP collide, with di�erent subdetectors placed in layers radially outwardsfrom the IP. Fully assembled DELPHI is three stories high and located 80meters below the surface, in pit 8, along the LEP tunnel. Figure 1.2 shouldindicate the dimensions.The analogy with an onion is often used when describing modern particle4



DELPHI
Vertex Detector

Inner Detector

Time Projection Chamber

Small Angle Tile Calorimeter

Very Small Angle Tagger

Beam Pipe

Quadrupole

Barrel RICH

Outer Detector

High Density Projection Chamber

Superconducting Coil

Scintillators

Barrel Hadron Calorimeter

Barrel Muon ChambersForward Chamber A

Forward RICH

Forward Chamber B

Forward EM Calorimeter

Forward Hadron Calorimeter

Forward Hodoscope

Forward Muon Chambers

Surround Muon Chambers

Figure 1.2: Cut-through view of the DELPHI detectordetectors, and DELPHI is no exception. The subdetectors of DELPHI arelocated in layers radially outwards from the beampipe which pass throughthe center of DELPHI. Each of the subdetectors has a unique task. Basedon the information from one or several of them DELPHI can classify manydi�erent particles to a high degree of certainty. In DELPHI the z-axis isparallell to the beam, while the radius R and azimuth angle � are in theplane perpendicular to the beam and � is the polar angle, with �=0 along z.The main DELPHI subdetectors, from the center and outwards [6]:Vertex Detector (VD) : Consists of 3 coaxial cylindrical layers of siliconstrip detectors, with average radii of 6.3, 9.0 and 10.9 cm. The VDprovides both R� and Rz information and is used for impact parametermeasurements and precise vertex reconstruction.Inner Detector (ID) : Consists of an inner drift chamber with jet-chambergeometry providing R� information. Surrounding the drift chamber are5 cylindrical layers of multi-wire proportional chambers, providing Rz5



information. The ID is used for vertex reconstruction and fast triggerinformation.Time Projection Chamber (TPC) : Is a drift chamber where both end-plates are divided in 6 azimuthal sectors, each sector containing sensewires and pads for more precise R� determination. The z informationis computed from the drift time along the chamber. The TPC is themain tracking device in DELPHI.Ring Imaging CHerenkov detector (RICH) : Consists of a liquid anda gaseous radiator where particles can produce Cherenkov light cones.The light cones are re
ected in mirrors and focused onto a photo-sensitive time projection chamber where photoelectrons are createdand detected as ring images. This technology was very new at thetime DELPHI was proposed but has turned out successful. The RICHcan separate kaons, pions and protons from 1 GeV and up to 25 GeV.Outer Detector (OD) : Consists of 5 layers of drift tubes located betweenradii 197 and 206 cm. The OD provides both R� and Rz information.It is essential for fast trigger information and to improve the momentumresolution.High density Projection Chamber (HPC) : Consists of 144 modulesarranged in 6 rings. Each HPC module is a small TPC with layers ofhigh density material in the gas volume. In this volume high energyelectrons will create showers and the electron energy can be computed,with a precision of a few percent, based on the shape of the showers.Hadron Calorimeter (HCAL) : Is installed in the return yoke of theDELPHI magnet and consists of 19000 streamer tubes. Hadrons willinteract strongly with the dense material of the return yoke and createshowers that will be detected in the streamer tubes. Electrons will notpenetrate this far and muons will give very faint signals since they haveno strong interaction, so the showers will be from hadrons. The energyresolution is of the order 25%MUon Chambers (MUC) : Because muons do not interact strongly andare 200 times more massive than electrons they pass through most ofthe subdetectors with almost no energy loss. In addition the iron ofthe HCAL provides a �lter for muons because the bulk of hadrons arestopped by this material. Hence the MUC is located as the outermostsubdetector of DELPHI. The e�ciency of detecting muons in MUC arebetween 80 and 90% with a misidenti�cation of a few percent.There are similar subdetectors in the forward and backward directions ofDELPHI to cover most of the � region. To measure the momentum of tracks,6



in the TPC and OD, a highly uniform 1.2 T magnetic �eld is provided by asuperconducting solenoid, with a 5000 A circulating current. The solenoidis located outside the HPC and cooled to 4.5 K by a high pressure 
ow ofliquid helium. In addition to these particle identi�cation detectors DELPHIhas two subdetectors dedicated to measure the beam energy and luminosity:Small angle TIle calorimeter (STIC) : Is a sampling lead-scintillatorcalorimeter. It is formed by two cylindrical detectors located along thebeampipe, on both sides of the interaction point, in a distance of 2.2meters. In 1994 STIC replaced SAT (Small Angle Tile calorimeter) asthe main monitor for energy and luminosity in DELPHI. STIC givesan energy resolution of 2.7% at LEP1 beam energy.Very Small Angle Tagger (VSAT) : Is located close to the beampipe,but 7.7 meters away from the interaction point, inside the LEP tunnel.It is used for relative luminosity measurements and provides fast beambackground information.The LEP bunch-crossing interval is 11 �s, which means that each second 90thousand collisions occur in the center of DELPHI. In order to pick out theinteresting events, without missing too many of the subsequent collisions, thetrigger chain in DELPHI must work very fast. If an event is interesting thenext one will be skipped to give the software time to read out the information,if not the event will be erased and the next one treated by the triggers whenit arrives.In summary DELPHI is a general purpose detector with a high e�ciencyof collecting interesting events. At the end of LEP1 it detected thousands ofZ0 decays each day of running and all in all several million Z0 decays havebeen collected by DELPHI, providing material for very precise tests of theelectroweak theory.1.4 Concerning the thesisThis thesis was written using natural units, that is units where the speed oflight and �h is set to one, c=�h=1. Natural units are very popular in the HEPcommunity because they simplify many formulas and give di�erent physicalquantities the same dimension.Chapter 2 contains the basic theory behind B mixing while chapter 3gives a brief summary of two experimental methods, used particularly inB physics, and some measurements of B mixing. In chapter 4 the basictheory behind neural networks is brie
y discussed, with emphasis on feed-forward networks. In chapter 5 some important quantities, which will beused throughout the analysis, are de�ned. In chapters 6 and 7 the two partsof the analysis are outlined and results for di�erent netstructures given. Inchapter 8 the analysis is summarized and the conclusions drawn.7



Chapter 2Physical formalismThis chapter outlines the basic physical formalism used in this thesis, i.e. theconcept of mixing, sometimes refered to as oscillations, in addition to a brieflook at the standard model to clearify the notion of mesons.2.1 MesonsThe standard model [7] of particle physics lists 6 quarks and 6 leptons, eachwith a corresponding anti-particle, as the fundamental building blocks ofnature. Figure 2.1 shows the three known generations of quarks and leptons,the anti-particles are left out.
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Figure 2.1: The three generations of elementary particles in the standardmodel. The charge is given in units of the elementary charge, the neutrinoes(�) being neutral.The anti-particles are equal to the particles in the sense that they havethe same mass and follow the same laws of nature. The di�erence is that theirquantum numbers (like charge, 
avor, etc.) are reversed. An anti-particle is8



usually denoted with a bar above the particle name, thus the anti-b quark islabeled �b.According to the standard model, or more precisely Quantum ChromoDynamics [8], all quarks carry color. There are three di�erent colors, R, Gand B. This has nothing to do with the macroscopic property color, but isa name given to an intrinsic property of quarks. The important thing isthat nature appears to be colorless, thus free quarks can not be observed.The requirement of colorless states force nature to group the quarks in twopossible ways [9].1. Three quarks with di�erent colors: qR + qG + qB2. One quark and one anti-quark with color and anti-color: qc + �q�cHere c 2 [R;G;B]. Particles from the �rst group are known as baryons,while particles from the second group are known as mesons. Protons andneutrons of atomic physics are examples of baryons, while pions and kaonsare examples of mesons. This thesis will only be concerned with mesons,especially mesons containing a b or a �b quark, known as B mesons:Bq =  �bq ! �Bq =  �qb ! (2.1)In section 2.3 a phenomenon known as B mixing will be described, it can onlyoccur among neutral B mesons due to conservation of the electric charge.According to de�nition (2.1) the q quark must have the same absolute valueof its charge as the b quark to form a neutral B meson. From �gure 2.1 it isclear that only the s and d quarks, with charge �e=3, qualify for this. Thusthe only neutral B mesons one can form are B0d and B0s , with correspondinganti-particles. With the given de�nition it is the B0q meson that contains the�b quark, while �B0q contains the b quark.In chapter 3 a brief summary of some special features and measurementsconcerning B mesons will be discussed.2.2 Time evolution of an unstable particleTo obtain quantities that can be measured in experiments one have to applyQuantum Mechanics. In order to do so the problem must be de�ned in theproper formalism, which amounts to �nding the Hamilton operator H of thesystem. Then one must solve the Schr�odinger equationi @@tj	i = Hj	i (2.2)where j	i is a wave function describing the time evolution of the system. Foran unstable particle the hamiltonian is H = (M� i�=2), where M is the9



mass operator and � represents the decay width. The solution of Eq (2.2),using this expression for H, isi @@tj	i = (M� i�=2)j	i+Z @j	ij	i = �i(M� i�=2) Z @t+ln j	(t)i = ln j	0i � i(M� i�=2) � t (2.3)In the integration it was used that H is time independent and thus can beplaced outside the integrand. The time integration was performed from timet=0 to t, with the initial condition j	(t=0)i = j	0i. By exponentiatingEq (2.3) one can �nd an expression for the time evolution of j	ij	(t)i = e�i(M�i�=2)�t � j	0i (2.4)This gives j	(t)j2 / e��t = e�t=� , hence it makes sense to de�ne � � 1� asthe lifetime of the unstable particle.2.3 B mixingAfter the discovery of the b quark scientists started to look for mixing amongneutral B mesons, in analogy with mixing among neutral kaons [10]. Thissection brie
y outlines the basic formalism of B mixing. Experiments andresults related to B mixing are mentioned in section 3.4.In this section jB0i will denote the B0q state and j �B0i the �B0q state, theresulting formalism will be the same whether q=d or q=s. These two statesare CP conjugate, which means that by performing a combined charge andparity transformation (CP) on one of the states it should turn into the other:CPjB0i = �1j �B0i and CPj �B0i = �2jB0i, where �1 and �2 are arbitrary phasefactors usually set to -1. Neutral B mesons are split in two mass eigenstates,a light and a heavy, which can be written as linear combinations of the CPconjugate states [11]:jBLi = q � jB0i+ p � j �B0i jBHi = q � jB0i � p � j �B0i (2.5)2.3.1 Mixing formulasIn the Standard Model mixing occur via second order weak interactions (thestrong interaction conserves the b 
avor and thus can not explain mixing).There are two possible box diagrams, shown in �gure 2.2. Since the quark10
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= H1 � (jB0ihB0j+ j �B0ih �B0j) +H2 � (jB0ih �B0j+ j �B0ihB0j)Where H1 = M� i�=2 and H2 = M12 � i�12=2 has been used. By usingthis expression for H it is straight forward to show thatHjBLi = (H1 +H2)jBLi = �LjBLiHjBHi = (H1 �H2)jBHi = �HjBHiwhere �L and �H are the eigenvalues of H with respect to the eigenstates jBLiand jBHi. It can be shown that �L =ML � i�L=2 and �H =MH � i�H=2.Let the initial state j (t=0)i = jB0i which from Eq (2.8) can be expressedas jB0i = 1p2(jBLi + jBHi). Then in the same fashion as Eqs (2.2) - (2.4)one can solve Eq (2.7)j (t)i = e�iHt � jB0i = 1p2e�iHt � (jBLi + jBHi)By using that jBLi and jBHi are eigenstates of H the next step followsnaturally. j (t)i = 1p2 � �jBLie�i�Lt + jBHie�i�H t�= 1p2 � �jBLie�i(ML�i�L=2)t + jBHie�i(MH�i�H=2)t�The �nal step is to use Eq (2.8) to obtain an expression in jB0i and j �B0ij (t)i = 12 �e�i(ML�i�L=2)t + e�i(MH�i�H=2)t� jB0i+ 12 �e�i(ML�i�L=2)t� e�i(MH�i�H=2)t� j �B0iTo clearify this result it is useful to de�neAB!B(t) = 12 �e�i(ML�i�L2 )t + e�i(MH�i�H2 )t� (2.9)AB! �B(t) = 12 �e�i(ML�i�L2 )t � e�i(MH�i�H2 )t� (2.10)so that the solution can be written asj (t)i = AB!B(t)jB0i+AB! �B(t)j �B0i (2.11)According to the standard interpretation of Quantum Mechanics, thesixty year old Copenhagen Interpretation, the abstract wave function j	(t)iis just the probability amplitude of �nding a particle with the given quantumnumbers at the given position and time. From Eq (2.11) one can verify that12



AB!B(t) = hB0j (t)i and AB! �B(t) = h �B0j (t)i. One can therefor interpretAB!B(t) and AB! �B(t) as the probability amplitudes of �nding a B0 and a�B0, respectively, in the �nal state after a time t.Thus in order to �nd the mixing probability it is necessary to computethe norm of the amplitude in Eq (2.10).PB0! �B0(t) = jAB! �B(t)j2 � [AB! �B(t)]y � [AB! �B(t)]= 14 [ei(ML+i�L2 )t � ei(MH+i�H2 )t] � [e�i(ML�i�L2 )t � e�i(MH�i�H2 )t]= 14e�(�L+�H2 )t � �e�(�L��H2 )t + e�(�H��L2 )t � (2.12)e�i(MH�ML)t � ei(MH�ML)tiPB0! �B0(t) = 12 � e��t � [1� cos(�m�t)] (2.13)Where �m � MH �ML, �� � �H � �L and � � (�H + �L)=2. Due to��=� � 10�2 the two e�(��=2)t terms in Eq (2.12) was approximated by 1,to get from Eq (2.12) to (2.13)In a similar fashion one can obtain an expression for the probability of anon-mixed state, i.e. that the �nal state is a B0:PB0!B0(t) = 12 � e��t � [1 + cos(�m�t)] (2.14)The mixing probability found in Eq (2.13) was in the case of an initial jB0istate and a �nal j �B0i, but it would turn out exactly the same if it was aninitial j �B0i and a �nal jB0i state. So this mixing probability is valid for bothB0 and �B0 initial state mesons.In the given situation, with an initial B0 and two possible �nal states, B0and �B0, it would be desirable that the time-integrated probabilities add upto unity. But that is not the case, instead RfPB0!B0(t) +PB0! �B0(t)gdt = 1� .So, in order to normalize the probabilities it is necessary to multiply Eqs(2.13) and (2.14) by a factor �.PB0q! �B0q (t) = 12�q � e��qt � [1� cos(�mq�t)] (2.15)PB0q!B0q (t) = 12�q � e��qt � [1 + cos(�mq�t)] (2.16)The probability that an initial B0q meson will decay, at a proper time t, aseither a �B0q or as a B0q , is given by Eqs (2.15) and (2.16), respectively. Theinteresting thing is that �mq gives the oscillation frequency, the larger �mqis the larger the frequency is and if �mq is zero there would simply be nooscillation. Because of this feature it is common to give results for �mq inunits of frequency, which is inverse time, instead of energy or mass.13



2.3.2 Time-integrated mixing formulasBecause the lifetime of the B meson is very short (section 3.1), compared tothe time resolution in macroscopic measuring devices, early analysises of Bmixing used a time-integrated method. De�ning xq � �mq�q and integratingthe probabilities of Eqs (2.15) and (2.16), one obtains:�mq � Z 10 PB0! �B0(t)dt = (�mq=�q)22(1 + (�mq=�q)2) = x2q2(1 + x2q) (2.17)�uq � Z 10 PB0!B0(t)dt = 2 + (�mq=�q)22(1 + (�mq=�q)2) = 2 + x2q2(1 + x2q) (2.18)Now the mixed and un-mixed time-integrated probabilities add up to unity,�mq +�uq = 1, which they should. The formulas are valid both for Bd mesons(q=d) and for Bs mesons (q=s), but they turn out to be usefull only in theBd case. The reason for this is that �mq is sensitive only for small mixing.
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Chapter 3Experimental methods andmeasurementsThis chapter serves as a little summary of methods used in B physics, toclassify B mesons and the sign of the b quarks involved. A brief summary ofobserved quantities in the B sector, is also given. The chapter ends with asection outlining the physics motivation behind this analysis.3.1 The B sectorThe b quark, also known as bottom or beauty, was announced discovered byLeon Lederman and his team at Fermilab on June 30 1977. They discoveredthe b quark through the upsilon resonance at 9.46 GeV [13], which is thelowest bound energy state of bottomonium (b+�b quark).The b quark [14] has a mass of between 4.1 GeV and 4.5 GeV, whichis more than twice the mass of the charm quark and 4 times heavier thana proton. Together with a lighter quark the b quark can form mesons. Bmesons have an important common feature: The long lifetime, of the orderpicoseconds1 [15].In section 2.1 the quark structure of neutral B mesons were outlined.The mass of such a meson depends on which quark the b quark is formingthe meson with. Because the s quark is slightly heavier than the d quarkthe Bs meson will be slightly heavier than the Bd meson: MBs � 5.38 GeVand MBd � 5.28 GeV. This makes it possible to design an experiment withjust enough center of mass energy to produce Bd mesons but not Bs. Thisdi�erence in production threshold was explored in the 1980's, looking for Bmixing where it is important to separate the signals from Bd and Bs.1Upon �rst encounter a picosecond, or 10�12 second, may seem like a short time. Butit should be compared to the time scale of the strong interaction, in which the B mesonsare formed. That scale is of the order 10�23 second, hence a B meson typically lives forabout 3000 \strong years". 15



3.2 How to classify a B eventWhen looking for B mesons in experiments two obvious physical quantities,illustrated in �gure 3.1, comes to mind:1. The large mass MB2. The long lifetime �B
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y a considerable distance [15],c � �B = 449�m, from the Primary Vertex (PV). In high energy experimentsit can be boosted up to several millimeters, before it decays in a SecondaryVertex (2VTX). This leads to large impact parameters, with respect to thePV, of the particles coming from the B decay.The large mass, MB, of the B meson forces the jet from a B decay tospread out like �gure 3.1 indicates. The reason is that Nature wants toconserve the invariant mass, P�P �, where P � is the 4-momentum:P�P � = E2tot � P 2tot =M2B (3.1)The B meson is much heavier than the sum of masses of the particles comingfrom its decay, so in order to conserve the invariant mass the decay-particlesare spread out in the jet. Then a larger fraction of each particle momentumwill be transverse with respect to the original quark direction, and thus cancancel out large momentum components from other particles in the jet. Inthis manner the total momentum Ptot can be made su�ciently low to conservethe large invariant mass according to Eq (3.1). In the case of a light mesondecay the invariant mass is small, hence the total momentum can approachthe total energy to a greater extent - which again means that the jet can bemore collimated.Several methods have been developed to classify, or tag as physicistsprefer to say, B events. A popular one is based on semileptonic decays, i.e.16



a quark decaying to a lepton and someting else. Using energy-momentumconservation it is possible to show that the transverse momentum pt, withrespect to the jet axis, of a lepton from a semileptonic decay, must obeypt < 12mq [16]. Here mq is the mass of the decaying quark. Thus a largerquark will in general give rise to more isolated leptons, that is leptons withlarger transverse momenta. Because a c quark has mass mc � 1:5 GeVleptons from a semileptonic c decay should have pt < 0:75 GeV, while froma B decay they should have pt < 12mb � 2:2 GeV. Thus by requiring forexample pt > 1:0 GeV one can inhance a sample with B events.A common problem with the old tagging methods are that they all lackgood e�ciencies. Semileptonic tagging only works with semileptonic decays,it is useless in hadronic decays. Thus a more e�cient method was sought for.In the recent 2-3 years a highly e�cient, but more complex, method calledLifetime Tag has been developed.3.2.1 The Lifetime TagThe Lifetime Tag [17] explores the most obvious feature of a B event, thelarge track impact parameters, to construct a variable on which one can makecontinous cuts to obtain exactly the e�ciency or sample purity one needs fora given analysis.The lifetime signed impact parameter d is de�ned as the shortest distancebetween the track, when extrapolated back towards PV, and the PV. Thesign is positive if the angle between the track and the jet axis is less than �2and negative if not. This is visualized in �gure 3.2 where � > �2 gives d < 0while in the case of � < �2 one gets d > 0.
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error: S � d� , where S is known as the signi�cance and � is the error in theimpact parameter.With this de�nition tracks with negative signi�cance are either badlyreconstructed (don't belong to the jet) or comes directly from PV. Trackscoming from PV have a 50% chance of being assigned a negative signi�cance,depending on which side of the center coordinates the extrapolated trackpass. Hence tracks with S < 0 are background in a B analysis.To construct a method one simply assumes that without B events presentthe signi�cance distribution, f(S), is symmetric around S=0. f(S) willtypically have a peak at S=0 and falling rapidly for large values of S. WhenB events, with their large positive signi�cance values, are added there will bea surplus of large positive S values as compared to the expected backgroundfrom the negative S distribution. This surplus will increase with increasingS value, and by integrating it one can form a good variable. Thus when f(S)is properly normalized one can integrate the negative part of the distributionfrom �1 to a certain value S02:P (S0) = 8><>: RS<S0 f(S)dS if S0 < 0P (�S0) if S0 > 0The interpretation of P (S0) is that it is the probability that a track from PVwill have S > S0. From the de�nition it is clear that P (S0) is close to unityfor small values of S0 and close to zero for large.P (S) is used as the b-tag track probability. Since tracks from a B decayusually have large positive signi�cance values, Sb, the probability, P (Sb), thatthey originate from PV is small. Hence by cutting hard on P (Sb) one canincrease the chances of �nding tracks from a B decay.An even better tagging variable is the N-track probability, PN , where thetrack probabilities of all tracks in the event have been combined into:PN =Y �N�1Xj=0 (� lnQ)jj!Q � QNi=1 P (Si) is the product of the N tracks' track probabilities. The PNvariable has the pleasant property that it is uniformly distributed on [0,1]. Bya su�ciently low cut on PN one can obtain purities of more than 90% whilea loose cut will give a higher e�ciency (but resulting in more contaminationfrom the background). It is by far the best B-tagging method today.In this thesis the single track b-tag probability P (S) was used becausethe neural networks were fed with information from one track at a time (seesection 6.2.4).2In practice tracks with impact parameters larger than 2mm are cut away to removekaons and other longlived particles. 18



3.3 JetchargeWhen a quark decays it will give rise to a debris of particles travelling inapproximately the same direction as the quark did before its decay. Thisdebris of particles is called a jet, it can be both very collimated but also veryspread out. To reconstruct the sign of the charge of the quark that producedthe jet the Jetcharge method has been developed.The idea behind jetcharge is that tracks with high momenta, which aremore likely to carry information from the original quark, should count morethan softer tracks. Hence in the algorithm the charge of each track is weightedby the momentum of the track. By computing the jetcharge, based on allthe tracks from a jet, one should on the average get a value with the samesign as the quark that produced the jet.In a B mixing analysis all events are Z0 ! b�b, thus each event can be splitin two hemispheres containing one quark jet each. In DELPHI the followingalgorithm is used to compute the jetcharge of each jet:Qjet = Pj qj(~pj � ~es)�Pj (~pj � ~es)� (3.2)Where qj and ~pj are the charge and momentum of track j, ~es the sphericityaxis of the event, which contains the jet, and � = 0:6. This structure andchoice of � are based on several years of optimization in DELPHI, and is usedin their current Bs mixing analysis [20]. Other experiments use variations ofthe same formula, ALEPH with an interesting application of rapidity [21].Given a sample of events one can compute the jetcharge of each of the twohemispheres. By using a cut like jQjetj > Qcut it is possible to increase thefraction of hemispheres where the sign of the charge is correctly classi�ed. Byincreasing Qcut the fraction of correctly classi�ed hemispheres will increase,but with the negative e�ect of reducing the e�ciency. As will be made clearin section 5.3 it is important to both have a high fraction of correct classi�edhemispheres and a high e�ciency in a B mixing analysis. This means thatone can not cut too hard on the jetcharge. The DELPHI Bs oscillation teamcurrently cuts at Qcut = 0:10, which gives them an e�ciency of 67.5% and apurity of 68.8% [20].3.4 Observing B mixingBecause physicists in the early 1980's expected a light top quark (why shouldthe top be so much heavier than the 5 other quarks?) they predicted a small,maybe not observable, mixing in the B0d system. UA1, at CERN, observeda positive signal from B0� �B0 mixing but ascribed most of the e�ect to theB0s meson, which they could not distinguish from B0d.19



However, the ARGUS experiment at DESY and CLEO at Brookhavenstarted running on the �(4S) resonance of 10.58 GeV. This is below theBs threshold which means they had just enough center of mass energy tocreate a Bd meson and its anti-particle, but no Bs mesons. Without thecontamination from Bs ARGUS made the �rst observation of sizable mixingof Bd mesons, which they published in 1987 [18].Because the mixing in the Bd sector is fairly small, xd < 1, ARGUS useda time-integrated analysis. They used the lepton sign from semileptonic Bdecays to tag the B 
avor in each hemisphere, and then simply count thenumber of events with two equal lepton signs (Nl+l+ + Nl�l� � Nl�l�) andwith opposite signs (Nl+l�). A factor � � 1 was included due to e�ects fromdi�erent lifetimes and decay widths of the B mesons. Then ARGUS couldcalculate [18], [19] �md = Nl�l� � (1 + �)Nl+l� +Nl�l� = 0:174 � 0:053Using Eq (2.17) this leads to xd � 0:73, not far from the current value givenby the Particle Data Group [11]: xd = 0:71� 0:06.This unexpectedly large value of mixing in the Bd sector prompted PaoloFranzini to write in his B �B mixing: a review of recent progress [12]: \Thesimplest interpretation of the ARGUS result in this context is that the topquark is rather heavy". Indeed that turned out to be the case, predicted byB0d mixing almost a decade before Fermilab observed their top events.After the observation of sizable mixing among Bd mesons experiments startedto look for Bs mixing which was expected to be larger. But unfortunately itturns out that xs is very much larger than xd, maybe a factor 10 or more.This gives a time-integrated value �ms � 0:5, i.e. in a region where it is highlyinsensitive to variations in xs. Thus the time-integrated method fails in a Bsanalysis.3.5 Bs mixing - physics motivationIn the Bs sector mixing is much harder to measure, currently there is onlya lower limit. For their 1991-94 data DELPHI recently published xs > 5:1,or more precisely �ms > 4:6 ps�1 at 95% con�dence level, in a conferencepaper [20]. Because of the rapid oscillations it is important to have as muchstatistics as possible to be able to pin down the oscillation frequency. Thetime resolution in the detector is also of utter importance in an analysis likethis. Figure 3.3 indicates how the Bs oscillations may look like compared tothe slow Bd; in plots (A) and (C) the B0d � �B0d curves are given while in (B)20



and (D) those for B0s � �B0s . The plots were made usingP (�) = 12 � e�� � [1� cos(xq��)]From Eq (2.14) it should be clear that � = ��t = t� , hence the oscillationcurves are plotted in units of B lifetime. As one can readily see from plots(B) and (D) the oscillation period for the Bs system is of the order one unitof the B lifetime. To pin down this rapid oscillation the demand for statisticsis high.The full analysis done on the Bs mixing is rather complex and channeldependent. It involves reconstructing the production 
avor, using jetcharge,then computing the proper lifetime of the B mesons and �nally classifyingthe decay 
avor of the B through its semileptonic decay channels. Refer [19].The important part to notice is that the Bs analysis depends strongly onthe statistics. In appendix A.4 it is shown that the quantity p��(2� � 1) isproportional to the statistical signi�cance of a signal from oscillations. Thusboth the e�cicency � and purity � of the sample should be as high as possible.In section 3.3 jetcharge was brie
y discussed, and the DELPHI e�ciency of67.5% for the jetcharge method listed.Since a Bs analysis depends on this e�ciency one may pose the question\Is it possible to improve the e�ciency of classifying the production chargeof b quarks without jeopardizing the purity?". Since the jetcharge itself isso highly optimized it is unlikely that one can improve the �gures much byadjusting the algorithm in equation (3.2). But maybe a neural network canperform better? Given that neural networks can access more informationthan the momentum and charge, used in the jetcharge, this question wasinteresting enough to trigger this analysis.Thus the main goal of this thesis was to check if it is possible to improve thejetcharge values, the purity and e�ciency of classifying the production 
avorof b quarks, by using an Arti�cial Neural Network.
21
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Chapter 4Introduction to neural networksA brief introduction to the concept of neural networks, with emphasis onfeed-forward structures that use supervised learning, is given. The speci�cchoices made for this thesis are listed in appendix B.4.1 Historical motivationThe idea of using networks to process information came about in the 1940's,though not strictly developed until medical scientists coined their model ofthe human brain by the name neural network, in the 1950's. This modelof the brain turned out to be too simple, but the idea of neural networkswas born. In the 1960's the interest in neural networks fell dramaticallywhen scientists came to the conclusion that simulations of neural networkswould not be possible with the computer resources of that time. But withthe birth of semiconductor technology and microchips the computing powerdevelopment went into overdrive, bringing back the old ideas of simulatingneural networks.The familiar personal computers or workstations are all part of a class ofcomputers commonly called Von Neumann machines. The traditional VonNeumann machine has two distinct properties:� Sequential execution of instructions from a store containing instructionsand data.� Most of the store is empty most of the time.Up to know these properties have been less critical than other factors. Butin the future, with the need for realtime simulations and large amounts ofdata processing, these properties will turn into a bottleneck. At the futureLHC experiments one will have to do fast trigger decisions and crude onlinemeasurements of millions of bytes of information, in a matter of microseconds.Instead of having a Von Neumann machine, processing the data bit by bit,a solution with massive parallel processing is needed.23



In environments, like the LHC, the neural network technology o�ers apossible solution. It can store the information almost uniformly among theweights in the network and due to its structure the neural network acts likea huge cluster of parallel processing Von Neumann machines.4.2 Neural network architectureNeural networks consist of many small computing machines called neuronsor nodes. The internal connections between the neurons can have someresistivity, often called weights. If the connection between two neurons areweighted by a factor zero the connection is said to be broken. Each neuroncontains an activation function which, based on the total input to the neuron,computes the neuron output.
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to other neurons in the same or the previous layer. This is illustrated in�gure 4.2. In a feed-forward structure the �rst layer of neurons is called theinput layer, that is the layer where the input patterns based on the datasample are fed in. Then follows one ore more hidden layers, as the nameindicates these layers can not be accessed from outside the net. The �nallayer is the output or outer layer, which may contain one or more outputneurons. This is where the network decision, for a given input pattern, canbe read out.
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Layers:   First           Hidden         OuterFigure 4.2: The structure of a feed-forward networkBecause the input to the network is known, and the activation functionsare chosen by the user, the total output can be calculated as a function ofthe weights. Thus by changing the internal weights of the network one canadjust the total output to any desired value. This is the basic concept behindthe supervised learning.4.4 The error measureWhen training a neural network the main concern is with the average squaredtraining error, �2: �2 = 12 �Np � NpXp=1Xi (tip � oip)2 (4.1)where Np is the number of training patterns, tip is the desired target value,for pattern p and output neuron i, and oip the true output value from outputneuron i for the same input pattern p.25



4.5 Training a feed-forward networkWhen the activation functions are known the output from the network, for agiven input pattern, depends only on the weights. The problem of trainingthe network is then reduced to �nding a set of weights that minimize Eq(4.1).But one is looking for a network solution that can recognize patterns ithas not seen before, it should be able to generalize data. Thus one can notuse �2=0 as a training criteria, this would be an over�t: The net would onlybe able to recognize patterns from the training sample. Instead one mustlook for a solution of the weights that gives a global minimum of �2, i.e. thatapproximates @�2@ ~w =0, where ~w is the vector of weights. Such a solution willrecognize the general features of the test sample.4.5.1 Back-propagationTo minimize �2 one use a gradient descent method which is incorporated inthe back-propagation algorithm. The gradient ~r�2 = @�2@ ~w is used to updatethe weights in order to reach a minimum of �2:�~wt+1 = ��~r�2 + ��~wt (4.2)Where the t subscript indicates the time order. � is known as the learningstrength, it gives the step length in the weight update, while � is a momentumterm which insures stable learning by bringing in the previous weight update.The back-propagation algorithm can be listed in a cockbook manner:1. Calculate �2 when feeding the signal from the input pattern forwardthrough the network2. Calculate the gradient in a backward sweep through the network3. Modify the weights according to: ~wt+1=~wt+�~wt+1, where �~wt+1 isgiven by Eq (4.2)4. Calculate �2 as in point 1 but with the new weights. If it gets worselower � until �2 improves5. Go to 24.5.2 The input patternsThe input patterns must be chosen so that they display the particular featuresone would like the net to learn. They are prepared in an N-dimensional arraywhich are fed into the N input neurons of the input layer. It is important26



to limit the number of variables, used in the input patterns, since the actualtraining of the neural network is very time consuming. Finally one shouldmake sure that the input variables are normalized, to avoid saturating theactivation functions.4.5.3 When to stop trainingThere is no way to know a priori how much a network should be trained. If itis trained too short it will not have had time to learn the general features ofthe training sample, but if it is trained too long it will start to specialize onthe training sample. So one must try to �nd a golden mean, thus one shouldmonitor the training error development to see if it reaches a minimum value.After a training session it is important to have a testing sample on which thenet can be tested. This will reveal if the net can generalize what it learnedfrom the training sample.
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Chapter 5Preparing for the analysisThis chapter only brie
y describes all the work that was put into extractingand checking the simulated data, trying out di�erent quality cuts and settingup the necessary apparatus in order to compare the di�erent outputs.5.1 Extracting and checking the dataSimulated Z0 ! b�b events, stored in DST format at Shift (the DELPHIo�ine area), were used as data for this analysis. The data were generatedby a Monte Carlo algorithm with full DELPHI detector response simulated,known as DELSIM [26]. A Skelana[27] routine was used to extract the datawhich then were stored in column-wise Ntuples to make cut manipulationsand tests easier. During the extraction three quality cuts were imposed toremove badly reconstructed tracks and tracks with signatures compatiblewith 
 conversions or V 0 candidates:1. A track was only accepted if the error, �E, on the reconstructed energy,E, was less than 100% i.e. that �E < E2. Loose cuts on 
 conversion tags, from ELECID, imposed to remove 
conversions (gave 85% e�ciency and 1.6% misidenti�cations)3. A tight V 0 tag was used to identify and remove V 0 candidates:(a) The angle, in the xy plane, between the V 0 momentum and theline joining PV and 2VTX was required to be less than (0:01+ 0:02pt )rad. Here pt, measured in GeV, is the transverse momentum withrespect to the beam axis(b) The radial separation, in the xy plane, of PV and 2VTX wasrequired to be greater than 1�(c) The �2 probability of the �t to a 2VTX had to be larger than 0.0128



Each event was split into two hemispheres by a plane normal to the sphericityaxis of the event (�gure 5.1) so that the b quark ended up in one hemisphereand the �b in the other. Per de�nition all tracks with a momentum componentparallel to the sphericity axis were contained in hemisphere 1 and those thatwere anti-parallel in hemisphere 2. The sphericity [28] is essentially a measureof the summed P 2t with respect to the event axis. A two jet event has S � 0while in isotropic events S � 1.
S

Hemisphere 1

Hemisphere 2Figure 5.1: A plane normal to the sphericity axis ~S splits the event into twohemispheres, with one B meson in each.From the simulated data a total of 57261 events were accepted, 34700 of themwere stored as a training sample and the remaining 22561 as a test sample.With the imposed quality cuts, especially the �E cut, most of the wronglyreconstructed tracks, with momentum above the beam energy, were removed.But around 300 tracks with too high momentum survived the quality cuts,they had to be treated with special care during the training and testing ofthe nets (see section 6.2.2).5.2 De�ning the hadronic selectionA neural network trained to recognize B and �B patterns should be able tosort out the common hadronic features of Z0 ! b�b events, making hadroniccuts on the data sample super
uous. To test the neural networks for thisability it was necessary to avoid using hadronic selection criterias during theextraction of the simulated data. Instead the training and testing routineswere implemented so that the hadronic cuts could be switched on and o� asdesired. With that solution it was possible to test how hadronic cuts a�ectedthe neural network performance, when the cuts were imposed on the datasamples and when not. 29



The following hadronic criterias were used in this analysis:1. At least 5 charged tracks in each hemisphere2. Each accepted track must have a momentum greater than 200 MeV3. The momenta of wrongly reconstructed tracks are set to 10 GeVStudies of the momentum distribution of Z0 decays shows that the averagehigh-momentum track in multihadronic events has a momentum of around10 GeV. Thus if a momentum value turns out to be above the beam energy,due to bad track reconstruction, a good value to use instead is 10 GeV. Thisjusti�es the third hadronic criterion.Table 5.1 shows the percentage of tracks and hemispheres surviving eachof the two �rst hadronic criterias. The third criterion will only rescale themomentum, in case it is too high, and thus will not a�ect the e�ciency.Criterion Tracks Hemispheres1: ntrack.ge.5 99.0% 96.3%2: p(trk).gt.0.2 86.3% 99.9%1 + 2 85.4% 96.3%Table 5.1: Data surviving the hadronic selection34700 events times two hemispheres result in 69400 training patterns,but with 96.3% surviving the hadronic criterias only 66000 were used duringtraining. In the few cases where the hadronic criterias were not imposed onthe sample 69000 training patterns were used.The 22561 events in the test sample amounted to 45122 test patterns, butin case the hadronic criterias were imposed only 43534 patterns survived.5.3 How to compare the resultsThis section outlines a few quantities useful when comparing the results fromthe various nets and jetcharge, it also gives a brief description of how theoutput is treated.5.3.1 De�ning three quantities �, � and AmaxTo be able to compare the performance of di�erent neural networks, witheach other and with the standard Jetcharge method, three quantities werede�ned: 30



1. � : The mean tagging e�ciency is the fraction of the B and �B patternsthat have been classi�ed (right or wrong) above a given cut value onthe output. Since no distinction between B and �B is made this is amean value. � will be refered to as e�ciency.2. � : The mean tagging purity, a.k.a. mean correct tagging e�ciency, isthe fraction of the classi�ed events that are correct classi�ed. Againno distinction made between B and �B so this is also a mean value.Hereafter � will be refered to as purity for simplicity.3. Amax : DELPHI refer to A � p� � (2� � 1) as \proportional to thestatistical signi�cance of a signal from oscillations", where � and � arethose de�ned in points 1. and 2. (see appendix A.4). Because � and� are functions of the cut, Qcut, on the output distributions so will A.The maximum of this function, Amax, is an important quantity in Bmixing and hence used for comparison in this analysis.
Q

-1 +10 Shifted meanFigure 5.2: DELPHI jetcharge distribution (exaggerated shifted mean)As �gure 5.2 indicates the DELPHI jetcharge distribution has a shiftedmean, jQshiftedmean �0:015j = 0. This is due to di�erences in the detector responsefor negatively and positively charged particles. A zero bin, labelled nzero,corresponding to this shift is calculated.Because all the tests are done on simulated data the correct b 
avor isknown ahead, then it is possible to plot the true distribution from the net fora given 
avor. A routine named abscut.f was written. It takes the B � �Binformation as input and returns the � and � information, in the form of twohistograms.abscut.f is implemented to be very robust: It checks that the two inputhistograms exists and that they have an equal number of bins (which isrequired to make sense when calculating � and �). The input histograms are31



allowed to have any number of bins up to 1000, abscut.f will compute howmany bins the output histograms should have based on the input histograms.From the � and � information it also computes Amax and gives the value of� for �=1. See program listing, appendix C.3.5.3.2 Preparing the B and �B informationB mesons contain a �b quark, with charge + e3 , thus jetcharge from a B shouldbe positive on the average. For �B mesons the jetcharge distribution shouldhave a negative mean value due to the � e3 charge of the b quark. Thenetcharge is required to follow the same rules, so when a B pattern is fedinto the network the output should be positive and for �B negative.Similar to the jetcharge distributions it is possible to construct netchargedistributions from a neural network output. Because the B-
avor of thepattern that caused a speci�c output is known it is possible to plot the Band �B distributions of the netcharge.The �rst thing abscut.f does is to integrate the B and �B distributions,from -1 to +1. The integrated B information is stored in an array namedbsum and the integrated �B in bbsum. For compactness reasons these twoarrays will be denoted �b and �bb respectively. Then for a given entry in �bbone will �nd the integrated value of the �B distribution from -1 up to a limiton the netcharge corresponding to that entry. Similar for �b.To estimate the error in each entry of the �b and �bb arrays Binomialstatistics was used. This is shown in more detail in appendix A.1. Based onEq (A.3) the errors should be:�b(�) = rnb(�)�[Nb�nb(�)]Nb�bb(
) = rnbb(
)�[Nbb�nbb(
)]Nbb 9>>>>=>>>>; (5.1)Where Nb is the total and nb(�) the integrated number of B patterns up tobin number � in the B distribution. Similar for �bb. Thus �b(�) is the errorin �b(�) and �bb(
) the error in �bb(
).5.3.3 Right and wrong taggingTo compute the tagging purity and e�ciency it is necessary to know howmany B and �B patterns that were classi�ed right and wrong. From �gure 5.3the number of right tags can be found by counting the number of B entriesabove +Qcut and the number of �B below �Qcut, since the output should bepositive for a B input and negative for �B. The number of wrong tags arethen the number of B below �Qcut and �B above +Qcut.32
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Shifted mean

B distributionFigure 5.3: Illustration of the B and �B distributions. The shifted mean isidenti�ed by the nzero bin of the two distributions.To �nd the number of right and wrong tags abscut.f calculates howmany bins away from nzero the cuts are, for example k bins. Then �Qcutis identi�ed as bin number �lo = nzero � k and +Qcut as �hi = nzero + k.The information corresponding to the cut values are then given by the twointegrated arrays using �lo and �hi as indexes.Because the integration is from -1 to +1 the number of patterns below�Qcut can be found directly from the �b and �bb arrays with �lo as index. Thenumber of patterns classi�ed above the +Qcut is the di�erence between thetotal number of patterns and the number in the cut bin. The total numberis simply read from the last position, 
, in both arrays.� Number of wrong classi�ed B patterns: �b(�lo)� Number of right classi�ed �B patterns: �bb(�lo)� Number of wrong classi�ed �B patterns: �bb(
)� �bb(�hi � 1)� Number of right classi�ed B patterns: �b(
)� �b(�hi � 1)The digit, 1, must be included to count the cut bin on the positive side(+Qcut) because the algorithm integrates from the negative side.5.3.4 The mean tagging e�ciency �The mean tagging e�ciency �(q), where q = Qcut, is de�ned as the ratioof the number of patterns that are classi�ed, for a given cut, and the totalnumber of patterns. In other words how large fraction of the patterns thathas been classi�ed for a given cut on the netcharge (or jetcharge). By using33



the four classi�cation expressions from section 5.3.3 one can write down anexpression for the e�ciency:�(q) = �b(�lo) + �bb(�lo) + [�b(
)� �b(�hi � 1)] + [�bb(
) ��bb(�hi � 1)]�b(
) + �bb(
)+�(Qcut) = �b(�lo) + �bb(�lo) +N � �b(�hi � 1) � �bb(�hi � 1)N (5.2)Where N = �b(
) + �bb(
) is the total number of patterns.�(q) is a function of �b and �bb, which errors are known from Eq (5.1).By computing the total di�erential one can �nd an expression for the errorin �. In appendix A.2 this is shown in detail, using Eq (A.10) the error, ��,in the e�ciency is��(Qcut) = 1Nq�b(�lo)2 + �bb(�lo)2 + �b(�hi � 1)2 + �bb(�hi � 1)2 (5.3)5.3.5 The mean tagging purity �The mean tagging purity, �(q), is de�ned as the ratio between the number ofcorrect classi�ed patterns and all classi�ed patterns, for a given cut q = Qcut.Another common name for this quantity is correct tag e�ciency.From section 5.3.3 the number of wrong classi�ed patterns:�wr(q) = �b(�lo) + [�bb(
)� �bb(�hi � 1)] (5.4)The number of correct classi�ed patterns:�ri(q) = �bb(�lo) + [�b(
)� �b(�hi � 1)] (5.5)The number of classi�ed patterns is the sum of �ri(q) and �wr(q), thus:�(q) = �ri(q)�ri(q) + �wr(q) (5.6)m�(Qcut) = �bb(�lo) + [�b(
)� �b(�hi � 1)]�b(�lo) + �bb(�lo) +N � �bb(�hi � 1) ��b(�hi � 1) (5.7)In the last equation N is used instead of �b(
) + �bb(
), which is the totalnumber of patterns (both tagged and untagged). To estimate the error,��(Qcut), in �(Qcut) one progress just like for the � (section 5.3.4). Refer toappendix A.3 for details, Eq (A.15) gives:��(Qcut) = q�wr2 � [�b(�2)2 + �bb(�1)2] + �ri2 � [�b(�1)2 + �bb(�2)2]N2 (5.8)The following abbreviations are used: �1 = �lo and �2 = �hi � 1.34



5.4 Final comments before the analysisIn experimental physics one � usually means one standard deviation awayfrom the statistical mean value. With a Gaussian distribution the standarddeviation is de�ned as the square root of the variance, thus one would expect68.26% of the events to be within one � from the mean value, 95.44% to bewithin two � of the mean value etc.In this thesis Binomial statistics were used, the error for a given quantitywas taken to be the square root of the expected variance. If one use the�-notation from Gaussian statistics the errors listed in this thesis amountsto one �. Thus if a measurement is N� lower than another measurement thedi�erence is N times as large as the error listed for the measurement.This chapter has given a brief description of how the simulated data wereextracted and prepared, a few important quantities have also been de�ned.� From Eq (5.1) the error for a given bin of �b and �bb, the integratedB and �B distributions, can be computed� Eqs (5.2) and (5.3) give the mean tagging e�ciency and its error� Eqs (5.7) and (5.8) give the mean tagging purity and its errorAll these equations are implemented in abscut.f, a semi-robust Fortran 77subroutine, that should be called from PAW. It takes the B� �B distributionsas input and returns purity and e�ciency information.

35



Chapter 6The analysis, part 1The main approach of the analysis is displayed in this chapter, including inputvariable de�nitions and test results from the various net con�gurations.6.1 Where to start?By some strange analogy with the training of a neural network the analysisstarted out by simple trial and error, there was a lot of unknown territoryto cover. So instead of following a straight line to a goal the analysis wassubject to many changes, during the course of time, to sample as much ofthe parameter space as possible in search for the optimal solution.Assuming that Jetnet is a robust package most of its default values wereused throughout this analysis, the main emphasis was put on the learningparameters (section B.1) and the normalization of the input variables.6.2 De�ning the input variablesEarly on it was clear that a cut had to be made on the number of tracks,from each hemisphere, used as input to the net. The reason is that thenumber of input neurons equals the number of tracks times the number ofinput variables associated with each track.Most of the information from the B production is carried by a few hardtracks, i.e. those with highest momentum. By sorting all the tracks in ahemisphere according to their momenta one can de�ne nhard as a certainnumber of hard tracks and sum up the remaining in one pseudotrack. Thenit is possible to use a constant number of inputs to the net, no matter howmany tracks a hemisphere contains. During the analysis nhard could be setto di�erent values, thus varying the number of input tracks to the nets.Let ninp be the number of extracted input variables from each track, thenthe total number of inputs, from each hemisphere, to the net is given byNtot=(nhard + 1)� ninp, where \+1" comes from the combined pseudotrack.36



The number of input neurons in the net must equal Ntot so it is importantto limit the number of input variables, ninp, and hard tracks, nhard, in orderto reduce the size of the net and thus training time and RAM-usage.6.2.1 Charge qTogether with the momentum the charge of a track is used, in the standardjetcharge method, to reconstruct the production charge of the jet with whichthe track is associated. Hence the charge and momentum of a track wereobvious input variables to the neural nets.A great advantage with charge is that it is either -1 or +1, neutrals are notused, so for the hard tracks it was used directly as input. For the pseudotracka jetcharge calculation was done, using the standard formula:Qhem = Pj qj(~pj � ~es)�Pj (~pj � ~es)� (6.1)In which the index j runs over all the non-hard tracks, qj is the charge and~pj the momentum of track j. ~es is the sphericity axis of the event which thehemisphere is part of. DELPHI use � = 0:6 in their latest B0s paper [20].6.2.2 Momentum pUnlike charge the momentum can vary over a large range, from almost zeroto multiple GeV. In fact, due to the �nite detector resolution, resulting ina poorly reconstructed track, the momentum can be of the order 100 GeV.This is of course an unphysical momentum value and most of the tracks withsuch values were removed by the quality cuts, listed in section 5.1, duringextraction from the DST's. But a few survived, so during training and testingall remaining tracks, with momentum above the beam energy, were scaled to10 GeV.For a standard hard track, as well as those with a rescaled momentumvalue, the momentum was normalized to the LEP1 beam energy, 45.6 GeV,before used as input. For the pseudotrack a combined momentum variable,inspired by the momentum term in the jetcharge, was de�ned asPsoft =Xj (~pj � ~es)� (6.2)Where the sum runs over all the non-hard tracks. This variable was alsonormalized to the beam energy before used as input to the neural nets.6.2.3 Transverse momentum ptThe transverse momentum of a track in a B event is an important quantity,which has been explored for years (see section 3.2). It gives rise to the37



large impact parameters which form the basis for the B-tagging mentionedin section 6.2.4. To extend the B-patterns, used as input, the pt informationwas added to see if that made it easier for the neural nets to form a gooddecision surface.The pt is de�ned as the transverse component of the momentum withrespect to the sphericity axis of the event, and it is normalized to the beamenergy. For the pseudotrack this variable was de�ned:Pt;soft =Xj (~pt;j)� (6.3)Like for Psoft the sum is over all non-hard tracks and normalized to the beamenergy.6.2.4 B-tag probabilityThe �nal variable used in this analysis explores the track probability, Ptrack,from the B-tagging described in section 3.2. It should be small for tracksin a B event. Like any other probability this variable is normalized, but alogarithmic transformation was still used to explore the region close to 0:logb = log(Ptrack)log(Pmin) (6.4)Pmin=10�10 was the minimum allowed value for the track probability, if Ptrackwas smaller it was set to Pmin. The reason for this was partly to makelogb normalized, and partly because Ptrack < 10�10 is essentially zero (it isnonsense to operate with even lower track probabilities). With this de�nitionlogb 2 [0,1], close to 1 for tracks that are likely to come from a B.For the pseudotrack a variable, inspired by the de�nition of the Ntrackprobability in section 3.2, was de�ned: Q = Qj(Pj) where Pj is the B-tag probability of track j. Instead of using this product directly the samelogarithmic transformation, as for the hard tracks, was used and the resultwas averaged over the number of soft tracks:logsoft = log(Qj(Pj))nsoft � log(Pmin) = Pj log(Pj)nsoft � log(Pmin) (6.5)Where nsoft is the number of soft, or non-hard, tracks and Pmin has the samevalue as for the hard tracks.6.3 Training an Arti�cial Neural NetworkIn section 6.2 four potential input variables were outlined. In section 5.3 adescription of how to treat the output from the neural nets, for comparison38



measurements, was given. The logical next step would be to make an estimateof how many hidden layers, hidden neurons and output neurons the problemof separating B and �B requires. Unfortunately it is not possible to calculatethose numbers a priori, leaving trial and error as the only alternative.However the JetNet 3.0 write-up, and several papers on the topic, clearlystates that for most of the problems in HEP one hidden layer should besu�cient to encode a solution. This was used to narrow down the number ofpossible combinations of net structures: All nets used in this analysis had astructure with one hidden layer.In a DELPHI analysis using an ANN to separate quark 
avors [24] theyhad several distinct classes, one for each quark 
avor. For each class theyassigned an output neuron which should \�re" only if a pattern from thatclass was recognized. In the current analysis the aim was to classify the signof the charge of the b quark in the B meson. One can not really speak ofwidely separate classes, thus only one output neuron was used. This outputneuron was required to give +1 for a B and -1 for a �B pattern, correspondingto a �b and a b quark. Then the sign of the output from the net should matchthe sign of the b quark inside the meson and thus justify the name netchargefor the net-output, using the analogy with jetcharge.It is important, at this point, to stress that the training and testing ofthe neural networks were done with two di�erent samples, one training andone testing sample. It would be pointless to test a net with data it recognizesfrom the training. This was implemented in the training and testing routinesat an early stage, so all test results in this analysis are really based on thegeneralization performance of the di�erent nets.Throughout this analysis one training cycle will mean one loop throughthe training sample. In JetNet the weights are updated every 10th patternand using the 66000 patterns in the training sample, that survived the cuts insection 5.2, it turns out that 1000 training cycles equals 6.6 million updatesof the weights!6.4 Using the p and q informationTo be able to test how well the nets behave, that the training works and theprogram is free of serious bugs, it is important to have means of comparingthe results. By starting very simple, using only p and q information as input,the idea was to compare the output with that coming from jetcharge by usingthe formalism outlined in section 5.3: For a given cut on the netcharge thee�ciency and purity of classifying the input-patterns, based on the testingsample, can be calculated and compared with what the jetcharge gives forthe same cuts when it has been computed for the same data sample.Figure 6.1 shows the total jetcharge distribution and the correspondingB and �B distributions from the jetcharge. The hadronic cuts of section 5.139
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Method Amax Qcut �(� = 1)1000 cycles 20-10-1 NN 0.2399�0.0029 0.24 0.6098�0.001715000 cycles 20-10-1 NN 0.2435�0.0033 0.17 0.6103�0.0017Table 6.1: Results for the nets with q and p input variables6.5 Adding pt informationAfter a promising start, using p and q information as input, the next stepwas to add pt. To limit the number of weights due to a new variable, pt asde�ned in section 6.2.3, the number of hard tracks used as input was reduced.In this thesis only one con�guration with p, q and pt information wastested, simply due to time limitations: It had 21 input neurons, matching6 input tracks and one combined pseudotrack, from each hemisphere. Thenumber of hidden neurons was increased to 25 to give the net more freedomto encode a possible solution of the B� �B separation problem. This net wastrained in two sessions, one for 1000 and another for 2000 cycles.The purity versus e�ciency plots in �gure 6.6 show that the net, basedonly on p and q information, is just as good as the nets trained with theadditional pt information. In fact it is even better than the 21-25-1 net thattrained only 1000 cycles, the reason for this may be that the 21-25-1 net havemore degrees of freedom than the 20-10-1 and thus require more training to�nd a good weight con�guration.In table 6.2 the Amax values are listed, with corresponding cut valueson the absolute netcharge. Comparison with table 6.1 shows that the 2000cycles trained 21-25-1 net gives almost the same result as the 15000 cyclestrained 20-10-1 net.Method Amax Qcut �(� = 1)1000 cycles 21-25-1 NN 0.2362�0.0029 0.25 0.6039�0.00172000 cycles 21-25-1 NN 0.2441�0.0032 0.17 0.6124�0.0017Table 6.2: Results for nets with pt information added6.6 Adding beauty to the analysisThe last variable used as net-input in this analysis was the track probabilityfrom the B-tagging package, as described in section 6.2.4. This brought thetotal number of input variables up to four, thus increasing the size of the42



nets even more. To organize all the tests made with this number of variablesthree structures can be singled out:1. 28-35-1 structure with 6 hard tracks and one pseudotrack as input2. 20-30-1 structure with 4 hard tracks and one pseudotrack as input3. 32-45-1 structure with 7 hard tracks and one pseudotrack as inputSeveral versions of the 28-35-1 case were trained and tested. The hadroniccuts, below, refer to the selections listed in Sec 5.1. For simplicity four casesare de�ned. The update rules for � and �, the JetNet training parametersde�ned in section B.1, and the hadronic cuts were used unless something elseis stated:A: 28-35-1 net trained 2000 cycles without hadronic cuts imposedB: 28-35-1 net trained 2000 cycles with constant � and �C: 28-35-1 net trained 2000 cyclesD: 28-35-1 net trained 4000 cyclesBy comparing A and C one should be able to see what kind of e�ects thehadronic cuts have on the nets, while case B versus C should reveal how theupdating of the JetNet parameters � and � a�ects the performance of thenets. Finally, the C and D cases may point out if the nets were overtrained.Upon testing the nets and comparing cases A, B and C with each other(�gure 6.7) hardly any di�erences were found. The equal results in case Aand C indicates that the hadronic cuts did not help the nets. A reason forthis may be that the nets sort out most tracks, that would have been removedby the hadronic cuts, as noise. The equality between case B and C is moredisturbing, at �rst glance this indicates that the updating rule for � and �have no e�ect on the net performance. The JetNet package is either so robustthat the nets learn no matter what one do about the parameters, or else thegiven problem is so simple that the minimum of �2 is found without tuningthe learning parameters.When testing the neural nets in case C and D only minor di�erences wereobserved, most clearly in the e�ciency plots shown in �gure 6.8. Amax incase D turned out to be almost 1� better than case C, see table 6.3, so the28-35-1 net was certainly not overtrained.After the 28-35-1 cases a structure with a higher ratio of hidden to inputneurons was tested. For the 28-35-1 net this ratio was 3528 = 1.25, a new ratioof 1.5 was tried instead. To reduce the size of the net, and thus the trainingtime, the number of input neurons were reduced by using fewer input tracksfrom each hemisphere. The choice fell on a 20-30-1 structure. Again thehadronic cuts and updates of � and � were used, unless something else isstated. 43
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Method Amax Qcut �(� = 1)case A 0.2437�0.0030 0.20 0.6106�0.0017case B 0.2472�0.0032 0.17 0.6124�0.0017case C 0.2447�0.0029 0.22 0.6108�0.0017case D 0.2469�0.0029 0.23 0.6124�0.0017case � 0.2390�0.0030 0.22 0.6065�0.0017case � 0.2498�0.0032 0.17 0.6143�0.0017case � 0.2516�0.0032 0.17 0.6145�0.0017case � 0.2451�0.0030 0.20 0.6100�0.0017Table 6.3: Results for 4 variable input netsnet to solve the B � �B separation problem. A 32-45-1 structure was chosen,containing 1485 weights which is a factor 3 more than the promising 20-30-1structure. The 32-45-1 net was trained 3000 cycles with the hadronic cutson the data and updates of � and � enabled (case �). In �gure 6.11 the netis compared to the best 20-30-1 case, the 20-30-1 net is clearly better. Byincreasing the number of training cycles the 32-45-1 net may improve, butthe cost of a much longer training time is probably higher than the gain froman improved result: Table 6.3 shows that Amax for the best 20-30-1 net (case�) is more than 2� better.Instead of trying out further structures a last attempt was made on thebest case, the 20-30-1 net. It was trained for 3000 and 4000 cycles with thehadronic cuts and � and � updates enabled. The 3000 cycles version gavebetter results than case �, �gure 6.12 shows how this net performs comparedto the jetcharge and table 6.4 lists the results. The 4000 cycles version hada worse generalization performance than the 3000 cycles, it overtrained.Method Amax Qcut �(� = 1)Jetcharge algorithm 0.2567�0.0033 0.13 0.6185�0.00173000 cycles 20-30-1 0.2534�0.0031 0.19 0.6154�0.0017Table 6.4: Results for the best 4 variable input net and the jetchargeIt is clear that the 20-30-1 structure is very close to the performanceof the jetcharge in separating B and �B, but a nagging doubt was growingstronger: Is the jetcharge an ultimate limit that the nets converge towards?This question was not answered before the very late stages of this analysis,and will be addressed in chapter 7. 45



6.7 Plots from The analysis, part 1
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Chapter 7The analysis, part 2In the previous chapter four basic input variables were explored, but noneural network con�guration with a better performance than the jetchargemethod was found. In this second part of the analysis a new approach istaken: Rede�ne the input variables1.7.1 De�ning the new input variablesIn chapter 6 the input variables p, pt, q and logb were used separately, thenew approach is to weight p, pt and logb with q. Because q 2 f�1; 1g the newvariables will be 2 [�1; 1], as long as they have been normalized. A natural�rst approach was to try q�p, q�pt and q�logb as input variables, where p, ptand logb are de�ned and normalized as in section 6.2.Like in chapter 6 only a certain number of the hardest tracks were useddirectly to generate input variables from each hemisphere. If more tracksremained, after the nhard tracks had been extracted, the information werecombined into a pseudotrack. For the hard tracks the new variables could beused directly as input to the nets. For the pseudotrack a simple extensionwas tried: Pi(qi � pi), Pi(qi � pt;i) and Pi(qi � logb;i) where the three sums runover the soft tracks.These new de�nitions have reduced the number of input variables fromeach track, from 4 to 3, the number of input neurons will be reduced by thesame factor. Hence the new variables have the positive side e�ect that theylower the number of connections in the net, which again should lower thetraining time.In this part of the analysis the standard updates of � and �, as de�nedby Eqs (B.1) and (B.2), and the hadronic selection, as listed in section 5.1,were used permanently. Only a few net-structures were explored, due to thetime constraints. Hence it is important to emphasize that the results in thischapter most likely can be optimized further.1Suggested by Ole R�hne, at CERN, in June 199655



7.2 Never change a winning formulaFrom chapter 6 it is clear that the 20-30-1 structure, with only 4 hard tracksand one combined pseudotrack, from each hemisphere, is a good choice. Thusinstead of starting from scratch, trying out new structures, that experiencewas used. The �rst attempt was made with a 15-30-1 structure, takingthe same number of input tracks as the 20-30-1 net had done. This net wastrained 2000 cycles, and the test showed a signi�cant improvement comparedto the nets trained with the old input variables. This is easily veri�ed from�gure 7.2, which show that the new net gives results up to 2� better thanthe best net with the old input variables. The good results are quanti�ed intable 7.1, Amax is almost 2� better than that of the best 20-30-1 net listedin table 6.4.
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The 15-23-1 structure was chosen because it has roughly the same ratioof hidden to input neurons as the good 20-30-1 net of the previous chapter.This structure was trained 1000, 2000 and 3000 cycles. As �gure 7.1 showsthe average training error decreased steadily the �rst 2000 cycles but thenlevelled out. Still the results did improve with the number of cycles, as canbe seen from table 7.1, but only slightly. The Amax value hardly changed atall compared to the value for the 15-30-1 net.In �gures 7.3 and 7.4 the purity and e�ciency plots based on the 3000cycles trained net are compared to those from the standard jetcharge. Theneural net is better than the jetcharge, by 1-2�, for a large range of cuts onthe output. This is even more visible in the � versus � plot in �gure 7.5.However in the interesting region for B-mixing, the Amax from the net isonly 1� higher than the jetcharge based value. Refer tables 6.4 and 7.1 forcomparison.The 24-40-1 structure was chosen to see if the addition of three moretracks, from each hemisphere, would make any di�erence. The 24 inputneurons would then correspond to 7 hard tracks and one pseudotrack. Withall the extra weights of the 24-40-1 structure, 1000 compared to the 552 ofthe 15-23-1 net, it seemed likely that this net would require at least twice asmuch training. 4000 and 6000 training cycles were used.But as one can verify from table 7.1 this structure did not give as goodresults as the 15-23-1 structure. Like in chapter 6, the best results wereobtained using only a few input tracks from each hemisphere. In additionthe 6000 cycles trained 24-40-1 structure did worse than the 4000 cyclesbased version, caused by overtraining.Method Amax Qcut �(� = 1)2000 cycles 15-30-1 0.2595�0.0032 0.17 0.6160�0.00171000 cycles 15-23-1 0.2596�0.0031 0.19 0.6156�0.00172000 cycles 15-23-1 0.2599�0.0031 0.18 0.6171�0.00173000 cycles 15-23-1 0.2604�0.0032 0.17 0.6168�0.00174000 cycles 24-40-1 0.2591�0.0031 0.20 0.6160�0.00176000 cycles 24-40-1 0.2577�0.0030 0.21 0.6161�0.0017Table 7.1: Results based on the q�p, q�pt and q�logb input variables.57



7.3 Omitting the b-tag informationA �nal test was made by omitting the b-tag information to see what e�ect thiswould have on the performance of the nets. A 14-23-1 structure was chosenin order to be able to compare the results with those from the two structuresin section 7.2. Using the input variables q�p and q�pt three training sessionswith the 14-23-1 structure were launched; lasting 1000, 2000 and 3000 cycles.When testing the nets their performance turned out to be signi�cantlyworse than the nets with b-tag information. By comparing tables 7.1 and 7.2it is clear that the nets without b-tag information give an Amax value about2� lower than those with b-tag information. But the 14-23-1 structure stillperforms better than the best net with the old input variables in chapter 6!Method Amax Cut �(� = 1)1000 cycles 14-23-1 0.2549�0.0030 0.21 0.6145�0.00172000 cycles 14-23-1 0.2548�0.0030 0.21 0.6149�0.00173000 cycles 14-23-1 0.2534�0.0030 0.21 0.6152�0.0017Table 7.2: Results based on the q�p and q�pt input variables. No b-tag info.An interesting thing one can read out of table 7.2 is that the 14-23-1 structurereached its best weight con�guration already after 1000 training cycles. Fromthat point and out the net started to specialize in remembering the trainingsample, thus degrading the generalization performance.
58



7.4 Plots from The analysis, part 2
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Chapter 8ConclusionsThe aim of this analysis was to train and test neural networks to see ifthey could perform the task of separating B and �B patterns better thanthe Jetcharge method mentioned in section 3.3. After deciding what kind ofneural net to use, the JetNet package of the feed-forward class, the analysiscan roughly be split into three questions:1. How does the number of hard tracks, few versus many, used as inputto the net a�ect its performance?2. Are the internal net-structure and parameters important when lookingfor the optimal solution?3. Which input variables are the nets most sensitive to, and can di�erentcombinations of these a�ect the performance of the nets?The three following sections will address these questions and try to answerthem, based on the experience from chapters 6 and 7. In the last section, ofthis chapter, possible improvements to the given analysis will be discussed.8.1 The number of hard tracksHow the number of hard tracks used as input, from each hemisphere, a�ectedthe nets was �rst tested in section 6.6. From tables 6.3 and 6.4 it is clearthat the 20-30-1 net, with only 4 hard and one combined pseudotrack asinput, performs best. However, the 32-45-1 net was not fully tested so aconclusive statement can not be drawn from those data. But with the newinput variables in section 7.2 things looks more de�nite. From table 7.1 it isclear that the 15-23-1 net performs better than the 24-40-1 net, though thedi�erences are below one �.Thus it is tempting to conclude that the number of hard tracks used asinput to a net should be limited to 4 or 5, which also has the positive e�ect ofreducing the training time and RAM-usage for the net. An explanation for63



this result may be that the B information is carried by the hardest tracks,hence including many tracks will not help. An alternative explanation isrelated to the software set up: The input array use nhard tracks from eachhemisphere. If nhard is close to the average charged track mulitplicity of Bhemispheres [25], hnBi � 12, many entries in this array will be zero. Thenthe net will be trained with many \zero-tracks" which may have the e�ect onthe net of pulling the B and �B output distributions closer together. If thise�ect is signi�cant it is obvious that nhard must be set much smaller thanhnBi, thus 4-6 seems reasonable.8.2 The net-structure and parametersWith backup from the JetNet manual only one hidden layer was used, but onecan question if this really was su�cient. Too few hidden layers and neuronswould have given a poor generalization performance, the net would hardlyhave been able to recognize the training sample. But the \one hidden layer"-solution gave results better than the highly optimized Jetcharge method, sothere certainly were enough hidden neurons to encode a good discriminationsurface to separate the B and �B patterns. In the other end of the spectrumtoo many neurons would have given the net problems with making up itsmind. From the saturation measure, which can be read out from the JetNetprogram and used to stop the training, the di�erent layers of weights seemedto have just enough freedom: The saturation usually went up by a factor 10to 100 during training, this signals that the net is making up its mind. Thusit looks as if one hidden layer was su�cient for the problem in this analysis.Two hidden layers may have worked even better but only to the cost of amuch longer training time.Once the di�erent nets had been thoroughly trained, and then been fedthe testing sample, the di�erences in their Amax values seemed to dependmore on the input variables than the exact net-structure. Well-trained netsusing the old input variables, in chapter 6, gave Amax values within 1� of eachother. The same goes for well-trained nets using the new input variables, inchapter 7. But the Amax value of the best net using the new input variableswas more than 2� better than the best net using the old input variables,thus the number of hidden neurons and the exact structure seem to be lessimportant than the input variable de�nitions. But even though the numberof hidden neurons seem to be less important than other factors it looks as ifthe best results can be obtained using more hidden than input neurons.But what about the net-parameters? In this analysis only � and �, theJetNet learning parameters, were tested. This took place in chapter 6. Firstfor the 28-35-1 net, case B and C, and then for the 20-30-1 net, case � and �.In all these cases the same number of training cycles were used, but B and64



� had constant values of � and �, while C and � used the update rules fromsection B.1. Then by comparing case B to C and case � to � the e�ect fromthe learning parameters should be visible. Table 6.3 shows that case B, withconstant � and �, is better than case C, with the updates. For the 20-30-1net it is the other way around: Case �, with constant � and �, performsworse than case �, with the updates. These results seem to contradict eachother. But one should note that the results for case B and C are within 1�of each other, and the same for case � to �, so this could just as well bestatistical 
uctuations.One explanation could have been that the 28-35-1 net has 1015 weightsagainst the 630 of the 20-30-1 net and thus require more training before agood solution is reached. But even after 4000 cycles, with updates of � and �,labeled case D, the version with constant parameters throughout the trainingperforms better.There are two possible conclusions to this section. Either the JetNet 3.0package is so robust and well-written that the default values of the parametersgive fairly good results. Or else the problem of separating B and �B, withthe given set of variables, is so simple that no �ne-tuning of the learningparameters are needed. Even though no single conclusion can be based onthese results the updates of � and � were used, per default, in chapter 7 sincethe best net in chapter 6 was obtained with these updates enabled.8.3 The input variablesIn chapter 6 four input variables, q, p, pt and logb, were de�ned and usedto train nets in separating B and �B patterns. In chapter 7 these variableswere recombined into q�p, q�pt and q� logb and then used as input to the nets.Though no new information was added in chapter 7 the signi�cantly betterresults, more than 2�, indicate that the nets are much more sensitive to thesevariables than those de�ned in chapter 6.The test done by removing the b-tag information from the new set ofinput variables, in section 7.3, clearly indicates that the b-tag information isimportant for the nets in order to separate the B and �B patterns.If one compares the variation in the performance of the nets, due tochanges in the input variable de�nitions and due to changes in the net-structures or parameters, the conclusion must be that the input variablesare most important. Thus future improvements will most likely be done byeven more sensitive de�nitions of the input variables (and by adding newinformation as well, of course). But to obtain optimal solutions one will alsohave to adjust the net-structure and parameters.65



8.4 General comments and re
ectionsThere are many e�ects one must take into consideration when looking forsolid conclusions in this analysis, but there is in particular one conclusionthat the data strongly supports: The amount of required training.In an older DELPHI analysis [24] it was noted that \a network basedon kinematical input variables could perform slightly better than a networkusing eventshape variables, but takes considerably longer to train". Indeed,while the DELPHI analysis needed 300 thousand updates of the weights thecurrent analysis never used less than 1000 training cycles, or 6.6 millionweight updates. And it is evident from the tables in chapter 6 and 7 thatin most cases the neural nets would improve further even after the initial6.6 million weight updates. Thus networks based on kinematical variables dorequire more training.One can take a closer look at how the learning took place by studying thetraining error development. Strictly speaking plots of the average trainingerror, as a function of the number of training cycles, do not reveal how thegeneralization performance develops. But they do show the activity of theweight changes. Thus when the average training error levels out the weightchanges in the network is very small, which signals that the main part of thelearning process is over.For the simple 20-10-1 net with only two input variables, refer �gure 6.2,most of the learning took place up to 400 cycles. After that point only minorchanges occured. For the more complex nets, with more weights and inputvariables, it took more training for the nets to sort out the speci�c B and �Bfeatures. The 15-23-1 net, trained on the new input variables, learned mostof these features up 700-800 cycles. But as one can see from �gure 7.1 thenet continued to learn even up to 2000 cycles, where the average trainingerror leveled out.8.5 Final commentsBased on the results from chapters 6 and 7 it has been underlined thatthe performance of the nets depend strongly on how the input variables arede�ned, as compared to the dependency on the number of input tracks andthe speci�c net-structure and parameters. Thus a future development ofthis analysis should search for additional information or more sensitive inputvariable de�nitions.� Additional information may include: Kaon, muon and lepton tags andpossibly eventshape variables 66



� The nets were more sensitive to (q�p) than q and p, but maybe evenbetter de�nitions of the input variables can be found: Like a jetchargeinspired (q�p)�, (q�pt)�, (q�logb)� etc.To �nd optimal solutions one would naturally have to continue with thevariation of the net-structures and number of input variables, and also lookcloser on the use of the net-parameters. But this should come second to theexploration of the input variables.However, the JetNet 3.0 package seem to have fairly good default values,so by using between 5 and 7 input tracks from each hemisphere and roughly50% more hidden than input neurons one should get a good start. The bestnet found in this analysis was a 15-23-1 structure trained and tested withthe input variable de�nitions from section 7.1. It was trained 3000 cycleswith hadronic cuts imposed on the data sample and updates on � and �, asde�ned in section B.1. The Amax value calculated from its B and �B outputwas 1� higher than the Amax value calculated from the jetcharge output,though for a higher Qcut. But it has a purity at 100% e�ciency about one �lower than that from the jetcharge. Refer �gure 7.5.Method Amax Qcut �(� = 1)jetcharge algorithm 0.2567�0.0033 0.13 0.6185�0.00173000 cycles 15-23-1 0.2604�0.0032 0.17 0.6168�0.0017Table 8.1: The best net compared with jetchargeThe main conclusion of this thesis is that the aim of �nding a neuralnetwork con�guration that could perform the task of separating B and �Bhemispheres better than the Jetcharge method has been achieved. But thedi�erence is still too small to be useful in a B0s mixing analysis, thus furtherimprovements are needed.
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Appendix AStatistics�b and �bb denotes the integrated B and �B distributions, from section 5.3.2.The aim of this appendix is to outline the errors in �b and �bb and otherquantities, from chapter 5, that are based on the integrated distributions.A.1 Errors in �b and �bbAs �gure A.1 shows the integration goes from -1 up to a certain limit onthe netcharge (or jetcharge). Let this limit correspond to bin q in the givendistribution, then one can label the integrated value n(q). This would thencorrespond to �b(q) in a B distribution or �bb(q) if it was a �B distribution.Let N be the total number of patterns in the given distribution.
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From elementary statistics the following de�nition becomes useful [29]:Let n1; n2; � � � ; nk be a random sample from fn(n; p1,p2,� � �,pk).Then an estimator p̂q=g(nq) is said to be unbiased for pq if theexpectation value hp̂qi = pq for q=1,� � �,kIn this de�nition the subscripts correspond to the bin numbers, nq = n(q),from the integrated distributions. Because nq follows Binomial statisticsits expectation value should be hnqi=N �pq where pq is the probability ofintegrating an event up to bin q. From this statement and the above de�nitionone can easily show that p̂q = nqN is an unbiased estimator for pq:hp̂qi = hnqN i = 1N �hnqi = pq (A.1)A random distributed variable in Binomial statistics will have a variancegiven by �2 = N �p�(1 � p) where p is the probability of success and N thenumber of trials. From this result an estimator for the variation in nq can begiven as: �2̂n = N � p̂q � (1 � p̂q) (A.2)However, from Eq A.1 it is clear that nqN is a good estimator for p̂q so thiscan be substituted into Eq A.2 giving:�2̂n = N � nqN � (1 � nqN )+�n̂ = snq�[N � nq]NBy using n(q) instead of nq and renaming �n̂ to �(q), just to emphasize itsdependence on the cut bin q, the error in the integrated distributions can bewritten as �(q) = sn(q) � [N � n(q)]N (A.3)Eq (A.3) is valid for both B and �B distributions as long as n(q) gives theintegrated number up to bin q and N the total number of the given B-
avor.A.2 Error in the mean tagging e�ciency �In section 5.3.4 the mean tagging e�ciency � was de�ned using the integratedB � �B information in �b and �bb. To calculate the error in �1, based on theerrors in �b and �bb, a useful theorem can be listed [30]:1There is an alternative, and much quicker way of, of obtaining an error measure for�. One simply forget about the B � �B nature of the events and instead just counts the nnumber of successes. Since n=��N follow Binomial statistics �̂= nN and ��̂=p��(1 � �)=N .69



Given a function R = R(x1; x2; � � � ; xn), with a known error si ineach of its xi variables, the error in R can be expressed assR = vuut @R@x1 � s1!2 + � � �+  @R@xi � si!2 + � � �+  @R@xn � sn!2 (A.4)R and sR can be identi�ed as � and �� in the current problem. In section 5.3.4� was written as a function of �b(�lo), �bb(�lo), �b(�hi�1) and �bb(�hi�1).These four variables will contribute to the total error and must correspondto the xi variables in Eq (A.4).To reduce the complexity of the calculations the error contributions dueto B and �B terms are treated separately. In one part errors due to �bb:�bb(q) =  @�(q)@�bb(�lo) � �bb(�lo)!2 +  @�(q)@�bb(�hi � 1) � �bb(�hi � 1)!2 (A.5)And in the other part errors due to �b:�b(q) =  @�(q)@�b(�lo) � �b(�lo)!2 +  @�(q)@�b(�hi � 1) � �b(�hi � 1)!2 (A.6)Eqs (A.5) and (A.6) contain all the partial derivatives that can be calculatedfrom �, so in the spirit of Eq (A.4) one can set up the following formula forthe total error in �: ��(q) = q�b(q) + �bb(q) (A.7)To calculate the partial derivatives of Eq (A.5) the expression for � given inEq (5.2), in section 5.3.4, was used. It gives�bb(q) = � 1N � �bb(�lo)�2 + ��1N � �bb(�hi � 1)�2m�bb(q) = 1N2 � [�bb(�lo)2 + �bb(�hi � 1)2] (A.8)Similarly for Eq (A.6) one can obtain:�b(q) = � 1N � �b(�lo)�2 + ��1N � �b(�hi � 1)�2m�b(q) = 1N2 � [�b(�lo)2 + �b(�hi � 1)2] (A.9)Using Eqs (A.8) and (A.9) in Eq (A.7) the error in �(q) can be written:��(q) = 1Nq�b(�lo)2 + �bb(�lo)2 + �b(�hi � 1)2 + �bb(�hi � 1)2 (A.10)70



A.3 Error in the mean tagging purity �The mean tagging purity �(q) was de�ned in section 5.3.5. To calculate theerror in this quantity the same approach as for �(q), in section A.2, was used.The only di�erence is that every occurrence of � must be replaced by �. FromEq (A.5) with �! � :�bb(q) =  @�(q)@�bb(�lo) � �bb(�lo)!2 +  @�(q)@�bb(�hi � 1) � �bb(�hi � 1)!2m�bb(q) =  @�(q)@�ri(q) � @�ri(q)@�bb(�lo) � �bb(�lo)!2+  @�(q)@�wr(q) � @�wr(q)@�bb(�hi � 1) � �bb(�hi � 1)!2 (A.11)Next step is to use equations (5.4), (5.5) and (5.6) in Eq (A.11):�bb(q) =  �wr(q)N2 � 1 � �bb(�lo)!2 +  ��ri(q)N2 � (�1) � �bb(�hi � 1)!2m�bb(q) = 1N4 � �[�wr(q) � �bb(�lo)]2 + [�ri(q) � �bb(�hi � 1)]2� (A.12)Where N = �ri(q) + �wr(q) is the number of classi�ed patterns. With Eq(A.12) the �B part is taken care of. The error contribution from the B partcan be calculated from Eq (A.6), with �! � :�b(q) =  @�(q)@�b(�lo) � �b(�lo)!2 +  @�(q)@�b(�hi � 1) � �b(�hi � 1)!2m�b(q) =  @�(q)@�wr(q) � @�wr(q)@�b(�lo) � �b(�lo)!2+ @�(q)@�ri(q) � @�ri(q)@�b(�hi � 1) � �b(�hi � 1)!2 (A.13)Using equations (5.5), (5.4) and (5.6) in Eq (A.13):�b(q) =  ��ri(q)N2 � 1 � �b(�lo)!2 +  �wr(q)N2 � (�1) � �b(�hi � 1)!271



m�b(q) = 1N4 � �[�ri(q) � �b(�lo)]2 + [�wr(q) � �b(�hi � 1)]2� (A.14)Where N = �ri(q) + �wr(q) is the number of classi�ed patterns. The laststep is to modify Eq (A.7) by substituting � for � and then inserting theinformation from Eqs (A.12) and (A.14):��(q) = q�b(q) + �bb(q)m�� = q�wr2 � [�b(�2)2 + �bb(�1)2] + �ri2 � [�b(�1)2 + �bb(�2)2]N2 (A.15)Where q was omitted, for compactness reasons, �1 $ �lo and �2 $ �hi � 1.

72



A.4 Outlining p��(2� � 1)In the latest DELPHI paper on B0s mixing [20] the authors refer to thequantity p� � (2� � 1) as \proportional to the statistical signi�cance of asignal from oscillations".To arrive at this quantity one can start by looking at the signal, which islimited by statistics in two ways: By how large a fraction of the events thathave been classi�ed, i.e. the e�ciency, and by how many of the events thathave been correctly classi�ed, i.e. the purity.Let � be the e�ciency, � the purity and �� the impurity. The impurity comesfrom events wrongly tagged as signal events, thus �� = 1 � �. To �nd the\true" signal from oscillations those events wrongly tagged as signal eventsmust be subtracted from the tagged events:s = � � �� � � �� = � � (�� ��) = � � (2� � 1) (A.16)To get the statistical signi�cance of a signal from oscillation, which is the aimof this section, the background must be included. The signi�cance is usuallyde�ned as signal divided by the square root of the background, A = s=pb, butin a B-mixing analysis the signal will also be part of the background. Insteadone can use the conservative modi�cation that A = s=ps+ b.For a given analysis the signal and the background must add up to thee�ciency, and in combination with Eq (A.16) one gets:s+ b = �) b = �� s = � � (1 � 2�+ 1) = 2� � (1 � �) (A.17)Using the expressions for s and b, from Eqs (A.16) and (A.17):A = sps+ b = � � (2�� 1)q� � (2� � 1) + 2� � (1� �) = � � (2�� 1)p� = p� � (2� � 1)This is the same quantity that DELPHI lists in their paper.
73



Appendix BJetNet 3.0Jetnet 3.0 [22] is a versatile Arti�cial Neural Network Package written inFortran 77. With a total of 72 switches available one have much freedom incomposing a neural network and training it.B.1 Speci�c choicesBecause the output from the net should be either negative or positive anactivation function with that feature was needed: tanh was chosen.According to the JetNet manual most of the problems in High EnergyPhysics seem to have very simple discrimination surfaces so that one hiddenlayer should be enough to encode a solution. Thus the \one hidden layer"structure was used throughout the analysis.In section 4.5.1 the JetNet learning parameters, � and �, were mentioned.They are important in the process of �nding a minimum value of �2, and thefollowing update rules were adopted from an earlier DELPHI analysis[24]:�t = �t�1 �  �min�t�1 !�� (B.1)�t = �t�1 �  �max�t�1 !�� (B.2)Range of the parameters: � 2 [0.0001,0.05] and � 2 [0.4,0.9]. The constantshave values ��=0.05 and ��=0.14 taken from the DELPHI analysis as well.� and � are updated each epoch, which per JetNet default is after each1000 patterns. If the training error is smaller than in the previous epoch theparameters are updated according to Eqs (B.1) and (B.2). But if the errorincreased � was increased by 20% (but was required to be below 0.01), and� lowered by 20% (but was required to be above 0.04).74



B.2 CPU and RAM demanding trainingTraining an ANN is not a small task, it is usually both very CPU and RAMdemanding. Typical nets in this analysis required between 20 Mb and 50Mb RAM, mainly due to the large input array. The time spent on trainingthe nets were usually of the order 10,000 to 20,000 CPU-seconds on a 91Mb RAM, 266 MHz AlphaStation. But on smaller machines the trainingsessions more often had to compete with other user processes, thus swappingoccured more frequently slowing down the training. In addition a lower clockfrequency will easily double or triple the training time.Though the above �gures will vary from machine to machine, dependingon the accessible RAM, a general statement like \training an ANN based onthe JetNet 3.0 package is very time consuming" should be underlined. Awrong statement in a piece of code and a days work may be useless.
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Appendix CProgram listingThis appendix describes the main routines of the analysis and in a few casesgive excerpts of important code. However, the standard JetNet 3.0 code [22],the Skelana structure [27] and Patchy technology [31] can be found elsewhereand will be omitted here.C.1 General source codeTo extract information from the DST's (identi�ed by a PDLINPUT �le) Patchytechnology, with its CAR and CRA �les, was used in a combination withSkelana. This was implemented in extract.car which used the quality cutsfrom section 5.1 during the extraction, and afterwards it stored the resultsas column-wise Ntuples in two hbook �les: netch.hbo (training sample) andtsample.hbo (test sample).The training was performed by train.car which reads the training datafrom netch.hbo. After the training session the �nal weight matrix of theneural net was dumped to a �le named jndat.dump.The testing was performed by ntest.car which reads the test data fromtsample.hbo and the weights from jndat.dump. Test output were writtendirectly to the screen so it had to be piped into a suitable �le (output.log)during execution: UNIX-prompt> ntest> output.logThe jetcharge calculations were done with the help of a short CAR-�le namedjetch.car in which the hadronic selections were applied.Each time changes were made to the net-structure or input variables thetrain.car and ntest.car �les had to be modi�ed. Thus after almost a yearof work on the thesis several dozen versions of these �les existed, only thelatest versions can be found at: http://www.fys.uio.no/~bor/physrc/76



C.2 NTCOPYBoth ntest.car and train.car have a common Fortran subroutine calledNTCOPY which is invoked in the NTCOPY deck of the two CAR-�les. Thissubroutine copies the desired information from the Ntuples, forms the inputvariables based on this information and put the results into suitable arraysfor the JetNet training or testing.In this listing BCDE is a common block de�ned in extract.car, where theentire Ntuple is declared and the hadronic selections are initialized accordingto the values in section 5.2. pcut is the cut value of the momentum, crazypthe value that momentum above beam energy is rescaled to and trkcut isthe minimum number of charged tracks per hemisphere. The datain anddataout arrays are used to store the input variables and to feed the JetNetinput and output arrays.SUBROUTINE NTCOPY(pos)+CDE, BCDE.INTEGER pos, qqINTEGER nsoft, itrkREAL pqsum, ptsum, qbtag** Make cut on number of charged tracks and make sure* that at least one of the tracks in the hemisphere* has momentum above pcutIF (ntrack1.GE.trkcut.AND.p1(1).GT.pcut) THEN** Count the entry as accepted and normalize output valuepos = pos + 1dataout(1, pos) = qqbar1 / 5** Reset input valuesCALL vzero(datain(1, 1, pos), nvar*alltr)** Input values from hard tracks:* ------------------------------* DO itrk = 1, alltr-1qq = q1(itrk)* Use only tracks with momentum above cut valueIF (p1(itrk).GT.pcut) THENIF (p1(itrk).GT.beamen) THENdatain(1, itrk, pos) = qq*crazyp/beamenELSEdatain(1, itrk, pos) = qq*p1(itrk)/beamenENDIF* P_t informationdatain(2, itrk, pos) = qq*pt1(itrk)/beamen* Btag informationIF (btg1(itrk).LE.1.AND.btg1(itrk).GE.minb) THENdatain(3, itrk, pos) = qq*log(btg1(itrk))/log(minb)ELSEIF (btg1(itrk).LT.minb) THENdatain(3, itrk, pos) = qqELSEdatain(3, itrk, pos) = 0.print *,'===> btag above unity!! Value=', btg1(itrk)ENDIF* ELSEdatain(1, itrk, pos) = 0.datain(2, itrk, pos) = 0.datain(3, itrk, pos) = 0.ENDIFENDDO** Input values from soft tracks:* ------------------------------** Use jetcharge to sum all soft tracks. 'soft tracks'* are defined as the remaining tracks when the (alltr-1)* number of hardest tracks have been used77



nsoft = ntrack1 - (alltr - 1)IF (nsoft.GT.0) THENpqsum = 0.ptsum = 0.qbtag = 0.DO itrk = alltr, ntrack1qq = q1(itrk)* Sum up tracks with momentum above pcutIF (p1(itrk).GT.pcut) THENpqsum = pqsum + (qq*p1(itrk)/beamen)ptsum = ptsum + (qq*pt1(itrk)/beamen)IF (btg1(itrk).LE.1.AND.btg1(itrk).GE.minb) THENqbtag = qbtag + (qq*log(btg1(itrk))/log(minb))ELSEIF (btg1(itrk).LT.minb) THENqbtag = qbtag + qqELSEprint *,'==> btag above unity! Value=', btg1(itrk)ENDIFENDIFENDDO** Store the information for the soft trackdatain(1, alltr, pos) = pqsumdatain(2, alltr, pos) = ptsumdatain(3, alltr, pos) = qbtagELSEdatain(1, alltr, pos) = 0.datain(2, alltr, pos) = 0.datain(3, alltr, pos) = 0.ENDIF* ENDIF* RETURNENDC.3 abscut.fFortran subroutine written to be called from PAW. It takes two histogramsas input, \id1" with the �B distribution and \id2" with B. From those itcomputes the purity and e�ciency which it stores in histograms 88 and 89.It also computes Amax and print some statistics when �nished.SUBROUTINE abscut4(id1,id2)IMPLICIT NONE********************************************************************************************************************************************* Input: id1 and id2 are two filled histograms with ** the same number of channels (or bins) and ** with range from -1.0 to +1.0 ** id1 must contain the Bbar (OUT.LT.0) and id2 ** the B (OUT.GT.0) information ** ** Output: Histograms id3 and id4, displaying the integrated ** B and Bbar distributions. Histograms id5 and id6, ** displaying the tagging purity and mean tagging ** efficienciy as functions of the cuts on the ** "netcharge". Thus pur(Q) is the purity obtained when ** cutting on netcharge at -Q and +Q removing the ** events inbetween. ** ** Notes: - The Delphi jetcharge is shifted, so this method ** incorporates a Qshift. But currently the shift is ** only 0.015, or of the order 1 bin! ** ** ** Created: March 7 1996 ** Modified: June 17 1996 ************************************************************************************************************************************************ 78



*********************************************************************** Variable declaration ************************************************************************ INTEGER id1, id2, id3, id4, id5, id6PARAMETER (id3=86, id4=87, id5=88, id6=89)** External functionsLOGICAL hexist** Local variablesINTEGER max_nxPARAMETER (max_nx=1000)** DELPHI has shifted the jetcharge |Q_mean_jet - 0.015|=0REAL QshiftPARAMETER (Qshift=0.02)* CHARACTER*100 chtit1, chtit2INTEGER i, j, nmid, nzero, nhigh, nhemINTEGER nx1, ny1, nwt1, loc1,$ nx2, ny2, nwt2, loc2REAL nbp, nbbp, prt1, prt2, prt3, prt4REAL xmi1, xma1, ymi1, yma1,$ xmi2, xma2, ymi2, yma2REAL bdis(max_nx), bbdis(max_nx)REAL bbsum(max_nx), bsum(max_nx),$ errb(max_nx), erbb(max_nx)REAL tpur(max_nx), stp(max_nx)REAL teff(max_nx), ste(max_nx)* INTEGER idmaxREAL maxmix, tmix, errm, nchcut* LOGICAL id1_exists, id2_exists************************************************************************** Read input histograms - check for errors ************************************************************************* Check that histograms exist in memoryid1_exists = HEXIST(id1)IF (.NOT.id1_exists) THENPRINT *, id1, ' does not exist'RETURNENDIF* id2_exists = HEXIST(id2)IF (.NOT.id2_exists) THENPRINT *, id2, ' does not exist'RETURNENDIF** Get histogram definition for id1CALL HGIVE(id1, chtit1, nx1, xmi1, xma1, ny1, ymi1,$ yma1, nwt1, loc1)IF (nwt1.GT.100) THENPRINT *, 'Too many characters in title', nwt1RETURNENDIF* IF (nx1.GT.max_nx) THENPRINT *, 'Too many bins: ', nx1RETURNENDIF* Get histogram definition for id2CALL HGIVE(id2, chtit2, nx2, xmi2, xma2, ny2, ymi2,$ yma2, nwt2, loc2)IF (nwt2.GT.100) THENPRINT *, 'Too many characters in title', nwt2RETURNENDIFIF (nx2.GT.max_nx) THENPRINT *, 'Too many bins: ', nx2RETURNENDIF* IF (nx2.NE.nx1) THEN 79



PRINT *, 'Error: Input histos have different ranges!'RETURNENDIF** Get contents of input histogramsCALL HUNPAK(id1, bbdis, ' ', 0)CALL HUNPAK(id2, bdis, ' ', 0)*************************************************************************** Compute the desired quantities: ** ** Purity = (Nr of correct tagged) / (Nr of tagged) ** Efficiency = (Nr of tagged) / (all tagged + untagged) ** Mixing Amplitude = SQRT(Efficiency) * (2*purity - 1) ************************************************************************* Find the middle bin of the nx1 channels of the input histosIF (MOD(nx1,2) .EQ. 1) THENnmid = (nx1-1)/2PRINT *,'*** MODULUS(nx1,2).EQ.1 ***'ELSEnmid = nx1/2ENDIF** The shifted zero bin, |Q_mean_jet - shift| = 0, can be* calculated by adding the shift to the middle bin (nmid)nzero = nmid + INT(nmid * Qshift)nhigh = 1. + Qshift**** Accumulate b- and bbar-histogram contents i.e. sum* up the b and bbar distributionsbbsum(1) = bbdis(1)bsum(1) = bdis(1)* DO i = 1, nx1-1bbsum(i+1) = bbsum(i) + bbdis(i+1)bsum(i+1) = bsum(i) + bdis(i+1)ENDDO* IF (bbsum(nx1).LE.0.OR.bsum(nx1).LE.0) THENPRINT *, 'No events! 'RETURNENDIF** The total number of hemispheres in the histogramsnhem = bsum(nx1) + bbsum(nx1)** ---------------------** Compute the tagging purity, aka the mean "correct* tagging efficiency"j = 0DO i = nzero, nx1-1j = j + 1* Correct tagged (j = i - nzero + 1)nbp = bbsum(nzero-j) + (bsum(nx1) - bsum(i))* All tagged (i.e. outside the cut)nbbp = nbp + bsum(nzero-j) + (bbsum(nx1) - bbsum(i))* IF (nbbp.GT.0) THENtpur(j) = nbp / nbbpELSEtpur(j) = 0.ENDIFENDDO** Now only events on the negative side are left since* the shifted mean is on the positive side and we have* summed symmetrically around the "shifted mean bin"j = j + 1DO i = j, nzero-1* Correct taggednbp = bbsum(nzero-i)* All taggednbbp = nbp + bsum(nzero-i)* IF (nbbp.GT.0) THENtpur(i) = nbp / nbbp 80



ELSEtpur(i) = 0.ENDIFENDDO** ---------------------** Compute the "mean tagging efficiency" when nzero is* the shifted zero bin of the mean distributioni = 0DO j = nzero, 2, -1i = i + 1* Sum correct tagged Bbar and wrong tagged B below -Q_cutprt1 = bsum(nzero-i) + bbsum(nzero-i)IF ((nzero+i).LE.nx1) THEN* There are still some bins left above +Q_cut which will* give the number of correct tagged B's and wrong Bbarprt2 = bsum(nx1) - bsum(nzero+i-1) +$ bbsum(nx1) - bbsum(nzero+i-1)ELSEprt2 = 0.ENDIFteff(i) = (prt1 + prt2) / nhemENDDOteff(nzero) = 0.** ---------------------** Find the maximum value of the statistical significance* of a signal from oscillation: SQRT(eff) * (2*pur - 1)maxmix = 0.DO i = 1, nzerotmix = SQRT(teff(i)) * (2*tpur(i) - 1)IF (maxmix.LT.tmix) THENidmax = imaxmix = tmixENDIFENDDOnchcut = real(idmax)/real(nmid)*************************************************************************** Compute the errors ************************************************************************** The errors in bbsum and bsum (the integrated distributions) is* given by Binomial statistics with variance n(N-n)/N where N* is the total number and n the number of events integrated to* the bin where the error is calculated.* errb and erbb is the errors in the integrated b and bbar* distributions respectively, both for bin i.* DO i = 1, nx1erbb(i) = SQRT( bbsum(i) * (bbsum(nx1) - bbsum(i)) /$ bbsum(nx1) )errb(i) = SQRT( bsum(i) * (bsum(nx1) - bsum(i)) /$ bsum(nx1) )ENDDO** ------------------** The errors in the mean tagging purityj = 0DO i = nzero, nx1-1j = j + 1* Correct tagged patternsnbp = bbsum(nzero-j) + (bsum(nx1) - bsum(i))* Wrong tagged patternsnbbp = bsum(nzero-j) + (bbsum(nx1) - bbsum(i))* IF ((nbbp+nbp).GT.0) THENprt1 = nbbp**2prt2 = (errb(i)**2) + (erbb(nzero-j)**2)prt3 = nbp**2prt4 = (errb(nzero-j)**2) + (erbb(i)**2)stp(j) = SQRT( (prt1*prt2) + (prt3*prt4) ) / (nbbp+nbp)**2IF (stp(j).GT..75) THEN* No reason to have error bars greater than 1.5stp(j) = 0.75ENDIF 81



ELSEstp(j) = 0.ENDIFENDDO* j = j + 1DO i = j, nzero-1* Correct taggednbp = bbsum(nzero-i)* Wrong taggednbbp = bsum(nzero-i)* IF ((nbbp+nbp).GT.0) THENprt1 = nbbp**2prt2 = (erbb(nzero-i))**2prt3 = nbp**2prt4 = (errb(nzero-i))**2stp(i) = SQRT( (prt1*prt2) + (prt3*prt4) ) / (nbbp+nbp)**2ELSEstp(i) = 0.ENDIFENDDO** ------------------** The errors in the mean tagging efficiencyi = 0DO j = nzero, 2, -1i = i + 1prt1 = (erbb(nzero-i)**2) + (errb(nzero-i)**2)IF ((nzero+i).LE.nx1) THENprt2 = (errb(nzero+i-1)**2) + (erbb(nzero+i-1)**2)ELSEprt2 = 0.ENDIFste(i) = SQRT( prt1 + prt2 ) / nhemENDDO** ------------------** Normalize the integrated distributions (the error* first since bsum(nx1) and bbsum(nx1) will be 1 after* normalization of the B and Bbar distributions!)DO j = 1, nx1erbb(j) = erbb(j) / bbsum(nx1)bbsum(j) = bbsum(j) / bbsum(nx1)* errb(j) = errb(j) / bsum(nx1)bsum(j) = bsum(j) / bsum(nx1)ENDDO** ------------------** The errors in the calculated mixing amplitude:prt1 = ((2*tpur(idmax)) - 1) ** 2prt2 = ste(idmax) ** 2prt3 = (2*teff(idmax)) ** 2prt4 = stp(idmax) ** 2errm = SQRT( prt1*prt2 + prt3*prt4 )************************************************************************** Prepare output and book the histograms ************************************************************************** Book histogramsCALL hbook1(id3,'Integrated Bbar distribution',nx1,-1.,1.,0.)CALL hbook1(id4,'Integrated B distribution',nx1,-1.,1.,0.)CALL hbook1(id5,'Purity as function of cut on netcharge',$ nzero,0.,nhigh,0.)CALL hbook1(id6,'Mean tagging efficiency vs cut on netcharge',$ nzero,0.,nhigh,0.)** Fill histograms together with the calculated errorsCALL HPAK(id3, bbsum)CALL HPAKE(id3, erbb)* CALL HPAK(id4, bsum)CALL HPAKE(id4, errb)* CALL HPAK(id5, tpur) 82



CALL HPAKE(id5, stp)* CALL HPAK(id6, teff)CALL HPAKE(id6, ste)** List the mixing information and the histogram informationWRITE(*,110) ' 'WRITE(*,110) '------------- routine: abscut4.f ------------'WRITE(*,111) 'Max mixing amplitude',maxmix,'with error',errmWRITE(*,112) 'Occurs for a cut',nchcut,'on absolute Netcharge'WRITE(*,111) 'Purity=',tpur(1),'at eff=100, err=',stp(1)WRITE(*,110) ' 'WRITE(*,110) '===> Output histograms: 86,87,88 and 89'WRITE(*,110) '--------- rostad; modified 17.06.96 ---------'WRITE(*,110) ' '*110 FORMAT('',TR10,A)111 FORMAT('',TR10,A,TR1,F6.4,TR1,A,TR1,F6.4)112 FORMAT('',TR10,A,TR1,F5.3,TR1,A)* RETURNEND
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Appendix DGlossary2VTX: Is short for Secondary Vertex, the point where a long lived particlefrom PV, like a B meson, decays and leaves a debris of new particles.CUT: A short and handy word used throughout the HEP community. Topose a \cut" means to select data restricted by certain criterias.DST: A Data Summary Tape is the format in which simulated and realdata, from DELPHI, are stored.HADRON: Particles containing quarks are commonly referred to as hadrons.Thus both mesons (with 2 quarks) and baryons (with 3 quarks) arehadrons.HEP: High Energy Physics. Today Elementary Particle Physics and HEP isessentially the same, because most of the particles labeled as elementaryonly can be created with the help of huge accelerators, i.e. at highenergies, because of their large mass.KAON: Is the common name for mesons containing one strange quark.MESON: Means a light particle. This re
ects that all particles labeledmesons contain only two quarks while baryons, with three quarks, areusually heavier.NETCHARGE: Was invented for this thesis; \netcharge" is the short forneural NETwork jetCHARGE-like output, which should hint towardsthe similarities between this method and Jetcharge.NTUPLE: Is a common way of storing large amounts of data in physicsanalysises in the HEP community. It can be viewed as a matrix where,for example, each row represents an event and each column a variable(charge, energy, momentum, etc). This is a row-wise Ntuple. In acolumn-wise Ntuple the elements of each column are stored sequentially,thus a column can be viewed as one event.84



QUARK: Is the building blocks of atomic matter and of all non-elementaryparticles (hadrons). The name is said to be derived from the line \Threequarks for Muster Mark!" from James Joyce's Finnegans Wake (1939),but Murray Gell-Mann have said that he discovered this connectiononly after the name was thought up. An alternative explanation for thename \quark": At the time, when Gell-Mann put forward his theory,most physicists regarded the quarks as interesting mathematical objectsbut questioned their physical reality. Hence question mark!PAW: Physics Analysis Workstation is an important software tool in theHEP community, it helps setting up data and visualize the results insuitable plots or histograms. Huge Ntuples with data are treated withthe greatest ease by PAW.PV: Is short for Primary Vertex, a.k.a. the interaction point, which is thepoint where particles from the two beams (e+ and e�, for example)collide, giving rise to an interesting event.SKELANA: Is the SKELeton ANAlysis program used in DELPHI. Withthis program much of the basic work, like reading DST �les and �llingthe standard common blocks with data, is done by the program freeingthe user to concentrate on cut selections and physics problems.
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training sample, 29training time, 75unphysical momentum values, 37Von Neumann machines, 23weights, in neural networks, 24
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