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Abstract

If supersymmetry is the solution to the hierarchy problem, supersymmetric partners
of the Standard Model particles will exist near the TeV scale and be copiously pro-
duced at the LHC. With R-parity conserved to avoid proton decay, the sparticles
produced in the collisions will decay in cascades, ending with the LSP. Neutral LSPs
will not be seen in the detector, rendering impossible the full reconstruction of SUSY
events and in particular complicating the measurement of sparticle masses. This the-
sis focuses on a method which uses endpoints of kinematic distributions to obtain
sparticle masses. Its use for the decay chain § — 3¢ — llg — XVllq is investigated,
including studies to delimit the region of applicability in the mSUGRA parameter
space, studies of mass distributions and of complications related to the composite-
ness of the endpoint expressions. The method is extended to the situation where a
gluino is added to the head of the chain. The new endpoint expressions are calcu-
lated and the performance of the method is estimated for a given SUSY scenario,
yielding an accuracy for the gluino mass measurement competitive to other methods
available. The impact of having the LSP mass determined by a Linear Collider is
also considered.
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Preface

This thesis is based on two papers written together with D. J. Miller and P. Osland
[1, 2], and one work performed also in collaboration with E. Lytken and G. Polesello.
The latter work is available as an ATLAS Note [3] and is part of the larger LHC/ILC
Working Group report [4], where the benefits of having an overlap between the LHC
and the next Linear Collider are studied.

The thesis is organised in the following way. In Chapter 1, after a short motiva-
tion, the structure of supersymmetry is described, ending in typical phenomenologies
and current experimental limits. Chapter 2 gives a short description of the LHC,
then treats the ATLAS detector in some detail focusing on general performance.
Chapter 3 deals with the simulation tools used in this work. In Chapter 4 a brief
introduction to supersymmetry measurements in ATLAS is given, describing in par-
ticular a few aspects of the ‘endpoint method’ of determining SUSY masses, which is
the main focus of this thesis. A more complete presentation of the topic is given in
the papers. Chapter 5 summarises the work, including results which have not been
covered in Chapters 1-4 and are only available in the papers. Then follows the local
bibliography, after which the papers [1] and [2] are reproduced.

vii
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Chapter 1

Theory

1.1 Standard Model

The Standard Model of particle physics is one of the most successful theories of
science. At the energies tested by experiment this quantum field theory describes
the sub-atomic world to high precision [5]. It includes three generations of fermion
matter particles. In each generation there are two quarks with electric charge 2/3
and -1/3, respectively, and two leptons with electric charge 0 and -1, as well as
their antiparticles. Interactions take place by the exchange of gauge bosons. The
electroweak (EW) interactions are described by photons and the massive Z and W
bosons. The strong interactions of Quantum Chromo Dynamics (QCD) are due to
massless gluons. The only remaining part of the Standard Model which has not been
confirmed experimentally is the Higgs boson. The limit from the experiments at
the Large Electron Positron collider (LEP) [6], combined with unitarity arguments
require the Higgs mass to lie in the range 114.4 GeV < my < 1 TeV, an energy range
which will be fully explored by the next generation of experiments to be conducted
at the Large Hadron Collider (LHC) starting in 2007.

While the Standard Model is in accordance with all experimental tests, it is not
considered the fundamental theory, but rather an effective theory, valid at least up
to the electroweak scale of 10?2 GeV, and which will be extended at higher energies.
The ‘circumstantial evidence’ for this belief includes the lack of explanation for the
specific gauge groups chosen, for the number of fermion families observed, for the
symmetry between leptons and quarks, amongst others, not to forget the rather
large number of free parameters in the theory. Furthermore, although outside of its
primary domain and leaning on cosmological and astrophysical claims, the Standard
Model does not provide all the elements needed to describe the evolution and state
of the universe, such as e.g. the matter-antimatter asymmetry we observe or the dark
matter component believed to fill the universe.
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Another demonstration that the Standard Model cannot be viewed as the ulti-
mate theory, comes from the fact that gravitational interactions are not included.
From the experimental side of elementary particle physics this is no surprise. At the
energies tested in high-energy experiments, gravitational interactions are so much
weaker than the electroweak and strong interactions that no experimental obser-
vation is expected. From the theoretical side one would however like to have one
common framework in which, at minimum, both gravity and the Standard Model
are described. At energies of the reduced Planck scale, ~10'® GeV, the gravitational
force becomes comparable to the Standard Model forces. The enormous gap of 16
orders of magnitude between this scale and the electroweak scale is the basis for the
‘hierarchy problem’, which is the aesthetical unease of having two so different scales
in one fundamental theory. There are other problems related to this scale difference.
Since the Higgs is a scalar field, it receives quadratic quantum corrections to its mass.
These corrections will be of the order of the largest mass in the theory or the cut off
where new physics enter. If this is the Planck scale, then the Higgs mass is naturally
driven towards the Planck scale, a problem dubbed the ‘naturalness problem’. To
avoid this and get the Higgs mass at the electroweak scale, where it must be, an
extreme fine-tuning is required: The bare mass of the Higgs must be such that we
get [O(10'8)] — [O(10™)]? = [O(10?)]%. This is the ‘fine-tuning problem’.

A key to one possible resolution of the fine-tuning problem lies in the observation
that the quantum corrections to the Higgs mass due to boson loops have similar
form as the corrections from fermion loops, but with different sign. A cancellation
of the most dangerous terms is therefore possible, given that there is perfect balance
between the fermions and the bosons in the theory. There exists a principle which
can guarantee such a balance: supersymmetry.

1.2 Minimal Supersymmetric Standard Model

Supersymmetry is a symmetry between fermions and bosons. In a supersymmetric
theory there are operators which transform fermions into bosons and vice versa. The
particles of the theory fall into ‘supermultiplets’, each of which contains a balanced
number of fermion and boson states — these are ‘superpartners’ of each other, and
have the same gauge quantum numbers. If the supersymmetry is unbroken, they
have the same masses too. The Minimal Supersymmetric Standard Model (MSSM)
is the most economic supersymmetric extension of the Standard Model. Below, the
main steps in going from the SM to the MSSM are described. The notation follows
mostly that of [7], which is the main reference to the survey and in particular to all
the formulas given in this chapter.
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1.2.1 Exact supersymmetry
Field content

For each independent Standard Model field component (degree of freedom), a super-
partner component is added. For the MSSM two types of supermultiplets are needed,
‘matter multiplets’, which contain the Standard Model fermions (spin-1) and their
scalar (spin-0) superpartners, and ‘gauge multiplets’, which contain the Standard
Model gauge fields (spin-1) and their fermionic superpartners (spin-1). In addition
the Higgs sector needs to grow from the single Higgs doublet of the Standard Model
to two Higgs doublets. Together with their fermionic superpartners (spin—%) the

Higgs fields (spin-0) enter ‘matter multiplets’.

Names spin-0 spin-1 SUB)e SU©2), UQ)y
squarks, @ = (’ELL JL) Q = (uL dL) 3 2 1/6
quarks g UR 3 1 2/3
dp dn 3 1 -1/3
sleptons, L=(iég) L=(ver) 1 2 -1/2
leptons €R eRr 1 1 -1
Higgses, H, = (H} HY) | H, = (H H?) 1 2 1/2
higgsinos | Hy = (HY H;) | Hq = (HJ H}) 1 2 -1/2
Table 1.1: Matter multiplets of the MSSM.
Names spin-% spin-1 SUB)e SU2), U(l)y
gluino, gluon g g 8 1 0
winos, W | (W+ WO W-) | (W+ W° W~) 1 3 0
bino, B B° B° 1 1 0

Table 1.2: Gauge multiplets of the MSSM.

In Tables 1.1 and 1.2 the matter and gauge multiplets of the MSSM are shown.
The superpartners of the Standard Model particles (where the extended Higgs sector
is also taken as Standard Model particles) are written with a tilde. The names given
to the superpartners are based on the names of the corresponding Standard Model
particles. The spin-0 superpartners add an ‘s’ in front: sfermion, squark, selectron.
The spin-% superpartners add ‘ino’ at the end (and adjust if necessary): higgsino,
gaugino, gluino.

The requirement that the states within each multiplet have the same gauge quan-
tum numbers naturally separates the left-handed (‘L’) quarks and leptons from the
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right-handed (‘R’) ones. Their superpartners are scalars and have no handedness,
but are nevertheless referred to as the ‘left-handed selectron’ etc. Only the matter
multiplets of the first-generation quarks and leptons are shown.

In both tables the rightmost column shows the gauge representation of the super-
multiplet. In the two middle columns the SU(2), status is explicit. The weak isospin
[SU(2).] values of triplet/doublet/singlet fields are T3 = (1,0, —1)/(1/2,—1/2)/0. In
the convention used for the hypercharge Y [U(1)y], the electric charge of a field can
be read off from the formula Q =75 + Y.

Interactions

The requirement of invariance under both supersymmetry and the gauge symmetries
of the Standard Model, severely restricts the form of allowed interactions. Still, with
the large number of fields available, the number of possible interactions is consider-
able. It is convenient to classify them according to origin.

The interactions between the members of the matter multiplets are guaranteed
to satisfy supersymmetry if they are defined in terms of a ‘superpotential’ W in the
following way:

1 - )
Ling = —(§W“¢iw]- + W'W +c.c.) (1.1)
0w g 2w
W7/ =—, WZJ e 1.2
0¢; 5¢z‘5¢j ( )

Here 1; and ¢; are fermion and scalar fields, respectively, of the matter multiplets.
The superpotential contains scalar fields only. For the MSSM it is given by

Whssv = @5yuQHy — dyaQHy — éyeLHy + pH, Hy (1.3)

Indices are suppressed. The two squark/slepton fields in each of the three first terms
run over the three generations and are combined by dimensionless 3 x 3 matrices (y)
which are nothing but the well known Yukawa matrices of the Standard Model. The
squark/slepton SU(2), doublets are appropriately combined with the Higgs doublets.
In the last term an unknown dimensionful parameter y enters with the Higgs fields.

The Lagrangian (1.1) produces many interactions. In a notation where ¢, [ and H
denote quark and lepton (particle and antiparticle) and Higgs (neutral and charged),
with a tilde for their superpartners, we get the following couplings: qqH, chﬁ, lIH,

l[ﬁ], 4qqq, qqll, Ui, ggHH, IIHH, all of which are given by the Yukawa couplings,
then HH (higgsino mass term), HH (Higgs potential) given by p, and GGH, IIH
set by a combination of 4 with the Yukawa matrices. The number of couplings is
significantly reduced if, in the Yukawa matrices, only the third-generation diagonal
elements are kept. For many purposes this is a good approximation since the ele-
ments are proportional to the corresponding quark/lepton mass. Some of the field
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combinations listed above become mass terms for higgsinos, and for (s)quarks and
(s)leptons after the symmetry is spontaneously broken.

A second set of interactions are those formed by members of the same gauge
multiplet. These count the Standard Model self-interaction of gauge fields, AAA and
AAAA, where A denotes the gauge boson, as well as AAA, all with gauge-coupling
strength.

Next, when matter and gauge multiplets are combined, the gauge couplings to the
Standard Model fermions appear in the usual way through the covariant derivatives.
In the same manner we get GGA and IIA, but also GGAA and [l AA. Finally, a few more
terms are found to satisfy the symmetries and are added to the full Lagrangian. These
turn out to have gauge strength, and include some phenomenologically important
couplings, ¢GA and I[A, as well as quartic scalar couplings. In fact, most of the
phenomenology of the theory is determined by the interactions of gauge-coupling
strength. From the superpotential, only the interactions which involve the third-
generation Yukawa couplings or the p parameter will normally play a role.

R-parity

In model building one usually likes to adhere to the principle of including all terms
which are allowed under the considered symmetries. However, in choosing the su-
perpotential of the MSSM, Eq. (1.3), this principle was not followed. An additional
set of terms also respects the symmetries:
1 T T =% 1T A% T 1 N~% Jx Jx

ngz; = EALLeR + NLQdp + ' LH, + 5/\ Updpdr, (1.4)
(Family indices for the sfermion fields and for the coupling constants are suppressed.)
The problem with the terms in Eq. (1.4) is that they have the undesirable feature of
violating either baryon number (B) or total lepton number (L). Since these processes,
which e.g. give rapid proton decay, have not been observed, their couplings would
have to be very strongly suppressed. (In the Standard Model, B/L violating terms
are naturally absent under the rule of accepting only renormalisable terms.)

One solution could be to simply discard these types of terms. That would however
conflict with the principle above of allowing all possible interactions which respect
the symmetries. Instead an additional symmetry is introduced in order to disallow
the terms in Eq. (1.4). First, a new multiplicative quantum number dubbed R-parity
is defined:

Pr = (—1)3B-D)+2s (1.5)

Here B/L is the baryon/lepton number of the field and s is the spin. It is easy to see
that all Standard Model fields, including the additional Higgs fields, have Pgr = 1,
while all the superpartners get P = —1. The symmetry to be imposed is then
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that the MSSM conserves R-parity, which means that for any interaction vertex the
product of Pg for all participating fields must be 1. Hence, only vertices with an
even number of sparticles are allowed. While all the interactions discussed earlier
satisfy this requirement, the interactions of Eq. (1.4) do not and so can be discarded.

Conservation of R-parity has other very important consequences, which will be-
come apparent later.

1.2.2 Broken supersymmetry
Soft SUSY breaking

If supersymmetry was an exact symmetry, then all particles within a supermultiplet
would have identical mass. However, no supersymmetric partners of the Standard
Model particles have been observed. Supersymmetry must therefore be broken. Fur-
thermore, the breakdown should be ‘spontaneous’, caused by a vacuum state which
does not respect supersymmetry. Many models have been proposed for this, but
there is no consensus on the exact implementation, which should not come as a
surprise, as this step involves the unknown, more fundamental theory.

There is however some guidance from the opposite side of the scale. In order
for the SUSY breaking terms not to ruin the solution of the fine-tuning problem,
they must be ‘soft’, i.e. the couplings must have positive mass dimension. Further-
more, the scale of the massive couplings should lie around 1 TeV, which also means
approximately 1 TeV for the sparticle masses. In the MSSM the symmetry break-
ing is implemented by simply adding to the Lagrangian (nearly) all possible ‘soft
terms’, involving the superpartners only, and which satisfy the gauge symmetries of
the Standard Model and conserve R-parity,

1 -~ —
Loty = —§(MIBB + MuyWW + M3gg + c.c.)

—(iija0QH, — djjaaQHy — EpaecLHy + c.c.)

~Q'm3Q — L'm? L — i;m2iy — dym2dy — éym2éy

—mi;, HiH, —m3 HjHy — (bH,Hy + c.c.) (1.6)

The mass dimensions of gaugino and scalar fields are 3/2 and 1, respectively. From
the requirement that each term in the Lagrangian must have mass dimension 4, the
dimensions of the coupling constants can be read out. Line 1 provides additional
mass terms for the gauginos; M;, M, and M3 have mass dimension 1. The terms
in line 2 have form similar to the Yukawa terms of the superpotential Wyssm (1.3).
The matrices a,, aq and a, are complex 3 x 3 matrices in flavour space of mass
dimension 1. They play a role similar to yy,, ya and ye of Wyssm (but are not
dimensionless). In line 3 additional mass and mixing terms are given to the sfermions.
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The parameters m2Q etc. are hermitian 3 x 3 matrices in flavour space with dimension
of mass squared. The terms in line 4 give SUSY breaking contributions to the Higgs
sector. The parameters my; , m%ld, both real, and b all have mass dimension 2. Below
we will see that these last terms are crucial for the electroweak symmetry breaking.

Electroweak symmetry breaking

Due to the stricter symmetry conditions of the MSSM compared to the SM, the same
Higgs doublet cannot give masses to both up-type and down-type fields. The SU(2),
doublet H, = (H,; HY) gives masses to up-type fields, while H, = (HJ H;) gives
masses to the down-type field. As in the Standard Model this happens if the Higgs
potential is such that the minimum value is obtained for non-zero values of some
of the Higgs fields. Only electrically neutral components can have non-zero vacuum
expectation values (VEVs). In the MSSM we have

(H) = v, (Hg) = va (1.7)
The two VEVs must add up to give the appropriate electroweak symmetry breaking,
v2 4+ 03 =02 =2m% /(g% + ¢”°) =~ (174 GeV)? (1.8)

where ¢’ and g are the gauge coupling constants of U(1)y and SU(2)., and relate to
the electric charge and the weak mixing angle by e = ¢’ cosfy = gsin Oy .
In the Standard Model three of the available four degrees of freedom of the
complex Higgs doublet are spent to give mass to the electroweak gauge bosons W™,

~ and Z. The last degree of freedom corresponds to the Higgs boson. In the
MSSM there are eight degrees of freedom to start with, which ends in five Higgs
bosons. Three are electrically neutral; h and H, which are CP even, A, which is CP
odd, and two are charged; H* and H~.

To investigate the conditions for spontaneous symmetry breaking, we look at
those terms of the scalar potential which only involve the neutral Higgs components.
All other fields have vanishing VEVs and are not relevant for these considerations.
The stripped potential has the form

Vo= (P +mig P+ (Jf? + miy,) [ Hal* — (0HHg + c.c.)

1
+§(9 +g?)(H = | Hgl)? (1.9)
It is interesting to note that without the soft terms, m3; ., mHl and b, the potential
would be positive-definite and no spontaneous breaking would be possible.
At the minimum both partial derivatives must vanish: (9V/0H?) = (0V/OHY) = 0.
Applied to (1.9) this translates into the following equations,

2
> +m3, :bcotﬁ—}—%cosQﬁ (1.10)
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2
|uf? +m3;, = btan § — % cos2f3 (1.11)

where the much used VEV ratio parameter is introduced, tan 3 = v, /v4. This allows
for two of the involved parameters to be eliminated. The convention is to keep tan
(together with m7; and m% ), and eliminate b and |u|. The sign of y is however not
addressed by the equations, and remains a free parameter.

SUSY breaking mechanisms

While the part of the MSSM which respects supersymmetry adds no new parameter,
the supersymmetry-breaking part introduces 105 new parameters. Many of these
are however strongly constrained by existing data, e.g. the lepton-flavour violating
interactions given by the off-diagonal elements of m? must be extremely small. Fur-
thermore, many of the new interactions give unacceptably large contributions to
CP-violation or flavour-changing neutral currents (FCNC), unless the relevant cou-
plings are strongly suppressed. While such a suppression could happen ‘by accident’,
it is more satisfactory to have it as a result of some symmetry which typically has
its source in the details of the breaking mechanism. Below, the size of the MSSM
parameter space is dramatically reduced and brought out of (the most apparent)
conflict with existing data by a few simple assumptions.

First, the lepton-flavour violating couplings as well as dangerous FCNC contri-
butions are removed by requiring complete flavour-blindness in the sfermion mass
matrices:

2

mé:mél, m? =m7l, m?

=

mzl, m2=m2l, mZ=m:l (1.12)
Second, the trilinear couplings are set proportional to the corresponding Yukawa
couplings which appear in the superpotential:

Ay = Au()yU7 aq = Ad()yda Ae = AeOYe (113)

This forbids dangerous FCNC contributions in that only the third generation squarks
and sleptons can have large trilinear couplings. Third, to avoid CP-violation far
beyond what is measured, all the new complex phases are removed:

My, M, M3, Ayo, Ado, Ao € R (1.14)

In combination, Eqgs. (1.12)—(1.14) constitute a mild version of what is called ‘soft-
breaking universality’.

While these assumptions are clearly convenient from an experimental point of
view, i.e. when confronted with data, it would be nice if they were also theoretically
reasonable. They should be a consequence of the breaking mechanism, and in fact
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it turns out that many of the suggested SUSY breaking mechanisms naturally give
some kind of universality to the soft terms. This means, however, that the conditions
(1.12)—(1.14) should hold, not at the electroweak scale, but at some ‘input scale’
which typically lies much higher, and where such a universality is present. The
parameter values at different scales are connected by the renormalisation group (RG)
equations. Fortunately, the RG evolution from the high to the low scale has very
little effect on the CP-violating and FCNC contributions as set at the input scale,
so the assumptions hold approximately at the electroweak scale, thereby avoiding
conflict with data.

As the input scale depends on the details of the SUSY breaking mechanism, it
is in practice unknown. The parameters and structure of the Standard Model might
however hold some clues. One puzzling result is found from RG evolving the three
gauge couplings ; = g2/4m to higher energies. If done for the Standard Model, the
couplings meet in the range 103-10'7, but only two at a time. For the MSSM with
sparticle masses around 1 TeV, all three couplings meet at ~2-10'® GeV. This could
be taken as a sign that the three forces meet to unite in a Grand Unified Theory
(GUT) at these energies, in which case it is also a natural choice for the input scale.
(The (reduced) Planck scale at ~10' GeV, where gravitational interactions become
important, is another natural choice for the input scale.)

Common for most of the attempts to construct a satisfactory, spontaneous SUSY
breaking mechanism, is the existence of a ‘visible sector’ where the MSSM lives,
and a ‘hidden sector’ where other fields live and where supersymmetry is broken.
The interaction between these two sectors is weak, and it is through this interaction
that supersymmetry breaking is mediated to the MSSM. Two types of interactions
are frequently considered for this purpose, gravity and gauge interactions. In both
cases, to take into account gravity, the MSSM is promoted from a global to a local
supersymmetric theory, turning it into a ‘supergravity’ theory which then contains
a spin-2 graviton and a spin-3/2 gravitino, both massless. When supersymmetry is
spontaneously broken, the gravitino acquires mass in the ‘super-Higgs mechanism’.

In models where the SUSY breaking is mediated by gauge interactions, the mass
of the gravitino is nearly always much smaller than the other SUSY masses. Being
the lightest supersymmetric particle (LSP), it can play a role in collider experiments
if it couples with sufficient strength. The minimal version of gauge-mediated super-
symmetry breaking (GMSB) counts three parameters and a sign. Often one or two
more model parameters are added in the versions used for phenomenological studies.

In the case of SUSY-breaking mediation by gravity, the mass of the gravitino
is comparable to the other SUSY masses. With couplings roughly gravitational in
strength, it plays no role in collider experiments (but can still have cosmological
implications). The most popular model for phenomenological studies within super-
symmetry, and the basis for the simulation studies in this thesis, is of this type. It is
called ‘minimal supergravity’ or ‘mSUGRA’ and implements a strong version of the
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soft-breaking universality assumptions (1.12)—(1.14),

M1 :M2:M3:m1/2 (115)
mo =Mmp =mg = Mg = Mg = My, = My, = My (1.16)
Ayo = Aao = Ao = Ao (1.17)

in which all the gaugino masses have a common value at the input scale, as do all the
scalar masses and the trilinear mass parameters. The model is completely defined
by these three mass parameters, mq,s, mo and Ay, together with tan 5 and sign(u),
both from the Higgs sector, in total ‘4%’ parameters.

1.2.3 Phenomenology
Renormalisation group evolution, masses and mixing

When the Lagrangian at the input scale has been set, either by Nature or by the
curious physicist, in order to obtain the phenomenology relevant for our experiment
all its parameters should be RG evolved down to the electroweak scale. Mass eigen-
states, mixing angles, couplings etc. appropriate to the electroweak scale can then
be found. Below, the various steps of the process are described in more detail for the
mSUGRA model.
First the explicit RG equations of each parameter must be found. For the third-
generation Yukawa coupling, ¥, the 1-loop (-function has the form
dyb o Yb

dt 1672

(6lyel” + lyel* + ly-|* = %695 — 395 — 11595) (1.18)
where t = In(Q/Qo) with @ the ‘current’ scale and @, the input scale. (The gauge
couplings of Eq. (1.8) are rewritten, g; = \/5/_39’ and g» = ¢, and g3 = g, is the
gauge coupling of SU(3).) Similar equations are found for the other parameters in
the superpotential, y;, ¥, and pu.

The 1-loop RG equations of the gaugino masses give, in combination with the
gauge coupling RG equations and their unification condition at the GUT scale,

M, M, M,
A

(1.19)

These relations hold at any scale. Since the gauge couplings are known, knowledge
of one of the gaugino masses automatically gives the two others.
For m7; we get

dm? 1 6
D — B, + iy, + m3,) + 2Naf?) — 6P — 2P (1.20)
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The large Yukawa coupling of the top quark may drive m%{u negative near the elec-
troweak scale, contributing to the spontaneous symmetry breaking, see Eq. (1.9).
Similar RG equations are found for the remaining parameters; m%ld and b; a;, a, and
ar; m2Q, m? m2, m% and m2. From Eq. (1.12) the five mass matrices are proportional
to the identity matrix at the input level. As they are evolved down, they remain
approximately diagonal, but the third-generation masses receive contributions from
the large Yukawa (v, ys, y-) and soft trilinear (ay, ay, a,) couplings. Consequently, we
get at the weak scale the same values for the first and second-generation parameters
(mg,,...) and a different one for the third generation (mg,,...).

Some features of the RG running are quite generic and hold also for less con-
strained models than mSUGRA: the relation (1.19) guarantees a gaugino mass hier-
archy in accordance with the known coupling hierarchy, in particular giving a heavy
gluino; squark/slepton mass parameters increase as the energy scale decreases; due to
their SU(3) charge squarks become significantly heavier than the sleptons at the elec-
troweak scale; third-generation sfermions get large contributions from the Yukawa
couplings and differ from sfermions of the two first generations which get the same
mass at the electroweak scale.

All considerations so far have been on the gauge eigenstates. Fields with the same
electric charge, colour charge and spin will mix to form mass eigenstates, which are
the physical, observable states. The gluino cannot mix with other fields and is both
gauge and mass eigenstates. The bino and the neutral wino will mix with the neutral
higgsinos to form four ‘neutralinos’; ¥?, ¥9, X3 and X9}, where {? is the lightest and
very often the LSP. The charged winos and higgsinos give four ‘charginos’; Yi and
X3. In mSUGRA the mass of Y} is close to M; and inherits essentially the bino-
couplings, while both mgo and m + are close to My =~ 2M; and are predominantly
winos. The remaining neutralinos and chargino are all of similar mass, considerably
heavier than Ms, and are mostly higgsinos.

In the squark/slepton sector the two first generations have practically no mixing
between the left and right-handed states, and so the mass eigenstates are the same
as the gauge eigenstates. The third-generation squarks/sleptons, however, are mixed
states, which also has the consequence that one of them, 7, /7, is the lightest of its
type. This has important phenomenological consequences.

Finally, one very important feature of the MSSM is the quite low upper bound
on the mass of the lightest Higgs boson,

my, < 130 GeV (1.21)

a limit clearly open to experimental testing in an otherwise very flexible or eva-
sive model. Still, by minor extensions of the model this limit may be increased to
my, S 150 GeV. The masses of the other Higgs bosons can be much larger, and
typically lie close to each other.
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Collider signatures

At a hadron collider the varying center of mass (CM) energies of the hard collision
allow for a large spectrum of SUSY channels to be accessed. Pair production of
gluinos and squarks, available at tree level and with SU(3) coupling strength, will
however dominate, unless their masses are too large. Each event will be characterised
by two ‘cascades’ formed by the subsequent decay of the sparticles into lighter ones
together with accompanying Standard Model particles, eventually ending with the
LSP. Since the initial gluinos and squarks are usually heaviest, most of the other
sparticles can be accessed in the cascades. For these intermediate and lower-mass
sparticles the indirect production is much larger than the direct production.

In the case of gravity-mediated supersymmetry breaking, where {9 is the LSP
and leaves the detector without any trail, large E¥S is one of the key signatures.
Also hard jets and leptons are typical signatures, as in the cascade

i—Xiq— 7veqg— Xttrg (1.22)

In GMSB scenarios the gravitino will be the LSP. Depending on the strength of
its coupling, which decides whether it will be decayed into inside or outside the
detector, as well as the identity of the next-to-lightest sparticle (NLSP), several
phenomenologies will be available.

In an ete™ collider the CM energy is fixed, and normally at a value significantly
lower than the reach of a hadron collider of the same generation. The heaviest
sparticles, squarks and gluinos, may therefore not be kinematically accessible, and
if they are, their production will not be favoured by the SU(3) couplings as they
are at a hadron machine. Consequently, the upper part of the cascade (1.22) is less
relevant. Direct production of charginos, neutralinos and sleptons will dominate.
The large benefit of eTe™ collisions over e.g. pp collisions is the immense reduction
in background, which will allow for precision measurements of a large number of
sparticle properties.

Experimental bounds

The search for supersymmetry has been on the agenda of many experiments for quite
a while, but no compelling evidence has yet been presented. These negative search
results can then in principle be turned into exclusion limits. For the MSSM such
a conversion is however not straightforward due to the size of the parameter space.
If at all possible, absolute limits tend to be very conservative as it is nearly always
possible to find a constellation of parameters which undermines the relevance of the
measurements. The exclusion limits presented by the experiments are therefore valid
for various constrained models only, and a limit found under one set of assumptions
is not trivially translated to another set. Still, for a complex model like the MSSM
it cannot be otherwise.
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Searches can be divided into direct and indirect searches. Direct searches look at
specific signatures, such as eTe™ + EXS| expected from et tem — WIx%te,
and from the lack of signal above the background deduce limits on the masses and
couplings of the sparticles involved. The strongest limits are those set by the exper-
iments at LEP2 and at the Tevatron. Indirect searches look for sparticles (or any
other non-standard particles) in loop contributions to various Standard Model pro-
cesses. This requires that the theoretical and experimental status of the quantities in
question, e.g. the muon anomalous magnetic moment or the decay width of b — s7,
be sufficiently known that any deviation from a pure Standard Model hypothesis
is recognised. Also figuring in this category are global fits to the entire collection
of electroweak precision data. If a significant deviation from the Standard Model
hypothesis should be found, these indirect searches are less suited to determine its
origin, whether it is due to supersymmetry or some other new physics.

In recent years, measurements from outside of particle physics have started to
play a role, in particular the more and more accurate determination of astrophysi-
cal parameters. The combination of the latest data from the Wilkinson Microwave
Anisotropy Probe (WMAP) with other cosmological data gives a precise determi-
nation of the the amount of cold dark matter (CDM) in the universe. This puts
stringent constraints on R-parity conserving SUSY scenarios, where the LSP will
contribute to the CDM. (Still, it should be kept in mind that these new constraints
rely on cosmological and astrophysical theories which in strict terms are outside the
regime of direct testing as we are used to from the building and confirmation of the
Standard Model.) In brief, the relic density depends mainly on the LSP annihilation
cross-section into SM particles. In most mSUGRA scenarios the LSP annihilation
process Y0x9 — 71~ is too weak to bring the CDM contribution equal to or below
the measured value. Only in the so-called ‘bulk region’, where sparticle masses are
light, are the constraints naturally satisfied. Other allowed regions are defined by
special circumstances which enhance the annihilation cross-section: the ‘coannihila-
tion region” where the NLSP is close to the LSP in mass, the ‘focus point region’
where {9 has a large higgsino component, and the Higgs resonance regions where
2mygo ~ mypH/a- In a less constrained MSSM there are more possibilities to produce

e — e

the correct amount of relic density (or less), e.g. by having a wino-like x9.

In Table 1.3 a very short and incomplete compilation of the current limits on
sparticle masses is given. The numbers are taken from the Particle Data Group re-
view [5] and come from searches at LEP2 and at the Tevatron. Minimal supergravity
with ¥{ LSP is assumed. Some central assumptions for each of the limits are given.
For more detail, the source [5] and references therein must be consulted. In the next
few years the Tevatron will keep pushing further some of these limits, or even start
seeing signs of supersymmetry. Then the LHC will take over and eventually cover
more or less the entire parameter space valid for low-energy supersymmetry.
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mg + 2mg

mgl
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114 GeV
90 GeV
46 GeV
62 GeV
85 GeV
73 GeV
99 GeV
95 GeV
81 GeV
84 GeV

195 GeV

270 GeV

900 GeV
95 GeV

tan 8 < 7-8, LEP mj"™ scenario
tan 8 2 7-8, LEP m"* scenario

My > Mgt

Mg, —mgo > 10 GeV
My, — Mg > 10 GeV
mz —mge > 15 GeV

mg > mg

mg > Mg

mg > mg, mg € (300,550) GeV
mg — Mg 210 GeV

Table 1.3: Rough survey of the current limits on the sparticle masses [5].



Chapter 2

Experiment

2.1 LHC

At the Large Hadron Collider (LHC) we will have proton-proton collisions at a center
of mass (CM) energy of 14 TeV. At these energies the collisions will be not between
the two protons as a whole, but rather between the constituent partons, e.g. between
a gluon from one of the protons and an antiquark picked from the sea of the other
proton. While the CM energy of the elementary parton collision will be less than
14 TeV and varying, it will be sufficient to probe conclusively on the most pressing
problem of fundamental physics, the electroweak symmetry breaking, believed to be
caused by the Higgs mechanism. Also, definite answers on most variants of low-
energy supersymmetry, as described in the previous chapter, will be provided in the
course of the LHC running period.

In order to arrive at energies of 7 TeV each, the protons are lead through several
stages in the CERN accelerator setup, see Fig. 2.1. After the protons have been ex-
tracted from a hydrogen plasma in a duoplasmatron, a five-step acceleration process
takes place. First, a linear accelerator (LINAC2) accelerates the protons to a kinetic
energy of 50 MeV. Next, the Proton Synchrotron Booster (PSB) takes them up to a
kinetic energy of 1.4 GeV and passes them into the Proton Synchrotron (PS). Here
the LHC bunch-train structure is created, as well as a further increase of kinetic en-
ergy to 25 GeV. The Super Proton Synchrotron (SPS) then accelerates the protons
to 450 GeV, and injects them in both directions into the LHC ring where they are
pushed to the ultimate 7 TeV.

At design (high) luminosity each bunch contains ny, & 10! protons. The spacing
between bunches is 25 ns, corresponding to a bunch rate of f;, = 40 MHz. A bunch
will have a width of o, = 15.9 pm in both transverse directions (and 7.5 cm in the

15
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CERN Accelerators
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Figure 2.1: The CERN accelerator setup. (From the CERN web pages.)



2.2. ATLAS 17

longitudinal direction). Taken together these parameters give the luminosity:

2
= nb—fg ~ 10%*cm 257! (2.1)

4mop
In the first three years of operation the LHC will run at low luminosity, which is one
order of magnitude less.

At four selected points along the ring the beams are made to cross. A Toroidal
LHC ApparatuS (ATLAS) and the Compact Muon Solenoid (CMS) are general-
purpose experiments which cover two of these collision points. The other two are
occupied by LHC-b, a dedicated B-physics experiment, and A Large Ion Collider
Experiment (ALICE), a heavy-ion experiment which will primarily investigate Pb-
Pb collisions, an alternative LHC operation mode.

2.2 ATLAS

2.2.1 Introduction

The purpose of a detector complex like ATLAS [8] is to describe with sufficient accu-
racy the outcome of what are considered interesting particle collisions, and in doing
so allowing for their reconstruction and subsequent comparison with theory. Usually
the particles initially produced are not the ones measured by the detector. When a
heavy particle like a Z or a Higgs boson is created, it decays instantly into lighter
particles like quarks or leptons. Next, due to colour confinement, quarks and glu-
ons, being coloured objects, fragment into colour neutral ones; baryons and mesons.
Many of the baryons and mesons immediately decay further by the weak force, pro-
ducing the (quasi)stable particles which then start their journey outwards, into the
detector. Most of this happens at a time scale not detectable by the experimental
setup. Consequently the stable particles will all point back to the collision point. Im-
portant exceptions to this description are intermediate tauons and B-hadrons (and
to a lesser extent D-hadrons) which will typically move a few hundred micrometers
before decaying. The particles which are stable on the time scale of the detector,
and which are the ones the detector will measure as they interact with the detector
material, are muons, electrons, photons and hadronic jets (consisting of p/p, n/n,
7, K* and K? as well as g, e and 7). Neutrinos will not leave any trace in the
detector. However, since the total transverse momentum of an event should ap-
proximately sum up to zero, the combined transverse momentum of neutrinos (and
any other invisible particles, like the SUSY LSPs) can be deduced from p2is, the
missing-transverse-momentum vector.

The task of the detector is then to measure some or all of the momenta, energies
and positions of these particles, as well as identifying them. The momenta of charged
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particles are found from the track curvatures in a known magnetic field. Energy is
determined in a calorimeter. Since calorimeters are based on simply stopping the
particle, they are placed outside of tracking devices. The exception is for muons, since
they are not stopped in calorimeters. Tracking devices and calorimeters also naturally
give information on the position and direction of the particles. Particle identification
is accomplished by various often overlapping techniques; particle-specific interactions,
dE/dx, impact parameter, shower structure in calorimeter, amongst others.

The specific implementation of these tasks for a given detector complex depends
on the experimental situation, here the harsh LHC environment, in combination
with the physics one is interested in studying. In some sense these correspond to
background and signal, respectively. At a hadron collider there is always an intrin-
sic background from the ‘underlying event’, the parts of the hadrons which do not
participate in the hard interaction. Furthermore, in addition to the very high bunch
crossing rate of 40 MHz, at design luminosity each bunch crossing is expected to give
on average 23 minimum bias events. The hadronic activity will therefore be consid-
erable, and it is with this as background that interesting signatures will be searched
for. For instance, the huge QCD background will largely disqualify the traditional
H — bb as a discovery channel for a low-mass Higgs (< 130 GeV), even though it is
by far the dominant decay mode with a branching ratio of ~90%. Since Higgs discov-
ery is one of the main objectives of ATLAS, it is crucial to have discovery channels
throughout the theoretically allowed mass range. It has therefore been necessary to
ensure that the low-rate H — v will be detectable in this mass region, resulting in
stringent requirements on the electromagnetic calorimeter in terms of resolution and
identification capabilities.

Some other requirements, partly motivated by existing theories beyond the Stan-
dard Model, are excellent capabilities in lepton momentum/energy measurements
and identification, accurate jet and missing transverse energy (ER) measurement
ensured by full hadronic calorimeter coverage, efficient b-tagging and 7-tagging.

2.2.2 Detector layout

The ATLAS detector is shown in Fig. 2.2, partly dismantled to reveal its inner
parts. Proton bunches enter from left and right through the beam pipe, which de-
fines the z-axis. Closest to the collision point lies the inner detector (ID) [orange].
It stretches to (R, |z]) ~ (1.15,3.5) m,' where R is the radius. Outside is the cen-
tral solenoid (CS) [red] which provides a magnetic field essentially along the z-axis
in the ID cavity. Next comes the electromagnetic (EM) calorimeter [green] which
goes out to (R, |z]) ~ (2.25,4.3) m. The hadronic calorimeters [red] including the

!Except for the part on the pixel detector, the detector description which follows is based on
the ATLAS Technical Design Report (TDR) [8]. Numbers may have changed slightly.
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Figure 2.2: The ATLAS detector. (From the ATLAS TDR.)

forward calorimeter (FCAL) [green] then cover out to (R, |z|) ~ (4.25,6.65) m. Fi-
nally, the muon detectors [blue] define the total size of the ATLAS detector with
(R,|z]) = (11,23) m. The barrel toroid (BT) and end cap toroids (ECT) [grey],
provide the magnetic field in the muon system. A cooling system keeps the different
subdetectors at optimised working temperatures. In addition there are mechanical
support structures which keep the detector parts in place, cold walls between differ-
ent subdetectors which operate at different temperatures and services which provide
data read out and powering. These all add to the amount of dead material in the
detector, potentially degrading the performance, and are kept at a minimum.

For constructional reasons most detector systems consist of a barrel section at
low |z| values and an end cap section at high |z| values, as can be seen in the figure.
The barrel parts have full coverage in the azimuth angle ¢ at fixed radii while the end
cap parts have full ¢ coverage at fixed |z| from the collision point. Except for a small
cone around the beam pipe on each side, the full solid angle is covered, although
with some degradation of the detector performance in the overlap region between
the barrel and the end caps.

In cylindrical coordinates the position of detector parts and the original momenta
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of particles coming from the hard process can be put on equal footing, which is
practical. For both, the direction out from the collision point is given in terms of ¢
and the polar coordinate 6, which is traded for the pseudorapidity n = — In tan (6/2).
A complete position in the detector system is then given by an additional z or R
value, while a particle momentum usually is completed by giving the pr value.

Inner detector

The main purpose of the inner detector is to measure the position of the interaction
vertex together with any secondary vertices from long-lived particles like 7’s or B-
hadrons, and to measure the momenta of charged particles from the curvature of
their trajectories in the magnetic field. The ID is shown in Fig. 2.3 [yellow and
interior, the brown part is the EM calorimeter] and consists of three subdetectors,
each having several layers.

Figure 2.3: The inner detector. (Post-TDR geometry.)

Closest to the beam pipe lies the pixel detector. Both the barrel and the end cap
parts have three pixel layers, ensuring three hits over the full acceptance defined by
[n| < 2.5 (corresponding to 9.4° < < 170.6°), which amounts to 98.7% of the solid
angle. The layers of the barrel part are situated at radii of 5, 9 and 12 cm. Due
to its proximity to the beam pipe, the innermost barrel layer will be experiencing a
very tough radiation climate and is scheduled to be replaced after 4-5 years.

Outside, in radial range between 30 and 52 cm, lies the semiconductor tracker
(SCT). Four barrel layers together with end cap layers appropriately distributed on
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nine wheels on each side in the |z| range 80-280 cm ensure four hits over the full
acceptance. Together the pixel detector and the SCT are referred to as the precision
tracker. Their silicon-based technologies give discrete measurements and will be run
at low temperatures of approximately —7 °C to reduce the radiation damage.

Outside the precision tracker lies the transition radiation tracker (TRT), a con-
tinuous tracking device. It is based on straw detectors with a diameter of 4 mm.
Each straw consists of a cylinder serving as the cathode filled with a Xenon-based gas
mixture and with a central anode wire. When a charged particle traverses a straw,
the gas is ionised and charges drift towards the anode/cathode. In the barrel at radii
56-107 cm, and in the end cap at |z| € (80,340) cm a total amount of 420 000 straw
channels ensure approximately 36 hits per track. The TRT also has electron iden-
tification capabilities. A radiator material interspaced between and on the straws
stimulates transition radiation (TR) as charged particles go from one medium to
another. The Xenon-based gas in the straw volumes detects well TR photons in the
energy range given by initiator electrons. TR hits are distinguished from ordinary
track hits by their higher energy deposit in the straws. Since transition radiation
starts to become important at a Lorentz factor v 2 1000, the effect can be used to
separate electrons from charged pions up to momenta of about 100 GeV.

ATLAS calorimetry

The purpose of the ATLAS calorimetry, shown in Fig. 2.4, is to measure the energy
of electrons, photons and jets, as well as provide identification. While the depth of
electromagnetic showers, initiated by electrons and photons, scales with the radiation
length X, the depth of hadronic showers scales with the nuclear interaction length A;.
Since Xy < A; for most detector materials, a calorimeter structure usually consists of
two main parts, the electromagnetic (EM) calorimeter (inner layer) and the hadronic
calorimeter (outer layer). Electrons and photons are measured and stopped in the EM
calorimeter which is tuned for electromagnetic showers. Hadrons usually continue
to the hadronic calorimeter where they eventually stop. Shower development is a
stochastic process. While the widths and depths of electromagnetic showers are
relatively stable for incident electrons and photons of a certain energy, the shape
and size of hadronic showers show large variations for identical initial conditions.

All the ATLAS calorimeters are of the ‘sampling’ type, which means that they
are made up of alternating layers of active and passive material. Only the energy
collected in the active material is measured. Furthermore, the ATLAS calorimeters
are ‘non-compensating’, which means that the response to an electron or photon of a
certain energy is different (larger) than the response to hadrons of the same energy.

The energy resolution in a calorimeter can be parametrised by

o(E) a

5 =7 b@% (2.2)
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The first term is called the stochastic term and is mostly due to the stochastic nature,
pronounced by the sampling principle, of measuring energy by ‘counting charges’.
Since the energy is proportional to NV, the number of charges collected, and Poisson
statistics is appropriate, we get o(E) o VE. The second term is the constant term
reflecting the ‘mechanical precision’ of the construction, and the third term is the
noise term which takes into account the effect of electronic noise and pile up. The
relation (2.2) shows that the resolution of the energy measurement increases with
the energy of the particle.

Electromagnetic calorimeter

The electromagnetic calorimeter [olive] is placed just outside the inner detector,
separated only by the solenoid. Both the barrel and the end cap parts are liquid argon
(LAr) based with accordion-shaped electrodes and lead absorber plates. The showers
are developed from the incident particle in the absorber plates The liquid argon is
then ionised by the secondaries leaving the absorber, and the signal detected by the
electrode. The accordion geometry provides faster readout and better hermeticity.

The total thickness of the calorimeter is approximately 25 radiation lengths (Xj)
over the full acceptance. While muons will pass and leave only an ionising trail,
electrons and photons will shower and stop entirely by consecutive bremsstrahlung
and pair production processes. Hadrons will deposit part of their energy in the
EM calorimeter, then arrive at the hadronic calorimeters which lie outside. At
[n| < 2.5 the EM calorimeter consists of three sampling layers with different gran-
ularities (An x A¢), optimised to give high precision angular measurement. At
2.5 < |n| < 3.2 two layers and a coarser granularity are sufficient.

Before reaching the EM calorimeter, material amounting to ~2X, has to be
crossed. A presampler placed in front of the calorimeter is used to correct for energy
losses of electrons and photons. In the transition region between the barrel and
the end cap, 1.37 < |n| < 1.52, which corresponds to 3.0% of the full solid angle,
the amount of material in front of the calorimeter is particularly large (5-7X)),
disqualifying this region for precision measurement involving photons. Due to the
high granularity of the EM calorimeter, the two showers from primary 7° — ~y
will rarely be interpreted as one, resulting in a good /7" separation vital to Higgs
discovery through the H — 7+ channel.

Hadronic calorimetry

The hadronic calorimetry consists of three subsystems situated outside the EM
calorimeter, see Fig. 2.4. In the barrel region the tile calorimeter [white], a sam-
pling calorimeter with scintillating plastic plates as the active material and iron as
the absorber, covers |n| < 1.7. Like the EM calorimeter it has three sampling lay-
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Figure 2.4: The ATLAS calorimetry. (From the ATLAS TDR.)

ers, although with a somewhat lower granularity. The hadronic end cap calorimeter
(HEC) [red] at 1.5 < |n] < 3.2 is based on the LAr technology, now with copper as
the absorber material. It has four sampling layers. The forward calorimeter (FCAL)
[green] extends the coverage to || = 4.9, thereby increasing the precision of the Eiiss
measurement which is particularly important for SUSY studies. It is LAr based with
three sampling layers, one with copper as the absorber material, the other two with
tungsten, which due to its higher density provides the required material amount in
the limited space allocated to the FCAL.

The total detector thickness in front of the muon system is ~11-15 interaction
lengths (A7), most of which is in the calorimeters and predominantly provided by the
hadronic calorimeters. This is sufficient for measuring high-energetic jets with good
resolution, as well as keeping punch-through into the muon system at controllable
rates.
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Muon spectrometer

The outermost subdetector in the ATLAS complex is the muon spectrometer. Its
main task is to measure the momenta of the muons. As in the inner detector this
is done by measuring how particle trajectories are bent in a magnetic field. Three
barrel stations at radii of 5, 7.5 and 10 m and four end cap stations on each side at
|z| equal to 7, 10, 14 and 21-23 m ensure each muon to traverse three stations. Two
technologies are in use to measure the tracks. For the barrel region and the outer
end cap wheels, where rates are lower and background conditions milder, monitored
drift-tube (MDT) chambers are sufficiently fast. They are based on aluminium tubes
of 3 cm diameter filled with an Argon-based gas mixture at 3 bar and with a central
anode wire. A total of 370 000 tubes is needed, with the length of the tubes varying
from 70 to 630 cm. In the more demanding regions close to the interaction point,
cathode strip chambers (CSC) are used. These are multiwire proportional chambers
with shorter response-time and higher granularity.

The MDT and CSC measure the track positions in the R-z plane with high
precision. In the idealised case where the magnetic field set up by the toroids is
directed along ¢, the bent muon tracks lie in the R-z plane, which means that in
principle no ¢-coordinates are required and the MDT/CSC measurements suffice to
obtain the muon momenta.

The muon system is also equipped with a second set of detector chambers, again
implemented with two different technologies and covering |n| < 2.4. These serve as
trigger chambers, as well as provide measurements in ¢, albeit at lower resolution,
for use in the off-line pattern recognition.

Magnetic fields

The superconducting magnetic system of ATLAS consists of the central solenoid and
the barrel and end cap toroids, see Fig. 2.2. For use in the inner detector tracking
system the central solenoid provides a magnetic field at a nominal value of 2.0 T.
The direction of the field is mainly along the z-direction, which is perpendicular to
the transverse component of the particles. Due to its positioning in front of the
EM calorimeter, the amount of material is kept at a minimum to disturb the energy
measurements as little as possible.

The barrel and end cap toroids provide a magnetic field of peak value close to
4 T for use in the muon tracking system. Each of the three toroids are made up of
eight coils and contained in aluminium alloy casings. The resulting magnetic field is
mainly in the ¢-direction, perpendicular to the muon momenta.

All the superconductors are cooled by helium at 4.5 K.
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Trigger

While the bunch crossing rate is at 40 MHz, for permanent storage and later analysis
only a rate of ~100 Hz can be handled. The necessary reduction by a factor ~4-10° is
made by a three-level online trigger and data-acquisition (DAQ) system, programmed
to select the interesting events.

First, by use of reduced-granularity information from the muon trigger system and
all the calorimeters, and looking for high-pr measurements as well as large total Er
or EMiss the hardware-based level-1 trigger reduces the rate to ~75 kHz. The total
information on each selected event is read out from the electronics of the detectors
and put into a buffer memory where it is eventually accessed by the software-based
level-2 trigger. By refining and combining information, e.g. by applying isolation cuts
for muons and matching between calorimeter and ID information for electrons, the
level-2 trigger reduces the rate to ~1 kHz. Finally the event filter (EF) uses off-line
algorithms for further refinement, and arrives at the required ~100 Hz, which means
a storage rate of ~100 MB/s.

2.2.3 Particle reconstruction

As stated at the beginning of the previous section, the objects which need to be re-
constructed are muons, electrons, photons and jets. In the following more details are
given on each of the types; how they interact with the detector, which subdetectors
are active, specific challenges as well as the overall performance. Resolutions and
efficiencies are given for design luminosity unless otherwise stated.

Muons

In addition to having a long lifetime (c¢7, = 659 m), muons have great penetration
power. From the center of the detector and outwards muons give hits in the ID,
deposit only some energy in the calorimeters, then give hits in the muon spectrometer
before leaving the detector to decay later.

In the determination of momentum from the track curvature [and assuming a
uniform magnetic field], the relevant track parameter relates linearly not to pr but
to 1/pr. If other effects are discarded, appropriate error propagation therefore gives

Aer) o (23)

br
Hence, momentum resolution from tracking systems deteriorates as the energy grows,
quite contrary to the energy resolution from calorimeter readings, see Eq. (2.2).
The muon momentum is measured both in the ID and in the muon system. The
two systems complement each other in that they have different regions of sensitivity.
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At low energies the precision is dominated by the ID, at high energies by the muon
system, with a transition around pr =~ 30-50 GeV. For pr = 10/100/1000 GeV the
expected resolution is o(pr)/pr = 1.5/2.5/8%, showing the reduced precision as
the energy is increased. The track reconstruction efficiency also reduces at higher
energies. For pr = 10/100/1000 GeV the expected efficiency is ¢ ~ 97/95/85%.
Furthermore, studies using single muons from the leptonic decay of a heavy vector
boson, W’ — puv,, show that the muon charge can be determined with a wrong-sign
fraction of 0.2-0.9/3-4% for my» = 1/6 TeV. (For the numbers above, pile-up is not
included.)

While we are usually most interested in muons which come directly from the
hard process, typically as decay products of heavy particles like a Z or a SUSY
particle, there are other sources, which need to be controlled. One is the muonic
decay of 7t /K* (cr = 7.8/3.6 m) produced in the fragmentation into hadrons with
subsequent, decay. They have a good chance of decaying, typically to low-pr muons,
somewhere in the inner parts of the detector. The way to recognise these non-prompt
muons is by combining the information from the ID with that of the muon spectrom-
eter. The momentum from the ID measurement will be larger by an amount which
cannot be explained by the limited energy loss in the calorimeters. Furthermore, the
ID track will have a kink at the position of the decay which usually spoils the 2 for
the combined track.

The other ‘background’ source of muons is semi-leptonic decay of B/D-hadrons
resulting from fragmentation. These muons, which usually have higher pr, can be
distinguished from ‘signal muons’ by the larger energy deposited in the calorimeter
cells close to the muon passage from the accompanying hadrons.

Electrons

The passage of electrons through the ID can be tracked through their hits in the pre-
cision detector and the TRT. While the same applies to muons, electrons have some
additional features: They give special TR hits in the TRT, good for identification.
Next, they are more affected by the noticeable amount of matter, ~0.5Xq, in the
ID and steadily lose energy by bremsstrahlung. This degrades the track quality and
thereby the momentum measurement. Finally, when they reach the EM calorime-
ter, a showering procedure takes place through bremsstrahlung and pair production
which effectively results in a full stop for the electrons.

In the same way the muon reconstruction takes advantage of two separate tracking
systems, allowing for consistency checks, electron reconstruction is based on the
combined ID and calorimeter readings. In accordance with the logic of Eqs. (2.2)
and (2.3) the best energy measurement is obtained by the calorimeter at high energies
and by the ID at low energies. The transition region is around pr =~ 15 GeV. For
E =20/50/200 GeV the expected resolution is roughly o(E)/E =~ 3/2/1%. Charge
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identification is achieved with a wrong-sign fraction below 1.4% for pr < 500 GeV
and increasing to 4.4% for pr = 1 TeV.

In the LHC environment one of the necessities of electron reconstruction is a
high rejection factor against jets. From the calorimeter alone; by looking at how
energy is shared between the different samplings, as well as the shower width and
possible substructures within the shower, strong rejection is already achieved. Then,
additional separation power is provided by combining the calorimeter and the ID
information; looking at the calorimeter energy over the momentum, E/p, which for
electrons is very close to 1, requiring consistency between the track and the position
of calorimeter deposit, and asking for TR hits. All put together, the required jet
rejection (~10°) is achieved with an electron efficiency close to 70%.

Photons

In principle photons leave no tracks in the ID. They are then detected in the EM
calorimeter only, and are reconstructed with an energy resolution similar to that of
electrons. However, due to the amount of material in the ID, around 30% of the
photons convert to eTe™ pairs before reaching the calorimeter. By reconstructing
oppositely-charged tracks and requiring that they meet in a common vertex with
no opening angle, and that the reconstructed photon points back to the beam-line,
conversions can be recovered with an overall efficiency of about 60%. The energy
resolution for converted photons is somewhat less than for unconverted photons.

While the converted photons are reconstructed from combined ID and EM calori-
meter information, which also naturally gives the direction of the photon, the recon-
struction of unconverted photon relies solely on the EM calorimeter. Driven by the
requirements of the H — 77 channel, the calorimeter is constructed to determine
with sufficient precision the direction of an incoming photon. Since the z-position
of the primary vertex is not known unambiguously, the directional capabilities of
the calorimeter is essential to the mass resolution of the reconstructed Higgs mass.
The ability of the calorimeter to determine the direction of a photon is also crucial
in some versions of GMSB-type SUSY scenarios, where the next-to-lightest SUSY
particle may be sufficiently long-lived to fly a distance of the order of the ID before
decaying to an invisible gravitino and a photon. The evidence for having a GMSB-
like scenario of this type, as well as the important measurement of the NLSP lifetime
which relates to the SUSY breaking mechanism, will rely on the measurement of the
photon direction.

Rejection against jets is important in the LHC environment, in particular for
the H — 77 channel. By investigating the shower shape, leakage into the hadron
compartment, as well as vetoing tracks, the sufficient rejection (~103) is achieved at
about 80% photon efficiency.
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Jets; b-jets, T-jets

The path from the initially produced partons of the hard process to the reconstructed
jets goes first via non-trivial and inescapable physics effects like the coexistence with
the underlying event, initial and final state radiation, fragmentation and subsequent
decay of unstable hadrons. When the (quasi)stable colourless objects have been
formed, usually gathered into more or less narrow jet structures, they continue out-
wards through the ID where the charged ones give hits, enter the EM calorimeter
where some amount of energy is deposited and end their journey in the hadronic
calorimeter (if not already in the EM calorimeter). Since any charged components of
a jet are deflected in the magnetic field, calorimeter clusters at different positions may
be part of the same jet. From the ID tracking they can be appropriately combined,
also with the neutral part.

Hadronic showers are dominated by successive inelastic hadronic interactions in-
volving multiparticle production, but contain also an electromagnetic part from the
frequent creation of 7°’s which decay into two photons. The stochastic nature of
70 production in combination with a non-compensating calorimeter, as well as the
general LHC pile-up situation degrade the energy resolution of jets significantly com-
pared to muons, electrons and photons. The resolution follows Eq. (2.2), but with
larger coefficients than for electrons and photons. For E = 50/100/200/1000 GeV
the expected resolution is o(E)/E ~ 15/9/7/3%.

While the identity of the initiating parton in most cases is lost, b-jets and jets
from hadronically decaying 7’s can be fairly efficiently tagged. For the former the
tagging is due to the noticeable lifetime of B-hadrons (¢7 & 450 pm), allowing the
observation of the secondary vertex. At design luminosity tagging efficiencies of
50% can be obtained with rejection factors of ~10 against c-jets, which also have a
noticeable lifetime, and ~100 against gluon and light-quark jets.

Hadronic decay of 7’s (¢t = 87 um) is characterised by few tracks, either one
from 7% or three from 7¥7*7T, which take 50% and 15%, respectively, of the total
branching width. This track information, together with the shower shape, allows for
useful 7-tagging efficiencies, which become better with increasing pr.

In conclusion, the ATLAS detector is well equipped to tackle supersymmetry.
The high precision and efficiency of lepton and photon reconstruction, the good jet
reconstruction including high b-tagging efficiency, and the large coverage to control
the missing transverse energy address the most prominent SUSY features. In fact,
beside the obligatory Higgs search, due to its rich phenomenology SUSY has been the
most important source of benchmarks during the planning of the ATLAS detector.
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Simulation

In all the phases of an experiment like ATLAS, from the drawing board through the
long period of building the machine, during the entire data taking and well into the
aftermath, Monte Carlo simulations in different and continuously refined forms are
invaluable tools to understand what actually happens in the detector. They guide
the planning and building and form the basis for the conclusions that ultimately are
to be drawn from the experiment. Most simulations, in particular those that aim
to study certain physics channels (before, during or after the running period), are
naturally divided into three parts.

The first step is the ‘event generation’. The interactions at the beam cross-
ing including production and decay of new particles, any additional radiation and
hadronisation, all of which is called an event, are described by a Monte Carlo event
generator. This is usually a general program, applicable to a multitude of experi-
ments and which, apart from obvious variables like the energy of the colliding beams,
is only slightly tuned to the experimental setup.

The next step is the ‘detector simulation’. It consists of two parts, and is usually
based on the general detector description and simulation tool GEANT [11]. First, the
outgoing particles are transported through the detector with which they interact in
a probabilistic manner. For this, full account of the most important processes for
interaction with matter in the relevant energy range is required, as well as a detailed
map of the detector. The transport of particles, especially the shower development
in the calorimeters, is the most time-consuming part of the entire simulation. Next,
from the hits in the tracking devices and the energy deposit in the calorimeters,
the detector response is simulated. This is called the digitisation, and produces
information in the same form as will be read out from the electronics in a real event.

The final step in the simulation chain is the ‘reconstruction’ of the original event
from the detector read-out. This involves pattern recognition of tracker hits to
determine particle tracks and momenta, the combining of calorimeter cells to form
jets, inclusion of correction factors, particle identification etc., first locally in each
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subdetector, then combined. Optimally, the reconstructed event corresponds well
with the hard interaction of the generated event.

While the first step is quickly done with today’s processor speeds, the two others,
in particular the detector simulation, are very time-consuming. Depending on the
needs of the particular study, various levels of detector detail can be incorporated
in the simulation. Usually two versions are in use, a ‘full simulation’, which uses a
detailed detector description thereby making it slow, and a ‘fast simulation’ in which
the detector simulation and the reconstruction are merely parametrised to capture
the overall behaviour of the detector.

Below follows a brief description of PYTHIA [12], the event generator used for
the simulation, and ATLFAST [13], the ATLAS fast simulation program. No full
simulation was performed for this thesis.

3.1 PYTHIA

3.1.1 Event generation

The natural starting point of the event generation process is the hard interaction: In
its standard form two incoming partons, selected in a probabilistic manner according
to parton distribution functions (PDFs), produce one or more heavy particles which
immediately decay into lighter particles. If the underlying event is neglected for
now, this will produce a 2 — n event topology, where n is the number of outgoing
particles.

However, it turns out that if coloured (charged) objects are present in the hard
interaction, which is inevitable in a pp-collision, gluon (photon) radiation typically
gives large corrections to the event topology suggested by the lowest-order hard in-
teraction, and must be incorporated in some way. Two methods are in use for this.
In the matrix-element method the appropriate Feynman-diagrams are calculated.
While this is the theoretically appreciated method, it becomes very hard to carry
through due to computational difficulties for higher order diagrams, especially loop
diagrams. In general, hard gluon emission is well described by the matrix-element
method, while multiple soft emissions are not. PYTHIA uses the somewhat less am-
bitious parton-shower method in which the more complicated topologies are gener-
ated by allowing each incoming and outgoing parton to initiate a set of subsequent
branchings a — bc. The parton-shower method performs well for multiple soft gluon
emission and not so well for hard emissions.

In the parton-shower picture radiation is divided into initial state radiation (ISR)
and final state radiation (FSR). The starting point of the ISR are two massless
partons, one from each of the protons. When a massless parton branches, energy-
momentum conservation requires at least one of the daughters to be space-like. In
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PYTHIA the other is either on-shell or else it is time-like, in which case subsequent
branchings will bring all the particles of this ‘side branch’ on-shell. The space-
like daughter, now a mother, then branches into one daughter which is even more
space-like and another one which is on-shell or time-like. In this way a ‘main chain’
of partons with increasing space-like virtuality is constructed, together with many
side branches of on-shell partons. The side branches constitute the ISR. The final
daughter of each of the two main chains meet in the hard process. [In PYTHIA the
ISR evolution is actually carried through the other way around. The partons which
enter the hard process are selected from ‘evolved” PDFs where the effect of ISR
is already included. Then a backward-evolution is performed which takes the two
selected partons back to the initial partons of the proton.]

The FSR starts from the partons which leave the hard interaction. These have
time-like virtualities to start with, otherwise branchings to on-shell particles would
not be possible. The set of branchings then reduces the initial virtuality step by step
until all the partons are on-shell. Since the branchings are predominantly soft, most
of the energy in a branching is given to one of the daughters. Each parton leaving
the hard process therefore gives rise to one main chain whose final daughter carries
most of the initial momentum, and many softer side branches which contribute to
the FSR.

When ISR and FSR have been brought to an end, the event consists of the fol-
lowing: one or more hard partons from the FSR main chains, ISR and FSR, mostly
in terms of softer gluons and possibly some quarks and photons, and the beam rem-
nants, all going out in different directions from the collision point. As these different
parts separate more and more and start climbing the linear potential of QCD), their
interconnections through colour charge become apparent and fragmentation eventu-
ally takes place.

Since fragmentation occurs in the non-perturbative regime of QCD, it is not
understood from first principles. Two main types of phenomenological models are
in use for this purpose. PYTHIA is based on the Lund Model, the most celebrated of
the ‘string fragmentation’ (SF) models. Here the partons are first gathered logically
into colourless objects called strings. In the simplest case a string is made up of a
quark-antiquark pair ¢, moving away from each other with a uniform colour flux
tube between them. Such a construction gives rise to a linear potential, which is
exactly what the QCD confinement potential is believed to be. Eventually, as the
quark and the antiquark move further apart, the string will break with the creation
of a new quark-antiquark pair, ¢'q’, resulting in two strings, ¢¢’ and ¢’g. This process
will continue until the strings have sufficiently low masses and convert into hadrons.
The other main type, ‘cluster fragmentation’ (CF), is used e.g. in the Monte Carlo
generator HERWIG [14]. Here all final gluons from the parton showers are first forced
to split into qq pairs, then each quark combines with a nearby antiquark into a
colourless cluster which finally decays into one or more hadrons.
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The last step in the event generation chain is the decay of any unstable particles.
In particular, the many hadrons produced in the fragmentation are usually unstable
and decay immediately to lighter particles. The following (quasi)stable particle types
are the ones that will be seen by the detector: p/p, n/n, ot K+, KY v, ef, ut.
(A typical SUSY event may count ~300 (quasi)stable particles, most of which are v

and 7t.)

3.1.2 SUSY

A wide range of hard processes are available in PYTHIA. In addition to most Standard
Model processes of practical interest, many scenarios beyond the Standard Model
are included. In particular SUSY is well represented. A large part of the full MSSM
parameter space can be accessed. Also lepton-violating processes, see Eq. (1.4),
which are discarded from the ordinary MSSM by R-parity conservation, have been
coded.

The simulations performed for this thesis are within the mSUGRA scenario.
While the full MSSM parameter space is determined by only 4% parameters in this
scenario, RG evolution from the GUT scale to the EW scale is required. PYTHIA
does not include this RG running. As a compensation, approximate formulas which
in most cases get the parameters right by ~10% are available. However, for stud-
ies in which the RG evolution is important, the idea is rather to interface PYTHIA
with one of the programs which perform the evolution from the high scale. A fully
standardised interface is available for ISASUSY [15], and is the one used for the simu-
lations here. From the 4% GUT parameters ISASUSY evolves the relevant parameters
down to the EW scale, calculates from these the mass parameters and passes them
to PYTHIA which in turn finishes by calculating decay widths and cross-sections.

In PYTHIA all decays of SUSY particles are spin-averaged. For most studies,
including the ones undertaken in this thesis, this has no consequence. However,
spin effects are of course interesting in complete SUSY investigations, and must be
incorporated for certain studies. At the time of writing only in HERWIG have spin-
correlations in SUSY cascade decays been implemented.

3.1.3 LHC energies

The LHC will operate at presently unstudied energies. While we are able to predict
quite precisely how the electroweak sector will behave at these energies, although
with the obvious uncertainty of the Higgs mass, our predictions for QCD have large
error bars. The extrapolation involved in the PDFs is significant. Also the adequacy
of the current fragmentation models remains uncertain. Like the PDFs they are fitted
to the available data, and it is not obvious that the current tunings work equally
well at LHC energies. In total, one must reckon with considerable uncertainties
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in the QCD background predicted by the event generators. This makes ‘counting
experiments’ a particularly daunting exercise, and invites in general to caution in
predicting discovery and measurement potential.

3.2 ATLFAST

The aims of the ATLAS fast simulation package, as given in the documentation, are to
reproduce as well as possible the full-simulation results on the mass resolution for all
important physics channels, to reproduce accurately the expected jet reconstruction
efficiencies, especially for b-jets, as well as obtain the expected EX* resolution.
In contrast, the package has not been optimised to reproduce the full-simulation
efficiencies of lepton and photon isolation. The main application of the fast simulation
is studies where it is reasonable to trade the accuracy of the simulation for speed.
Resolution or reconstruction efficiency studies should always be confirmed with full
simulation.

In the fast simulation algorithm the detector is represented by a grid of ‘calorimet-
ric cells’” in n and ¢ with coverage and resolution similar to an approximate average
over all the subdetectors (An x A¢ equal to 0.1 x 0.1 for |n| < 3 and 0.2 x 0.2
for |n| > 3). The complicated affair of transporting the particles obtained from the
event generator through the detector is simplified to depositing the Et of each sta-
ble, visible final-state particle in the event, except muons, onto the detector grid of
calorimetric cells.

Then reconstruction starts, where clusters are formed by a simple cone algorithm.
Cells with Er > 1.5 GeV are allowed to act as cluster initiators, and are scanned
in order of decreasing Er. If the deposited Er within AR = /(An)? + (A¢)? = 0.4
of the initiator cell exceeds 10 GeV, a cluster is formed. The cells which make up
a cluster are marked so as not to participate in the formation of another cluster.
(Throughout the detector there will be cells where some energy is deposited, but
which do not belong to a cluster.)

ATLFAST then goes on to identify the clusters. The list of final particles is scanned
for muons, electrons and photons, in that order. When one of these are found, its
four-vector is smeared according to the resolution expected for the given particle type.
[In the language of the full simulation, this step belongs to the detector simulation
rather than the reconstruction.] The smeared momenta are then required to be
within the acceptance, |n| < 2.5 and pp > 6/5/5 GeV for u/e/~, or else the particle
is lost. While muons have no cluster associated to them, as they deposit no energy
onto the detector grid, electrons and photons do, and the associated cluster is now
identified.

Then isolation criteria are imposed. First, there must be no other (yet uniden-
tified) cluster within AR = 0.4. Second, the Er deposited in a cone AR < 0.2,
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excluding the contribution of the particle itself, must not exceed 10 GeV. If these
cuts are satisfied, the particle is regarded as reconstructed. If not, a muon will
be marked as non-isolated while an electron/photon will be lost. The cluster stays
though.

The energies of the remaining, unidentified clusters are then smeared according
to the expected hadronic resolution, including pile-up effects at design luminosity,
and the energy of any non-isolated muons within the cluster cone is added. A cluster
is identified as a jet if Er > 15 GeV. Furthermore, as a first step of b/7r-tagging,
the jets are ‘labelled’ as b, ¢ or T-jets if a particle of this type is found nearby and
satisfying certain criteria relevant to the tagging in real life.

Finally, p&'s is constructed by summing the py of all identified particles, all
unidentified clusters, any non-isolated muons not attached to a jet, as well as all
cells not belonging to a cluster (after first smearing them with hadronic resolution),
then changing the sign.

The identification of p, e,y and b/7-jets, as described above, is not complete.
Additional efficiencies need to be included, and these are not constant, but depend
on the rate of misidentification deemed acceptable for a given purpose. The higher
the identification/tagging efficiency, the lower the rejection factor against misidenti-
fication/mistagging. For p, e and v realistic efficiencies need to be put in by hand,
which for the two latter should be considered in combination with the possibility of
misidentifying a jet for e/~, which is lacking in the fast simulation. For b/7-tagging
dedicated routines are provided in the ATLFAST-B package.

There are two main sources of uncertainties in the simulation studies performed
for this thesis. One is the unknown behaviour of physics at LHC energies, in partic-
ular of QCD. In the SUSY scenarios investigated here the sparticle masses are rather
light and the collected signal samples large. Changes in the QCD cross-section and
typical event topology will then not change the conclusions significantly. The other
source of uncertainties is the simplifications involved in replacing the full simulation
with the parametrised one, and this is probably more important. The reconstruction
efficiencies and precisions both of leptons and jets are most likely slightly different for
fast and full simulation. More pressing is however the lack of possibility to study re-
alistic detector effects with the fast simulation. For the particular studies undertaken
here, the detector behaviour is rather important for the final results. Therefore, in
order to understand the detector effects and correct for them, large-scale full simu-
lation must eventually be performed.
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SUSY measurements in ATLAS

In this chapter the prospects for SUSY discovery and subsequent parameter mea-
surements is first briefly discussed. Then the endpoint method, which is the main
theme of this thesis, is introduced and discussed. A few techniques for the endpoint
calculations are shown, then some of the mass distributions themselves are discussed.
Only to a very small degree does the presentation account for the contents of the
papers. It is meant to be introductory as well as somewhat complementary.

4.1 Introduction

In order for SUSY to successfully address the hierarchy problem, the sparticle masses
must lie within ~1 TeV. This means that they will be fully accessible at the LHC
and hence either discovered or excluded. If low-mass SUSY does indeed exist, the
aims of ATLAS is first to make the discovery, which normally should happen quite
fast (months or even weeks), depending on how quickly the detector is sufficiently
understood, then, for the rest of the running period, to measure as many signatures as
possible as accurately as possible. This will be vital in understanding the structure
of the new sector. Is it compatible with e.g. mSUGRA, with MSSM, or is a less
minimal structure required? Furthermore, one would like to look beyond, to the
mechanisms for SUSY breaking and the physics residing there.

Given the number of free parameters in the more ‘realistic’ class of non-minimal
models, this is a very ambitious goal. However, with a collection of central mea-
surements in hand, such as cross-sections, masses, couplings and branching ratios,
one may hope that the parameter space would be drastically reduced (although still
considerable). Without such measurements, and this is the situation for preparatory
studies, the available parameter space is overwhelming. It is simply impossible to
envisage and study all viable phenomenologies. There are however some experimen-
tal constraints and theoretical hints, as discussed in Sects. 1.2.2-1.2.3. While these
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serve to put strong limits on certain types of interactions, it is clear that the simplest
implementations of these constraints, and which almost exclusively are the ones used
for test analyses, do not capture the wealth of phenomenologies still allowed. A
relevant example here is the mass degeneracy of the two first sfermions generations,
present both in mSUGRA and in GMSB. It has a direct impact on many studies,
but need not at all be realised in a less minimal model.

Nevertheless, the impact of restricting the analyses to e.g. mSUGRA, is probably
less confining on the phenomenologies, which still are fairly generic, than on the next
step, that of going from the measured quantities to the SUSY parameters. Although
a complicated task even for the 4%—parameter mSUGRA, obtaining the SUSY pa-
rameters and RG evolving them back to the GUT scale to find good correspondence
with the initial parameters, is probably taking mSUGRA too seriously. Still, it is a
starting point for learning how to cope with more realistic models. As the SUSY pa-
rameters are RG evolved towards higher scales, their errors increase. The prospects
to constrain GUT scale physics rely therefore strongly on accurate measurements.

The standard signature of mSUGRA-like scenarios, to which we limit ourselves
at this stage, is considerable EXs from the two escaping LSPs, many hard jets from
the decay of gluinos and squarks, and leptons, either e or p or the experimentally less
attractive 7. By simply counting the number of events which pass certain selection
cuts based on the typical signature, the SUSY signal can be observed on top of the
SM background quite clearly for a large region of the m;/,-mg plane already within
months, and ultimately for squark and gluino masses of several TeV [16].

An estimate of the SUSY mass scale

msusy ~ min(mg, mg) (4.1)

and cross-section can be obtained from the ‘effective mass’ constructed from Fmiss
and the pr of the 4 hardest jets [17]

4
Moy = P+ plt! (4.2)
i=1

To get more precise information and in doing so also establish that what has been
discovered really is SUSY, one needs to turn to exclusive analyses, i.e. try to isolate
certain useful decay chains. With this change of perspective the remaining part
of the SUSY sample suddenly becomes background, and as it turns out, a more
dangerous background than the Standard Model one, for most SUSY scenarios and
most analyses.

Some decay chains are more useful than others. Particularly interesting are decays
which involve e or p, since they provide a natural trigger and have very accurate
momentum reconstruction. Due to the escaping LSP of each chain, no mass peaks
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can be reconstructed as one would e.g. for the Z mass. Instead, indirect measurement
through the endpoints of mass distributions has risen to become the canonical way
of obtaining sparticle masses in such scenarios. Some details of the method are
explained in the following sections.

In SUSY analyses so far, emphasis has been on determining sparticle masses.
Then, within the framework of mSUGRA one has from this information alone been
able to regain the GUT scale parameters. For more ‘realistic’ scenarios, masses alone
will not suffice. Cross-sections, branching ratios, couplings etc.; all information must
be combined, both to obtain the SUSY parameters, and to test for inconsistencies.
Although the LHC experiments will be able to measure a lot of these quantities, in
order to have a chance of fulfilling such a programme, a Linear Collider will most
likely be required to provide complementary information of high accuracy.

4.2 Endpoints

4.2.1 Introduction

The endpoint method of obtaining masses is based on the following: if we are able to
select events containing a certain decay chain and in each of these events isolate the
correct branch, then from the visible decay products (‘visibles’) mass distributions
can be constructed whose kinematic endpoints depend on the masses of the inter-
mediate SUSY particles in a quantifiable way. Measurements of these endpoints can
then be turned into measurements of the SUSY masses.

A decay chain particularly apt for this kind of analysis, is

q— X5q — llg — PLlig (4.3)

which is realised for considerable parts of the mSUGRA parameter space. The longer
a decay chain is, the more mass distributions can be constructed. For a decay chain
of this ‘sequential type’ with n SUSY particles, there are in principle 2"~! — n mass
distributions. This formula can be found by representing the combinations of visibles
by a binary number where each of the n — 1 visibles fills up a digit. The total
number of combinations is then trivially 2"~!, but since invariant masses cannot be
constructed by combinations with 0 or 1 visible, n combinations must be subtracted.

4.2.2 Relativistic kinematics

Some useful results of relativistic kinematics, to be used later, can be obtained by
investigating the first step of (4.3), § — ¥3¢. Align the coordinate system so as to
have the quark go in the -+z-direction (‘up’) and %3 in the —z-direction (‘down’).
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Since all movement is in the z-direction, the = and y-coordinates can be suppressed.
In the rest frame of § we then have

{a) (Bp @ mg —my mg —mi

Uy, = (198, 17p;) = 2, : 44

pq ( @ pq qu : qu ( )
m2+m2, mZ—m?2,

(@, — (&g Ay ) [ a8 T~ T

qpfcg - ( qu((sz ! pgg) - ( 2mg of 2m, 2) (4.5)

where the squark rest frame is indicated with a ‘pre’-superscript. The quark is taken
to be massless which is a very appropriate approximation considering the large SUSY
masses. The quarks, and later the leptons, can thus kinematically be pictured as
photons. In particular, no Lorentz transformation can flip their direction.

The four-vectors (4.4)-(4.5) are seen to satisfy (9p? = 0, {q}pfzo = m?2
2

) 3 X3
(a¥p, +1@ ]95(3)2 = mg, as they should. For these relations to also hold in the rest
frame of ¥9, we need to have

and

mZ — m2,
g gk, - 1 X 4
q pq 271,%28 ( 6)

For the massless particle (quark) the energies in the two rest frames are seen to
be related by the ratio mg/mg. This turns out to be a generic relation for rest
frames defined by the decay of a particle into a massive and a massless one: If the
momentum of a massless particle is parallel or antiparallel to the relative speed of
two such rest frames, then its momenta in the two frames are related by the ratio of
the two masses involved.

This ‘mass-ratio rule’, which will turn out to be very useful, can be deduced in
a more conventional language. In the above example the relation between the rest
frames of § and {3 can be given uniquely in terms of the Lorentz factor

{a}g. m2 + m?2
_ By a My

= = 4.7
7 mgg 2mqm>~<g (47)
From ~ the relative speed is found,
2 2
mg — Mg
B=—s (4.8)
myz + Mz

and the two useful quantities

(1 +B) =mg/mg, ~(1—PB)=mygy/mg (4.9)
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Consider now the appropriate parallel/antiparallel Lorentz transformation (boost)
of a massless particle:

( izﬁ i;/ﬁ ) (gg > =7(1+0) ( Zg ) (4.10)

From Eq. (4.9) we see that the boost is given by multiplication with the mass ratios,
confirming the mass-ratio rule.
Further understanding can be obtained by rewriting the factors v and 3 in terms
of rapidity (,
v=cosh(, ~0=sinh( (4.11)

which also gives the relation
Y1+ p) =e* (4.12)

Rapidity is an additive quantity under boosts. This means that two consecutive
Lorentz boosts, characterised by (; and (s, respectively, correspond to one boost
with ¢ = G + Ga.

Now, from Eq. (4.12) we can write

€8 = et = 51e& = 4 (1 + B1)7a(1 + B2) (4.13)

The factor (1 £ ), which for a decay into one massive and one massless particle is
simply given by the mass ratio, see Eq. (4.9), is therefore the multiplicative equivalent
of rapidity. For massless particles consecutive boosts between the relevant frames in
a decay chain like (4.3) are therefore easily performed by consecutive multiplications
with the corresponding mass ratios.

4.2.3 Endpoint calculations

In the following the usefulness of the mass-ratio rule will be explicit in a calculation
which generalises Eq. (2.11) of [2] to a (sequential) decay chain with an arbitrary
number of SUSY particles. Consider the decay chain

dn - dnflbnfl - d'rLbeanbnfl d alble te bnfl (414)
where @; represents the (massive) SUSY particles and b; are the visibles, the massless
SM particles which are typically quarks, leptons and/or photons. In this subsection

we will calculate the kinematic maximum value of the ‘inclusive mass distribution’,
i.e. the mass distribution formed by combining all the visibles,

mglbg---bn71 = (pl +p2 +e +pn—1)2 (415)
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where the four-momentum of b; is given as p; (instead of p,,). For n = 2 only one
visible is available, so no invariant mass can be constructed. For n = 3 the maximum
value is obtained when b; and by are back-to-back in the rest frame of a, giving

2 (m§ - m%)(m% - mf)

My by, =

4.1
- (4.16)

For n > 4 the decay configuration which gives the maximum value will depend on
the masses, thereby giving multiple expressions for the endpoint. It is this situation
we will investigate here.

Following the reasoning in Sect. 2.2 of [2], which applies equally well to our
situation with n SUSY particles, we find that if the combination of SUSY masses are
such that it is possible to bring a; to rest in the rest frame of a,, then the endpoint
will be given by m,, — my, where m; is the mass of a;. If this cannot be done, it will
be because the masses are such that one of the n—1 decays in the chain is sufficiently
dominant, meaning that the massive daughter of the dominant decay is emitted with
momentum so large that not even optimal alignment of all the other n — 2 decays
will bring a; to rest in the rest frame of a,.

b1 b2 by -1 b2 by
@ 4’ @ o 4’ 4’ 4’ o 4’
Mp_1 M2 Mit1 my my Mp_2 my
m, Mn—1 Myt Mis1 Mp—1 Mp_1 ms
Ap-1 [ ay, b1 af—2 ay

Figure 4.1: Sequential decay chain with n sparticles. See the text for details.

To quantify further, assume we have the decay configuration shown in Fig. 4.1. As
before, the (massive and invisible) SUSY particles and the (massless and visible) SM
particles are denoted a; and b;, respectively. First, at the very left, a,, decays, emitting
b,—1 upwards and a,_; downwards. We then boost (the reference system) downwards
to the rest frame of a,_1, illustrated by the vertical arrow. (The horizontal arrow
takes us to the next step in time.) Next, we let @,_; decay in the same way, emitting
the visible upwards, the sparticle downwards, then boost anew to the rest frame of the
sparticle etc. We assume the dominant mother to be a;. The extreme configuration,
which will allow us to find the appropriate formulas, occurs when the visible is emitted
upwards in every decay except the dominant one where b;_; is emitted downwards.
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In the rest frame of @, conservation of momentum gives

il =Y pi+1i, (4.17)
ith—1

where, as earlier, particle names are suppressed for the visibles. If, in the given
configuration where all the other visibles ‘join forces against by_1’, pZ, points upwards,
i.e. has direction opposite to pi_;, then the decay of @ is sufficiently dominant. (In
the opposite case, if pZ was directed downwards (and no other decay was dominant),
then a sufficient mis-alignment of the n — 2 non-dominant decays would allow pZ to
vanish, and we would have the maximum at m,, — ms.) The criterion for the decay
of a; to be dominant is therefore, in the rest frame of a,:

il > > (4.18)

i#k—1

In the mother rest frame the energy of b;_; is (m?—m?_,)/(2m;). To find the energy in
the rest frame of a,,, starting from a; go leftwards in Fig. 4.1 and for each decay boost
(the reference system) in the opposite direction of the vertical arrow. As discussed
earlier, for massless particles this corresponds to multiplying by a mass ratio for each
boost. The appropriate mass ratios for Pizk—1 (which all point upwards) are given in
the figure, below the horizontal arrows. For pj_; the inverse ratios should be used,
since it is pointing downwards. This will give the following results for the momenta
in the rest frame of a,,:

2 2 2 2
pz _ (mn B mnfl) _ (mn B mnfl)
n-l 2my, 2my,
2 2 2 2
pz _ (m”71 - mn72) Mp—1 _ (m"71 B mn72)
n2 Zmnfl my an
2 2 2 2
pi = (M1 — Mi) Mgy o M2 My _ o (mpyy —my)
k 2mk+1 Mi42 Mp—1 My 217Ln
(m2 —m?_,) (m2 —m?_,) 2
_pz _ k k—1) Mk+1 . Mp—1 My _ k k—1 (mn)
k=1 2my, my, Mp—2 Mp—1 2my, my
(m2_, —m?_,) (m2_, —m?_,) 2
v _ k-1 k—2) Mk Mp2Mp_1 k-1 k—2 ( mg )
k=2 2k M1 Mg My 2m,, M1
2 2 , , 2 2 ,
v = (m3—m3)ms  My_2My_y _(m3 —m3) ( my )2
5 - S =
2ms My Mp_1 My, 2m,, Mp—_1
2 2 2 2
2 (my —mi)my  mn_gmny (m3 —mj) ( M )2
pl = —_— e . =
2m2 ms Mmp—1 My 2mn mg—1
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Summation of the n — 2 non-dominant ones gives

n—1 k—2 2 2 2
z z z (mi B m%) (mk—l - ml) mg
Z bi ;pi + ;pi N 2m,, + 2m,, M1

i#k—1
(ke — ) "
- 2 (4.19)
2m,mi_,

Then, imposing Eq. (4.18) results in the following defining inequality

mimy > m;_m, (4.20)
or equivalently
n—1
M > H Mit1 My Mp—1 M1 Mp—1 mg Mma (4.21)
Mp—1 m; Myp—1 Mp—2 my Mg—2 ma my

i#k—1

Finally, from pf_; and ), 4k—1 P; the maximum value for the endpoint is obtained:

(mmax )2 o (m% - mi—l)(mim%—l - mim%) (4 22)
by-br_1 m%m% ) .

This formula applies in the case of a dominant ay, as defined by Eq. (4.21), and is
valid for all n — 1 dominance regions, k € {2,...,n}, n > 4. If no decay is dominant,
the endpoint value is given by

(3%, ) = (my — my)? (4.23)

For n = 4 and n = 5 Eqgs. (4.21)—(4.23) reproduce the previously obtained formulas
for the squark and the gluino chain, see [9, 1] and [2]. With appropriate substitutions
the same formulas also apply to a subchain of (4.14), provided, of course, that the
effective n is larger than 3.

‘Non-inclusive’ mass distributions like my, 5,5, Will also be available experimen-
tally, so their endpoints must be found. For n < 5 this programme is accomplished,
see [2]. (A procedure analogous to the one applied for the inclusive distribution,
although somewhat more complicated, might allow for the general solution to non-
inclusive endpoints to be calculated.)

In the calculation performed above it is assumed that we can distinguish the b;’s
from each other. This is not always the case. Consider e.g. the decay chain (4.3).
It will usually be impossible to know which of the two leptons is b;/bs. Assuming
that we have selected the correct jet (quark) and the leptons, two mg values can be
constructed, but it is not possible to say which is my,,, and which is 1,y .
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The conventional solution to this problem is the construction of ‘secondary dis-
tributions’. In this case these are defined by

Mai(high) = MaX(Mgr,, Mar,),  Mgi(low) = MIN(Mgr, , M, ) (4.24)

on an event by event basis, where [; and /5 denote the two leptons in an arbitrary
labelling. While the endpoint of mgmign) is obtainable straightforward from the
(‘primary’) ones already known, the endpoint of mgow) and its equivalent for other
distributions can in general be quite difficult to find [2].

4.3 Mass distributions

4.3.1 Endpoints from mass distributions

One ingredient to the method of finding the masses from the mass distributions is
to calculate the endpoint expressions. The idea is then to match these with the
experimentally obtained endpoints. In order for this matching to make any sense,
there must of course be a correspondence between the two. However, given even
the most optimal resolution and background situations, with limited statistics such
a correspondence is not necessarily realised. The reason is that phase space for the
highest mass values may be too small for experimental detection. It is not the one
event with the largest mass value which gives the experimental measurement, but
the collection of high-mass events. The endpoint is in practice determined from the
higher ‘edge’ of the distribution by some fit.

A second ingredient to the method of obtaining masses from endpoints is therefore
the knowledge of how edges relate to endpoints. For this the various mass distribu-
tions must be studied. Such studies have been performed for both the squark and
the gluino distributions [1, 2]. Although most of the shapes depend on the masses
involved, some generic behaviour can be stated for each. As a first step the distri-
butions were classified into usable and unusable ones, based on how well the edge
points towards the endpoint. On these grounds some of the gluino distributions
were discarded due to the smallness of the phase space at high values. A second
step would be to seek appropriate (mass-dependent) functions to describe the edges.
These would then be used in the fitting procedure, in combination with prescriptions
(found from full simulation studies) to describe detector and background effects. So
far, in studies of this type, the edges have usually been described with a straight line,
only to assess the statistical precision which can be obtained and without address-
ing the considerable systematic uncertainty of the fitting procedure. A third step
might be perceived in which not only the edge is fitted, but the entire distribution.
However, while the edge region is usually quite free of background, the intermediate
and low-mass region is not. The original shape is therefore considerably distorted
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at lower values, limiting the usefulness of such a procedure. In some cases there is
however information to be retrieved from looking somewhat below the very edge, as
will be demonstrated in the next subsection.

4.3.2 Shapes

The invariant mass of a certain combination of visibles in a decay chain containing
n sparticles can be written formally as my,..5,, = f(m;0;, ¢;), where (6;, ¢;) are the
n — 1 sets of angles describing the given decay configuration and m denotes the
n masses involved. If the matrix element of the decay contains no angular depen-
dence (see Sect. 4.1 of [1]), then the rate is simply proportional to the solid angle,
dN o [], d6;dcos ¢;. To find the functional shape of the invariant mass distribution,
it must be possible to express the rate in terms of the invariant mass. This has
only been achieved in the near-trivial case of a sequential decay with n = 3, where
the freedom to choose the coordinate system in each event reduces the number of
parameters (angles) describing the decay configuration from 2 x 2 to 1. The rate is
found to be proportional to the invariant mass, resulting in the well known triangular
shape with a vertical high edge of e.g. my; in (4.3). The same triangular shape is also
realised for my,, where [, (‘n’ for ‘near’) denotes the lepton nearest to the squark,
i.e. emitted by x3. The other lepton is denoted Iy (‘f” for ‘far’). For my,, the situation
is different. An arbitrary configuration, and hence an arbitrary my,, is described
by 3 x 2 — 3 = 3 angles, which already seems to be too much freedom to allow for a
simple relation between the rate and the invariant mass.

We will now investigate in some detail the mg distributions, both to address
very briefly the issue of appropriate fitting functions, but also to note that there
is more to a distribution than its endpoint. In Fig. 4.2 mgy, and mg, are shown
along with their experimentally applicable substitutes, mgqow) and mgmign), for a
representative selection of mass scenarios. The scenarios are classified according to
three mass regions, as in Eq. (4.5) of [1], depending on which primary endpoint,
if any, determines which of the secondary endpoints. To the left in the figure the
specific relations are given. (The occurrence of the expression m;‘f(‘;"q> is explained in
[10] and is available in Sect. 3.1 of [2] in this thesis.) The two primary distributions
are both plotted in dashed black, and are distinguished from each other by the
triangular shape of mg, with a vertical high edge. The red curve shows the mgnign)
distribution, while 1710w is shown in blue. At higher invariant masses a secondary
distribution may become identical to a primary one, resulting in overlapping curves.
In these situations the dashed style of the primary distributions allows for both to
be seen.

The secondary distributions have a rich variety of shapes which must be under-
stood in relation to their origin as composite distributions, partly mg, , partly mg;.
The myow) distribution either inherits the vertical edge of mg, (region 1), or else



4.3. MASS DISTRIBUTIONS 45

(i) (i) (iii) (iv)

Region 1 , :

max = mmax ."’ i ":

aitow) = Mal, S ’ '

max - max ." Y A." L7 3 |
Maithigh) = mql, h = i
Region 2

max  _ pamax N o o Ji
Maigow) = Mai(eq) s >4 P

max — mmax 1 1 & i
mql(high) - mql, &4,' ! ' - ki ». i
Region 3

max  _ pmamax i ki "-' hY

qigow) = Maieq) | 4 . k

max — mmax 3 =l o ".
Maithigh) = Mg Food b : N

Figure 4.2: Four my distributions. The primary distributions mg, and mg, are
plotted in dashed black (two in each panel). The secondary distributions mgiow) and
Mgihigh) are plotted in blue and red, respectively. See the text for further details.

descends towards the my% ) value in an approximately linear (non-vertical) way. In
some cases, e.g. scenario (ii) of region 2, the deviation from linearity is significant,
suggesting that a better fit function should be sought. In the case of mgymign) the
shapes are more varied. For invariant masses beyond the endpoint of the smaller of
the primary distributions, mgmign) takes on the exact shape of the larger, and hence
should in principle be fitted accordingly. However, mgmign) is also very interesting
below this region, where it connects to and therefore contains information on the
primary distribution with the lower endpoint. In region 1 the vertical fall in the
interior of the mgnign) distribution, is caused by the end of my,,. Since this endpoint
can already be measured by m(iow), N0 new information is obtained by fitting the
‘endpoint’ in the interior of mgnign), but a good consistency check is provided. For
the other regions more is gained. In region 2 my™ is not measured in the conven-
tional analysis but can again be found from the vertical fall in the interior of mghign)-
In region 3 the secondary distributions leave my™ unaddressed, but it can be found
from the now non-vertical fall in the interior of mgnign)-

This short discussion demonstrates that not just the endpoints, but also the
shapes of at least some of the distributions contain ‘exact’ information, i.e. which
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can be quantitatively related to the masses. Although the theoretical shapes of
Fig. 4.2 will become somewhat distorted by the inclusion of detector and background
effects, their original structure will usually shine through, especially at higher invari-
ant masses. This is at least the case for SPS la (a) and (3), the two scenarios
investigated in [1] and shown in Fig. 4.2 as scenario (iv) of regions 1 and 2, respec-
tively. At (), although not really used in the analysis, the composite nature of the
Maqunigh) €dge is quite visible in the ‘experimental’ plot. At (§) the identification
of the vertical fall in mguign) With mJ;** becomes crucial when it is realised from

qln
consistency checks that the My (highy Measurement is unreliable.

4.3.3 Improvements

Should SUSY be detected at the LHC, the study of shapes will become very impor-
tant, both for consistency tests and to find appropriate fitting functions. Detailed
studies of shapes must include physics effects like radiation and fragmentation, distor-
tions due to precuts, and pure detector effects. Furthermore, most scenarios studied
so far have been within mSUGRA, where all first and second-generation squarks are
near-degenerate. If this feature should be absent in the realisation chosen by Nature,
substructures would be added to the mass distributions, complicating the measuring
process. Future shape studies should therefore also include the possibility of non-
degenerate squarks. A further extension could be to investigate correlations between
mass distributions.

4.4 Masses from endpoints

Finally, when experimental values for the endpoints have been obtained, they can
be turned into values for the masses. If the number of endpoints coincides with the
number of masses, as in a sequential decay chain with four invisibles, then it is usually
possible to solve for the masses analytically [1]. If more endpoints are available, a
numerical approach is however required in order to weight the endpoints according
to measurement uncertainty. The best-fit masses are the ones which minimise the
appropriate least-squares function.

Two important features are discussed at length in [1, 2]. One is that the inversion
of the endpoint expressions, be it analytical or numerical, is not a one-to-one opera-
tion. The endpoints are in general composite functions of the masses, so different sets
of masses may give the same set of endpoint values. Multiple solutions for masses
are therefore inherent to the endpoint method of determining masses, unfortunately.
The other feature is also generic. The endpoint method determines mass differences
with much higher accuracy than the masses. This opens for a strong desire to coop-
erate with a Linear Collider which fixes the mass scale by a precise measurement of
the LSP mass.
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Summary

In R-parity conserving TeV-scale supersymmetry, sparticles will be produced in pairs
at the LHC, then decay in cascades which end with the lightest supersymmetric
particle. If the LSP is neutral it will not be detected, and decay chains cannot be fully
reconstructed, complicating the mass determination of the sparticles. In this thesis
the endpoint method of determining SUSY masses has been thoroughly investigated,
both theoretically and experimentally. For the sequential four-sparticle squark decay
chain, inversion formulas have been calculated which give the masses explicitly in
terms of the endpoints. Ambiguities and complications in the mass determination
caused by the composite endpoint expressions have been carefully investigated. For
the sequential five-sparticle gluino decay chain, all the new endpoint expressions
were calculated in full generality, thereby opening for a new and competitive way of
determining the gluino mass. The shape variety of the mass distributions was studied
in some detail since endpoint measurement through edge fitting relies strongly on
the specific edge behaviour. More remains to be done in this area. In two specific
mSUGRA scenarios the performance of the endpoint method was estimated with a
fast simulation of the ATLAS detector. Finally, as the LHC will not be the last
particle accelerator, the impact of combining the LHC measurements with a Linear
Collider measurement of the LSP mass was assessed.
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1. Introduction

The Standard Model (SM) of particle physics has been remarkably successful in describing
the physics probed by modern day particle accelerators. No deviation from the SM has
thus far been confirmed by experiment and only the Higgs mechanism, the SM’s instrument
for the breaking of the electroweak symmetry, remains to be discovered. Nevertheless,
the SM suffers from considerable theoretical difficulties, not least of which is the hierarchy
problem [1], the extreme sensitivity of the electroweak scale to new physics. Such difficulties
imply that the SM is only an effective low-energy theory (albeit a highly successful one)
applicable only up to a few hundred GeV or so, and will need to be extended in order to
describe physics at higher scales.

One extension which has attracted a lot of attention is supersymmetry [2, 3, 4, 5].
Supersymmetry not only solves the hierarchy problem but has many other attractive fea-
tures: it is the only non-trivial extension to the Poincaré symmetry of space-time [6]; it
is essential to the formulation of superstring theories [7]; it provides a low-energy theory
which is more amenable to the unification of the fundamental forces into a Grand Unified
Theory (GUT) at some high energy scale [8]; it provides a naturel mechanism for generat-
ing the Higgs potential which breaks the electroweak symmetry [9, 10, 11, 12, 13, 14]; and
it supplies a good candidate for cold dark matter [15]. Furthermore, if it is to be relevant in
solving the hierarchy problem it must exhibit experimental consequences at the TeV-scale,
and therefore can be tested by experiment at the Large Hadron Collider (LHC). For an
overview of supersymmetry searches at LEP, the Tevatron and HERA, see Ref. [16].

If supersymmetric particles are produced at the LHC, thus confirming supersymmetry,
it will become important to identify them and accurately measure their masses. This will
be essential for identifying the low energy model and hopefully distinguishing the Minimal
Supersymmetric Standard Model (MSSM) from other non-minimal extensions. Further-
more, since no supersymmetric particles have so far been discovered, supersymmetry must
be broken by some as yet unknown mechanism. Only an accurate determination of the su-
persymmetric particle masses and couplings will allow us to determine the low energy soft
supersymmetry breaking parameters. It is hoped that extrapolation of these masses and
couplings to high energies using the renormalisation group equations will provide an insight
into the mechanism of supersymmetry breaking and, more generally, physics at the GUT
scale [17]. Since errors in the mass measurements will be magnified by the renormalisation
group running it is absolutely essential that these masses be determined as accurately as
possible.

Here we will discuss supersymmetric mass measurements with reference to one particu-
lar model of supersymmetry breaking, minimal super-gravity (mSUGRA) [18, 12,9, 13, 14].
In this model, the supersymmetry is broken by the interaction of new particles at high en-
ergy which are only linked to the usual particles by gravitational interactions; this new
sector of physics is often referred to as the hidden sector. These gravitational interactions
transmit the supersymmetry breaking from the hidden sector to our own sector, produc-
ing TeV scale effective soft supersymmetry breaking terms in the GU'L scale Lagrangian,
quantified by parameters which run logarithmically down to the probed TeV scale. At the



GUT scale, the scalar supersymmetric particles are assumed to have a common mass, my,
while the gauginos have a common mass my /. The trilinear couplings are also taken to be
universal at the GUT scale and denoted Aq.

Mass measurements in the MSSM are complicated by R-parity conservation, which
is introduced to prevent unphysical proton decay. R-parity conservation requires that
supersymmetric particles are produced in pairs and causes the lightest supersymmetric
particle (LSP) to be stable. Consequently the LSP is inevitably the end product of every
supersymmetric decay and, if electrically neutral, will escape the detector leaving no track
or energy deposit. While this provides a very distinctive missing energy signature, it makes
it very difficult to measure masses at the ILHC since one cannot fully reconstruct decays.

Instead, mass measurements rely on continuous mass distributions of decay products
which attain extrema for certain configurations of the particle momenta that are unam-
biguously determined by the masses of initial, intermediate and final particles involved.
These relations may often be inverted to give the masses of unstable particles. This is
analogous to the way a bound on the neutrino mass can be obtained from the end-point of
the beta-decay spectrum of H [19], but is usually more complex, since a long decay chain
is often involved.

In this study we will consider supersymmetric mass measurements made by examining
the mass distribution endpoints or ‘edges’ of the long decay chain® § — Y5¢ — g — XSl
in the ATLAS detector [20]. In particular, we will focus on the Snowmass mSUGRA
benchmark line SPS 1a [21], but will also include other nSUGRA parameters in a general
discussion. In addition to the usual SPS la point, which we will denote SPS la (a), we will
also consider another point on the SPS 1la line, denoted SPS la (8), which has a reduced
branching ratio for the decay. This will provide a counterpoint to the study of SPS la («)
where the branching ratio is rather high. This study differs from previous reports [22, 23,
24, 25, 26] by (i) discussing theoretical distributions which arise for different mass scenarios,
(ii) providing inversion formulas, (iii) discussing ambiguities and complications related to
the composite nature of the endpoint expressions. Furthermore, we provide an overview of
the mSUGRA parameter space, and consider a new point on the SPS 1a line. Finally, we
discuss the effects of including Linear Collider data in the analysis.

In Sect. 2 we will discuss general mSUGRA scenarios, paying attention to supersym-
metric decay branching ratios to gain some understanding of how generally applicable
these kinematic endpoint measurements are. We will identify mass hierarchies for which
these mass measurements are possible and show that they occur over a large portion of
the mSUGRA parameter space. In Sect. 3 we will outline the properties and mass spec-
tra of the Snowmass benchmark line SPS la and the associated points SPS la (a) and
SPS la (B). After defining the decay chain under investigation, we go on in Sect. 4 to
discuss the theoretical framework of cascade endpoint measurements, and present analytic
expressions for masses in terms of these endpoints. In Sect. 5 the experimental situation
at the ATLAS detector will be studied, including event generation and reconstruction, the

removal of backgrounds, and results for the measurement of the kinematic endpoints will

!Throughout the text the notions lepton/slepton as well as Z/l~ will refer to the particles of the first and
second generation. The third generation particles will be called tau/stau and denoted 7/7.
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be presented. The extraction of masses from the kinematic endpoints will be described in
Sect. 6. Finally, the remarkable improvement of the accuracy of the mass measurements
obtained by using inputs from an ete™ collider [27, 28] will be studied in Sect. 7, before

drawing our conclusions in Sect. 8.

2. Cascade decays in mSUGRA scenarios

In this paper we will be examining the decay chain § — ¥5¢ — g — X{llgin the Snowmass
scenario SPS 1a for the purpose of the extraction of the supersymmetric particle masses.
However, it is extremely unlikely that SPS 1a is exactly the parameter choice of reality,
and there would be little point to the study if our methods were only applicable at SPS 1a,
or a small region around it. Therefore, in this section we will take a more general look
at mSUGRA scenarios to determine whether or not these methods may be used more
generally, over a wide parameter range.

At the LHC the main supersymmetric production will be sparticle pairs §g, §¢ and
GG, as long as these are not too heavy. Each sparticle immediately decays into a lighter
sparticle, which in turn decays further, until, at the end of the chain, an LSP will be
produced. Since there are two parent supersymmetric particles, each event will typically
have two such chains, complicating their reconstruction.

What route is taken from the initial gluino or squark down to the LSP depends on
which decay channels are open, as well as their branching fractions. Therefore there are
two criteria which must be met in order to use the cascade kinematic endpoint methods:
firstly the sparticle mass hierarchy must be such that the analysed decay chain is allowed;
and secondly, the cross-section for the entire decay chain must be large enough to allow
analysis.

2.1 The mSUGRA mass hierarchy

In a general MSSM model there are few constraints on the sparticle masses, so little can
be assumed about their relative mass hierarchy. However, if universal boundary conditions
are imposed on the mass parameters at the GUT scale, some mass orderings at the TeV
scale are natural, and some are even necessary.

For example, in mSUGRA scenarios squarks and sleptons have a common mass at the
GUT scale, mg, but when the masses are evolved down to the TeV scale, QCD interactions
affect only the evolution of the squarks and not the colourless sleptons. Consequently,
squarks are always heavier than sleptons at LHC energies. For the same reasons, although
they may start off with different masses at the GUl' scale, running induced by QCD
interactions is usually enough to result in the squarks of the first two generations being
heavier than the neutralinos and charginos at the TeV scale. (Large mixing can however
bring #;, and to a lesser extent by, quite low in mass.)

At the opposite end of the spectrum, there are a number of possible candidates for
the T.SP: the lightest neutralino, Y?, the lightest chargino Xit, or the lightest slepton (in
mSUGRA models, the gravitino is usually rather heavy). Which of these is the LSP
depends on the relative sizes of mg, m,/; and the derived low-energy Higgs-higgsino mass



parameter p. However, the assumption of gauge unification at the GUT scale explicit in
mSUGRA models leads to the relation

<

My ~ = tan? 0w M, (2.1)

[UC R

between the U(1) and SU(2) gaugino masses, M; and My respectively. As a result, M
tends to be rather low, significantly lower than my,. Furthermore, the derived quantity
u is often required to be much larger than M; in order to give the correct electroweak
symmetry breaking (at the SPS la («) reference point g = 357.4 GeV). For the majority
of parameter choices this implies that the LSP will be ¥¥, with 7; being the LSP only if
mg <& 1y /g, and T(li only for a small region where my;, — 0. The left-handed sneutrino,
by virtue of its SU(2) interactions, is usually heavier than 7, and is anyway ruled out by
direct searches [29]. Tt is indeed fortunate that 9 is the LSP for most of the parameter
space since it is clear that only an electrically neutral LSP can play the role of the dark
matter constituent which is believed to fill the universe. Finally, the gaugino mass relation,
Eq. (2.1), implies that the LSP is usually bino-like.

The first requirement for the decay chain § — X9¢ — g — xVllq is that the gluino
should be comparable to or heavier than the squark initiating the decay chain. 1If the
gluino is sufficiently light, then the squark will almost always choose to decay via its strong
interaction § — §q rather than by the electroweak decay § — X9¢. Of course, one does not
need all of the squarks to be lighter than the gluino; as long as one squark, for example by, is
lighter than the gluino, useful information can potentially be obtained from its subsequent
decay chain. The second important characteristic is that ¥9 should be heavier than [,
thereby allowing the lower part of the chain to proceed, Xy — I — X1, Otherwise X9
will decay to ¥97 or ¥{h, or to ¥V ff via a three-body decay, and the useful kinematic
endpoints are lost.

In order to understand where in the mSUGRA parameter space these hierarchy require-
ments are realised, we have performed a scan over the myj—mq plane for four different
choices of Ay and tan (with g > 0), and identified the different hierarchy regions with
different colours in Fig. 1. The renormalisation group running of the parameters from the
GUT scale to the TeV scale has been done using version 7.58 of the program ISAJET [30],
which is inherent to the definition of the ‘Snowmass Points and Slopes’ (see Sect. 3).

The upper left plot shows the my,, mo plane with A9 = —mp and tan3 = 10 and
includes the SPS 1a line and points (labeled («) and (/5)). The upper right plot has Ag = 0
and tan 8 = 30 and contains the benchmark point SPS 1b. The lower left plot also has
Ao = 0 but tan 8 = 10 and contains the SPS 3 benchmark line and point. Finally the lower
right plot has Ag = —1000 GeV and tan 8 = 5 and contains SPS 5.

The different hierarchies themselves are combinations of the hierarchy between the
gluino and the squarks important to the upper part of the decay chain, and that of Y9
and the sleptons relevant to the later decays. Since my, < mj for any set of mSUGRA

parameters, we here use [g. The seven numbered regions are defined by:

(1) g > max((zL, @y, Bl,fl) and {9 > max(lNH, 1)
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Figure 1: Classification of different hierarchies, labeled (i) (vii), for four combinations of tan 8 and
Ag, such that the four panels contain respectively the SPS 1a line, the SPS 1b point, the SPS 3 line,
and the SPS 5 point. The regions marked “I'F’ are theoretically forbidden. (See text for details.)

(i) g> rnax(tZL, g, i)l,fl) and Ip>X3> 7

(i) § > max(dyp,ir,b1,5) and min(lg, 1) > ¥9

(iv) dy, > §> max(ir, b)) and min(lg, 1) > V5

(v) min(JL,ﬁL) > > b and min(~R7 7)) > X

(vi) min(JL,ﬁL,Bl) >§>1 and min(}a, 7)) > N

(vii) min(dr, @, b,t1) >§  and min(lg,F1) > X5 (2.2)

where for fermions a particle’s symbol represents its mass, while for scalars a particle’s sym-



bol represents the sum of the masses of the scalar and its SM partner. Also shown (mauve)
is a region where the LSP is charged and therefore ruled out, as well as a theoretically
forbidden (TT) region (gray) for low my ;.

It is interesting to note that there are no regions where a squark is heavier than the
gluino and Y3 is heavier than one of the sleptons. This is simply because the gluino and
[the gaugino part of] the neutralino have a common mass, 1 /5, at the high scale, so if the
gluino is light, the neutralinos will also be light.

However, for more general non-mSUGRA unification scenarios one could still expect

hierarchies of the type mg, > myz > Mgy > mp > Mg to be realised. It would then be

important, to be able to distinguish onexhiera,r(‘,hy from the other; this should be possible
using the kinematic endpoints, number of b-quarks in the final state, etc. Also it is possible
to distinguish 3 — Il — {01! (mgg > my) from X5 = XU (my > myo). The first has the
well-known triangular shape of my while the second has a typical 3-body shape. All in all
it should therefore be possible to distinguish the various hierarchies (2.2) before continuing
to determine the masses themselves.

Region (i) is the only one that has a ‘useful’ squark decay together with a decay of xJ
to a slepton, and is shown in light and dark green in Fig. 1. We see that there is therefore a
large region where the mass hierarchy is compatible with the methods presented here, and
even though we will only perform the analysis for the points (o) and (8) on the SPS 1la
line, one would expect these methods to be widely applicable.

However, these plots of the mass hierarchies really only show the regions in which the
masses are such that the decay chain may occur. If the full decay chain is to be useful,
it must have a sufficiently large branching ratio to be seen above the many backgrounds.
We will therefore go on to examine the branching ratios of the pertinent decays over (a
restricted range of) the mSUGRA parameter space. As a first taste, we have highlighted
in a brighter green (and denoted (i),) the part of region (i) corresponding to where the
overall branching ratio for the decay chain § — x5¢ — g — X{llq exceeds a tenth of that
at the SPS la («) reference point. Although the decay chain is available over a rather
large region of the parameter space, using this decay for large values of my/, and mg will
be extremely challenging due to the small branching ratio.

2.2 Gluino and squark decays: the upper part of the chain

The decay branching ratios of the gluino are shown in Fig. 2 over the m; ,—m¢ plane for
two different scenarios. The representation is such that the branching ratio of a given decay
channel in a small neighbourhood of the m,/,—mq plane is equal to the fraction which the
corresponding colour occupies in that neighbourhood. Since the gluino only feels the strong
force, it has to decay into a quark and a squark. If no squark is light enough, a three-body
decay through an off-shell squark will take place; this is what happens in the green/white
region of Fig. 2 at small my 5.

For the rest of the m;,y mo plane the gluino decays fairly democratically into the
accessible squarks. In considerable parts of the plane only one two-body decay is open, b1b
(red) or t;¢ (yellow), in which case the allowed decay takes close to the full decay width.
Although one can in principle obtain information about the gluino mass by analysing its
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Figure 2: Decay channels of § with Ag = —mqg, tan 8 = 10 (left) and Ag = 0, tan g = 30 (right).
In the left panel the SPS 1a line is shown together with the two points («) and (8) marked with
triangles. In the right panel the triangle marks the SPS 1b point. The branching ratio of a given
decay channel in a small neighbourhood of the my/5—my plane is equal to the fraction which the
corresponding colour occupies in that neighbourhood. The region where Y9 is not the LSP is
denoted ‘Charged LSP’ and is discarded. Some regions are also forbidden theoretically, in that e.g.
it is not possible to obtain electroweak symmetry breaking (labeled “TF’).

decay chain, we will only consider here the decay chain starting from a parent squark, and

leave the gluino case for a separate publication [33].

As already intimated, squarks may decay by the strong force into a quark and a gluino
(if the gluino is lighter), or decay by weak interactions into a quark and a chargino or
neutralino, or via a loop into a gluon and a lighter squark. If kinematically allowed, the
strong interaction takes a large fraction of the branching ratio, but since the (lighter)
charginos and neutralinos are typically much lighter than the gluino, there will always be
some neutralino production.

Within mSUGRA models, the squarks JL and 1y, are very close in mass and behaviour.
Furthermore, the second generation squarks, 57, and ¢z, are almost identical copies of the
former two. It is therefore useful to have the common notation, ¢z, for these four squarks.
In a similar manner §p is used for dp, @p and their second generation copies. The right-
handed squarks differ from the left-handed ones in that they do not feel weak interactions,
which again makes their decay pattern different. In Fig. 3 the decay branching ratios of
%y, and @p are shown in the m,/,—mg plane for two different scenarios.

For my ;5 < my, when the gluino mass is smaller than the squark mass, both gz and
even more 5o gg have strong-interaction decays. In the rest of the my/,—mg plane, when
the strong decay is forbidden or suppressed by phase space, their decay patterns are very
different: while gr decays directly into the LSP, ¢r, prefers \§ and )ﬁt

For both low and high tan 3, the ¥{ is predominantly bino, with only a tiny admixture
of wino and higgsino, while Y} and /ﬁt are mainly wino. For quite low mass parameters,
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Figure 3: Decay channels of 4y (top) and @g (bottom) with Ag = —mg, tanB = 10 (left) and

Ap =0, tan 8 = 30 (right). (See the caption of Fig. 2.) Note that the branching ratios for all first
and second-generation squarks are assumed to be essentially the same.

myyz < 100 GeV, they become more mixed. Since §r, generally has a much larger SU(2)
coupling than U(1) coupling, decays to )Zit and Y9 will be preferred unless the difference in
phase space makes the decay to the lighter ¥{ competitive. In contrast, since the ¢g has
no SU(2) interaction it will decay predominantly to the bino Y7, except at quite low mass

parameters where the neutralinos change character.

The third generation squarks differ from the others in two aspects. First, the mass
eigenstates can have more even admixtures of both handedness components. For b this is
the case for low mass parameters, mg, My, S 200 GeV, where the branching ratios into X9
and \N((Z’ are of comparable size. At higher masses by & b7, and by & bp, giving a by which
prefers to go to Y3 rather than 7. Second, due to large splitting, the third generation
squarks can decay into other third generation squarks together with a weak gauge boson.
The drastic change observed in figure 4 as mg, m;/, become less than ~ 200 GeV, is due

~9_
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Figure 4: Decay channels of b; (upper panels) and by (lower panels) with Ag = —myg, tan 8 = 10
(left) and Ag = 0, tan 8 = 30 (right). (See the caption of Fig. 2.)

both to the more mixed mass eigenstates for lower masses, and to the closing of certain
channels involving ¢ or a heavy gauge boson.

While by has a large branching ratio into X3 throughout the entire plane, by produces
X9 at a much smaller rate, except for small mass parameters.

To summarize, the squark decays that are ‘useful’ for kinematic endpoint analyses,
are those of left-handed first and second-generation squarks, as well as those of by and to
a lesser extent by. These occur in the entire my/5~mg plane, except for extreme values
my /9 < mg, and for both low and high tan 8 values. For quite low mass parameters also
qr contributes.

2.3 Neutralino and slepton decays: the lower part of the chain

The reasons why {9 often plays an important role in the reconstruction of SUSY events are
many. Kinematically situated midway between the initially produced gluinos/squarks and
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Figure 5: Decay channels of ¥ with Ay = —myg, tan 8 = 10 (left) and Ay = 0, tan 3 = 30 (right).
(See the caption of Fig. 2.)

the LSP, it is abundantly decayed into, as we have seen. What makes it so useful, usually
more so than the )Zli, which is produced in similar ways and amounts, is the fact that its
decay products, in addition to easily setting off the trigger, also reconstruct well.

Tn Fig. 5 the main decay channels of Y3 are shown for two values of tan 8. A two-body
decay is preferred over a three-body decay, and the coupling to [, # or 7 is usually stronger
than the coupling to %Y.

For mg 2 0.5m4 9 all of I, 7 and 7 are heavier than X9, so only the decay into the LSP
is possible. In yellow, to the very left, no two-body channel is open, and Y5 undergoes a
three-body decay, proceeding through an off-shell squark or stau/slepton, or involving an

off-shell Z, W or h. As m,, increases, also mgo — mo increases and more decay channels

-0

become available. First the Z channel opens X;nd t;kes the full decay width, then the h
channel opens to dominate. The mass difference between 9 and Y3 is mostly independent
of mg, which is why, to a good approximation, the yellow, red and green regions are stacked
horizontally.

In the blue regions decays into /7 /7 are kinematically allowed. Following a clockwise
movement, the scalar masses are reduced relative to X3. The right-handed scalars are
lighter and become available first (dark blue region). In the light blue region the left-
handed scalars have become available and, despite less phase space, take most of the width
due to their SU(2) coupling. The black part of the blue regions shows the decay into Ir
(dark blue region) and I (light blue region). These are the decays of interest to us. At
low tan 3 (left panel) the slepton channels can be used in most of the blue regions. At high
tan 3 the situation is less optimistic. The 7; channel totally dominates the [p channel, and
only in a small region is the {1, channel open.

Decay products which involve tau particles are more difficult to use since their recon-
struction is always incomplete due to undetected neutrinos. However, in some parts of the
parameter space, especially at high tan 3, these channels take the full decay width, so one
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must be prepared to use them. In any case, whatever the MSSM parameters should turn
out to be, in order to measure the stau mass itself, tau particles must be reconstructed.

In the non-blue regions of the plane, information on the sparticle masses can still be
retrieved, although to a lesser extent. From an experimental point of view final states
involving two leptons are preferable. In the yellow region this fraction is marked in black.
In the red region Z decays leptonically in 7% of the cases. In the green region, no leptonic
decay is available. Here the bb final state of the Higgs can be used. T'his channel may even
serve as a discovery channel for the Higgs boson.

Returning once more to our chosen decay chain, § — yJg — g — Yilg, it is clear
from Figs. 2-4 that the initiating squark must be gz or b. Furthermore Fig. 5 shows that
for low tan 3 the sleptonic decay of Y3 is open in a large fraction of the m1/9-Mg plane.

2.4 Other constraints

Much of these parameter planes considered in Figs. 1-5 are actually excluded or disfavoured
by observations. The left part (small my ;) is typically excluded by the lower bound on
the Higgs mass, and the region of ‘large’ mq + myy is excluded by the WMAP data
[39, 40], since a too high contribution to the Cold Dark Matter (relic LSP) density is
produced. Such bounds have been explored in considerable detail for the so-called ‘Post-
LEP’ SUSY benchmark points [34, 35]. For the SPS points, see Ref. [36]. Also, there are
constraints from the non-emergence of unphysical vacua during the renormalisation-group
running from the high scale [37]. These typically rule out a sector at low mg and high
my9 that may extend beyond that excluded by charged LSP. We shall here ignore such
additional constraints, since they depend somewhat on the assumptions which are adopted.

In particular, tunneling into them may take longer than the age of the Universe.

3. Summary of SPS 1a

We have shown that the squark and gluino initiated cascade decays seen at the benchmark
point and slope SPS 1a are not atypical of a large portion of the parameter space. In this
section we will go on to explore SPS 1a in more detail, and introduce our second SPS 1la
point on the line.

3.1 The SPS 1a line and points

The SPS 1la benchmark line is defined as the masses and couplings of supersymmetric
particles at the TeV scale as evolved from the GUT scale mSUGRA inputs

mg=—A9=0.4 my g,

tan 8 = 10, w> 0, (3.1

by version 7.58 of the program ISAJET [30]. Elsewhere in this report when the mSUGRA
GU'T scale parameters are referred to it is to be understood that the low energy parameters
are obtained in this way.
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Figure 6: Masses (left) and relative widths (right) of relevant sparticles as My, Moy and Ay are
varied along the SPS la slope, defined by Eq. (3.1). The vertical dotted lines represent SPS la
points (@) and (f).

In addition, we define two points (&) and () on the SPS 1a line according to:

(a):  mp=100 GeV, myy = 250 GeV,
(B): moe=160 GeV, my/y = 400 GeV. (3.2)

The first point («) is the ‘basic’ SPS la point of Ref. [21] and studied in Ref. [27, 28], while
the second (B) is a new, less optimistic scenario with a reduced cross-section for the decay
chain.

The masses of particles relevant for our analysis are shown in Fig. 6 (left), moving
along the SPS Ta line by varying my ;. The values of the masses at points (@) and (f)
can be seen from the vertical dotted lines. As expected, all the masses except the lightest
Higgs boson mass increase linearly with my ;. Neither the heaviest neutralino mass nor the
chargino masses are shown; to a good approximation, Mgk o Mg & Mg and Mk = M.
Similarly, the masses of H* and A are not shown, but my+ ~ my ~ mpy.

For the points (o) and (8), these masses are further detailed in Table 1, with the
masses of the particles in our chosen decay chain displayed in bold.

The relative widths (width divided by the mass) of the decaying sparticles are shown
in Fig. 6 (right), and are everywhere less than 2% of the mass. The wiggles in some of
these curves (as well as in some of the branching ratio curves below) are due to limited
precision in ISAJET [38]. As will be discussed, these widths contribute to a blurring of the
kinematical endpoints, and will thus be reflected in the mass determination.

3.2 Sparticle production

The cross-sections for producing supersymmetric particles at the LHC are for moderate
values of m, /5 rather high. This can be seen in Fig. 7 which shows the dominating sparticle
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(8) 315.6 | 221.9 | 317.3 | 213.4 | 304.1 | 304.1 613.9 | 608.3
R ARG H | &
(@) 377.8 | 358.8 | 176.8 | 96.1 | 378.2 | 176.4 394.2 | 114.0
(8) 553.3 | 538.4 | 299.1 | 161.0 | 553.3 | 299.0 608.9 | 117.9

Table 1: Masses [GeV] for the considered SPS 1a points (o) and (8) of Eq. (3.2).
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Figure 7: Cross-sections as miya, Mo and Ag are varied along the SPS 1la slope, defined by
Eq. (3.1). The vertical dotted lines represent SPS la points (o) and ().

pair production cross-sections, as my, is varied along the SPS la line. Notice that these
cross-sections fall very rapidly as my/, is increased, which will cause repercussions in the
analysis of SPS 1a (3).

The cross-sections for gluino—gluino, gluino—squark and squark—squark pair produc-
tions are detailed in Table 2 for the two chosen analysis points, together with the SUSY
total rate. Of course since other supersymmetric particle pairs may contribute to the total

SUSY rate it is not simply a sum of the other numbers in the table.

These supersymmetric particle pairs are predominantly produced by QCD interactions
of quarks and gluons in the colliding protons. For gluino pairs this is mainly due to gg — G4
via t-channel gluino exchange and s-channel gluons, and at a much smaller rate ¢ — §§ via
s-channel gluons. Squark pairs with the same handedness have the dominant production



process qq = Gr/g Gryr With a t-channel gluino exchange, but can also be produced via
99 — 4r/rqr/r With an s-channel gluon, or via ¢¢ — ¢r/rqr/r With both t-channel
gluino and s-channel gluons. For opposite handedness, ¢rjr production, the s-channel
gluon exchange processes [and thus gg — §;, Gr at tree-level] are disallowed. Lastly, the G
final states are produced by the process g¢ — §¢ mediated by t-channel squark or gluino
exchanges and s-channel quarks.

o(SUSY) | 0(39) | o(34r) | o(gdr) | o(Grir) | o(Grdr) | o(drir)
((}!) 49.3 5.3 11.4 12.3 3.5 4.8 4.1
(5) 4.76 0.29 0.97 1.06 0.44 0.61 0.53

Table 2: Selected supersymmetry cross-sections in pb.

However, these particle pair cross-sections are not the production cross-sections that
are relevant to our analysis of the decay chain, since it does not matter from where the
parent squark originates. Therefore we should also be counting, for example, gluinos which
decay into squarks as possible sources of the decay chain. In Table 3 we divide the sparticle
productions rates into ‘direct’ and ‘indirect’ contributions, reflecting production rates from
sparticles in the ‘initial’ supersymmetric state as opposed to their generation from the
decay of a parent sparticle. Furthermore, if the ‘initial’ supersymmetric state contains
two possible parents then the chance of generating the desired decay chain is doubled?.
Therefore the pair-production rates with two possible parent particles are counted twice.
Again, one cannot simply add the various contributions from Table 2 to obtain the ‘direct’
rates of Table 3, since they include contributions from squarks or gluinos produced in
association with other supersymmetric particles.

£(9) | B(r) | B(dr) | B(by) | B(by) | B(t) | SR
(a) Direct | 354 246| 258] 14| 09| 34| 18

Indirect - 8.2 14.6 6.3 3.5 5.6 16.0
Total 35.4 32.8 40.4 7.7 4.3 9.0 17.8
(B) Direct 2.71 2.64 2.80 | 0.10| 0.06 | 0.23 0.23
Indirect - 0.58 1.00 | 0.40| 0.25| 0.64 1.44

Total 2.71 3.21 3.79 | 050 0.31] 087 1.67

Table 3: Selected sparticle production rates in pb.

For low my s, values X3 will decay dominantly to a stau and a tau, see Fig. 8. Here, the
decay mode of interest is to a right-handed slepton, lg, and a lepton, and is at the level of
10%. For higher values of m, 9, the mass difference between 0 and {9 grows sufficiently
to allow the decay Y9 — XJh. At (8), even though the Higgs channel takes a significant
30% of the decay width, it was not used in this study. Due to the accuracy of lepton
reconstruction compared to jet reconstruction, only in the case of very low lepton channel
statistics can the Higgs channel improve on the results obtained with the slepton channel.

2The total branching ratio for the decay is sufficiently small that the chance of generating two of the
desired decay chains is tiny.
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Figure 8: Branching ratios of ¥} as my/2, mo and Ag are varied along the SPS la slope. 'The
vertical dotted lines represent SPS la points («) and (3).

lg
= 32.8 pb L 31.4% ~ 1245 fb
(a) = T.7pb by 35.5% X0 121% Iz 100% %0 329 fb
= 4.3 pb b, 18.0% 94 fb
1669 fb
= 3.21 pb t:]:L 31.9% B 54.3 fb
B) = 0.50 pb by 23.6% % 53% Ip 100% % 6.3 b
= 0.31 pb by 8.8% 1.5 fb
62.0 fb
Figure 9: The SPS la cascade decay chain.
3.3 The cascade
The cross-sections and branching ratios of our chosen decay chains
= ~0 TFE ~0/F 1% .
qr = Xaq = Uhliq = XAl g (3.3)

by — 90 — [R50 — 91T 1ED

by — Xob — (FIE0 — NIFiED

are summarized in Fig. 9 for the two SPS 1a points. Since the left-handed up and down

squarks, @iy, and dr,, have very similar masses (at 537.2 GeV and 543.0 GeV respectively),

for («), they are in the above jointly referred to as ¢r,, and for this analysis will be grouped
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together. For the fraction of decay chains which commence from a sbottom, by is responsible
for 78% or so, leaving us rather insensitive to the contribution from by.

4. Mass distributions

The longer a decay chain is, the more information it contains. To extract the masses of
the supersymmetric particles in the decay we require at least as many kinematic endpoint
measurements as unknown masses. In the lower part of the decay chain, where the second-
lightest neutralino decays via X9 — Il — VI, there are three unknown masses: msg, My,
and mgo. However, only two particle momenta are measured, those of the two leptons,
from which only one mass distribution can be constructed, my. The system is highly
underdetermined; one cannot extract the three masses, only a relation between them.

When a squark is added to the head of the decay chain, § — X3¢ — Iplng — elng,
three particles can be collected, and one can construct four mass distributions, my, my,,
mgl, and mgyy, where following the notation of Refs. [31, 32], we denote the first emitted
lepton I, (‘n’ for ‘near’) and the second Iy (‘f” for ‘far’). In principle this is just sufficient
for extracting the four unknown masses: mg, mgo, my. and mgo. However, in order to use
the distributions my, and myg,, we need to be able to distinguish [, from /. Since this is
usually not possible, two alternative distributions are defined, mgynign) and myow) [31];
constructed by selecting for each event the largest and smallest values of mg respectively.

As will be detailed later in this section, the expressions for these kinematic endpoints
are not always linearly independent, so these four endpoints are not always sufficient to
determine the masses in the decay chain. In this circumstance one must look for other
endpoint measurements.

Correlations between different mass distributions can provide further measurements.
For example, one may define the mass distribution M6 2) identically to the mgy distri-
bution but with the additional constraint

’m{?a"/\/‘j < my < mp™. (4.1)

This cut on my translates directly into a cut on the angle 8 between the two leptons in the

rest frame of l}g [41]. In terms of this angle, my, is given by
my = mpA/ (1 —cosb)/2 (4.2)

so a constraint of the form (4.1) directly corresponds to § > 7. The simplicity of this
constraint allows one to find an analytic expression for the minimum of the Myu(e>1)
distribution.

In principle, other correlations between mass distributions could be used, but they are
limited by the lack of analytic expressions for the associated extrema. It is no doubt possible
to construct simple constraints for which analytic expressions for minima or maxima of mass
distributions are possible, but this will not be investigated further in this study.

If we were to also include a parent gluino at the head of the decay chain, § — G¢ —
Waq — Irlqq — Wllgq, we would have an extra quark momentum at our disposal and
could construct with it seven more (‘primary’) mass distributions.
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o § U (i) (iii)

my,
0.18 0.21 0.47 0.22 0.12
m
qll
1 1 1
m
qli(6>Z)
2
0.47 0.50 0.52 0.54 0.24
m_ ..
ql(high)
0.88 0.82 0.88 0.91 0.99
m
ql(low)
0.70 0.67 0.60 0.69 0.32

Figure 10: Theoretical mass distributions for SPS la (o) and (), as well as for three other mass
scenarios, denoted (i), (ii) and (iii). Kinematic endpoints are given in units of my. (More details

will be given in [42].)

4.1 Theory curves of invariant mass distributions

In Fig. 10 we show ‘theory’ versions of the five mass distributions discussed above for SPS 1a
(o) and (B), and three other mass scenarios. These distributions reflect the parton level
only, where the quark and leptons are assumed to be perfectly reconstructed, and particle
widths have been neglected, suppressing a mild smearing of the distributions. Leptons and
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quarks are assumed massless; at worst, i.e. for an endpoint involving a 4.8 GeV b-quark, this
approximation gives a value for my™ which is wrong by 5.7 MeV at SPS la (), which
is negligible. Furthermore a common squark mass is used; in reality, the experimental
distributions would be a sum of several similar distributions shifted typically by a few
percent, depending on the differences between the squark masses.

These theory curves have been generated from the phase space only, with no matrix
elements inserted. For the two-body decay of scalar particles this is not a problem; the
daughter particles are always emitted back-to-back in the rest frame of the parent and
since a scalar particle provides no intrinsic direction the decay will be isotropic. The my
distribution, for example, is very well described by phase-space considerations alone since
the scalar {;; removes any spin-correlations between the two leptons. For the decays of
fermions this is not so clear; the parent’s spin picks out a particular direction so the decay
need not be isotropic. One would expect that spin-correlations must be fully taken into
account by calculating the full matrix elements for the decay chain. In practice, while
these spin-correlations are indeed very significant in individual processes, when one sums
up final states containing leptons with positive and negative charge (which are produced in
equal proportion) these spin correlations cancel out [43]. We have confirmed this assertion
analytically.

Most of the distributions of Fig. 10 show a strong dependence on the scenario. Only
the my; distribution is independent of the masses involved, which is easily understood from
(4.2) together with the isotropic decay of Ig. The shape is easy to fit, and since only leptons
are involved, the experimental resolution is high. The presence of the quark reduces the
precision with which the other distributions may be measured. For mgy; there is a clear
dependence on the masses involved, the main feature being the length of the straight
section, ranging from infinitesimal to the entire distribution. However, the maximum edge
itself is quite well described by a straight line, at least for the latter part. Next, the
constrained mgy; distribution differs from mygy; for smaller invariant masses. Its rise from
threshold is not very well described by a straight line making the measurement of the
minimum value rather imprecise. Both mg distributions are ‘composite’ distributions,
based on entries from myg, and mg;,. This double nature is readily apparent for mgnigh),
which has a wide variety of shapes. Particularly dangerous are mass scenarios like () or
(i), where the “foot’ which forms the last part of the edge can be hidden by backgrounds,
giving a false maximum. In Sections 56 these considerations will come up in relation to
(8). For Mgllow) @ similar danger arises in cases like (i) where what appears to be an
approximately linear descent to zero suddenly turns into a vertical drop towards the end.

These theory curves must serve as guidance for our determination of the endpoints.
As a first stage they should be the basis for the choice of functions with which the edges
of the different distributions are fitted. As a second stage the more ambitious goal may be

to fit not only the endpoint, but the entire distribution.

4.2 Formulae for kinematic endpoints

The invariant masses of various subsets of particles can be determined from kinematical
endpoints and thresholds, as discussed in [31]. We confirm the results relevant for our
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analysis:

(mpax)? = (még - 771?R) (m?R - ng)/m?R (4.3)
(mg’L m>?0 ) (m;g 77712(1)) for ma; S m&g mi, (] )
™ meg T Mg e
(7716[’ 77112}? 7777/;8 777/;?) (771;8 7771121?’) mig le,R maL "
max\ 2 m2 ., m2 for mi > m_o m_o (2)
(mip™)” = "R , <0 s (4.4)
2 Y m2 2 ,
(mé mlR)2(mlR mf(?) for ’I/LZR S ?’WL ’mizg (3))
mip ITL;(? Iflj-(g mlR /
(mg, — m)z?)Q otherwise 4)
: 92 o~ 2 4 2 9
(rn’;rll:x ”Lnllta“) for ZI{LiR > mi? + fflgg > ZHLQ(]) nLig (1)
3 2 2 2 o
(m/ﬁﬁ’éw)vmfﬁ?ﬁ?gh)) = (m‘;}( W Mty ) for Mg + M3 > 2m; > 2mgemsg (2)
(mql}(eq) m{;;:x) for m?z? + mfzg > 2"”){'? mgo > ‘Zmlgﬁ (3)
(4.5)
(m‘q‘}a")O = (mgL — méo)(m Zo — m~ )/m © (4.6)
X2
2 2 2 2 2 2 \
(mi™)" = (m2, — mig) (miﬁ - mi?)/mfn (4.7
2 : , 2
(m’q’,‘i’c"q)) = (mgL - még) (mlgH - m;(l,)/(?m?ﬁ - m;?) (4.8)
i 2 2 2 2 2
(maniosz))” = [(’W +mig) (mig —mi ) (mf —mi)
2 2 ) 2 .2 2 4 2
7(m5[‘ - m}zg) \/(ng + mfR) (m]~ + m ) — 16m¥0m1Rm¥0
+2m? (mg-L — még) (777';223 — m)z.((l,)] /(4177?}{777;2) (4.9)

where ‘low” and ‘high’ on the left-hand side in Eq. (4.5) refer to minimising and maximising
with respect to the choice of lepton. Furthermore ‘min’ in Eq. (4.9) refers to the threshold
in the subset of the myy distribution for which the angle between the two lepton momenta
(in the slepton rest frame) exceeds 7/2, corresponding to the mass range (4.1).

Notice that the different cases listed in Eq. (4.4) are distinguished by mass ratios of
neighbouring particles in the hierarchy, 'm,(;,‘/mig, 7rL>~<S/’rrLZ~E and mfR/mi?' Since each
decay in the chain involves two massive particles and one massless one, the boosts from
one rest frame to another are conveniently expressed in terms of such mass ratios.
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4.3 Inversion formulae

Once the endpoints of the distributions have been measured, the masses may be extracted.
In principle, this can be done in two ways. If the number of endpoint measurements
coincides with the number of unknown masses, one may analytically invert the expressions
for the endpoints to give explicit formulae for the masses in terms of the endpoints. If more
endpoints are known, the system becomes overconstrained and the measurements must be
weighted according to their uncertainties. The analytic method cannot easily handle such
a situation. Instead the more flexible approach of numerical fit must be used.

However, the analytic inversion is more transparent than the numerical treatment,
and reveals some interesting features of how the masses are related to the endpoints. It is
also practical to use the analytical method in combination with the numerical method to
provide initial values for the fits. Consequently we will discuss the inversion of the endpoint
formulae in some detail in this subsection.
mas

N 1 H H max max max X
The four principal endpoints mjp*, mgpx, M ow) and 1 high)

(4.5). While m#** is given by one unique expression, the others have different represen-

are given by Eqgs. (4.3)-

tations for different mass spectra. To perform the inversion, each combination of the end-

max

point expressions must be considered separately. There are four representations of my)

and three representations of (mg}(afgw), T)’L;r['?l:‘igh)). Each overall combination corresponds to
a unique region in mass space (nsz,7n>~<g,'znl~R,'zn)~(?) and can be labeled by (i,j), where i
and j denote the region of applicability of the my; and mg endpoints, respectively, as given
in Egs. (4.4)-(4.5).

However, not all of the 4 X 3 combinations are physical. In particular the regions (2,1),
(2,2) and (3,3) are not possible. For (2,1) this can be seen by simultaneously trying to
satisfy the mass constraints (2) of Eq. (4.4) and (1) of Eq. (4.5).

Additionally, for the regions (2,3), (3,1) and (3,2) the endpoint expressions are not
linearly independent. In each of these three regions, one of the mass ratios is dominant,
and a lepton (rather than a quark) is emitted from the vertex involving the dominant mass
ratio. The maximum of mgy occurs when this lepton travels in one direction and the other
lepton together with the quark travels in the opposite direction, all observed from the rest
frame of any one of the sparticles in the decay. For massless quarks and leptons one can

always write
m2, = 2p.p. 4 2p.p1. - 29 pr. = m> +m? +m? (4.10)
bqit = 2PqPly PqPle PPl = "ql(high) ‘ql(low) ‘U .
In the three regions mentioned above, for maximum values this equation reduces to
max\2 __ ¢ max 2 ., maxy 2
(mgi™)” = (Minighy)~ + (mig™) (4.11)

Since one of the endpoints can be expressed in terms of two others, the four endpoint mea-
surements only transform into three independent conditions. Hence, in order to determine
the masses an additional endpoint would be required for these three regions. The endpoint
of Mau(e>7) is therefore particularly important in such cases. However, the complicated
nature of Eq. (4.9) leads to exceptionally cumbersome inversion formulae and will not be
studied here.
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For the remaining six regions the inversion of the four endpoint expressions Eqs. (4.3)-
(4.5) is possible. Coincidentally these are actually the regions most likely to be realised in
SUSY scenarios with sparticle mass unifications at the GUT scale. Inversion formulae for

these regions are detailed below. For simplicity of notation we will write:
a=mp™, b=my™, c= 'm,;“l(aliw), d= m;';(affigh). (4.12)
Region (1,1):

b2 — d2)(b? — 2
M?:Qgilﬁgilf (4.13)

(2 + d? — b?)?
2(p2 2
2 coF—ch)
leiR = mﬂ, (4]4)
2 12
2 c*d 9 ,
M= (2 +d?— ’)2)2(1 (4:15)
2 Ad? 2 2 2 2
mhzm(c +d°-b"+a%) (4.16)

Region (1,2):

(b = P + PdP) (28 — &)

2
miy = =D — ) a (4.17)
2 (02 —02d? + Ad)E
M, = (d% — ¢2)2(b? — &) (4.18)
Ly (2 =dhHEld
My = (A2 = )2 (b2 = dz)“ (4.19)
2 cd’ 2092 _ 12 2 2N(p2 _ g2 :
mg = —————m——[a(2¢" — d°) + (d° — ¢*)(b° — d¥)] (4.20)

T (d? = e?)2(b? — d?)
Region (1,3):

12 — c2) (b — d?) (b2 — 2¢2
o = (( (r))(’ a )() . C )0’2 (421)
1 (C‘+d27b2)2d2

2 (@ =) (° - ,

g~ (2 + d® — b2)2d2 a

2 (2d2 - bZ)(dz - 02)02 2 .
my = CEYEEIEE a (4.23)

9 (2d? — b%)c?

qu = m[az(dz — C2) + d2 (C2 + d2 — bz)} (424)

Region (4,1):

771,322(1) = n‘l,;g — (da/c+ ac/d)mxg + a'z (423)
m? = m? ~ (ac/d)mg (4.26)
e — @ V) = (12— a?)a*(? + &) 4 2abed (@? + 2 — )@+ 8] -
My = (@ + @@ + @) = 42622/ (acd) 0
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mg, = mgo +b (4.28)

Region (4,2):

/ 28— d? b b2 —a? — d? 19
e S U (4.29)
_ c? 2 4
M= e (4.30)
2 a2c?
mYz = 7 — w2 0 + = P 4.31)
mg, = Mg+ b (4.32)
Region (4,3):
mé? = m% + (l,[(t(d2 — cz) — \/a (d? — ¢%)? + 4¢ dzm }/(2(12) (4.33)
mfn = a*{—(d" — M?a® + (& — ) [P (2d® - 3b%) + 7c4b2dz + d*(*(3b? — 2d?) 4 b*d*)]a®
—|—c2d2[(oc — 6c2d% — 3d4)b4 + (7c2d4 +58 — betd? + d6)b2 + 4d4c4}a4
+d*c 4d ?b? — 1062 + 2¢%d* + 2ctd? + 02 + 405 — 242b* — d*b?]a?
+c8d8 (b2 — d?) (0% — %) & 2aber/ (b2 — a2 — d2)(b2d? — 2a2d% — 2c2d? + 2a2c?)
x[(d* + ) (d* — *)?a* + 22 d* (Pb? — b*d* + ¢t + dY)a® + *dH(d® + F - 2b%)]}
Jlatd* + (a® + d?)%c* + 2a22d? (a® 4 d? — 20%)]2 (4.34)
ng = m% (a? +m~ - mio)/(m;ﬂ;— még) (4.35)
mh:mx?—k—b (4.36)

For a given set of endpoint measurements the inversion formulae of most regions will
return unacceptable masses. In some regions the masses returned will be in contradiction

with the presupposed hierarchy, mg, > mg > my, > mgo, in some there will even be

negative or imaginary masses. Such solutio};s must be discarded. If the masses returned
by the inversion formulae of a region (7,j) do obey the hierarchy, they constitute a physical
solution if they themselves belong to (7,j). Solutions which do not satisfy this last constraint
will be referred to as ‘unphysical’. In principle it should be possible to construct for each
region a number of conditions on the endpoint values which, beforehand, would tell if the
inversion formulae would return a physical solution or not. Such conditions will however
become quite complicated, and have not been sought in this study. Instead the more
straightforward approach is taken: try the inversion formulae of each region, then discard
any unacceptable solutions.

Originating from realisation (4) of my™, see Eq. (4.4), where masses appear unsquared,
the inversion formulae of region (4,j) in principle come in two versions, the difference being
a sign within one of the mass expressions. In regions (4,1) and (/4,2) it turns out that only
one of the signs returns masses in the appropriate region. In Egs. (4.27) and (4.29) the
physical sign is therefore chosen. For (4,8) both versions must be considered.

Once the required endpoints are measured and the inversion formulae used to determine
the masses, we encounter a delicate feature of the entire method of obtaining masses from
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endpoints. While the endpoints are given by single-valued functions of the masses, albeit
with different expressions for different mass regions, the inverse is not true. A given set of
endpoint values can in principle correspond to several sets of mass values. This is equally
true for the numerical fit method, and has not received much attention previously (see,
however, Ref. [32]). This complication will be faced in Section 6.

5. ‘Data’ generation and reconstruction

5.1 Event generation

The SPS points are defined by the low-energy MSSM parameters produced by ISAJET 7.58
[30], given a set of high-energy input parameters. In our analysis PYTHIA 6.2 [44] with
CTEQ 5L [45] is used to generate the Monte Carlo sample.® To allow for this the low-energy
parameters from ISAJET are fed into PYTHIA via the standard interface. PYTHIA in
turn calculates the decay widths and cross-sections. Each event produced is passed through
ATLFAST 2.60 [47], a fast simulation of the ATLAS detector. In ATLFAST the output
particles of PYTHIA are mapped onto a grid of ‘calorimetric cells’ of a given spacing
in pseudorapidity n and azimuth angle ¢. Next, the cells are combined into clusters,
after which particle identification takes place, including smearing of the four-momenta
according to particle type. Jets are built by a cone algorithm with AR = 0.4, where
AR = \/m Acceptance requirements are imposed: || < 2.5 for e/p and
In| < 5 for jets as well as py > 5/6/10 GeV for e/u/jets. Leptons are marked as isolated if
there is no other cluster within a distance AR = 0.4 of the lepton, and if additional energy
inside a cone AR = 0.2 is below 10 GeV. While ATLFAST captures quite well the main
features of the full simulation, some important effects are left out. Lepton identification
efficiencies are not parametrized. A conventional 90% efficiency per lepton is therefore
included by hand in the analysis. Also, the possibility of misidentifying a jet as a lepton is
absent in the fast simulation, and has not been included in our analysis. The effect of pile-
up on the jet energy resolution is accounted for in AT'LFAST when run at high luminosity,
as in this analysis, but pile-up events have not been simulated, and the underlying event is
probably too ‘slim’. However, as the selection criteria on jets and leptons are quite hard,
we do not expect a more realistic detector simulation to change the results very much.
Nevertheless, the numbers quoted at the end of this section should be validated with these
effects included.

The signature of a signal event is two opposite-sign same-flavour (SF') leptons, consid-
erable missing pr from the escaping LSPs, and at least two hard jets, one from the signal
chain, the other from the decay of the squark nearly always present in the other decay chain.
The most important Standard Model process to have the same features as the signal, is ¢t
production. Also W/Z together with jets, one of which is a b-jet, can mimic the signal,
and in combination with the underlying event, pile-up and detector effects, other processes
will also now and then result in the given signature. Together with ¢¢ we therefore include
QCD, Z/W+jet as well as ZZ/ZW /WW production. No K-factors have been used.

?The main parts of the analysis have been confirmed with HERWIG [46], see [28].
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The precuts (not tuned) used to isolate the chain are the following,

o At least three jets, satisfying: p];t > 150, 100,50 GeV

o Fymiss > max(100 GeV,0.2Megr) With Mg = Fr miss + 3oy Pr

e Two isolated opposite-sign same-flavour leptons (e or p), satisfying plfp > 20,10 GeV

The QCD background is cut away by the requirement of two leptons and of considerable
missing pr. For the processes involving Z and W the requirement of high hadronic activity
together with the missing pr removes nearly all events. After the rather hard cuts listed
above, the Standard Model background consists of approximately 95% #t.

5.2 Different Flavour (DF) subtraction

At this stage the main background events, in addition to tf, will come from other SUSY
processes which have two opposite-sign same-flavour leptons. It is useful to distinguish
between two types. The first, which will also be referred to as ‘lepton-correlated’, produces
correlated leptons, e.g. leptonic decay of Z. In these processes the leptons always have
the same flavour. The other type produces uncorrelated leptons which need not be of the
same flavour. Typically the uncorrelated leptons are produced in different decay branches
within the same event. Lepton universality implies that electrons and muons are produced
in equal amounts (apart from negligible mass effects). This means that for events which
produce uncorrelated leptons, there should be as many opposite-sign different-flavour (DF)
lepton pairs produced as there are opposite-sign same-flavour lepton pairs, and their event
characteristics should be the same. The same-flavour leptons are already part of the selected
events. If one then subtracts the different-flavour events from the total same-flavour sample,
this corresponds statistically to removing the non-signal same-flavour events which come
from uncorrelated leptons. The residual of the subtraction is a larger statistical uncertainty
in the new signal distribution. Clearly the different-flavour subtraction is a very effective
tool which takes care of both ¢ and most of the SUSY background. Only processes with
correlated leptons remain.

In a more detailed study one would need to correct for the different acceptances of
electrons and muons as functions of (pr, 7, ¢) in the different-flavour subtraction. Here we
have assumed equal acceptance for electrons and muons, which even for a fast simulation
is only approximately true. Also we have assumed that the efficiencies for reconstructing
two same-flavour and two different-flavour leptons are the same. For close leptons this is
not the case in the ATLFAST reconstruction. This will have some visible effects in the
different-flavour-subtracted distributions, see below.

Fig. 11 shows the different-flavour subtraction for the my (top) and mgy; (bottom)
distributions at points («) (left) and (8) (right). (The jet used in the mgyy distribution
is the one of the two pr-hardest jets which gives the smaller value of mg;.) All the plots
have the same colour code. In red the same-flavour (‘SE’) distribution is shown by solid
curve, the different-flavour (‘DF’) one by dashed curve. Their difference, the different-
flavour-subtracted distribution (‘SF-DF’),is shown in black with errors. The curve in blue

— 925 —



3000~

800
"a "a 600
© 2000 =}
3 3
3 3
0] @ 400
= Q
@ )
§1000 ‘g
u>J u>_' 200
0 5 um" 0
Sl o b bbb b b T A T T
0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140
m(ll) [GeV] m(ll) [GeV]
3000 800
a  f e 0
§ L § 6005
22000 S r
© r 3 [
g i o 400-
2 | T
§ 1000~ € L
3 & > 200
T} [ o r
o L b e
0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 800
m(qll) [GeV] m(qll) [GeV]

Figure 11: Different-flavour subtraction for my and mgy at (a) (left) and (B) (right). The
solid/dashed red curves are the same-flavour (‘SF’)/different-flavour (‘DF’) distributions. In black,
their difference, the different-flavour-subtracted distribution (‘SF-DF’), is shown with error bars.
The blue curve shows the part of the subtracted distribution which contains a signal chain (‘SC’).
The solid/dashed green curves (‘SM’) give the Standard Model part (completely dominated by ¢7)
of the same-flavour/different-flavour distributions. They are statistically equal and will cancel each
other.

shows the part of the different-flavour-subtracted distribution which contains a signal chain
(‘SC’). The reason why the blue distribution of mg; does not have the form of the theory
distribution in Fig. 10, is that the jet is only correctly selected in roughly half of the cases. In
solid/dashed green the Standard Model contributions to the same-flavour/different-flavour
distributions are shown (‘SM’). They are statistically identical and will cancel each other
through the different-flavour subtraction.

If the samples contained only background events with uncorrelated leptons (and the
different-flavour-subtraction procedure removed all of these), the different-flavour-subtrac-
ted distribution should fall exactly on top of the blue line. When this does not happen,
it implies that the sample also contains background events with correlated leptons. The
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Z-peaks in the my distribution at both («) and (8) are obviously of this type. The Z’s
stem predominantly from the decay of heavier gauginos into lighter ones. At (o) ~ 80%
of the peak comes from the heavy gauginos X3, ¥4 and XZZE At (8) X3 is sufficiently heavy
to decay into ¥{Z and is responsible for ~ 40% of the peak. The rest involves the heavy
gauginos.

For my < 20 GeV a bump is visible in the different-flavour-subtracted distribution.
This excess turns out to come mainly from lepton-uncorrelated events, predominantly of
the type Y9 — 717 which is abundant in the two scenarios, and where the taus decay
leptonically. Since a pair of taus produce same-flavour and different-flavour leptons in
identical amounts, the different-flavour subtraction should take care of this background.
When it does not, it is because of an asymmetry in the reconstruction algorithm of ATL-
FAS'T which accepts close same-flavour leptons at a higher rate than close different-flavour
leptons. Since small AR between the leptons means small my; values, the bump appears
at low my. Such a reconstruction asymmetry may also have noticeable effects in other
distributions, e.g. myy, for which the maximum values in our two mass scenarios appear
for parallel leptons. A dedicated study of the impact detector effects of this type may have
on the endpoint determinations may be worthwhile.

In the myy distributions there is an excess of events (compared with the blue line)
at lower masses. Some of this excess comes from the lepton-uncorrelated events in the
my bump. Typically these land at low mg; values. The main contribution to the excess
is however from ¥3’s which decay sleptonically, but which originate from §g, i1, § or the
heavier gauginos.

At (B) two effects complicate the endpoint measurements. One is a reduction of the
SUSY cross-section by one order of magnitude relative to («). This allows for the Standard
Model background to have a larger impact, see the green curves in Fig. 11. Since this
background (practically only ¢¢) consists of uncorrelated leptons, it is dealt with by the
different-flavour subtraction. Tt leaves however an increased statistical uncertainty in the
resulting distribution. The other effect at (3) is a reduction in the signal branching ratio,
mainly from a reduced BR(X9 — Irl), see Fig. 9. As a result also the SUSY background
becomes larger relative to the signal.

While the Standard Model background is practically negligible at («), it is of similar
size as the SUSY background at (5). For the myy distribution both background types are
important only at low values, a fair distance away from the kinematical maximum value.
The same is true for the mgy; distributions. The endpoint measurements are therefore only
minimally affected by the background. An exception is the Myu(e>2) distribution, where a
minimum is measured.

5.3 Selection cuts

A fair fraction of the events which pass the precuts, ~ 30% for () and ~ 20% for (3), have
more than two leptons. Each opposite-sign lepton pair which satisfies pr > 20,10 GeV is
used, either in the same-flavour or the different-flavour distribution. As usual, the different-
flavour subtraction takes care of the incorrect combinations.
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Figure 12: Quark selection cuts for mgy (left) and mgowy (right). Left: The two lower black
curves in solid and dashed show the my,__n (‘giow’) and Mgpinll (‘qnign’) distributions. The highest,
black curve shows the sum of the two, mg,,..u (‘gootn’). Notation is defined in the text. Blue:
theory distribution (“TH’). Red: inconsistency cuts (‘incons. cut’) have been applied on mgi(iow)
and mg(nigh) (the resulting distribution is scaled up). Right: An inconsistency cut is applied on
mqu. 'The jet chosen for my,,,u is the one used in mg, _i1ow) etc. The inconsistency cut is seen to
work very well for the mgyow) distribution.

The selection of the jet to go with the two leptons is more difficult. In the precuts at
least three jets are required. If the squarks are considerably heavier than X3, and the gluinos
are not very much heavier than the squarks, then the two ppr-hardest jets are expected to
come from the decay of the two squarks present in nearly all events. (More specifically we
;S g - mé) Along the entire SPS 1a line this is the
case. The third jet is then expected to come from a gluino decay. Specifically, both for ()

need mg — mZ, somewhat larger than m
and (B) the correct quark is one of the two pr hardest in 94% of the cases at the parton
level. It is therefore reasonable to consider only these two jets.

In a realistic setting all possible combinations will be investigated, along with all kinds
of precuts. However, whatever the mass situation, one will not be able to select the correct
jet by some simple cut. Combinatorial background from the jet selection procedure is
something one will have to live with.

In Fig. 12 (left) the different-flavour-subtracted mygy distribution at (a) is shown for
various jet selections. The two lower black curves are obtained by selecting from the two
pr-hardest jets the one which gives the smaller (solid) and larger (dashed) value of mg,
for simplicity referred to as mg, i (‘qiow’) and Mgyl (‘gnigh”), respectively. The highest
black curve shows the sum of the two, mg, .11 (‘ghoth’). In blue and marked “I'H’, with
the same normalisation as m, 1, is the parton level theory distribution, as generated by
PYTHIA so that it contains widths, production biases etc.

It is possible to get a reasonable first estimate of the endpoint both from my__ y and
Mg, .mll- 1he shape of the theory distribution is however not reproduced by any of the
three experimental distributions (in black), which is quite natural since they all contain
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both combinatorial and lepton-correlated background, and two of them are also biased by
the jet selection procedure. For («) the lepton-correlated background comes mainly from
sleptonically decaying X9’s that do not have a g or b as a parent. As can be seen from
Table 3 together with Iig. 9, ¥3 comes from g, or bin 78% of the times. If, for a signal event,
we assume 50% chance of picking the correct jet, a different-flavour-subtracted distribution
will consist of 39% signal, 39% combinatorics and 22% lepton-correlated background. For
() the fractions are 35%, 35% and 30%. For these numbers ¥3 is assumed to be the only
source of lepton-correlated background.

We have investigated methods to remove or model this combinatorial background. For
example, the sample may be purified [25] by using events where only one of the jets can
reasonably be assigned to the signal quark. Consider the case where a measurement of
my™ has been made, and one wants to now measure m;“l(aliw). In constructing the my(1ow)
distribution we must choose one of the two highest pr jets, and with no other input will
choose the wrong jet 50% of the time, giving a combinatorial background. However, in
some events, one of the jets will be such that its intepretation as the signal quark would

contradict the previous measurement of m;’;[ax, i.e. using it to construct mgy would give

mey > mg}lax.

In these events, we can be reassured that in choosing the other jet we
have chosen correctly. If neither of the jets in the event gives mgy in contradiction with
the previous measurement, then we cannot be certain that we have the correct jet, and
therefore discard the event. In other words, we only use events where only one choice of
signal quark is consistent with other endpoint measurements. This allows one to build a
purified sample where for signal events the wrong jet is only chosen if the correct jet is
not one of the two pr-hardest jets. There will however still be background events in the
sample.

The red curve of Fig. 12 (left) is constructed from the mgyy distribution by means
of ‘inconsistency cuts’ on Mmgylow) and Mgy nighy Where we insist that only one of the two
highest pr jets has my(1ow) < 310 GeV and myynign) < 390 GeV. Approximately 1/4 of
the events pass these cuts; the resulting curve is normalised to have the same number of
events as the m,_ gy distribution. The similarity with the blue theory curve has improved,
but is still not excellent. In particular there is a large tail towards higher values, which in
practice makes it less useful for accurate endpoint determination.

In this respect a better result is obtained for the mg(iow) distribution, shown in Fig. 12
(right) with an inconsistancy cut requiring only one jet with my; < 440 GeV, and normal-
isation as mg

is no disturbing tail. In fact the red curve is the one we later use to estimate the endpoint

I(low)- The red curve matches quite well with the theory curve, and there

for this distribution.

While it is certainly reassuring to regain the theoretical distribution, it is still not clear
what is the best way to obtain an accurate measurement of the endpoints. One would prob-
ably combine many different methods, looking for convergence as well as inconsistencies.
For instance, even though we should choose not to fit the distribution from the inconsis-
tency cut, since it has less statistics, it teaches us that a linear fit to mg__i1ow) from 150
to 300 GeV, which might otherwise seem reasonable, would not at all be a fit to the signal
since it is close to linear only in the region 240 300 GeV.

— 929 —



Another approach to obtaining a distribution closer to the original one relies not on
purification of the actual sample, but on finding an estimate for the background, combi-
natorial and/or lepton-correlated, and then subtracting it from the original distribution.
Statistics may be better preserved in this way, but systematics are introduced. Some at-
tempts have been made with ‘mixed events’, i.e. the combination of the lepton pair from
one event with jets from other events. The idea is that since the lepton and the jet sectors
of mixed events are necessarily uncorrelated, they may mimic both types of background,
lepton-correlated and combinatorial, where also the lepton pair is only weakly correlated
with the jet.

A first complication of this method is encountered when the four-vectors of different
events are to be combined into mixed events. What rest frame is the appropriate one?
This already points to the inexact nature of such a method. Its performance is however
promising, although somewhat variable, as will be demonstrated later in this section.

The mixed event sample is constructed from the events which make up the distri-
butions, i.e. those which pass the precuts listed in Sect. 5.1. An additional requirement
of having exactly two opposite-sign leptons is imposed to avoid ambiguities in the lepton
sector. No major differences are however expected from leaving out this constraint. Each
event then provides two leptons, uniquely defined because of the additional cut, and its
two pr-hardest jets. The four-vectors of the selected leptons and jets are here taken in the
rest frame of the lepton pair. Due to the prominent role of the lepton pair, this choice
is not unreasonable. On the other hand it is not unique. Both the laboratory frame,
the rest frame of the entire event or the rest frame of the leptons together with the two
pr-hardest jets are viable candidates. A dedicated study of the characteristics of these
different possibilities would be worthwhile.

The mixed sample is then constructed by consecutively combining the lepton sector
of one event with the jet sector of another. In our study each lepton sector was combined
with the jet sector of five other events. By increasing this number, very high statistics can
be obtained for the mixed sample. For each combination of events all relevant masses were

constructed, Mgy 11y Magignlly Mg oulls M etc.

Qow ! (low)
Mixed samples for same-flavour and different-flavour events are constructed separately.
In the end their difference is taken, in line with the previously described different-flavour

subtraction. The resulting mixed distributions are the ones used later in this section.

5.4 Multiple squark masses

The theory distributions shown in Fig. 10 are only for one squark mass per scenario. In
reality four different squark masses, mgh/mgb7 Mg, [me,, my, and mg, will contribute
to the distribution. The blue theory distribution of Fig. 12 is therefore the sum of four
separate distributions, each with a different endpoint, different normalisation and similar
though not identical shapes.

While jets from the three lightest quarks, and for most purposes also from the c-quark,
will be indistinguishable in ATLAS, jets from b-quarks will be identified with a certain
probability. The expected rejection factors for incorrectly identifying jets from lighter
quarks and gluons as b-jets, are for high luminosity operation given in the ATLAS TDR
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[20], Fig. 10-41. Low/high b-tagging efficiencies come with high/low rejection factors and
allow for high-purity b/non-b-samples, respectively. The higher the purity, the smaller the
sample. In this analysis we have used the following simplistic b-tagging prescription for
both purposes: For a b-tagging efficiency of 50% the rejection factors against jets from
gluons/three lightest jets and from c-jets are set to 100 and 10, respectively.

With b-tagging one can to a certain extent separate the gr and the b distributions,
thus opening for a disentanglement of the squark masses. Nevertheless, even though a high
purity separation has been accomplished, each of the two distributions will still contain
contributions from two squark masses. Typically a kink can be observed at the position of
the lowest endpoint. For mSUGRA scenarios riL/.ZL and @r/ér, only differ by a few GeV,
so the kink will appear very near the end of the distribution. Since the proton contains
more u than d-quarks, @y, will be produced at a higher rate than the heavier dr. This
reduces further the visibility of the kink. Then with the general smearing due to physics
and detector effects in addition to background near the endpoint, it may be very difficult
to identify such a kink. In case of the two b-squarks the separation will be larger. Whether
it is possible to identify it or not depends on the rate of b production as well as the level
of impurity from ¢r-events in the b-tagged distribution.

5.5 Invariant mass distributions

SUSY processes for (o) and (8) as well as the Standard Model background have been
produced for 300 fb~!. This corresponds to 3 years at design (high) luminosity. The mass
distributions of the available edges for SPS la («) and (8) are shown in Figs. 13 14.

For all plots the black points with errors show the total different-flavour-subtracted
distribution (‘SF-DF’). Solid green marks the SUSY background (‘SUSY’), and in green
with error bars the Standard Model background (‘SM’) is shown. The solid blue curve then
shows the original theory distribution (‘TH’), normalised to the different-flavour-subtracted
distribution. The fitted function appears in red. In cases where mixed events are used to
model the background, the smooth function fitted to the high-statistics mixed-event sample
is shown in dashed red. When additional distributions are plotted, they will be described
in the accompanying discussion.

For each distribution the endpoint estimation will be discussed. In most cases the
edges are fitted to a straight line in combination with a simple background hypothesis,
and in some cases convoluted with a Gaussian distribution. At (a) this procedure gives
numbers in reasonably good agreement with the nominal values. At (5), where the SUSY
cross-section is much smaller and also the branching fraction of the signal is reduced,
the estimated endpoint values depend more strongly on the fitting method chosen. To
control and reduce this systematic effect, a better understanding of the whole chain is
required; physics effects, detector effects, multiple masses at different rates, background,
precuts. After some years of LHC operation one can expect these issues to be understood
sufficiently that the systematics of endpoint estimation is controlled and corrected for in
the fitting procedure, up to some small uncertainty.

If this is achieved, it is the statistical error of the endpoint values, in combination
with the uncertainty on the absolute energy scale, expected to be 1% for jets and 0.1% for
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leptons, which determine the precision at which masses can be obtained for the different
scenarios.

In the discussion of the distributions we therefore have the main focus on the statis-
tical uncertainty of the endpoint determination, but are also concerned with the present
magnitude of the systematic uncertainty. For some of the distributions it may seem bold
to state that the systematic fit uncertainty will be reduced far below the statistical one.
One shall however remember that once such distributions become available, a great effort

will go into investigating them.

SPS 1a (o)

my: The my distribution at («) is shown in Fig. 13 (top left). Tt is very close to the
expected triangular shape. To the right of the endpoint the Z peak is clearly visible. These
Z’s come from SUSY decays. The bump at low my; is discussed in Sect. 5.2.

The distribution is fitted with a straight line convoluted with a Gaussian,

Amy, my < mipe* 1 o0 _ (my=m}))?
g(my) = ’ i f(my) = dmj; g(my)e 257 (5.1)
. 0 > max LR Ymo i i J
) my > My vz 0

Both the endpoint, the width of the Gaussian and the normalisation are kept free in the fit,
resulting in an endpoint value of 76.72 GeV at a statistical error of 0.04 GeV. Compared
to the nominal value this is 0.35 GeV too low. When a more appropriate model for loss of
lepton energy is implemented in the fit function, such a systematic shift is expected to be
reduced to the level of the statistical error or below. The fit results are quite stable with
respect to variations in bin size and range of fit. We thus arrive at the well-known result

that the my; endpoint is expected to be estimated to high precision.

mgy: As for all cases where jets are involved, the my; distribution comes in many ver-
sions, depending on the jet selection procedure as well as the use of b-tagging informa-
tion. Plotted in Fig. 13 (top right) is mg, i (see Sect. 5.3) with no b-veto. Mixed events
have been used in an attempt to model the background. A 6™ degree polynomial was
first fitted to the high statistics mixed event sample. Then, with the normalisation kept
free, the polynomial was combined with a straight line for the signal part. This proce-
dure returns my;* = 427.7(0.9) GeV, statistical error in parenthesis. The nominal value is
425.9/431.1 GeV for iy /dy. Alterations to the bin size and fit range has a 1-2 GeV effect
on the fit value, but the statistical error remains the same.

The dashed red line shows the shape of the mixed event sample. It matches the m,__u
distribution very well at values beyond the endpoint, justifying its use, and is sufficient to
obtain a reasonable endpoint fit. Similar results can be found by modeling the background
tail with an exponential or a polynomial. If; at some later stage, the entire distribution is
to be compared with the theory distribution, the size of the background must be known
for any mygy value. An exponential or a polynomial based on the upper tail can never be a
good background model for values somewhat below the edge. It is here the mixed events
may have a role to play. In the particular case of the m,,__j distribution, the mixed sample
actually appears to be a good background estimate at all values. For m,, . 1 and some
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Figure 13: Invariant mass distributions for SPS la (a). See the text for details.

other distributions, it does not do so well. Nevertheless, there are many ways to construct
the mixed sample. Further study of the method seems worthwhile.
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It is tempting to suggest that it is mainly the @, /¢, endpoint we measure, and that
the extra events just above the endpoint (see the figure), make up the hard-to-detect
kink from the (iL/~§L edge. At the present level of detail it is impossible to say if such
an effect could be isolated to give an additional measurement for the heaviest mass. It
does seem difficult, though, as the kink will be washed out by other effects, e.g. sparticle
widths. At (o) the intrinsic width of ay, is 5.3 GeV, see Fig. 6 (right), to be compared
with mg, — g, =58 GeV. Also detector effects will result in a general smoothing of the

distributions.

Mgilow): FOr Myiow) the mixed sample is fine above the endpoint, but overestimates
for lower masses. While the edge can be fitted and the endpoint measured by a mixed
sample subtraction, due to its good behaviour in the edge region, we have here instead
used the inconsistency cut mygy,u > 440 GeV to purify the sample, Fig. 13 (middle left).
The ability of the inconsistency cut to bring the distribution very close to the original one,
was already discussed in relation to Fig. 12.

For a zero background hypothesis a straight line fit gives m;‘;a’gw) = 300.7(0.9) GeV, to
compare with the nominal 298.5/302.1 GeV for @z, /dy,. If the few bins around the endpoint
are also included, the value increases by 1-2 GeV. Whether these high-mass events are
signal or background is not easy to tell from the given distribution, since there is virtually
no background structure to extrapolate from. This is because a ‘consistency cut’ has
been imposed which requires mgy  ; < 440 GeV, in accordance with the already measured
myy endpoint. From Eq. (4.10) this implies m(1ow) < 440/y/2 GeV = 311.1 GeV. The
consistency cut takes away a large part of the background, but also has the effect that it
becomes difficult to see what structure the my o) background has. If the consistency cut
is dropped, the usual background tail appears and can be modeled, although at the cost

of a slight increase in the statistical error.

Mgi(nigh)? Following the same procedure as for myy the background of the mg(pighy dis-
tribution was modeled by the mixed event sample. In Fig. 13 (iniddle right) the relevant
distributions are shown. Also the result from subtracting the mixed sample is shown
(‘mixed subtr.’); the lower black points with error bars. This subtracted distribution fol-
lows the original theory distribution (blue) closely in the edge region, but overestimates at
lower values.

In the range myhign) € (320,550) GeV the endpoint was estimated to 374.0(2.0) GeV.
The nominal value is 375.8/380.3 GeV for 4y, /dy,. At (@) the myhign) edge consists of
two parts. This is clear from the theory distribution (blue), but also in the reconstructed
distributions (black). In the fit only the lowest near-linear stretch was used. It is clearly
incorrect to apply a straight line for the whole edge, but if done, the statistical error would
be reduced to ~ 1 GeV. When a good signal function is at hand, the whole edge will be
described. 1t may therefore be reasonable to expect a statistical error of 1 GeV rather than
2 GeV.

maue>z): LThe myyes z) distribution differs from the previous ones in that a minimum
is to be measured. This has two important consequences. One can be seen from Fig. 11
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(bottom left), even though this plot is for the unconstrained mgyy distribution. The lepton-
uncorrelated background, modeled by the different-flavour distribution (dashed red), sits
mostly at low values, far away from any maximum edge, but quite near the Mgl(e>17)
threshold. While this background type is removed (statistically) by the different-flavour
subtraction, the price is an increased statistical uncertainty which directly will affect the
statistical precision of the mg;;?b%) estimation.

The other consequence of measuring a minimum is related to the multiple squark
masses. As noted earlier, the distributions can be purified using b-tagging information. For
the measurements discussed so far we have considered the total sample. This is because
the gr-squarks are so much heavier than the b-squarks that the upper edge regions are
practically free of b-events anyway. A b-veto has therefore no effect, at least not at our
level of precision. For the threshold measurement it is the other way around. Here the
threshold related to the lightest squark, by, will be the threshold for the total distribution.
A b-veto may therefore be important in order to obtain the threshold for the non-b-events.

A third complication is that the edge is very non-linear, as can be seen from the theory
distributions in Fig. 10. Also, the fact that this non-linearity is of the concave type, could
make it very difficult to see where the edge ends and where smearing from various sources
takes over. This is all the more relevant since the b-events come at a significantly smaller
rate than ¢r-events (ratio ~ 25%), and may therefore appear as just another contribution
to the lower tail, not easily distinguishable from other effects.

The Mau(e>2) distribution is shown in Fig. 13 (bottom left). The upper distribution
("SE-DF”) shows the non-b-tagged myy(s>z) sample. The lower black points (‘SF-DF(b)’)
mark the b-tagged sample. Only approximately 50% of the events which contain a b
are actually b-tagged. This means that the non-b-tagged distribution contains a ‘hidden’
b-sample, statistically similar to the ‘visible’ b-sample both in size and shape. (There
would be a shift to the left, though, since in the reconstruction b-tagged jets have larger
recalibration factors. This is not accounted for here.) Analogous to the different-flavour
subtraction it is therefore possible to get the non-b-tagged distribution closer to the original
g-distribution by subtracting the visible b-sample, possibly scaled up or down according
to the b-tagging efficiency applied. A slightly different approach would be to use a much
harder b-veto and no subtraction. The price would be a significant reduction in sample
size.

However, the main problem in the threshold region is not the b-contamination, but the
lepton-correlated SUSY background shown in solid green. It comes primarily from events
where Y9 decays sleptonically but does not descend from ¢z, or b. 1t is this background
which needs appropriate modeling. The difficulty with having a concave theory distribution
together with an unknown background is evident from the figure. Tt is really difficult to
separate the background from the signal.

As a simple estimate of the statistical uncertainty of the edge position, a straight
line fit somewhat away from the threshold was performed on the non-subtracted sample
(‘SF-DF’), returning a statistical error on the endpoint around 1.8 GeV. If the subtracted
sample (subtracting ‘SF-DF(b)’) is used, the error increases. The actual endpoint obtained
from such a simple zero-background hypothesis is of course incorrect. At present it seems a
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bit optimistic to expect the systematics of the fit to be dominated by the statistical error.

Mp(9>1)* The My (0> %) distributions are shown in Fig. 13 (bottom right). The different-
flavour-subtracted distribution (‘SF-DF’) is shown in black with error bars. The same-
flavour (‘St’) and different-flavour (‘DY) curves are also plotted. In the threshold re-
gion the same-flavour and different-flavour distributions are considerably larger than their
difference, which necessarily gives large statistical uncertainties in the different-flavour-
subtracted samples.

As for Mgy (s> 1) more studies are required to control and reduce the systematic error
induced by the background and the nonlinear theory curve. A linear fit was performed in
the near-linear region to measure the precision with which the position of the edge can be
found. Variations in the bin size and the fit range yield systematic errors within 1 GeV

and statistical error between 4 and 5 GeV.

™MpiL, Mpi(low)s Mbi(high): Given that the background can be controlled and a good
signal function can be found, (> 1) is a good distribution since the lowest threshold is
given by by, which also has a considerable rate. For the edges muiu, my(1ow) and my(nigh) one
problem is that it is by which defines the outer endpoint for the b-distributions. Since this
squark only contributes ~ 22% of the b-events, the edge above the by endpoint may look
like background. (However, since we expect the heavier b-squark to come at a considerably
smaller rate as it has less phase space for production, and also a smaller branching ratio to
the wino-like ¥9, due to its larger right-handed component, we can explicitly look for such
a small tail-like edge.)

A more serious problem is the background from other SUSY events. Typically these
have the decay Eq. (3.3) in one chain, providing two leptons, and § — bb or § — i1t in
the other, providing b-jets. The mass distributions of this background stretch sufficiently
beyond the by endpoints that the resulting edge structures become difficult to analyse. The
positions of these three b-edges can typically be measured with a statistical precision of
3—-4 GeV, but it remains unclear whether the systematics of the edge can be sorted out.
Another approach could be to require a lower b-tagging efficiency for these distributions in
order to get higher rejection factors and purer, although smaller, samples.

SPS 1a (3)

The mass distributions of (8) are shown in Fig. 14. Throughout, the total samples have
been used. No b-veto has been applied.

my:  The my distribution is shown in Fig. 14 (top left). Tt has the triangular shape with
a Z-peak on top. Some datapoints in the Z-peak lie above the range of this plot, and can
be viewed in Fig. 11 (top right).

As was also the case for («) there is a bump at lower values. The distribution above the
Z-peak was fitted with the same Gaussian-convoluted triangular shape as earlier, Eq. (5.1),
giving m}** = 137.4(0.5) GeV which is 0.5 GeV lower than the nominal value.
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Figure 14: Invariant mass distributions for SPS la (). See the text for details.

mqu: The my, y distribution is shown in Fig. 14 (top right). With the mixed sample
as a rough background estimate a straight-line fit gives an endpoint at 640 GeV with a



systematic shift of 1 GeV from varying the bin size and fit range. The statistical error is
5 GeV. If, however, the same fitting procedure is applied to the m,, . i distribution, the
endpoint value increases to 655 + 2 GeV and the statistical error is 9 GeV.

Surely more study would bring these values closer, and optimally have them converge
near the nominal value of 649.1/652.5 GeV for @y /dy. For later use we take an optimistic
statistical error of 5 GeV, but also include a systematic fit error of 3 GeV for a more

conservative estimate.

Mg ow): The my  iow) distribution is shown in Fig. 14 (middle left). Both a consistency
cut mg i < 670 GeV and an inconsistency cut Mgl > 670 GeV are used. A straight-
line fit with no background hypothesis gives a statistical error around 6.3 GeV. The actual
fit value is 443 GeV, which overshoots by a few GeV since the background plateau has not

been included. The nominal value is 436.6/438.9 GeV for 4r,/dr.

Mgi(high)? 1The my_ yhigh) distribution with the consistency and the inconsistency cut is
shown in Fig. 14 (middle right). The mixed sample was again used to roughly model the
background under the edge. A straight-line fit gives an average value of 520.5 GeV with
systematics from binning and fit range of 3 GeV. The statistical error is at 5.5 GeV.

The nominal value is 529.9/532.7 GeV for 4r,/dr,, some 10 GeV above our estimate.
One could argue that the current endpoint measurement has considerable uncertainties
and that this discrepancy is not dramatic at the present level of detail. However, such an
underestimation is actually to be expected. In Fig. 10 the theoretical mgpigny distribution
is shown for @z, at (8). There is a long vertical fall towards 517 GeV (for dy, it is at
519 GeV), then just before the bottom is reached, a small foot appears, as anticipated in
Sect. 4.1, and takes us up by 11-13 GeV. To detect such a small foot would require more
statistics than is available at (3). Experimentally it is therefore expected to get an endpoint
near 517-519 GeV. The incorrect endpoint measurement will have important consequences
for the determination of masses from the endpoints. This situation is further discussed in
Section 6.

My(e>7): The Mau(9>3) distribution is shown in Fig. 14 (bottom). The same-flavour
(‘SE’) and different-flavour (‘DE’) distributions are shown in solid and dashed black.
Clearly, there are large uncertainties from the different-flavour subtraction. The statistical
uncertainty of the different-flavour-subtracted sample was estimated with a straight-line
fit, giving 13 GeV. In addition there will be a systematic error, here conservatively set to

10 GeV.

Endpoint measurement values

The results of the endpoint estimation for («) and (8) are summarized in Table 4. The
last column contains an estimate of the systematic error from different fitting techniques,
ranges and bin widths. These values are not used in the following, but are included for
completeness.

The column with the heading ‘Energy Scale Error’ shows the expected error on each
endpoint estimation from the uncertainty on the absolute energy scale for jets and leptons.
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Nominal  Fit Energy Scale  Statistical — Syst. Fit

Edge Value  Value Error (%)  Error (¢°f)  Error

[GeV]  [GeV] [GeV] [GeV] [GeV]
@
myax 77.07 76.72 0.08 0.04 0.1
e 425.9 4277 2.1 0.9 0.5
LA 298.5  300.7 1.5 0.9 0.5
w318 3740 1.9 1.0 0.5
Mtz 2000 - 1.0 22 2.0
mi s 1831 . 0.9 4.5 4.0
(8)
X 137.9 137.4 0.14 0.5 0.1
m;“”ax 649.1 647.0 3.2 5.0 3.0
m:;ll?l);w) 436.6 443.0 2.2 6.3 4.0
M igh) 529.9  520.5 2.6 5.5 3.0
m;?}?a>%) 325.7 - 1.6 13.0 10.0

Table 4: Endpoint values found from fitting the edges in Figs. 13-14, for 300 fb~'. The nominal
values correspond to the mass of @y, which due to the proton content is produced at higher rates
than the heavier dz. For the thresholds no fit. values are shown, only the errors. This reflects the
fact that a reasonable fit function is lacking for this edge.

This effect has not been taken into account in the simulation. The uncertainties of the
energy scales are here set to 1% for jets and 0.1% for electrons and muons, see Ch. 12 of
[20]. For an invariant mass which consists of only jets or only leptons, this will give the
same uncertainties, 1% and 0.1%, respectively. If the invariant mass is constructed from
one jet and one lepton, the endpoint uncertainty is

a(mg) _olmy) 1 (U(EJ)>2 (U(El))2 — 0.509 5
mg 2m§l T2 E; i Ey = 0-50% (5:2)

where F; and E) are the jet and the lepton energies, respectively. For an invariant mass

involving a higher number of jets and leptons, the error on the endpoint value from the
energy scale uncertainty will be different for each event. The error of mgy, will depend on
the relative size of the three terms on the right-hand side of Eq. (4.10). Since at («) and (8)
we are in the region where the mass ratio mgL/m&g dominates the two other mass ratios,
see Eq. (4.4)-(1), the quark will usually be very energetic, leaving one or both mg terms
to dominate. This is particularly true at large values, so near the edge of m,; one can
show that the energy scale error will result in an endpoint error between 0.35% and 0.5%
for each event. For migyes 7 the average energy scale error will be slightly lower in our
two scenarios. For simplicity we have set the energy scale error to 0.5% for all endpoints
involving jets.
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6. Extraction of masses from edges

6.1 10,000 ATLAS experiments

In the simulation study described in Sect. 5 values for the endpoints and their statistical
uncertainties were found, together with a ‘systematic fit uncertainty’. Although not so far
from the nominal endpoint values, the fit values in Table 4 are somewhat uncertain due to
the as yet not-understood systematics of the fitting procedures. Also, the systematic error
on the energy scale has not been addressed.

Assuming that one will eventually be able to control the systematics of the fitting, only
the statistical errors together with the systematic error from the energy scale uncertainty
will be what determine the LHC potential to measure the SUSY masses. To estimate this
potential, consider an ensemble of typical LHC experiments, i.e. where the deviation of
each endpoint measurement from the nominal value is based on a Gaussian distribution
of width equal to the statistical error estimated for that endpoint, as well as a jet/lepton
energy scale error picked from a Gaussian distribution for each experiment, in line with
what is done in [31],

E;exp _ E;:mm+ AiU’ftat + Bafcale (6.1)

Here E; denotes the position of the 7*" endpoint. The coefficients A and B are picked from
a Gaussian distribution of mean 0 and variance 1. Each experiment will pick as many A’s
as there are endpoint measurements as well as one B for the m;; endpoint and one for the
endpoints involving jets, thus neglecting the effect of the lepton energy scale error on the
latter.

When a set of edges E*P has been found, the task is to find the masses m which
best correspond to the measurements. If only four endpoints are measured, the inversion
formulae straight away return the possible mass combinations. If more endpoints are
available, no mass combination will in general reproduce the edge measurements, and a
numerical approach is required, where the measurements are weighted according to their
uncertainties. Note that in this procedure we do not make use of the fit values given in
Table 4.

It should also be emphasised that the systematics of the endpoint measurements are
here assumed to be under control, i.e. the ‘Syst. Fit Error” of Table 4 is neglected. The
precision we will find in this section and the next for the determination of masses and mass
differences at the LHC must be understood in this context. If the endpoint systematics
turn out to be comparable to the combined statistical and energy scale errors, then the

precision will be worse.

6.2 Mass estimation via &

In our case, where the jet energy scale error produces a correlation between the endpoint
measurements, the method of least squares is appropriate. The best mass estimate m is
then the one which minimises the function

¥ = [E — E"(m)]! W[E™ — E**(m)] (6.2)
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where Eth(m) contains the theoretical edge values for a set of masses m. The weight matrix
W is the inverse of the correlation matrix or error matrix of the observations, which is given
by the variances and covariances of the endpoint measurements,

(W_])ii — O_Ztat + (Tsf‘ale — (O_srat)‘l + (O_scale)Q

i ; i
(Wh),) = o3ole = (EPPESS) — (BO0) (B9 = 2legsle i j (6.3)
(Wi =0, i#1

where j =1 refers to m®, which to a good approximation is uncorrelated with the other

measurements. The covariances are similar to the variances in size, and so cannot be

neglected. If the endpoint measurements were uncorrelated, W would become diagonal,

and the least-squares method would reduce to the normal Y2 minimum method.

The ensemble distributions obtained by such a procedure can be interpreted as prob-
ability density functions. From these the ‘inverse probability problem’ can be addressed,
which is that of stating something about the true masses on the basis of the ones obtained
in one experiment. We will be interested in the mean values of the ensemble distribution,
their standard deviations, skewness, as well as the correlation between masses.

6.3 Minima of X

Because many endpoints are given by different expressions for different mass regions, see
Eqgs (4.4)-(4.5), the minimisation function ¥ is a composite function. For the endpoint
measurements used in this paper, ¥ is made up of nine individual functions, X; ;), one
for each of the nine regions (i,j). Considered separately each function X(i,;) has one or
more minima. For these to also be minima of the composite function (‘physical minima’),
they need to be situated in the region of validity (‘home region’) (i,5) of the corresponding
function. Physical minima can also occur on the borders between regions, in which case
they will be referred to as ‘border minima’.

If the threshold endpoints are left out, there are four measurements for four masses.
The clear failure of the endpoint measurements of SPS la (a) and (8) to comply with
Eq. (4.11) already discards the three regions where these four measurements are not suffi-
cient to determine the masses. In each of the other six regions the minima can be sought
by use of the inversion formulae. Such solutions correspond to ¥ = 0. In cases where no
physical solutions are found in this way, border minima exist at ¥ > 0, and will have to be
found by a least square minimisation.

When the threshold measurement is included, the system of equations becomes over-
constrained. This will give a non-uniform increase in the value of ¥, which may destroy
or create minima. Another effect will be to move the minima of ¥ around in mass space,
possibly moving them into or out of their home regions. One way to picture the effect is
to ‘tune in’ the new measurement by letting its uncertainty go from infinity, in which case
the measurement has no effect, to the value specified in Table 4. The masses and height
of each ¥ minimum will then move continuously from the old to the new position.

Even though composite, Y is continuous, so its realisations in two neighbouring regions
attain the same value at their common border. Assume that the endpoint measurements

— 41 —



are such that one of the realisations has a minimum at the border (not a so-called border
minimum). Consider first the case of no threshold measurement. Since ¥ = 0, also the other
realisation must have a minimum at the border. If now one of the endpoint measurements
is shifted up or down, the two minima will be driven off the border and also separated in
mass space. 1o which side of the border they move, and whether they go to the same side
or not, will depend on the actual parameters. If the minima are on the same side, as is the
case at (), only one of them will be a physical minimum. If they are on opposite sides, as
is the case at (), either both will be physical minima, or neither, in which case there will
be a border minimum.

This means that if a mass scenario is situated close to one of the borders, the endpoints
it produces may also have been produced by a set of masses from the neighbouring region,
provided the minimum there is a physical minimum.

If the threshold measurement is added, this picture is no longer exact. Since 3 does not
vanish at the minimum, the two regions will in general no longer have a common minimum
at the border. However, the threshold measurement often has less weight than the other
measurements, so the above picture still has some validity: Near a border two minima will

be lurking. Both, one or none may be physical minima.

6.4 SPS 1la («a)

If we neglect the threshold measurements to start with, and thereby also wait with the
mass, there are for each ‘experiment’ two solutions. One solution is in region (7,1), which
is the home region of the nominal masses, and one is in region (1,2). This is an example
of the situation described above: SPS la («) has 2nz%R/(m,§$ + m;g) = 1.01. If this ratio
becomes less than one, the region changes, as is seen from Eq. (4.5). A reduction of mr,
by 0.7 GeV would put the mass set on the border to region (1,2). In both regions the
mass distributions are close to Gaussian. The ensemble means of the home region solution
essentially equal the nominal values. The (7,2) solution has central values some 15-20 GeV
below the nominal ones. Without additional information both solutions are equally good
and it would not be possible to determine which one to choose. One would have to state
that the SUSY masses are summarized by either the (1,1) set or by the (1,2) set.

If the non-b threshold endpoint is included as a fifth measurement in a least square
minimisation, the situation changes. While a (1,1) minimum exists for practically all the
‘experiments’, the occurence of a (1,2) minimum is now slightly reduced to 85-90%, but
it is in the ¥ value of the minima the effect is most apparent. The overconstraining fifth
measurement lifts the two minima asymmetrically from zero. As could be expected, the
(1,1) minimum is more often in accordance with the data, but there is always a non-
negligible (7,2) contribution. The difference in X value between a given minimum and the
global minimum, A3, is a measure of the relevance of the minimum. Table 5 shows how
many minima are available, on average, for various AY cuts, and how these are shared
between regions (1,1) and (1,2).

If only the lowest minimum is chosen, the wrong solution is returned in 10% of the
experiments. However, if two minima exist and are close in X value, one would have
to consider both. In a certain fraction of experiments, depending on the AX cut, there
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would thus be two solution sets, e.g. for AY < 1 we will have two solutions in 12% of
the experiments. Whether or not it would be possible to select one of the solutions, and
preferably the correct one, hinges on other measurements. In this case, where the masses of

the two sets are quite close, they might be very difficult to distinguish, by e.g. cross-section

considerations.
(1.1) (1,2

Nom (m) o v | {m) o Y1

Mo 96.1 96.3 3.8 02| 8.3 34 0.1
mp, 143.0 143.2 3.8 0.2 | 130.4 3.7 0.1
mgy 176.8 | 177.0 3.7 0.2]|165.5 3.4 0.1
mg, 537.2 537.5 6.1 0.1 | 523.2 5.1 0.1
mg, 491.9 492.4 13.4 0.0 | 469.6 13.3 0.1
mp = Mg 46.92 46.93 0.28 0.0 | 45.08 0.72 —-0.2
mgo —mgo | 80.77 | 80.77  0.18 0.0 |80.18 0.29 0.1
mg, — mgo | 441.2 | 441.3 3.1 0.0|438.0 2.7 0.0
my = Mo 395.9 |396.2 12.0 0.0 | 3844 12.0 0.1

Table 6: SPS la («): Minima for A¥X < 1 in regions (1,1} and (1,2). Ensemble means, (m),
and root-mean-square distances from the mean, ¢, are in GeV. The three lightest masses are
very correlated. The mass of gy, is fairly correlated to the lighter masses, but m; 1is essentially
uncorrelated. The distributions are very close to symmetric.

The upper p.a‘rt of Table 6 shows the en- # Minima | (1,1) (1,2
semble means .of the masses, {m), the root- AV <0 1.00 90%  10%
meanfsquarj distances from t.he mean, o, and AN < 1 112 94%  17%
skewness v1* of the two solutions for AY <1. A <3 1.30 97%  33%

The values are relatively stable with respect
to the AY cut: The same table for AX < 99
would for (1,1) show a decrease in the masses Table 5: Number of minima for various AX
by 0.1 0.2 GeV, and for (1,2) an increase by cuts and their whereabouts.

1-1.3 GeV.

The inclusion of the threshold measurement has very little effect on the ensemble
values of the (1,1) solution. For the (1,2) solution, to better comply with the additional
measurement, the masses have increased, and are now 10 15 GeV below the nominal ones.
Also the myy; threshold was included in the fit which returned the values of Table 6. It is

measured with much less precision than the other endpoints, so its inclusion has practically

AY <99 1.88 9%  88%

no effect on the other masses, only on my , for which it is the only measurement here.
The fact that the ensemble means of (1,1) reproduce the nominal values, relates to the
good average performance of the ensemble of experiments. The probability of doing well
with only one experiment relies in addition on the spread of the ensemble values, given
by 0. For SPS 1la («) the high precision of the endpoint measurements translates into rather
small o values. From the table we see e.g. that in ~ 68% of the experiments the mass of Y9

from the (1, 1) solution will lie within 3.8 GeV of the nominal value. The root-mean-square
1Skewness is defined by 71 = ug/(u2)3/2 = ps/0°, where p; = (z — #)" is the i'" moment about the

mearn.
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Figure 15: Sparticle masses and mass differences at SPS la (o) for solutions with AY < 1. The
unfilled distributions in black show from left to right mgo, My, Mgo, My, and my, for solutions in
the nominal region (7,7). We will have such a solution in 94% of the experiments, see Table 5. The
unfilled distributions in blue show the same masses for solutions in region (1,2). Such a solution
occurs in 17% of the experiments, and the masses returned are lower. The smaller rate of the (1,2)
solutions is reflected in the smaller area under the blue curves. The ratio of probabilities between
(1,2) and (1,1) solutions is 17%/94% = 18%. The area under one of the blue curves is 18% of the
area under the corresponding black curve. The filled distributions show from left to right m;, —mge,
Mgo —Mgo, My — Mgo and mg, —mge. Again, the most populated distributions (black curves)
are for solutions in region (7,1), the least populated (blue curves) for (1,2) solutions. For mass
differences there is more overlap between the (7,7) and (1,2) solutions, in particular for my —mgo
<9 of which only the lower parts of the distributions are visible. Mass differences are
better determined than the masses themselves, reflected here by the narrower distributions of the

and mgo—m
Xz

former. The exception is m; which largely decouples from the other masses.

distances from the ensemble means are in principle unknown, as seen from one experiment.
They can however be approximated by the procedure of simulating 10* experiments, where
the measured values play the role as ‘nominal’. This will engender a systematic shift, but
o and any skewness should be fairly well approximated. The root-mean-square distances
from the mean values also have their counterparts in the 1o errors returned by the fit of
each ‘experiment’. To within a few percent they are found to be identical. This means that
this information is available for the experiment actually performed. One can then make
the inverse statement: For a given experiment one can with ~ 68% confidence state that

the nominal value of M0 lies within 3.8 GeV of the mass returned.

Due to the way masses enter in the endpoint expressions, the fit returns masses which
have a strong positive correlation. If one mass is low at the minimum of the X function,
so the others tend to be and by a similar amount. In the lower part of Table 6 ensemble
mean and root-mean-square values of mass differences are shown. It is clear that the three
lightest sparticles are very correlated. Fix one and the others are given very accurately. The

— 44 —



squark masses are less correlated. Also the results in region (1,2) are closer to (1,1) and the
nominal ones when considering mass differences. Fig. 15 shows the ensemble distributions
corresponding to Table 6.

Because of this strong correlation between the masses, not only the mean values and
their 1o uncertainties, but the entire error matrix should be considered if one wants to use
the result obtained by this method as input for other analyses.

A less involved solution would be to use less dependent variables, e.g. mgo to set the

scale, then differences for the remaining masses, m; — mgo, m

- 10 Mgo, My, — Mgo and

2 R0 X
mgl - mx? .

Due to the high cross-section, most of the endpoints are determined with high precision,
which in turn gives narrow and approximately symmetric ensemble distributions. The
masses are thus determined with quite high precision. As a result of the strong correlations
between in particular the lighter masses, even better estimates can be obtained for other
combinations of the variables, e.g. mass differences. At SPS la («) there is however a
fair chance that two sets of masses do equally well in the minimisation procedure. Other
considerations must in that case be made in order to choose between them, or both must

be kept.

6.5 SPS 1a (3)

In combination with the theory plots of Section 4 we found in Section 5 that the m;??lfigh)
value of () would most probably on the average be underestimated by 11-13 GeV. We will
find that this has a dramatic effect on the masses returned. However, for easier comparison
with nominal values we first consider the situation without such a systematic effect. Then,
afterwards, the impact of the mismeasurement will be shown, together with a way to mend
the situation.

As in the previous case we start out without the threshold measurement. Also here
two solutions are available for all ‘experiments’, one in (1,1), the other in either (1,2) or
(1,3). The nominal region for (5) is (1,2), but it is quite close to (1,3). This becomes clear
from an inspection of the ‘border parameter’,
m?

b= —12 (6.4)

mgo Mgy

which is 1 on the border between these two regions. For (5) we have b = 1.02. If mp, s
reduced by 2.5 GeV, this ratio becomes unity and the the mass set sits on the border, see
Eq. (4.5). The other point, («), was near the border between (7,1) and (1,2). There, both
solutions (or none) were available. Here, the derivatives of ¥ are such that only one of the
two solutions is available. In 71% of the cases we get (1,2), in 29% we get (1,3). While
the ‘low-mass’ solution, (1,2) or (1,3), is in the vicinity of the nominal masses, the (1,1)
solution, which is always present, usually sits at much higher masses, <HL>?(1)> = 514 GeV.
Because the two solutions are so separated one may hope that the incorrect one will be
sufficiently disfavoured by other measurements, e.g. cross-sections, that it can be discarded.

For («) the solution in the nominal region on the average reproduced the nominal
values to within 0.2-0.5 GeV. Here the (1,2)/(1,3) solution has a mean of mo at 183 GeV,
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some 22 GeV above the nominal value. The most probable value of the ensemble distribu-
tion is much closer to the nominal value. The distributions are infested with considerable
skewness. On the way from endpoint measurement to mass determination a systematic
effect which favours higher masses has been introduced. In statistical language our esti-
mators of the true masses are not consistent: they do not converge to the nominal values.
This of course has implications for the interpretation of the masses we obtain. What can
be said about the true masses on the basis of the measured ones? We will return to the
reasons for the skewness later.

When the threshold measurement is included, the (7,7) minimum usually yields a large
Y value. Only in a small fraction of the experiments does it challenge the other minima. In
the other sector there is either one minimum, positioned in (1,2), (1,3) or on the border (B),
or there are two minima, in (7,2) and (1,3). These minima are usually in good agreement

with the threshold measurement and have low X values.

1 sol 2 sol

#Min | (1,1) | (1,2) (1,3) B | (1,2)&(1,3)
AY <0 1.0 3% | 60% 25% 12% 0%
AY < 1 1.2 5% | 52% 18% 12% 16%
AY <3 1.4 13% | 46% 14% 12% 28%
AY <99 2.3 929% | 41%  13%  12% 34%

Table 7: SPS la (8): Average number of minima and the fraction of experiments with the specified
solution types, for different AX cuts.

Table 7 shows the average number of minima for different ¥ cuts. The three rightmost
sections show the fraction of experiments which have the specified solution type. The two
rightmost sections exclude one another. Either there is one solution in the low-mass sector,
or there are two. For the one-solution case the whereabouts of the minimum is also shown.
The home region of the nominal masses, (1,2), is seen to dominate. As it may well be
possible to discard the (7,7) minimum on the basis of other observations, it is logically
separated from the low-mass minima. E.g. in 13% of the cases, regardless of the low-mass
solution type, there is a (1,1) minimum at AY < 3. To get the average number of minima
shown in column 2, sum horizontally, adding twice the two-solution percentage. For small
Al cuts the two rightmost sectors do not add up to 1. This simply means that in some
cases the global minimum lies in (1,1), and no low-mass minimum is available in the given
AY range. For the current set of endpoint measurements the (1,1) contamination is seen
to be very moderate. However, the systematic fit error (column 6 of Table 4) is here
assumed to be zero. If it should become impossible to obtain the threshold value with such
optimistic precision, the fraction of (1,1) solutions at low X will grow rapidly.

In Table 8 (m), o and y; of the ensemble masses and mass differences are shown for
the different solution types and the cut AX < 1. The masses of the (1,1) solution are much
higher than what the low-mass minima give. Even though the distributions are broad,
allowing for low values to occur, it is very rare that the masses stretch down to the low-
mass sector. In section 4 of the table the low-mass one-solution values are shown. Since
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1 solution 2 solutions

(1.1) (1,2)/(1,3)/B (1.2) (1.5)

Nom | (m) o m|(m)y o m|(m o m|{m) o T
X! 161 | 438 88 0.9 175 35 1.0 161 22 03] 166 27 0.6
iR 2221 518 8 0.7] 236 37 08| 221 24 0.3 223 28 0.
f((_;) 299 | 579 85 0.7 | 313 35 1.0 299 22 0.3 304 27 0.6
ar. 826 | 1146 104 0.8 | 843 44 09| 826 30 03|83 36 05

In— 9 61| 81 1.8 —03| 61 44 04| 61 1.9 —02| 57 1.3 —0.2
X9—xV| 138| 141 0.9 0.1| 138 0.6 02| 138 05 0.0 138 0.5 0.0
gr—xy| 665 708 17 0.1] 668 10 05| 665 9 0.1|669 10 0.2

Table 8: SPS 1a (8): Nominal masses (‘Nom’) and AY < 1 ensemble distribution values for the
three solution types. High-mass sector: The (1,1) solutions return masses far beyond the nominal
values. Low-mass sector: For the one-solution case the values are based on the common distribution
of (1,2), (1,3) and border (B) solutions. In the two-solution case the ensemble variables of both
solutions are shown. Ensemble means, (m), and root-mean-square values, o, are in GeV.

in such a case only one acceptable solution is available (discarding (1,1)), and since ()
anyway is situated close to the border, it makes sense to show the combined distribution
of the (1,2), (1,3) and border (B) minima. From Table 7 this situation is seen to occur in
52%+18%+12%=82% of the experiments. The mean values of the masses lie some 15 GeV
above the nominal ones. This is an improvement compared to the non-threshold situation,
but it remains an undesirable feature. The mass distributions are skewed and the most
probable value is found close to the nominal value. The root-mean-square values of the
ensemble distributions are large, nearly an order of magnitude larger than at («).

The rightmost sections show the values for the two-solution type. The ensemble means
of the two distributions do not differ too much, and they are much closer to the nominal
values than is the case for the one-solution type. Since the values are rather close, it will
probably be quite difficult to find other measurements which favours one of the sets. On
the other hand, since the root-mean-square values are larger than the differences between
the two solutions (also within one experiment), taking the average value, perhaps somehow
weighted with the X value, might be a possible compromise.

Again, the mass correlation is very strong. This is evident from the lower part of
Table 8, where the ensemble distributions of mass differences come with much smaller
root-mean-square distance to the mean values than what the masses themselves do. They
are also very close to the nominal values. Even more seems to be gained by using mass
differences here than at («). Fig. 16 shows the ensemble distributions for the masses of all
solutions with AX < 1 and which lie in the regions (1,2), (1,3) or on their common border.
See figure caption for details.

Skewness

The ensemble distributions are not symmetric. While the most probable values are close
to the nominal values, the means lie above. For («) the tendency of such an asymmetry is
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Sparticle masses and mass differences [GeV]

Figure 16: Sparticle masses and mass differences at SPS 1a (4). All masses of solutions with
AY < 1 which lie in regions (1,2), (1,3) and on their common border are shown. From left to right
the unfilled distributions show mgo, My, Mo and mg, . The filled distributions show the narrower

X X
mass differences m;, —mgo, mgo —myo and mg, —myo. Skewness of mass distributions is visible.

small, but for (8) the effect is large. The reason why we naively would expect a symmetric
distribution around the nominal masses in the first place, is that the endpoint measurements
are generated symmetrically. For complex functions like Eqs. (4.13)—(4.36) symmetric
fluctuation of the endpoint arguments will produce near-symmetric variation of the function
only for small fluctuations. As the arguments fluctuate more, the deviation from symmetry
in the function values grows. At («) the endpoint fluctuations are so small that the effect is
negligible. For (), where the endpoint fluctuations are larger, the effect of the ‘asymmetric
propagation’ is a noticeable increase of 3 4 GeV for the ensemble means.

This is however not sufficient to explain the low-mass <m)z?> of 183 and 173 GeV
(AY < 99) without and with the threshold measurement, respectively. ‘Border effects’
need to be considered. As described earlier, (8) lies in (1,2) but close to the border to
(1,3). First consider the situation without the threshold measurement. There is then
always only one low-mass solution. If the (7,2) solution is physical, i.e. lies in (1,2), then
the true minimum of ¥, ;) also lies in region (1,2) and so is unphysical, and vice versa,

as described in Sect. 6.3.

In Fig. 17 the mass of Y§ is plotted as a function of the border parameter, b, of
Eq. (6.4), for both physical and unphysical minima of ¥; ) and X(; 5. The minima of
%(1,2) are shown in red, from upper right to lower left. The X(; 5y solutions are in blue.
Filled boxes are physical solutions, i.e. ¥(; 5 (red) for b > 1 and ¥; ) (blue) for b < 1.
Empty boxes are unphysical solutions. An asymmetry arises from the accidental fact that
for both functions the lower masses tend to lie in the unphysical region. The average of
the entire X, »y distribution, both physical and unphysical minima, returns 164 GeV, the
nominal value plus the 3 GeV of the asymmetric propagation effect. It is then obvious that
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Figure 17: Border effect between region (1,2) and (1,9); the mass of ¥} as a function of the border
parameter b, see Eq. (6.4), demonstrating border effects. Filled boxes represent physical solutions,
empty boxes represent unphysical solutions.

when the unphysical (1,2) solutions are replaced by the physical (1,3) solutions which lie
at higher masses, the ensemble mean increases. Here, this effect brings the average value
for mgo to 183 GeV, an additional increase of nearly 20 GeV.

When the threshold measurement is added, the border effect is reduced, giving an
average value of 173 GeV (for one solution). This is because a measurement will, unless
there is any bias, on the average be conservative. It will try to keep the masses at their
nominal values. Here, as the border effect is pushing the masses upwards, away from the
nominal values, the threshold is holding back.

If, in a realistic situation, a set of endpoints has been measured, and the resulting set
of masses is found to lie close to a border, caution should be exercised. Ad hoc procedures
seem necessary for such a case. At least one is in a position to be aware of the danger. It
is probably appropriate to consider unphysical minima as well.

max

Mismeasured m™a%
ql(high)

As pointed out at the start of this subsection it is very likely that, for (5), ml;}(aﬁ‘igh) will
be understimated by 11-13 GeV. Without the threshold measurement, the effect of this as
returned by the inversion formulae, is an increase of 50 GeV for the three lightest masses
and 60 GeV for the squark! If the threshold measurement is included, the effect is reduced
to 30 40 GeV for the lighter masses, depending on the solution type, and 40 55 GeV for
the squark. The increase is still surprisingly large and represents a serious threat to the
applicability of the method in the case where the nominal masses happen to sit near a
border. (Not to be confused with the previously mentioned border effect.)
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It may however be possible to discover afterwards that such a mismeasurement has or
may well have been made. If the masses obtained are used to generate the corresponding
theory distributions, one may spot the problem. A quick test showed that in our case the
Mygi(high) theory distribution as generated with the obtained masses, did have a small foot.
T'his is then a sign that the original mf;ll?}}figh) measurement may have been wrong, since no
such foot was seen and included in the fit. This test probably has quite wide applicability.
The reason is that even though, as we have seen, the masses may change a lot in the
case of a mismeasured m;?(alfigh)’ mass differences are not so far off the nominal values.
The main change is therefore in the overall scale. For theory distributions, the shapes are
independent of the overall scale. Only mass ratios are relevant. The theory shapes based
on the masses obtained from the partly mismeasured endpoints, will therefore usually not
deviate too much from the nominal shapes.

If one is certain that a mismeasurement has been made, either from the test described

max
ql(high)
is not to be trusted. There is also a way to pursue the matter further. It relies on the fact

above or from other considerations, not only does one know that the m measurement

that the vertical fall we see and measure, is the endpoint of the mg, distribution. We have
the explicit expression for this endpoint, and so we can just replace the m???lfigh) expression

and redo the least square minimisation.

At SPS la () many new aspects of the endpoint method have emerged. For a large
fraction of the experiments a total of three minima were competing for a given set of
endpoint values, some returning masses near the nominal values, some returning much
higher masses. A generic characteristic is the skewness of the ensemble distributions. The
problems and the causes of the asymmetry have been discussed, but a way to handle the
asymmetry has not been proposed. The ensemble distributions are much broader than
at SPS la (o). Mass differences are however quite precisely determined. The problem of
mismeasuring m;';(a}’]‘igh), which will be a danger in a large fraction of mass space, has been
discussed and a solution proposed. Throughout, we have also seen that the inclusion of a

fifth measurement in general improves on the results.

7. Linear Collider inputs

As compared with the LHC, the Linear Collider [48, 49] will more directly provide very
precise measurements of the lightest neutralino mass (and possibly also the second lightest).
Thus, the LC input fixes the scale, whereas the cascade decays primarily provide mass
differences. This kind of input, if it becomes available during the analysis of LHC data,
will have a dramatic influence on the over-all analysis [27].

To each LHC experiment a corresponding Linear Collider experiment is considered.

The Linear Collider measurement of the LSP, m];((,“, was for every experiment picked ran-
1

domly from a Gaussian distribution of mean equal to m;}(‘gm, and standard deviation set
1
by the expected uncertainty, (T;‘,EO. We used (T}’n(?o = 0.05 GeV, in accordance with [48].
X X

1 A1
Such a small uncertainty practically means fixing the mass at the nominal value. Still, for
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completeness the measurement was appropriately included in the least square minimisation

by adding the term [(7n)~<? - m‘\S)/aLfO]Z to the ¥ function, Eq. (6.2).
; 9

1

1 sol 2 sol

# Min | (1,2) (1.3) B | (1,2)&(1,3)
AY <0 1.0 65% 26% 9% 0%
AL < 1 1.2 52%  18% 9% 21%
AY <3 1.4 36%  10% 9% 45%
AY <99 | 16 24% % 9% 59%

Table 9: Number of minima for SPS 1la () with LC input.

For () the fixing of mo reduces the occurrences
 for (a) the s e . 1)
of multiple minima to the per mille level for any usable Nom (m) o
minima, AY < 3. In nearly all cases, 98-99%, it is =5
. . . . . X7 | 96.05| 96.05 0.05
the home region (1,1) minimum which survives. This - _
X i . lp | 142.97 | 142.97 0.29
seems reasonable since without the LC measurement 0 | 4n _
.. . x> | 176.82 | 176.82  0.17
the (7,2) minimum has (mgo) at some 10 GeV below N _ o )
. X qr, | 537.25 | 537.2 2.5
the nominal value, see Table 6. 4
' by | 491.92 | 492.1 11.7

At (B) the high-mass minimum (1,1) is absent,
Table 10: The SPS la («) masses
with LC input. All values in GeV. Re-
gion (1,2) solutions now occur only in

disfavoured as it is by the Linear Collider measure-
ment. The number of (1,3) minima has increased,
which is reflected in an increase of the two-solution .
case, compare Tables 7 and 9. For small AY cuts 1% of the cases and are left out.
this increase is not drastic. Fixing myo thus does not
help us to uniquely determine one minimum, contrary to what one might have expected.
The Tables 10-11 show the mean and root-mean-square values of the ensemble dis-
tributions at () and (B8). For both SUSY scenarios the ensemble means fall very close
to the nominal masses, even for minima not situated in the nominal home region. The
uncertainty on the scale, which for the LHC alone is the main contribution to the spread of
the ensemble distributions, is set to zero by the LC measurement. The root-mean-square
values are therefore strongly reduced. Without Linear Collider measurements, the mass
differences were more accurately determined in that they were less dependent on the mass
scale. A comparison of the root-mean-square values of the masses in Tables 10 11 with
the root-mean-square values of the mass differences in Tables 6—8 shows to which extent
mass differences are scale independent variables. When a Linear Collider measurement is
available, the mass differences no longer out-perform the masses themselves in terms of
precision. With the fixing of the scale also the skewness of the distributions has vanished.

8. Conclusions

We have investigated the measurement of supersymmetric masses from the decay chain
q— X9 — Iplg — XVlg, in the Snowmass mSUGRA scenario SPS la. Since the lightest
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1 solution 2 solutions
(1,2)/(1,3)/B (1.2) (1,3)
Nom (m) o (m) o (m) o
)2(1) 161.02 | 161.02 0.05 | 161.02 0.05 | 161.02 0.05
ZR 221.86 | 221.15  3.26 | 222.22 1.32 | 217.48 1.01
5 | 299.05 | 299.15  0.57 | 299.11 0.53 | 299.05 0.52

qr, | 826.29 | 826.1 6.3 |825.9 5.8 |828.6 5.5

Table 11: The SPS la () masses with LC input. Nominal, ensemble averages, (1), and root-
mean-square deviations from the mean, o, are all in GeV.

neutralino YJ is the T.SP in most interesting mSUGRA scenarios, it will escape detection
and only the quark and two leptons are available for the construction of invariant mass
distributions. Nevertheless, the kinematic endpoints of these distributions have a well
defined dependence on the masses of the particles in the decay chain and their measurement
allows the extraction of the masses either by analytic inversion or numerical fit. The
analytic expressions for the endpoints in terms of the masses were confirmed and presented
together with their analytic inversions.

In order to measure the endpoints of the invariant mass distributions pertaining to the
chosen decay chain, one must have the correct mass hierarchies for the decay chain and a
large enough cross-section. To ensure that this decay chain could be used over a wide range
of scenarios, we performed a scan over the SUSY parameters. We found that as long as myg
was not too large in comparison to my 9, a large proportion of the allowed parameter space
would display the correct mass hierarchy. Furthermore, on examination of the sparticle
production cross-sections and decay branching ratios we found that a large cross-section
for the decay was available over much of this region. The Snowmass mSUGRA SPS 1la
line/point falls into this region and is a good candidate for study. However, we noted that
the cross-section for the decay chain is particularly high for the SPS la point, and it is
instructive to examine a second point on the SPS 1a line with a less optimistic cross-section.
We have denoted this new point as SPS la (8) while the original point became SPS 1a («).

The LHC measurements of the endpoints were simulated using PYTHIA and ATL-
FAST. Hard kinematic cuts remove practically all Standard Model backgrounds, except ¢t.
Up to statistical fluctuations the powerful different-flavour subtraction then cancels the re-
maining ¢t as well as any lepton-uncorrelated background from other SUSY channels. The
resulting distributions are however contaminated by lepton-correlated background from
XJ’s not taking part in the decay chain under study and combinatorial background from
choosing the wrong jet. The inconsistency cut was shown to address the latter part with
great efficiency, giving distributions much closer to the theoretical ones. Also mixed events
were studied, revealing their potential to describe the background. More study is however
needed.

The endpoints were found by simplistic fitting of the edges, usually with a straight
line together with a reasonable background estimate. A Gaussian smearing was sometimes
included as a first approximation of the various smearing effects which take place. The
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statistical precision of the edge was sought rather than an accurate determination of the
endpoint. Still, the endpoints were seen to be in reasonably good agreement with the
nominal values. However, the fitting procedure is clearly an area for improvement. On one
hand, more realistic study of how the detector affects the distributions, and in particular
the end regions, is called for. On the other hand, further study of the many realisations
of the theory curves seems necessary. It is important to find good fit functions for the
signal. A central part of such a programme is the incorporation of multiple squark masses
at different rates. At a less ambitious scale the theory distributions should be studied
for sheer acquaintance. The importance of such an awareness was demonstrated for the
m;rl?lfigh) measurement at ().

In order to turn the endpoint measurements into particle masses, and understand
the resulting errors of this procedure, we considered an ensemble of 10,000 ‘gedanken’
experiments. For each experiment a numerical fit for the particle masses was performed,
using the method of least squares, thus appropriately handling the correlation between
measurements due to the common jet energy scale error. Where available the analytic
expressions for the masses in terms of the endpoints were used to provide starting points
for the fits.

The least squares function was found to often have two or even three minima of com-
parable importance, a consequence of the multiple realisations for many of the endpoints.
Without the threshold measurement there are for both scenarios usually two equally good
minima, one in the correct region and one in another region, giving different masses. When
the threshold endpoint is added, the minimum in the correct region is usually preferred.
Still, in a noticeable fraction of experiments there will be more than one solution. Due to
less precise measurements this applies more to (3) than to ().

At (o) the minima of the correct region give masses very close to the nominal ones. The
other (incorrect) region gives masses some 10-15 GeV lower. The ensemble distributions
are symmetric. At () there is one high-mass solution. The more precisely the threshold
endpoint is determined, the less important this false minimum becomes. The low-mass
solutions, one or two, are closer to the nominal values, but the distributions are skewed.
This is a combined effect of the large endpoint uncertainties and the so-called border effect.

The obtained masses of the three lightest particles are found to be very strongly related.
Furthermore it was seen that mass differences are better variables, in the sense that they
are less correlated than the masses themselves. Due to the form of the endpoint expressions,
the LHC will measure mass differences at high precision, but leave the overall scale less
certain. A Linear Collider measurement of the LSP mass effectively sets the scale, which is
why the precision of the masses improve drastically when the LHC and the Linear Collider
measurements are combined.
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1. Introduction

Supersymmetry [1, 2, 3, 4] provides one of the more popular extensions to the Standard
Model at higher energies. It has many attractive features, one of which is a possible solution
to the hierarchy problem [5]. For this to be the case supersymmetric particles must exist
near the TeV-scale, and may therefore be accessed by the LHC.

Conservation of R-parity means that any interaction vertex must involve an even num-
ber of supersymmetric fields. For collider experiments this has two important consequences:
sparticles will be produced in pairs, and the decay chain of a sparticle will always end with
the lightest supersymmetric particle (LSP). Each SUSY event at the LHC will then result
in two decay chains, each giving an undetected LSP together with a number of detectable
Standard-Model particles. The escaping LSP’s make it difficult to fully reconstruct events.
This means that the masses of the sparticles involved in a decay chain cannot be readily
reconstructed from the end products. However, even though they do not represent any
particular sparticle, the various mass distributions that can be constructed from the de-
tectable particles of the decay do have a sensitivity to the sparticle masses. In particular,
the maximum value of each of these distributions can in principle be calculated for any
given decay chain, and this maximum value will be determined by the masses involved
in the decay. If these kinematical endpoints are measured, it is then possible to obtain
the sparticle masses in a numerical fit. This ‘endpoint method’ has been widely used to

determine masses of supersymmetric particles [6, 7, 8, 9, 10, 11]. The decay chain
i = X599 = [rlnge = XVlelngs (1.1)

is particularly amenable to this method!. In [12] we investigated this decay chain in
considerable detail for two points on the SPS la line [13]: («), which is the standard point
and often simply referred to as ‘the SPS 1a point’, and (), which lies at somewhat higher
masses. In this paper we restrict ourselves to the standard SPS la point and investigate
the situation where a gluino is at the head of the decay chain,

(7] — (iL(]n — )?(2](/f(ln — lRln(]fqn — )E’(l)]flan(/n (] 2)

Seven more distributions become available with the inclusion of ¢,, and their endpoints, if
measurable, will enable us to find the gluino mass. For ease of reference the new distribu-
tions/endpoints will be called ‘gluino distributions/endpoints’ as opposed to the ‘squark
distributions/endpoints’ which do not involve the gluino mass.

Although very much in line with the now standard method for the masses involved
in (1.1), this way of obtaining the gluino mass is new. At present two other methods are
proposed. One is an approximate technique, used for example in [14]. If; in the three-body
decay Y9 — X3, we have my at its maximum value, my = m2~, then {{ is at rest

in the rest frame of 3. Assuming M0 known, the four-vector of §3 can then be fully

"Maintaining the standard convention, the subscripts ‘n’ for near and ‘f’ for far on the leptons and
quarks are used to distinguish the order of particle emission in the decay chain. These subscripts will be
suppressed if there is no ambiguity.



reconstructed. Next, adding the two quark four-momenta provides us with the complete
four-momentum of the gluino (and squark). This allows the mass of the gluino (and the
squark) to be found in the more traditional way of plotting the mass peak. Apart from
the normal experimental uncertainties this method is exact. However, to get a sizable
sample, also events with my somewhat below mj** must be used. This makes the method
approximate and requires a rigorous treatment of the systematic errors induced by the
approximation.

For the decay chain (1.2), it is generally not the case that {¥ is at rest in the rest frame

max 2

of X3 when my = mJ**. Ouly if m MM is this true, and the more this relation is

violated, the less reliable the resultslfiviﬂ b(:comxe. To apply this method to (1.2) the follow-
ing three effects must be controlled: i) the knowledge of mgo — this can be assumed known
from the standard endpoint analysis of the squark chain, but the appropriate uncertainties
must be included, ii) the systematics from the inclusion of events with my < m** and
iii) the systematics from the violation of m%R = mgomgo. A systematic treatment of all
these effects is still wanting.

The other method to obtain the gluino mass from (1.2) goes under the name of the
‘Mass relation method’, and is described in [15]. Tn a first version the masses of Y9, Ip and
X3 are assumed known, e.g. from the squark-endpoint analysis. For a given gluino-chain
event we then have six unknowns: mg, m;, and the four-momentum of x?. On-shell mass
conditions for the five sparticles provide five equations. For one such event we are one
condition short of determining the system. [If also mg, is assumed known, the system is
solvable.] A second event of the same type will again give 5 equations for 6 unknowns. Two
of the unknowns, m; and mg, are however the same for the two events. In combination
one therefore has 10 equations for 10 unknowns. The system can be solved analytically to
provide (in some cases multiple) masses for the gluino and the squark. The mass relation
method involves no approximations of the type described for the first method, and is in
this respect at the same level as the endpoint method we will use here. The mass relation
method also has the advantage that it avoids the difficulties related to estimating endpoints,
and it can give a measurement even for quite small number of events. On the other hand
the uncertainties on the three lighter masses as well as possible correlations between the
masses need to be appropriately handled. An extension of the method to take no input
masses, and/or include in a consistent way measurements from an endpoint analysis should
be feasible and would meet these requirements. For the endpoint method all measurements
go into the same fit, so errors and correlations are automatically treated correctly.

The structure of the present paper is as follows. In Sect. 2 we review the calculation
of the endpoint of the quark-dilepton invariant mass resulting from squark decay, here

max

aell
to calculate the ‘gluino endpoints’. Also, theory distributions are plotted for the gluino

denoted m and present an alternative approach. This new approach is then used
distributions, showing some of the variation. Sect. 3 contains an outline of the derivation
of one particular kinematical edge, it may be skipped by the reader more interested in
the physics results. In Sect. 4 relevant masses, cross-sections and branching ratios of the
standard SPS la point are given. The ATLAS simulation ending with an estimate for some
of the new distributions, is carried through in Sect. 5, where also energy scale errors are
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discussed in some detail. In Sect. 6 values for masses and mass differences are found. The
effect of adding a Linear Collider measurement is investigated in Sect. 7, while conclusions

are made in Sect. 8.

2. Endpoint calculation

2.1 Review of the squark chain

In the case of the squark decay chain (1.1) four mass distributions can in principle be
constructed from the three Standard Model end-products: mu;, mgu,, 7 and mgg. The
kinematical endpoints of these distributions can be expressed in terms of the sparticle
masses involved in the cascade. If these endpoints were measured, one would have four
measurements for quantities which involve four unknown masses, and the masses could be
determined. In a realistic setting there is however no a priori way of telling which is which
of the two leptons. Therefore, not all of these ‘primary’ distributions can be constructed.
While my; and my, are fine since there is no need for identifying the leptons, mg,;, and
Mg, are not readily usable. Instead two ‘secondary’ distributions are defined, mg(nigh)
and Mg ow). The first collects on an event by event basis the higher of the two g,
values available, the second collects the lower. In this way four endpoint measurements are
regained, and the four unknown sparticle masses can again be determined. The analytic
expressions for the endpoints of the relevant distributions, as given in [10], were confirmed
[12] and are included here for completeness and because some of them will be used in the
discussion of the gluino endpoints:

somaxy2 (2 2 2 a2 2 5
(™) = (IrLig min) (min mx?)/ml}l (2.1)
2 2 2
(ma 7m;(g) (m;(g 7rni(l,) . ma, me mi,
m2 o for Mmoo > my_moo (1 )
X3 X2 R X]
2 2
(qu my —mgm _0) (m 0 =m; ) m.o me
max) 2 7;3 77); - “ fOI‘ mi(Z > mlfoC mliﬁ (2)
(i)™ = X iR r A 78 (2.2)
(m2 —m? ) (m? -m2,)
ar, i i 9 . m mg, 759
g P3t ‘%3 Mg
2 .
(mg, — mi"?) otherwise (4)
(mmax pmax) for  2m2 > m2, +m2, > 2meomee (1)
aeln * ' arle Ir X9 X3 X1X
oy 1AX max _ ymax max 2 2 2 Doy N )
(mq\cl(low)7 mqfl(high)) = (mqfl(eq)7 mi ) for mio +mie > 2m? > 2mgomye (2)
e INAX max . 2 2 P o 2 s
(mq\d(cq)7 me ) for Mo + mZg > Zmitl) mgo > meR ()

(m;?ix)z = (m%L — mfzg) (ng - m[gR)/mfzg (2.4)
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Figure 1: Standard way of calculating mg 7.
2 2 2 2 2 2 .
(mi)” = (mG, = my) (mi —mie)/mi, (2:5)
(7712':7(’;(]))2 = (m?, - még) (m]gR - 771)2.(?)/(2771%1{ - m%) (2.6)

2.2 Calculation of mf;:?lx

When the gluino is added to the head of the chain to give (1.2), new distributions can be
constructed and from their endpoints the gluino mass can be determined. To pave the way
for the calculations of the endpoints of the new distributions, we first review the calculation
of myis as given in Fq. (2.2). In Fig. 1 the decay of gz, is shown stepwise. Start in the
rest frame of §r, and align the coordinate system to its decay products. Next, boost to
the rest frame of X3, which decays such that I, is emitted with an angle o relative to the
direction of gr. Finally, boost to the rest frame of Ig, which in turn decays; for a given a,
My, is maximized by choosing p;, opposite to p,, + p;, in the rest frame of Ig.

One ends up with an expression for mg; in terms of the angle a and the four sparticle
masses involved; the task is then to maximize this with respect to a. One must seek the
critical points of this constrained m,,; distribution in the four-dimensional mass space and
distinguish whether or not they correspond to a maximum. In the part of mass space
where no critical point is found, the endpoints of the domain; & = [0, 7], must be analysed.
In this case, three different expressions are found for three distinct regions in mass space.
In total, mass space is thus divided into four regions, each with its specific expression for
mii, see Eq. (2.2).

The above calculation becomes fairly involved, and is preferably performed with the
aid of a computer program. An alternative approach is possible, where a geometrical
understanding of the decay is more emphasised. The four-vector of the sum of the end
products; the two leptons, the quark and the LSP, equals the four-vector of the squark.
We therefore have

mi = (pgu + p;g)Z = mgf” + m;‘).(? + 2pg - Py (2.7)

where py is the sum of the four-vectors of the two leptons and the (far) quark. In the
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Figure 2: One of three ‘dominance regions’ for my
rest frame of gz we have
Py = —P30, By =mg, — F];(cl) (2.8)

which gives

S22 2 o0 [ 2 2 )
Mg = M, — Mo 2(mg, 4 /%0 + Plo mi?) (2.9)

The smaller the momentum of the LSP is in the rest frame of the initial squark, the larger
Mg is, which agrees with one’s intuition. At the extreme, if the LSP is brought to rest in

X
the critical-point solution of the more formal approach described earlier. In some regions

the squark rest frame, mgyy will attain its largest value, mg, — mgo, which corresponds to
1

of mass space it is however not possible to have Y at rest in the rest frame of ¢r,. In these
regions, one of the intermediate sparticles is sent off with so high momentum that not even
optimal choices of directions for the other two decays can bring ¥ to rest (in the rest
frame of ¢r,). The LSP will, for the decay which gives the maximum value of mg,y, have
a non-zero momentum in the same direction as the sparticle sent out from the ‘hardest’
decay. There are three separate ‘dominance regions’ in mass space where this happens, one
for each sparticle decay in the cascade.

Consider the case where the second decay, that of X3, is dominant. If ¥} cannot be
brought to rest in the rest frame of ¢z, the maximum value is obtained for the optimized
case where ¢¢ and [y fly off in one direction and [,, in the opposite, see Fig. 2. In the last
step of the figure all momenta are boosted back to the rest frame of ¢r. If we are inside
the dominance region, X! ends up with a momentum pointing ‘upwards’ in the rest frame

of G, as in the figure. In this case the defining criterion of the region takes the form,

o s Mg myy )

Pl > Ip, +pl = > (2.10)
’HLZ‘ Mo Mo
R X1 Xa

where the three-momenta are taken in the rest frame of §z,. Note the form of the constraint
in terms of ratios of the masses of nearest neighbours in the decay chain. The dominant



ratio is the one which corresponds to the decay of 9. The expression for myli in this
region is then found by simply combining the four-momenta of the three Standard-Model
particles for the given configuration.

The defining inequality of the other two dominance regions and the resulting expres-
sions for my " are found by similar approaches. The general result is given in Eq. (2.2).
Note the systematic pattern of inequalities which define the dominance regions. Although
in cases (1) and (3) the right-hand side of the inequalities can be simplified, this has not
been done in order to emphasise the structure of the constraints.

The approach described above has some clear advantages over the more formal ap-
proach. It is visual in that each region is ‘understood’ in terms of a dominant decay, here
in the sense that the mass ratio is larger than the product of the other two, together with
minimum momentum of X! in the rest frame of gr. No angle a is needed. Only cascade
decays ‘on a line’ need be considered, which allows the entire calculation to be performed
on a few sheets of paper. Furthermore, and this is the most celebrated quality here, the

approach is easily extendable to an arbitrary number of particles.

2.3 Gluino endpoints

Using the above method we obtain the maximum value of mgqy; for the five-sparticle gluino

chain:
2 )( 2 2 )
mLT—1m= ms =1
( v L T for mg o, Mg 38 mig (1)
m2 mg M9 My, M0
q L X5 R X
2 2 2 2 2 2
(m"m o Tm m»«ﬁ) (m _m~0) s 0 m; ,
g X3 ‘IL2 X12 9L Xa fOl Mgy > % igp my (2)
z m ..o m m.g m
ms, mig ) i 0 My,
=1 ) )
max 2.2 2 2 2 2
= mim? —m<,m= me, —m? ~ =
(mqq”) 9 g 89K B in for 758 > Mip my Mg (3) (2.11)
m%nm% mj m_p Mg, Mo
X3 ir X1 hooXg
(it ) ()
me—m# m# me -
9 Ip R % for Mig > M may 5§ (4)
m2 m_o mg, Mo Mmp
ip X3 L 7%y R
2 . -
(777,5, — mi?) otherwise (0)

Similarly to mg !X, notice the systematic form of the defining inequalities. Here, we have

four dominance regions, each defined in terms of a nearest-neighbour mass ratio dominating
the product of the three others. As before, simplifications can be made to these inequalities,
but with the undesired consequence of obscuring the neat and systematic structure.

max

qqll
suffice to provide the gluino mass. The long decay chain does however allow for more

In principle, a measurement of m would, in combination with the squark endpoints,
distributions to be constructed, from which endpoints can be extracted and compared with
analytic expressions. These other available endpoints are useful both as over-constraining
measurements and as consistency tests.

The gluino chain has seven primary endpoints which involve ¢, and thus mjz. The two-
WA, mI, m9* are easily calculated from cascade decays
g9 0 galnr Manls
on a line. There is only one realisation for each.

particle primary endpoints m



For the three-particle endpoint mygs, the particles involved are neigbours in the decay

max

i~ The solution can be found from Eq. (2.2) via

chain, giving a situation similar to m
the substitutions

(n-"lfu mgg: mp. m’x?) - (7n’§7 mg,, m’)’(gv n-"fH) (212)

in both the endpoint expressions and the inequalities.

max . ., max
ol and My

cause the particles involved are not all nearest neighbours in the decay chain. However,

The two other three-particle endpoints m are more difficult to find be-

it is possible to transform the problem into one which involves only nearest neighbours.
Let us first consider m 237, The initial point of difficulty is the orientation of the ¢, decay,
where the unused ¢ is emitted. Will the orientation which gives the largest g, depend
on the mass scenario? To answer this question, boost to the rest frame of (3. Whatever
the details of the two steps prior to the creation of Y9, at this stage the only quantity
of relevance to my,u is |p,, |- The larger the momentum is, the larger mg,  can become.
Thus, independent of masses, for maximum values of m,,;, the orientation of the §;, decay
is always the one that maximizes |p,,| in the rest frame of X9. This means sending X9
in the opposite direction of ¢y, and the configuration which gives m?3" therefore has p,
parallel to p,.

With this point settled, the situation can be transformed into a nearest-neighbour
decay, for which we know the solution. To do this we introduce a pseudo-particle: as seen
from the rest frame of {3 the momentum of g, corresponds to the decay of a pseudo-particle

2

Y — \Ygn with mass mf, =m; — mgL + méo. In such a picture all particles are nearest
A2

neighbours, and the solution (2.2) applies with appropriate substitution:

mg, — my = mé — 'mgL + més (2.13)

For ml7* the orientation of the K9 decay is fixed to maximize |py,| in the rest frame of

X9, analogous to the argument above. Another pseudo-particle is then defined at the end
of the decay chain, Y3 — Yi; where my = mgo mig/mz}c. Again, the problem has been
reformulated in terms of nearest neighbours, so solution (2.2) applies. The appropriate

substitutions are

(mg,, Mgy, My ’m/*:l)) — (mg, mg,, msg, Myo 7”)’(3/”"’{"&) (2.14)

As was discussed for the squark chain, primary distributions based on distinguishing
the two leptons can in practice not be constructed. Instead of the distributions g, g, , mg.1;,
Myql, and Mgy, one can construct My, j(high)s Mgai(low)s Maql(high) @A Myqgiow)- While the
endpoint of a ‘high’ distribution is simply the maximum of the two primary endpoints for
the given mass scenario, further considerations are needed for the ‘low’ distributions. For
MM, (low) these considerations are quite manageable, but for the three-particle distribution
Mygqi(low) they become rather involved. The general solution for the latter is given in
Sect. 3.2.

The endpoint expressions are summarized below. Together with Eq. (2.11), the six
first ones, Eqs. (2.15) (2.20), correspond to the distributions which are usable in that they



do not rely on distinguishing the two leptons:

() = (o2 ) o, — ), 219
'm,;rﬁf‘iow) : see Sect. 3.2 (2.16)
Mgy = max(mip, mie) 2.17)
mmE s Eq. (2.2) with mg, — \/W (2.18)
o) = MAX( W) (2.19)
m:,?z(high) = max( m?ﬁf, mxz") (2.20)
(771237:)2 = (mj —mg)) (m;g - mlgﬁ)/m;g (2.21)
(7n;:7:‘)2 = (mZ—m3)) (mfR - mjé?)/m?n (2.22)
(m:;?z‘eq)f = (mi—mZ) (m?ﬁ - mfz?)/(2m]gR - m%}) (2.23)
maggis ¢+ Eq. (2.2) with (mg,, mgg, my,, mge) = (mg, mg,, mgg, my,) (2.24)

mp* : Eq. (2.2) with (mg,, Mgy, My s m,‘??) — (mg, mg,, m

99t p% %9

2.4 Quark ambiguity

Adding a gluino to the cascade introduces an additional ambiguity: how does one dis-
tinguish between the jet initiated by the gluino decay and that initiated by the squark
decay? Initially we will assume that the two correct jets of a signal event are selected, and
discuss the difficulties associated with this assumption later. In this case, one can seek to

distinguish the two quark jets kinematically, by, for example, their transverse momenta,
2
[
noticeably different energies, and a pr comparison will, with a certain purity, serve to dis-

pr. If mg - m;fL is very different from m mfzg, the two quarks will be emitted with
tinguish between the jets. However, one cannot, a priori, know which jet is to be assigned
to gn or g, i.e. whether it is ¢, or ¢ which gives rise to the hardest jet, and one must
instead turn to the differences in production rates. Only when a gluino sits on top of the
chain is ¢, produced, and often, the ratio of directly versus indirectly produced squarks
is sufficient to determine the average behaviour of ¢¢r. This then allows statements on the
average behaviour of ¢, and ¢r to be made, which may be used to construct samples where
the quark identity is required, Eqs. (2.18)—(2.20), as well as the squark distributions myg,y,
Mg i(low) and My (nigh)- Such a separation of g, and ¢ will always introduce impurities;
whether these are manageable or not will depend on the given SUSY scenario.



To be fully general one might consider constructing new secondary distributions in

which there is no need to distinguish the jets. The distributions mu, mgq, Mygqit; Mygi(low)

and 1y (highy Would remain unaffected, but instead of myy and myg,u, one should con-
struct new distributions mgy(nigh) and mypiow)- The endpoint expression of the former is

readily available, but not of the latter. The complexity of the calculation and the resulting
2;.1?()(10W)
Furthermore, for the four mg distributions one can collect four new distributions based

expression for mf]‘;l‘"‘(’l‘ow) can be expected to be similar to that of m shown in Sect. 3.2.
on the order of the four values per event. Only the endpoint of the m(pign) distribution
is readily available, while the other three endpoints become very difficult to calculate. A
programme to calculate the new endpoints where quarks are not distinguished, has so far
not been started.

The above discussion shows that as a second jet is added, the complexity of the situa-
tion increases significantly. In return many more endpoints become available, allowing for
thorough consistency checks. In Sect. 5 we will return to these issues in the context of a

simulation at the standard SPS la point.

2.5 Theory distributions

In order for the endpoint method to be useful, not only must the analytic expressions for
the endpoints be available, it must also be possible to determine these endpoints from the
experimental mass distributions. A first criterion for this is that the edges of the distri-
butions ‘point’ unambiguously towards the exact endpoints. If the shape of a distribution
is sufficiently concave at high values, the endpoint will most likely be underestimated and
large systematic uncertainties must be added. In general the shapes of the mass distribu-
tions vary if the sparticle masses are varied. To investigate the range of possible shapes
for each distribution, the full cascade has been generated for many mass scenarios, and the
resulting theoretical mass distributions studied.

A representative selection of mass scenarios, showing some of the shape variety of the
gluino distributions, is shown in Fig. 3. In generating these decays, quarks and leptons are
assumed to be massless, which in the worst case (b-quark) leads to a perfectly acceptable
error of O(MeV). Furthermore, only decay phase space has been used, without the associ-
ated matrix elements. In principle, this ignores possible spin correlations between leptons
and/or quarks. However, since the distributions used here are summed over lepton charge,
no spin effects are expected [16]. A similar investigation for the squark distributions was
performed in [12]. See also [17].

Since my, is constructed from two nearest neighbours in the decay chain, the shape is
triangular for any masses, similar to my. lts endpoint can thus in principle be determined
quite accurately. The shape of the mq; distribution depends on the masses, but in prac-
tically all scenarios the edge is well described by a linear descent towards the theoretical
endpoint. This should guarantee its determination experimentally if the background is

sufficiently low. For most scenarios this is also true for m although the distribution

gql(low)»
can take on other shapes.
The three ‘high” distributions, m,gi(high)s Mg1(high) and Mg, 1(high), show a large variety

of forms. The mg (nign) distribution is very similar to the my, j(nign) distribution and is not

— 10 —
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Figure 3: Theory distributions for SPS la and four other mass scenarios, showing some of the
shape variety. Only gluino distributions are shown. Kinematic endpoints are marked with a triangle

and given in units of rnggf, the largest of the endpoints.

reproduced here (see [12]). A common feature of these distributions is the danger of not
noticing the ‘foot’, seen, for example, in Mg (nigh), scenario (iv), where the true maximum
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value may be obscured by backgrounds.

The last of the three-particle distributions, mg,, also has an extensive variety of
shapes. The behaviour of the edge is usually reasonable, but with a certain danger of foot-
like structures, as in scenario (i). Finally, the two mg; distributions are often unreliable
in that the edges are concave. It may therefore be difficult to get good estimates of the
endpoints.

In summary, from the distributions of I'ig. 3 we can then conclude that my, and mg,n
point reliably towards the endpoint for any mass scenario. Somewhat less reliable are the
endpoint estimates found from the three-particle distributions. Lastly even less reliable
endpoint estimates can be obtained from the two my,; distributions. In Sect. 5 we will see

how these statements change for a ‘realistic’ experimental setup.

max

3. Determination of Miiow)

This section presents some technical details on the derivation of m,'q‘ﬁ("low). It can be skipped
by the reader interested in the physics only.

3.1 7711;2(31’;W)

In preparation for the calculation of m9% we here show how to obtain the general
qql(low)

arl(low)*

only significantly more difficult to carry through for m

solution for m As both are ‘low’-endpoints, many of the considerations are similar,

max
gl(low) "

Let us first recall that since there are two leptons?it(wo )invariant masses can be con-
structed, one of which will be higher than the other. These will be denoted the ‘high’
and ‘low’ distributions, each of which will have a maximum, denoted ‘max’. Thus, the
difficulty lies in identifying whether ‘high” and ‘low’ correspond to the ‘near’ (I,) and ‘far’
(Ir) leptons, or vice versa. The mghigh) and my o) distributions are constructed from
the highest/lowest of mg,, and mgy, on an event by event basis. (We here assume that
the correct jet has been selected.) Since the mgy, value which gives the absolute max-
imum must necessarily be the higher of mg, and mg,, for the given configuration, we
the situation is more complicated;

simply have m™max = max(mDex gpmaxy For gpmax

g¢l(high) "9l " agly g5l(low)
we need to look for the maximum value of the lower of mg,

maximisation requires that both mg, values are compared for the given configuration:

and my,,. This conditional

under no circumstance can the endpoint be higher than the lower of the two maxima,

max - max max
mqfl(low) < nnn(ml]fln ’m'flflt )
Let us first assume a mass scenario where ml7™ < my7*, which directly corresponds
to the condition
2 , <
mi > mgomgo. (3.1

This is manifest in regions (1) and (2) of Eq. (2.3). Now, let us further assume that we
that ¢r and [, are back-to-back in the rest frame of ¥9. If it is possible to choose an

have a decay configuration where mg,, takes on its maximum value, my, = m S0

orientation of Py such that mg, > mg,,, then my,, can be a ‘low’-value, and we will have

n?
max max

m = mmax,
asl( an

Tow) Specifically, this occurs when mg, takes on its maximum value, with



py, in the opposite direction to p,, (and parallel to p; ). This special case occurs for

2m? m? m2,, 2
PR LN Y (3.2)

i.e. region (1) of Eq. (2.3).
If this mass constraint is not satisfied, mgq, will be the ‘high’-value for any configura-

tion which has mg,, = m';f‘zl" and my, will be the ‘low’ value. To find the configuration

) in this case, consider the more general situation where the angle «

max

g¢l(low
between p, and p; (in the rest frame of x3) is reduced. The maximum value of my,

which gives m

for this case is denoted myp*(a). [It will occur when p, and p; are back to back in the

IR rest frame since |p;, | obviously is independent of orientation in this particular frame.]

If o is reduced (starting from ), mygeu, (o) will decrease and m{ii*(a) will increase. As o

decreases, the ‘high’-value decreases and the ‘Tow’-value increases, and for some angle aeq

. _ max L3 . s
they become equal: my, (qveq) = mi (Qeq)- If o is reduced below ey, My, Will become
the ‘low’-value, and as it decreases with o the ‘low’-value will decrease. Hence, aeq gives

the optimal configuration, 7nm?(>iow) = Mg, (Qeq) = 7an1( e A simple calculation gives
(2.6), and is valid for

2 2 o 92
me +mig > 2mj (3.3)

i.e. regions (2) and (3) of Eq. (2.3).

One might expect to also find a separate solution for my., < Mg, and my, = mgf‘lf
in analogy with the first solution obtained above. The situation is however not symmetric
with respect to the two leptons. Maximisation of mg, necessarily fixes my,, at zero, so
— max
low) — mqf/(eq)'
and my Q) in the mass regions derived

there is no third possibility, and once again m™ ]( The general solution for

max

m is then given by two expressions, mmax
g¢l(low)

qtln

above, see (2.3). (Below, we will see that a third possibility is relevant for m™3% ..)
g9l(low)"
3.2 m“;?(xlow

For a three-particle endpoint, the configurations which give the maximum values my and
max
aqls
to the situation for m{'¥* and m{’¢]. In particular, we see from (2.2), (2.24) and (2.25)

m as well as the endpoint expressions themselves, will be mass dependent [contrary
that there are four different cases (mass regions) for each. This increases the number of
situations to consider, as well as the complexity for each.

To calculate m™ we use the same strategy as above. We will first investigate the

qqi(low)
situation mgg, < mgg With mgg, = myg (Sect. 3.2.1) and find the appropriate conditions

on the masses corresponding to m™ mog Then we will investigate the ‘opposite’

situation, mgq, < Mgen, With mqqi:l(l_owgnm (Sect. 3.2.2), and find the mass conditions
for the solution 7712“5?’10W) = my7*. This dn‘fers from mmla(’l‘ow)7 where no such solution was
available. Finally an ‘equal’solution will be sought (Sect. 3.2.3). Tt will consist of a critical-
point solution and boundary solutions (at the boundary of a two-dimensional parameter
space). The calculation of the ‘equal’-solution is cumbersome and preferably performed
with the aid of a computer program.

The resulting expressions for the full solution are not very complicated, but many.
Care should be taken in the implementation.
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In the rest frame of ¥ the quark sector and the lepton sector can be described without
reference to each other. This makes the Y3 rest frame particularly convenient to use. Unless
stated otherwise, momenta and energies are given in this rest frame. The coordinate system
will be chosen such that the combined momentum of the two quarks, p,, will point upwards
(along 4z). The x and y components are not required, allowing the four-vectors to be given
solely by the energy and the momentum in the z-direction.

3.2.1 muax = mis

We here investigate the situation mgg, < mgq, With mge, = my7*. The possible con-
figurations with a maximised 1mgq, are given in Table 1. The four rows correspond to
the four different regions of mass-space appropriate to Eq. (2.24) (i.e. Eq. (2.2) with the
substitution of Eq. (2.24)), as labeled by the first column. The second column shows the
corresponding ‘region condition’. The third and fourth column show the directions of the
quark and lepton momenta, from left to right as in the decay chain. The combined mo-
mentum of the quarks is always upwards (in the rest frame of ¥9). The direction of py, is
always downwards, while the direction of p;_is upwards for configuration 1, downwards for
configuration 2. Notice that in region (4), configurations which correspond to a maximum
of m,

q
and two directions for p; , giving in total eight possibilities. Each must be considered.

gl(low) do not have the quarks aligned in the X3 rest frame. There are four mass regions

) . L. config. 1 config. 2
mygs region condition & °
94t Inqf anf Inqf anf
region (1) | =& > may 3 Ty 11 te b
- Mg, T Mg superfluous trivial
. 2 mg, mig mg \lf T \L T J/ T \L \L
reglon () m .0 > Ty TG 1 -fl 3 vz
9 g ML superfluous trivial
region (3) s > Do T ot Trobi
) Mip ~ M M8 no solution trivial
region (4) otherwise R Vo
superfluous trivial

Table 1: Possible configurations for rnggi™. See the text for details.

The comments ‘trivial’, ‘no solution’ and ‘superfluous’ give the conclusion of the in-
vestigations. Some of these are seen right away: in region (3), configuration 1 the value of
g1, evidently vanishes since the three particles go in the same direction, hence mgq, must
always be smaller than m,q, and there is ‘no solution’. For configuration 2, in all four

regions the condition myqr, < mgqy, is simply |p;, | < |py|, which ‘trivially” corresponds to

2 2 2 :
mg? + mxg < 27nZ-K. (3.4)

The three regions of configuration 1 which are marked ‘superfluous’ give mass con-
ditions which turn out to be subsets of the corresponding (‘trivial’) mass condition of
configuration 2 [when the appropriate region condition is also imposed]. This means that
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if the (‘superfluous’) configuration 1 is possible, then also configuration 2 is possible. The
conclusion of this subsection will therefore be that mq”(im) = my;™ if and only if the
trivial condition (3.4) is satisfied. The rest of the subsection is dedicated to proving that
the superfluous conditions are indeed contained in the trivial one.

For each of the three regions we must first find the mass condition by requiring myq, <
Mgql;- The proofs that these conditions are already contained in the trivial condition [given
that the appropriate region conditions are also imposed] are carried through by combining
these with the ‘anti-trivial’ condition, m2 o + an > 2m~R7 and see that this leads to
contradictions. For regions (7) and (2) the proofs are fairly straightforward, but less so
for region (4) due to the complicated nature of the region condition and the non-aligned
quarks. Below we first find the mass conditions of the three regions, then show the proof
for one of them. The proofs of the two others are similar.

Regions (1) and (2)

In the rest frame of X3 the relevant four-vectors of configuration 1 are:
Pag = (Eqqy [Pgl)s o= (P, 1, =IP0l)s i = (Ipy |5 [Py, ]) (3.5)
where each entry is given in the form (£, p,). The condition we need to satisfy is then:

Myqt, < Mgqls < (Pgq +Pl.,)2 < (Pgq +Plf)2 < Pag " Pla < Pqq " Pl
= (qu + ‘qu|)|Plu‘ < (qu - ‘qumpﬂ (3-6)

The lepton three-momenta have the magnitude:

2 2 2 2

- (mXg - ml-R) oo | = (ml-R - mxl)mig (57)
fn 2mgo e 2m?2 ’
2 T
For region (1) the quark sector gives

a1 = [Pgl + 1Pyl Pyl = [Py, = [Py (3-8)
(m? —m? ymo ‘ (ms, — mxu) )
By + [Pyl = 2[py, | = —mr 0 Ly = [Pyl = 2[p, | = T2 (3.9)

For region (2), the only difference is the expression for |p,,|, which differs by an overall

sigh (|Pyel = [Py | — IPy, |); and amounts to interchanging the two expressions in (3.9). If
the expressions for regions (1) and (2) are inserted into (3.6), the following mass conditions
are found:
region (1): mf (mg - mgL)(m;g - m ) < m (mgL - 771;%3)(7711g - m ) (3.10)
region (2): m%L ,,12 (m%L — m)z_(g)(mio — n/ ) <m 0( 5 — mgL)(m[g — mxo) (3.11)

If (3.10) or (3.11) is satisfied, together with the appropriate region condition (Table 1,

pmax

second column), then we have mqql Qlow) = Mgql, -
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Region (4)

In region () the quarks are not sent out ‘on a line’ (parallel/antiparallel). We must instead

find pyq in the rest frame of Y3 using the following equations:

(1mg — 17,)? = Py = Py + 2ag - = 2y — By + 2By + g Dlpnl  (3:12)
mi = P?,qgg =pi, + még +2pg0 - gy = E2 - p2 + még + 2mgg Eqq (3.13)

The first equation uses the expression for my7* found in Eq. (2.24). From these we find

n
Pygq:

mg(mic +m? ) — 2miym; mz(m2, — m?)
Eyy = X2 In LB p,l = (3.14)
2m>~<g mp, 2m>~<g mp,
2
mgo(mg —my ) (mgmy,, — mio)
> _ Mg\ ROp lp = R X 3.15
qq + |pqq| m[R qq |pqq‘ 'm;(g ( ))

Insertion of these expressions into (3.6) gives the condition for region (4):

2 2 2 2 2 a1

my (mg — mfn)(mig - miﬂ) < (mymg, — m}zg)(miﬁ - 'm;(ﬁ,) (3.16)

If this is satisfied together with the corresponding region condition in the second column
of Table 1, then m‘;;?ziow) = my.

However, as stated earlier the mass conditions (3.10), (3.11) and (3.16) are ‘superflu-

ous’. Below this is proved for region (7). From the region condition and the ‘anti-trivial’

condition, we have the following inequalities:

mg Mg s 2 (2 2 2 (2 2
—= > —=—=2 S m* (m:—m: ) >m: (ms: —ms? 3.17
mg, 7n>~<g ,miR [Ry( g QL) QL( qL IR) ( )
2 42 g, 2 2 2 22 .
mio + Mo > ZmiR = (m;g mlR) > (mlR m;?) (3.18)
Starting from (3.10) and using (3.17)—(3.18) we can then write
2 (2 2 2 2 20,2 2 2 2
mir‘('mdk — mig)(miR — m;(l,) > m[R(ma — mq~L)(mX/g — 'miR)
S22 2y 2 2
> mg, (m;, — m’l"R)(mf(S - miR)
2 (2 _ 2 2 2
> mg (mg, — mZR)(miK - 7“’)2?)
= my, > mgy (3.19)

which is clearly wrong. Hence, given the correct region condition, the mass condition (3.10)
is in contradiction to the anti-trivial condition, meaning that it must be contained in the
trivial condition. Similar proofs apply for the two other superfluous cases.

We therefore have the following conclusion, as already stated: if (3.4) is satisfied, then

apynax — ,pmax
’nqll(low) - mqqln .
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9 max — max
3.2.2 m’qql(low) = My

Here we investigate the situation mqqi; < mgqr, With meq, = my7*. The possible configu-
rations with a maximised mgq, are given in Table 2 (in contrast to Table 1 where mgq,
was maximized). As before we consider the rest frame of X3 and align the coordinate
system such as to have p,, pointing upwards. The maximum value for mg, is found for
the decay configuration of V9 and Ir which maximises p;, downwards (in the rest frame
of ¥3). This is achieved if first I, then If, are emitted downwards. Since this necessar-
ily fixes p,, upwards, there is only one configuration in Table 2. The mass ratios in the
quark sector are the same for mjpi¥ as for m;7™, but in the lepton sector the relevant ratio
is now mig/(mi?mig/miﬁ) = m,i}{/mi?, see (2.24) and (2.25), which changes the region

conditions in column 2 as compared to those of Table 1.

config. 1
m?q?x region condition &
t Inqf lnlf
. my mg, ™I T l« T \L
I‘GglOIl (l) m;L > m‘ié m u}; H
%9 %0 unique
. 51 mgp miR mg ~L T T \L
region (’2) m .0 > Mo Mgy uni
%3 %9 que
. . my . my My T T T \L
region (3) e > ek .
%9 ar ™z no solution
region (4) otherwise Yniqu

Table 2: Possible configurations for mg,i*. See the text for details.

Region (3) has no solution since myq, vanishes and therefore cannot be the ‘high’-value.
max —
qql(low) —

myer, which is what we seek here. The calculations follow the exact same path as in the

previous subsection.

In the three other regions there are unique mass conditions for the solution m

Regions (1) and (2)
Tn the rest frame of X3 the relevant four-vectors are [compare with (3.5)]:
Pqqg = (qu? ‘pqq|)7 Pin = (|pln‘7 |p1n‘)7 Py = (‘plf|7 7‘plf‘) (320)

The condition we need to satisfy is now:

Mgty < Mgty & (Pag + P1,)* < (Pgg + P1)* © Pag - Pl < Pog - Pl
S (Fgq + Py DIps | < (Fgq = 1Py, ) P2, | (3.21)
The lepton momenta are still given by (3.7). The energy and momentumn of the quarks are

the same as in the previous subsection: Eq. (3.9) for region (1), the expressions interchanged

for region (2).



When these expressions are inserted into (3.21), we find the following mass conditions:

region (1): m4g(m§ - mg“L)(ng - m)zz?) < m?;Lm? (m2, — mig)(mig - m?ﬁ) (3.22)
region (2): m? (mZ — mxg)(mlg - mé?) < m}fn('mj - m;L)(még - mfR) 3.23)

<

If (3.22) or (3.23) is satisfied, together with the appropriate region condition (Table 2,

second column), then we have m™ mogx.
qql(lovv) qqlt

Region (4)

In region (4) the combination of
(mg — mgomgo/my ) = Pl = Piy + 2P0 - P = Eiy = Py + 2(Eg + Py, Py, | (3:24)

[equivalent to (3.12)] with (3.13) results in:

(12 2y _ . (2 2
My (7nl~n + m;?) 2mgom; Mo B mg(min m;((],) ]
qu - 2m ! ‘pqq| - 2m- (%2‘))
my Mo my Mo
(mgml~ — MooMyo) (mgmgo — moomy )
— R Xo X _ 97X Xo IR/ \
qu + |qu‘ - m/)?? . I ’ qq — |pqq‘ - 177711”’? 2 (326)

Insertion of these expressions into (3.21) gives the condition for region (4):

2 (v o V(2 [ 2SS 2 2 9
m (mzmg, — myo mx?)(mln m~0) < my mgo(mgmge — mgomy ) (m;g mlR) (3.27)
If this is satisfied together with the corresponding region condition, then m’q‘}ﬁ("low) mygr.

This result completes the special-case solutions of m3%
qqi(low)”

max — max
3.2.3 Myqgi(low) = Magl(eq)

If none of the above mass conditions are fulfilled, the maximum of my(1ow) Will in general
be reached in an ‘equal-solution’ decay configuration, where mgq, = myq,-

The relevant information on the two first steps of the cascade decay is contained in
the value of |p,,|. (We stay in the rest frame of X9.) Tts maximum value is attained if g,

and ¢ are sent off in the same direction, and is given by,

2 —
Iplh| = (3.28)
QmXZ
If sent off in opposite directions, \pqq| is at its minimum,
|m2m2, — mi
T 9 X3 qr P
oy = 2m2 meo (8:29)
qr X3

In the following we let |p,,| be a free variable and only later impose the physical constraint

[Pyl € [Pl [pd3 -
As before, we align the coordinate system to have p,, along +z. The first lepton, Iy,

is emitted at an angle « relative to p,,. The direction of the second lepton, I, is chosen
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to maximize mgq, for the given a, allowing the notation m:;;l‘;‘(oz) We have this freedom

since we are interested in the maximum, not just any mg(cq) value. At this stage the decay
is parametrised in terms of two variables, |p | and a. By requiring myq, (o) = mp3* (),

the angle can be expressed in terms of |p,,|:

m2 (m2 12 2 /1,2 2, , 2
mg (mi? + Mg — 2ml~ )( m,? + [Pyyl® — m,>~<n) — gy (m[~ - m~0) (IPgql)

(m%n — m~ )(2m~ - m~o)|qu‘

COS Qe =

(3.30)

where ¢(|p,,|) is given by

] ; . ; - 1/2
e(Ipg,l) = |m3slp,l* + (m;? +miy — Zm;R> (mj +mly — 2mggy fm? + \p(MIZH

(3.31)

[Later we will need to ensure that | cos aeq| < 1.] Insertion of this solution into mgq, (o) [or

max
9l 'qql(eq)

in a maximum value we now search for the critical point of m

mM¥*(a)] returns an expression for m, in terms of |p,,| only. Since we are interested

qal(eq)» and find an expression
for the critical momentum,

2
crit ¢ 2 2 ¢ 2 < 2 2 2 ; 2 2 2
= 2m; (m2 msy — 2ms 3m; —m? ms 4 2m* — m<, —m2 )
Ipoy'| = {( ( My ln)+( Ir x?) 5t Ir % <3
51
2
—4m§m%omlz ] (3.32)
Xz Rl 2mcomy
X2 iR

Inserting this back into m, ) gives an expression for the critical point solution,

q9l(eq

2
crit — 2 _ Jr— 2 crit |2
(’”qql(eq)) = m; [ng (3ml m? U), / |p |2+ m~

,mfzgn’/,%ﬁ — (m[g —m? 0) (|pCr1t ] /(Q,H,Il’lgR B mé?) (3.33)

All expressions found from the procedure above are formal. In order for them to be physical,
the momentum and the angle « of the critical solution must lie in the allowed regions:

IpE € [pfH. IpT (3.34)
cos aeq ([PEY)) € [1, 1] (3.35)

For a given set of masses Eqs. (3.34) and (3.35) must be tested numerically for the resulting
) 55

crit|

If the critical solution is not physical, the maximum must lie on the boundary of
the two-dimensional domain defined by Egs. (3.34) and (3.35). For cosaeq = =£1 the
appropriate [p,,| can be found by redoing the procedure leading to (3.33) but with « fixed
at 0 or m. This gives the following expression for |p,,|:

+(m2,m2, —m*)
( X K9 R’

{ P 2
[ - (Zm%omg —m%,m2, — m? )
) X2 X1 X2

| cosa=x=1
I lr

99

477l 077’1g 7712~ —77lg 7722 —7722~
1( b IR)( ir bet
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+\/(m§0m§0 - m? )%+ dmim? (mz.o —m? )(m%R - mé?)] (3.36)

Ir Ir
The invariant mass can then be found straightforward by taking mqql (Pgg + 1 )? and

using (3.13). This gives
cosa= 2 Z y cos = y
(mqqz(eq)ﬂ) = {(mz + m%ﬂ)min - (mr{,o + m?ﬁ) i T2 4+ m2

F(my — m? )|pe™® ﬂ|] fms (3.37)

The boundary solutions at maximum and minimum [p,,| are most easily found by
inserting the boundary values (3.28)—(3.29) into the general solution (3.33). This gives

(m ij(eq)) = (m} — mé )(m[g - mfz?)/(meR - mé?) (3.38)
2 . 2 2 20
(mg’l(eq)) =[- (3mlgR - 7n>20)(m3m2~,o +mi )+ 2771%[7713(27711g —mZ 0) + m2 omlg ]
+2m2, (m? —mg 0) (|pq |)]/[2m§l_(2mlgR - 771?(?)] (3.39)

All expressions (3.37)-(3.39) are formal. For a given set of masses one must explicitly
(numerically) impose the one of Egs. (3.34) and (3.35) which is not satisfied by construction.

3.2.4 General solution

Putting all this together, the fully general solution for m q?(low) is given by

mmax for m2, +m2, < 2m?
b%) X5 (r

qgln
max — max 3
Mitow) =  Maqgl;  for {cutl) (3.40)
max 3
m otherwise
qql(eq)
where
r 4 2 2 2
- mi, (m2-—m m: —m?
m; mg, My 9 ( g u) ( i x")
<cut1> — g > 2t R /\ 2 R 1 < 1
Mg, g Mg m2 m? (m% — m%o) (mz_o —m? )
- 9L g qL X X5 Ip
r 2 2 2 2 2
N m2 (m2 —m?2 m? — m*
mg mi_. mg qr ( qr 0) ( i 0)
9L R g X2 R Xi
V| 22— <1
mg9 mgo Mgy, m? (m2 —m2 ) <m2~u — m?2 )
Ir 9 aLr X2 lr
v mg < mg, M, A mg, < M mg I mg Mg,
My, Mg Mg mgo o mgomg ' mgo T My Mg

2 M — M- 0
mo (mgmlR mxgmxﬁ)

is constructed from (3. 22) (3.23) and (3.27) together with the appropriate region condi-

tions. Expressions for my9™ and my)* are given in Eqgs. (2.24) and (2.25) respectively, and

max
m is given by
gql(eq) ' & ¥

osa=+1 1T 1
Mgyl(ea) = MaX <7naql (ea) Mgl Maqal(ea) ™ Jql(eOI)) (342)
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Figure 4: SPS la cascade decay with branching ratios and cross-sections.
which uses (3.33) and (3.37)—(3.39).

4. SPS 1a

The ‘basic’ SPS 1a point is defined by the following mSUGRA GUT-scale parameter values,
my 2 = 250 GeV, mp = —Ap = 100 GeV, tan =10, 4 >0 (4.1)

evolved down to the electroweak scale by version 7.58 of ISAJET [18]. Table 3 shows the

masses at the electroweak scale. The masses which enter the signal chain are shown in

boldface.

g dr, dr ur, UR by by t t
595.2 | 543.0 | 520.1 | 537.2 | 520.5 | 524.6 | 491.9 | 574.6 | 379.1
1 én 72 1 Ve, v,y H* A
202.1 | 143.0 | 206.0 | 133.4 | 185.1 | 185.1 401.8 | 393.6
R H | h
377.8 | 358.8 | 176.8 | 96.1 | 378.2| 176.4 394.2 | 114.0

Table 3: Masses [GeV] for the SPS la point.

Fig. 4 shows the signal chain with the relevant branching ratios. To the left the
production rate of gluinos is shown, followed by the branching ratios of a gluino into left-
handed squarks and both sbottom states. Since the mass difference between by and the
other squarks is comparable to the mass difference between the gluino and the squarks,
phase space effects become significant, resulting in a noticeably enhanced decay rate into by.
All the relevant squarks have a large branching ratio into 3. The dominant decay of X9
is into staus, but selectrons plus smuons take an important 12%, which is still sufficient.
Due to the reconstruction problems of taus, the much smaller electron plus muon sample is
strongly preferable to the tau sample.? Finally, the right-handed slepton decays with full
rate into the LSP.

2For convenience of notation we will for the rest of the paper use ‘lepton’/‘slepton’ for the two first
generations and ‘tau’/‘stau’ for the third generation.
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) [ S(aL) [ S@r) | S(by) | B(b2) | X(0) [ SR
Direct 4 24.6 25.8 1.4 0.9 3.4 1.8
Indirect - 8.2 14.6 6.3 3.5 5.6 16.0
Total 35.4 32.8 40.4 7.7 4.3 9.0 17.8

Table 4: Selected sparticle production rates in pb.

Table 4 shows ‘sparticle production rates’ of the most relevant sparticles. Rather than
ordinary cross-sections these are rates of single sparticle production, so, for example, an
event gg — ¢g counts twice for the gluino production rate. Direct production, where the
sparticle is produced in the initial collision, and indirect production, where the sparticle
is produced by a decay, are separated. Since the gluino is the heaviest sparticle, it is only
produced directly. For squarks the indirect production from gluino decay is significant,

especially for flavours of low abundance in the proton.

5. Data analysis

For the purpose of studying the feasibility of extracting the gluino mass from kinematical

endpoints, we have investigated various distributions, as they might appear at the LHC.

5.1 Event generation and Standard Model rejection

Signal and background are generated for 300 fb~!, which corresponds to three years at
design luminosity of 103* em~2s~!. The simulation setup is identical to the one used
for the squark-endpoint analysis. GUT-scale parameters are evolved to low-energy by
ISAJET 7.58 [18] and passed, via the standard interface, to PYTHIA 6.2 [19] which calcu-
lates the decay widths and the LHC cross-sections by use of CTEQ 5L [20] PDF’s. Finally
ATLFAST 2.60 [21] performs a parametrised fast simulation of the ATLAS detector. See
Sect. 5.1 of [12] for further details. In that study the squark kinematical endpoints were
measured, so we focus here only on the gluino distributions.

The signature of a signal event is two opposite-sign same-flavour (SF) leptons, consid-
erable missing pr from the escaping LSPs, and at least three quite hard jets, two from the
signal chain and one from the decay of the squark nearly always present in the other decay
chain. (Only one of the chains is reconstructed, even if the other chain should contain the
signal as well.) The most important Standard-Model process to have features similar to
the signal is ¢f production. An extra jet is needed, but a hadron collider usually provides
additional jets.

Also W/Z together with jets, one of which is a b-jet, can mimic the signal, and in
combination with the underlying event, pile-up and detector effects, other processes will
also now and then result in the given signature. Together with ¢ we therefore include
QCD, Z/W+jet as well as ZZ/ZW /WW production. No K-factors have been used.

The precuts (not tuned) used to isolate the chain are the following:

o At least four jets, satisfying: pjﬁr > 150,100, 50,20 GeV
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o Erfmiss > max(100 GeV, 0.2Megr) With Mot = Epmiss + 3oy P55
e Two isolated opposite-sign same-flavour (SF) leptons satisfying pl;p > 20,10 GeV

The QCD background is cut away by the requirement of two leptons and of consider-
able missing pr. For the processes involving Z and W the requirement of high hadronic
activity together with the missing pr removes nearly all events. After the rather hard cuts
listed above, the Standard-Model background consists of approximately 95% ti. However,
because of the large SUSY cross-section for this scenario, the main background comes from
other SUSY processes.

5.2 Three background types

It is convenient to divide the background into three different parts, ‘lepton-uncorrelated’,
‘lepton-correlated’ and ‘combinatorial’. The two first consist of events which do not con-
tain the signal chain. In the lepton-uncorrelated background two leptons are produced,
but in different parts of the decay and therefore independently. With the assumption
of lepton universality and neglecting the mass difference between electrons and muons,
which is very reasonable for the energies involved, this background type will produce the
same amount of each of eTe™, pTu~, et p™ and pTe™. On a statistical basis these four
event types, and in particular the same-flavour versus the different-flavour events, will in
no way differ in number of jets, hardness, event shape, etc. If otherwise satisfying the
precuts, the lepton-uncorrelated same-flavour events will be part of and contaminate our
sample. While it is of course not possible to know on an event by event basis which of
the selected events are lepton-uncorrelated, we do know that their distribution is identi-
cal to the different-flavour distribution. Thus, by collecting the different-flavour sample
(with the same precuts) and subtracting this from the same-flavour sample, the contri-
bution of the lepton-uncorrelated events is canceled. The cost is an increased statistical
error per histogram bin, o3, ) = 03, + 0. In addition to lepton universality, for
this ‘different-flavour-subtraction’ procedure to work perfectly, the acceptance of electrons
and muons must be identical, and the reconstruction of same-flavour events and different-
flavour events must have the same efficiencies. If these conditions are not met, corrections
are needed. In this study we have assumed perfect working conditions, although it is known
that the fast simulation does not treat nearby same-flavour and different-flavour leptons
on an equal footing, see Sect. 5.2 of [12].

For the lepton-correlated background, the leptons are always same-flavour, so no
different-flavour sample is available to show its distribution. These events typically come
from the decay of Z, in which case they can to some degree be controlled, or from sleptonic
decay of neutralinos. In the latter case no particular signature, e.g. in the my distribu-
tion, is available to discriminate this background from the signal. In particular much of this
background will come from X9’s decaying sleptonically, but which are not part of our signal
chain. For the analysis of the squark chain, as done in [12], one important criterion is that
the ¥9’s produced from squarks make up a good fraction of the total ¥J production. Events

with ¥9’s not originating from the relevant squarks usually still contain jets and constitute

- 923 —



4000 L
[ SF F
_ [ _ 3000
2 - [ SF-DF 2 -
g 3000 | gy s [
=] [ + + =]
@ 4 + g r
% [ 4, 3 20001
S 2000} |+ o F
2 r * e [
2 [ Y TH @ [
c L e sC S L
2 1000 o g 10001
w L i [
wHw\wHw\mm\mm\mm\wrwﬁw HH\HH\HHHH\HHHH\\H\HH
0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 800
m(qq) [GeV] m(qqll) [GeV]

Figure 5: Invariant mass distributions for non-b-tagged events. Endpoints not detectable. See the
text for details.

a large part of the background. As the signal chain grows longer, this background increases
relative to the signal. In the case of the whole gluino chain what is important is that the
XY’s with a gluino grandparent are not severely outnumbered by the total Y} production,
for the events selected. This is a stricter criterion, and we will find that the flavour of the
intermediate squark, whether it is g, or b, will be crucial for the isolation of the signal.

The third background type, combinatorial background, is a result of our inability to
know which of the jets correspond to the quark sent out from the gluino (¢,) and from
the squark (gr). In most analyses one assumes that the quark from a squark decay can on
average be distinguished from the quark from a gluino decay on the basis of hardness. In
most mSUGRA scenarios this is viable, as xJ is so much lighter than the squark. Since
two squarks are expected in nearly all events, assuming here m; > mg, one can then
attribute the two hardest jets to the decay of the two squarks. Remaining jets can then
be attributed to gluino decays, other quarks in the event, e.g. from the decay of ¢t or W,
and/or the underlying event. The exact jet selection algorithms used in this study are
based on these assumptions, and will be detailed in the subsections below.

In more general SUSY scenarios it need not be the case that ¢ is harder than ¢,. In
general, given an unknown SUSY scenario, the appropriate jet selection procedure must
be the result of a careful study. For this also the mass hierarchy of the gluino and the
squarks must be established. A systematic study of how such information can be obtained
is lacking but would be very valuable.

5.3 Non-b-tagged distributions

In Fig. 5 two of the non-b-tagged distributions, mg, and mg,u, are shown. The black solid
and dashed curves show the same-flavour (‘SF’) and different-flavour (‘DF’) distributions.
In black with error bars their difference, the different-flavour-subtracted distribution (‘SF-
DE’) is shown. Solid green shows the SUSY background (‘SUSY’). Its shape is given by
the lepton-correlated part, but the lepton-uncorrelated part is also significant and increases
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the random fluctuations. Dashed green shows the negligible Standard Model background
(‘SM”). For both backgrounds different-flavour subtraction is performed. The blue curve
shows the parton-level distribution of the selected events (‘TH’), while the red points
with error bars show the part of the different-flavour-subtracted sample which contains
the correct signal chain (‘SC’), also referred to as the ‘signal-chain distribution’. Any
discrepancy between these two distributions is mostly due to combinatorial background,
i.e. from picking the wrong jets.

For these distributions it was assumed that ¢; is one of the two hardest jets while ¢, is
selected among number 3 and 4 in pr-hardness. This is in line with the mass assumptions
usually valid in mSUGRA scenarios, as described above. The jet selection used for the
distributions plotted is, on an event-by-event basis, the one out of four possible combina-
tions which gave the smallest mgq value. Other selection algorithms were also tried. In
addition we require that neither of the involved jets is b-tagged.

It is clear that the positions of the endpoints, which are seen in the parton-level distri-
butions (solid blue), are not easily detectable from the different-flavour-subtracted sample.
This is mainly due to the size of the lepton-correlated part of the SUSY background (solid
green), which makes up ~ 80% of the total sample. Structures in the signal part of the sam-
ple are therefore not easily identified. This result can be anticipated from Table 4, which
shows that only 8.2/32.8 = 25% of §1,’s originate from a gluino. The ratio of gluino-induced
X3’s becomes therefore quite small.

Another difficulty is the combinatorial background. The red points with errors, which
include signal events only, do not at all point to the nominal endpoints at 242 GeV and
490 GeV (for ur). This is because the jet pair selected is often not the correct one.

Other jet selection algorithms of this simple type have been tried, but none allows any
edge structure caused by the kinematics of the decay chain to be recognised. This is also
true for the other five gluino distributions (not shown). One must therefore conclude that
the endpoints of the non-b-tagged gluino distributions are not experimentally obtainable
by looking at one distribution at a time. If instead correlations between mass distributions
were investigated it might be possible to identify endpoint-related edge structures.

5.4 b-tagged distributions

The distributions of the b-tagged samples are shown in Figs. 6 7. The curves follow the
colour code of Fig. 5, but the same-flavour and different-flavour distributions are not shown
separately, only their difference. For the b-tagged distributions the different-flavour distri-
bution is ~ 40% of the same-flavour distribution, which is somewhat larger than for the
non-b-tagged distribution where the ratio is ~ 25%. In both cases the different-flavour
distribution favours lower mass values and does not interfere very much with the edge
structure, as seen in Fig. 5 for the non-b-tagged distribution.

Contrary to the previous case, the b-tagged distributions have clear edge structures
which provide values for the endpoints. The main reason for this is that the different-
flavour-subtracted SUSY background (solid green) now makes up a manageable 35%, to
be compared with 80% for the non-b-tagged sample. This reduction is due to the fact that
the majority of b’s are produced indirectly from gluino decay [because of the low b-content
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of the proton], see Table 4, in combination with a jet selection requirement of exactly two
b-tagged jets. Although the total production of Y3 is 6 7 times larger (see Fig. 4 and
Table 4) than the production which starts out from § — bb, two b-jets are also needed,
which reduces considerably the number of selected background events. (For background
events the b’s are usually produced in the other chain, typically from the same § — bb, or
from § — #1t in either of the chains, which also produces multiple 4’s.) Since the rate of
b-jets is considerably smaller than the rate of light jets, also in SUSY events, we are likely
not to have additional b-jets in a signal event. The combinatorial background is therefore
small, as is clear from the good correspondence between the parton-level distribution (‘TH’)
and the signal-chain distribution (‘SC’).

The exact jet-selection used here is in line with the previous assumption that by is
harder than b,. The first is searched for among the two pr-hardest, the second among
number three and four. Only events which have one b-jet among the two hardest and one
among the two next were selected. (In a more realistic study where emphasis is put on
issues like fitting techniques, impact on the distributions from the precuts etc., it would be
natural to investigate the effect of also including events which have their two b-tagged jets
as number 1 and 2 or as number 3 and 4.)

For the distributions in Fig. 7 no endpoint estimation is attempted. The two my
distributions are distrusted since they do not usually ‘point’ towards the maximum value,
as shown in Fig. 3. The phase space corresponding to the largest values is very small,
leaving only an experimentally undetectable tail to mark the endpoint. These distributions
are furthermore made less useful by the need to distinguish b, from b¢. For the distributions
of Fig. 6 this is not an issue because both b’s were used. At SPS la the endpoints involving
by, have smaller nominal value than the corresponding endpoints with b¢. Consequently,
if we are not able to cleanly distinguish b, from b, all distributions which have b, as
the only quark will get a contamination which stretches beyond the endpoints. If this
contamination is substantial, and here it is, the b, endpoints will be washed out. The
combination of these two effects seems to disable these three distributions. The nominal
endpoints are my'7* = 281 GeV, m‘g:l?(‘low) = 197 GeV and mg:.?(Yhigh) = 248 GeV, which
are clearly not obtainable from the distributions in Fig. 7. To cope with the problem of
distinguishing b, and bf more general distributions could be constructed, as was discussed
in Sect. 2.4.

For my, the fit values are a considerable 25 GeV higher than the nominal value, and
are not really accounted for by the errors. It is not completely understood why the dis-
crepancy is so large; whether it is a statistical fluctuation or some other effect. Since the
reconstruction resolution is much worse for jets than for leptons, one should expect that
a mass distribution constructed from jets alone will be more smeared and therefore give
worse endpoint determination than one which also involves leptons. This is probably part
of the reason.

To extract the endpoints from the distribution, signal and background hypotheses are
needed. Usually, at this level of detail, a straight line is used for the signal in the edge
region. We see from the theory distribution of Fig. 3 that the straight-line hypothesis in
the edge region is normally quite well supported for the four distributions of Fig. 6. (The
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Figure 6: Four good b-tagged invariant mass distributions. See the text for details.

exception is m,(uigh), Which in some cases might have a dangerous foot at the very last
part of the edge.)

Which background hypothesis to use is less clear. The background is here mainly from
other SUSY processes, and therefore in principle unknown. One attempt to sketch the
shape of the background, is by combining the lepton and the jet sectors of different events
into a mixed-event sample, as described in Sect. 5 of [12]. The shapes of the mixed-event
distributions are then used as background hypotheses. Another way is to simply select for
the background some appropriate function, based on the distribution slightly beyond the
edge, where only background resides. An exponential or a polynomial usually gives a fair
description. Whatever the signal and background hypotheses, systematics are introduced
which may not always be easy to estimate.

For the plots of Fig. 6 the signal was fitted with a straight line, while the background
was modeled by both an exponential and a mixed-event sample. A four/three-parameter
fit was then performed by use of MINUIT [22] for exponential/mixed-event background
hypothesis and several different histogram binnings and fit ranges. Each distribution gives
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Figure 7: Three bad b-tagged invariant mass distributions. See the text for details.

fit values and statistical errors within a fairly narrow interval, indicative of the systematic
uncertainty in the fitting procedure. The results of the fits are summarized in Table 5 at
the end of this section, after the discussion of energy scale errors.

5.5 Propagation of energy scale errors

In ATLAS it is expected that the absolute energy scale of jets and leptons will be known to
1% and 0.1%, respectively, see Ch. 12 of [23]. This energy scale uncertainty translates into
an uncertainty, or ‘error’, for any mass constructed from jets and/or leptons. In particular,
the masses which go into our distributions have such an error in addition to the statistical
erTor.

Invariant masses which are constructed from jets alone or leptons alone, will inherit
their uncertainties of 1% or 0.1%, respectively. For an invariant mass made from one lepton
and one jet, the energy scale error is at 0.5%. For masses constructed from more than two
jets and leptons, the energy scale error is not constant, but varies within a given calculable
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interval, depending on whether it is the jet(s) or the lepton(s) which dominate the mass
for the given event.

To find appropriate energy scale errors, we must investigate mgq, m4q and mgyy. The
overall masses can be expressed in terms of two-particle masses, which have a constant
energy scale error:

2

2 2 2 2 2 2 .
Mgqti = Maq + Myg,p, + Mg p + Mg, + Mo + My (5.1)
2 .2 2 2 .
Mgy = My, + My + My (5.2)
2 2 2 2 (r 3)
Myy = Mgy, + Mg, + my 9.

Absolute lower/upper limits for the energy scale error of the quantities on the left-hand
side can then be found by assuming that the right-hand side is totally dominated by the
term which has the smallest/largest energy scale error. This results in

o) o1 1%, XM ¢ o5 1%, T ¢ (0.1,0.5% (5.4)
Myqll Mygqt mqu
where o denotes the energy scale error. These are absolute limits valid for any mass
scenario. To find the relevant numbers for SPS 1la, all accepted events were reexamined;
scaling the jet momenta of each event by 1.01 and taking the ratio of the new and the
old invariant mass. We then find the following average and root-mean-square values (in
parentheses) of the relevant energy scale errors,

w — 0.66(0.10)%, ”:;"L“'W)) — 0.80(0.11)%
bbll bbl(low)
oUmaitiah) o 210,10y, T o 49(0.02)% (5.5)
T1hbl(high) My, 1l

Inclusion of the lepton energy scale will give a small correction to these numbers. For
my, 1, which we will not be using, the energy scale is nearly constant. For the three other
distributions, the errors lie between approximately 0.5% and 1%, and fairly uniformly
distributed, as is reflected in the root-mean-square values. For the fitting, only the energy
scale error for masses which lie in the edge region is relevant. However, it turns out that
at SPS la and for these distributions, the error is almost the same for low as for high
invariant mass values. Although the error of each distribution is found to lie in a fairly
broad interval rather than being constant for all events, we have here used the average
values, Eq. (5.5), as a basis for the energy scale errors in Table 5.

An alternative approach could be to scale the jet momenta up/down as done above,
then redo the entire fitting process on the new distributions and from this extract the effect
of the energy scale error. For this to work one would have to disentangle the effect of the
scaling from the yet uncontrolled systematics of the fitting procedure. At the present stage
of fitting competence the gain from using a more correct procedure is probably lost in the
increased complexity.
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Nominal Fit Energy Scale  Statistical

Edge Value Value  Error (¢%#¢)  Error (0%t
[GeV] [GeV] [GeV] [GeV]
mp** 312.7 335-339 3.4 6-10
mp 496.3  494-500 3.3 5-7
w4132 407417 3.3 8-12
mps 4619 454-462 3.3 57

Table 5: Endpoint values found from fitting the edges in Fig. 6, for 300 fb~*. The nominal values
correspond to the mass of b1 which is produced at significantly higher rates than the heavier bo.
The energy scale errors are based on the discussion in Sect. 5.5. No values are given for the three
distributions in Fig. 7.

6. Masses from endpoints

6.1 10,000 ATLAS experiments

The precision with which the sparticle masses can be obtained at the LHC, is found from
the endpoint-measurement values of Table 5. For this we do not use the specific fit values
of the simulation undertaken in the previous section, but instead generate an ensemble of
LHC experiments, constructed from the estimated errors found in the previous section, as
done in [10]. An ensemble of 10,000 experiments is generated, where endpoint fit values are

generated by assuming a Gaussian distribution around the nominal values. The width of

scale stat scale

the Gaussians are given by o and ¢%'*'. Within one experiment the & errors of the
endpoints are correlated, as they originate from the common jet and lepton energy scale
uncertainty.

For each experiment the endpoint values E®*P are combined with the general endpoint

expressions B in a least-square function X,
Y = [E®P — E®(m)]T W[E™P — E*(m)] (6.1)

The weight matrix W is the inverse of the covariance matrix which is constructed from
the endpoint errors and appropriately handles the endpoint correlations due to the energy
scale error. The minimisation of X then yields the masses. Due to the composite nature
of the endpoint expressions, there are usually several competing ¥ minima for a given set
of endpoints. If these minima are close in X value, they must all be considered, opening
the way for multiple mass solutions. Finally, ensemble distributions for the masses can be
plotted and studied, and are to be interpreted as probability distributions for the masses
which can be obtained at the LHC. We will be interested in the mean and width of these
ensemble distributions. For more details of the procedure, see [12].

6.2 Mass estimation

In total six sparticles are involved in our decay chains: ¥2, Ig, 9, L, by and §. The
masses of the first five of these could already be obtained from the squark endpoints alone,
as was done in [12]. The gluino mass is accessed by the gluino endpoints which add (at
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present) three more usable measurements, those of Table 5, excluding mj#**. Since the
gluino endpoints also involve the other masses (except myg,), the six squark endpoints
and the three gluino endpoints are combined in a single fit where all the masses are free
parameters. The squark-endpoint measurements are given in Table 4 (upper part) of
[12]. The values of the right-most column, ‘Syst. Fit Krror’ are not used. For the gluino
endpoints of Table 5 (in the present paper) the statistical error is given as an interval.
We take here the midpoint of the interval, and also assume that the systematics of the
fit values (also given by intervals) will be settled, or at least dominated by the statistical
errors. This assumption might be somewhat optimistic, and should be kept in mind when
contemplating the results obtained below. Furthermore, we have decided to use only three
out of seven gluino distributions. In particular the choice of excluding m3** was made
after consultation with the Monte Carlo truth at our specific SUSY scenario, which is not
a viable strategy in a realistic setting. More study could however promote this result into
a generic one.

If we start from the squark endpoints and add only one of the gluino endpoints in
the numerical fit, the gluino mass will be determined and all the other masses will remain
unchanged. This is so because there is exactly one new measurement for one new mass.
The gluino mass returned from the fit is the one which gives zero for the new terms added to
Y, so there is no increase in the X-value. Also, the number of minima remains unchanged
by adding one more measurement for one more mass. This situation is similar to the
determination of my in [12]. Only one endpoint involves by, so its inclusion has no effect
on the other masses or number of minima.

When more gluino endpoints are added, the gluino sector becomes over-determined,
and the position of the minima will change, i.e. the other masses will be affected. Since the
gluino endpoints have somewhat larger errors than the squark endpoints, large effects are
not expected, except perhaps for b;. Below, results are given for the case when all three

gluino endpoints are used.

For the current precision of the endpoint

# Minima | (1,1) (1,2)

measurements, the numerical fit nearly always

e fwo i , R AY <0 1.00 91% 9%
rethhns: \;VhO 1n111‘1.ma, OFIlte] mn mas.s TTgIOH ( s ); AZ 5 1 111 95% 16%
whnich 18 e I‘EOIOT] Ol the nominal masses at AZ S 3 _130 98% 32%

SPS 1la, and one in mass region (1,2). If the
minima are close in -value, both must be

considered. Table 6 shows the probability of Table 6: Number of minima for various AX
cuts and their whereabouts.

AY < 99 1.87 9%  87%

having more than one solution in an exper-
iment. The cut on AY, the distance to the
global minimum, gives the quality of the second minimum. In most cases the (1,1) mini-
mum is the selected one. These numbers are very similar to the numbers obtained without
the gluino endpoints, Table 5 of [12], where a more detailed description can also be found.

The masses are given in Table 7 for minima which satisfy A¥ < 1. These results are
very close to the results obtained without the gluino endpoints, see Table 6 of [12]. Only
by is affected, as was expected.

The gluino mass is quite well determined. The ensemble mean is at the nominal value,
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(1,1) (1,2
Nom | Mean RMS | Mean RMS

mgo 96.1 96.3 3.7 85.5 3.4
mp, 143.0 | 143.2 3.7 | 130.6 3.8
Mo 176.8 | 177.0 3.6 | 165.7 3.5
mg, 537.2 | 537.5 6.0 | 523.5 5.0
my, 491.9 | 492.2  12.5 | 471.8 12,6
mg 595.2 | 595.5 7.2 | 5825 6.8
mp, — Mg 46.92 | 46.93  0.28 | 45.11  0.72
Mo — Mo 80.77 | 80.77  0.18 | 80.19  0.29
mg, — m\? 441.2 | 441.2 3.1 | 438.0 2.8

my — mg 3959 | 396.0 11.2| 386.3 11.2
mg — Mo 499.1 | 499.2 5.6 | 497.0 5.4
mz — mg 103.3 | 103.3 9.1 | 110.7 9.5

1

Table 7: Masses (Mean) and root-mean-square deviations from the mean (RMS) of minima in
regions (1,1) and (1,2), for AY < 1. The nominal masses (Nom) are given in the second column.
All values in GeV. See the text for more details.

and the root-mean-square deviation from the mean is 7.2 GeV, only a GeV more than for
mg,. For the other masses, especially the lighter ones, mass differences are much more
accurately determined than the masses themselves. This is also the case for the gluino,
although to a lesser degree, as is seen from the smaller root-mean-square value for mg =g
of 5.6/5.4 GeV. When the correlation to X9 is taken into account, as in mass differences,
qr, is better determined than §, as it naively should be from the smaller squark endpoint
errors. Since the gluino endpoints involve the sbottom mass, one might expect that the
masses of § and by have a considerable correlation. Some correlation is found, as can be
seen from comparing the root-mean-square value of myz — my, with that of my, alone.
The ensemble distributions summarized in Table 7, i.e. for A < 1, are shown in
Fig. 8. The unfilled distributions in black show from left to right m. R0y M, Mo, My
mg, and my for solutions in the nominal region (7,1). We will have 911(‘h a solution in 95%
of the experiments, see Table 6. The unfilled distributions in blue (grey) show the same
masses for solutions in region (1,2). Such a solution occurs in 16% of the experiments. (For
AY < 1 there is an 11% chance of having both solution types.) The smaller rate of the
(1,2) solutions is reflected in the smaller area under the blue curves. The (1,2) solutions
return slightly lower masses, so these distributions are positioned ‘down’ (due to the lower
rate) and slightly to the left of the (1,1) distributions. The filled distributions show from
left to right My, — M0, Mg =g, Mg =T 5 My —TMge, Mg, — Mg and mg—Tg. Again,
the most populated distributions (black curves) are for solutions in region (1,1), the least
populated (blue curves) for (1,2) solutions. For mass differences there is more overlap
between the (1,1) and (1,2) solutions, in particular for my, —mso and Mgy =159, of which
only the lower parts of the distributions are visible. Mass differences are better determined

than the masses themselves, reflected here by the narrower distributions of the former. In
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Figure 8: Sparticle masses and mass differences for solutions with AX < 1. See the text for details.

the case of by this effect is clear for mj —mj , much less so for m; — mye, which points to

the fact that by largely decouples from X9,

6.3 Edge sensitivities

It may seem a puzzle that mj is determined with much higher precision than mg, - Both

masses enter the three new gluino endpoints, but my, has in addition the m?fl}f(bl) mea-
2

surement. Naively one might therefore expect the b; mass to be more precisely determined.

In order to better see how masses are constrained by the endpoint formulas, consider
the part of the least-square function ¥ which involves one given endpoint and one given
mass only. For simplicity of argument, assume that the endpoint measurement is at the
nominal value, as are the masses. Changing the given mass away from the nominal value
by an amount Am will give an increase of our selected ¥ part by

<E(m + Am) — Ee"p>2 N (F](m) + (OFE/0m)Am — F]eXP>2 _ ((81*7/3m)Am>2 (6.2)
[eD] ~ (e - (2] ’

where I is the value of a particular kinematical endpoint. The value of Am which gives

an increase of 3 by 1 (from this term only), is then given by
OF

Am = (OF/0m) (6:3)
Since the shift in mass also induces changes to other contributions to X, the interpretation
of Am is not straight-forward in terms of mass error. Still, Am does combine the precision
of the endpoint, given by the endpoint error og, with the response of the endpoint to the
mass, which are the two important quantities. The same relation could be derived in a
mathematically more intuitive way,

om oF

Am = (ﬁ)AE = W (6.4)
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where the endpoint variation AF is set equal to the experimental error op.

Inclusion of the endpoint error opens for comparison between different endpoints, even
if only in a semi-quantitative way which does not take correlations into account. The
importance of the different endpoints in constraining a given mass can then be studied. In
Table 8, values for 9F//dm and Am are given for both the squark and the gluino endpoints.
For the three gluino endpoints of Fig 7, where no fit was made and hence no ¢ is available,
Am is not given.

XY lr X5 qr, by g

% Am % Am % Am % Am % Am % Am
myx -0.7 -0.1]-0.6 -0.2] 1.3 0.1 - - - - - -
mf]’:?,x -1.9 -1.2 - -1 0.7 3.2 0.9 2.6 - - - -
m ey |08 82[-L6 L5 | LT 14|04 62| - - - -
mmax - -1-3.9 -04] 3.0 0.6 | 0.6 2.8 - - -
atl(low)
miay |32 07| 22 10]-03 82|08 27| - o
m?t];?(9>1) -0.7 -65|-1.5 -3.1] 1.5 3.0 - -1 0.4 118 - -
mp** - - - -1-0.3 -39.6 - -1 -1.3 -8.1 | 1.7 6.3
mpi -1.3  -5.2 - -1 0.3 234 - -1-0.1 -65.1| 1.0 6.5
TIL?;?(){OW) - - 2.3 4.5 1.5 6.8 - -1-0.6 -19.0 | 1.3 8.4
mEes oy |21 32| 14 47|04 AT6| - - [-03 245 | L1 6l
mpa 12 o[ - -] o7 A s -
mr |- 26 - 21 o X e W
e |21 |14 o] - N -113 -

Table 8: Partial derivatives of endpoints with respect to masses at the nominal mass values. The
larger the partial derivative 9F/Jm is, the more sensitive the given endpoint is to the given mass.
The quantity Am [GeV] is defined by op/(JE/Im), where op is the combined statistical and
energy scale error of the endpoint. See the text for more details.

These numbers show immediately that the three gluino endpoints included in the nu-
merical fit have a strong sensitivity to the gluino mass, but only a very moderate sensitivity
to the shottom mass. Also m}:;?(b%) is seen not to constrain mg, too much. If mp** could
be used or some of the squark endpoints other than m?f‘z}“(bg) (numbers shown only for ¢r,),
then m; could be determined more accurately. The table can also be used to understand

better which of the endpoints are important in constraining each of the lighter masses.

7. LHC + Linear Collider (LC)

Within the time-frame of the analysis of LHC data, measurements from a Linear Collider
may become available. While the LHC is able to measure mass differences at high preci-
sion, as documented in the previous section, a Linear Collider will, due to the much cleaner
environment, provide precise measurements of the sparticles which are kinematically ac-
cessible, in particular ¥{. Such a measurement will be the scale fixer which is lacking in

— 34 -



the LHC data, and will in combination with the LHC measurements allow one to also fix
the masses of the heavier sparticles not accessible at the Linear Collider.

To estimate the effect of a Linear Collider measurement of mgo, We add to our least-
square function ¥, a term [(m X, —mb R $)/okC U]¢ , where the quantities with superscript ‘LC’

are the Linear Collider measurements. Sm(e o CO = 0.05 GeV [24], this means practically
X1

fixing myo at the nominal value.

For the (1,2) solutions, which normally re-

(1,1)
. =0 cana o PRV . .

tu1]n )}1 ma]b.se; bomhe {10 GeV .bel]ccliv& th? no]ml Nom | Mean RMS
.Tld, va, 11.(-‘,, this has the dramatic effect of reduc- e 96.05 96.05 0.05
ing their occurrences to ~ 1% (for AX < 3). 1 . S

.. my 142.97 | 142.97 0.29
These minima can therefore for most purposes £ 76.82 | 176.82  0.17
be neglected. As a consequence, the probabil- g e ’ ’

mg, 537.2 | 537.2 2.5
B, 491.9 | 491.9 109

m; 595.2 | 595.2 5.5
Mg —my 103.3 103.3 9.0

ity of having two minima is strongly reduced,
to the per mille level. For SPS la the Linear "

Collider measurement thus closes the issue of

multiple minima altogether.

The combined LHC + LC results are shown Table 9: Mass values (all in GeV) from
in Table 9. Comparison with the numbers of LHC+LC. Since the occurrences of (1,2) solu-
Table 7 shows that the mass measurements im-  tions are reduced to ~ 1%, they are left out.

prove considerably when the LC measurement

is included. The root-mean-square values of the masses are now approximately equal to
the root-mean-square values of mass differences without the LC measurement. For my,
the correlation to mgo is not dominant. The spread of mj; is therefore still larger than the

spread of mz — m; , which does not feel the fixing of mys. As was the case without the

b il
LC measurement, the inclusion of the gluino endpoints in the numerical fit does not affect
the other masses. The exception is mg, for which the root-mean-square value is reduced

by ~1 GeV compared to the results in [12].

8. Conclusion

In this paper we have extended the endpoint method of obtaining masses in R-parity
conserving SUSY scenarios to also include the gluino mass, given the decay chain (1.2).

IIldX

We first introduced an alternative approach for calculating my, This approach was then

used to calculate my %" for all possible cases. The remaining six glumo endpoints were also
calculated. Solu‘rlorm to many of these were obtained from the m*7* result via appropriate
substitutions. Theory distributions for the seven new distributions were studied for a
selection of mass scenarios, revealing that some of the distributions often have little phase
space towards higher masses, making them less useful.

An ATLAS simulation of 300 fb~! was performed for the mSUGRA point SPS 1la.
While we were not able to detect the gluino edges in the case of an intermediate first or
second-generation squark (gr,), edges were found and fitted in the case of an intermediate
sbottom. This is due to fact that 80% of the b’s come from a gluino, together with the jet
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selection requirement of having two and only two b-tagged jets, both important background-
reducing factors. Not all of the endpoints were used. Energy scale errors were discussed
and found to lie in intervals rather than being constant. Yet, they were taken as constants
in the analysis.

To estimate the precision with which sparticle masses can be obtained at the LHC, an
ensemble of 10,000 ‘gedanken experiments’ were performed, in which for each ‘experiment’
three of the gluino endpoints were combined with the squark endpoints obtained in [12] in
a least-square fit to give the masses. Inherent to the method, mass differences are better
determined than the masses themselves. Furthermore, one set of endpoint measurements in
general corresponds to several sets of masses. The inclusion of the gluino endpoints affects
the number of minima and the masses of 7, IR, X9 and Gz only minimally. In the case of
by there is a noticeable correlation to the gluino. The ensemble distribution of the gluino
mass was found to have a root-mean-square value of 7 GeV. The spread for mj — mgo was
found to be about 1.5 GeV smaller.

Spurred by the lack of significant improvement in the ensemble spread of mj compared
to the precision obtained for mj, even though the new measurements involved both, a
sensitivity analysis for all the relevant endpoints was performed. This investigation showed
that the three gluino endpoints in use have limited sensitivity to the sbottom mass, thus
confirming the different impact they have on the gluino and shottom masses.

Finally the impact of a joint LHC-LC analysis was estimated. The endpoint measure-
ments from the LHC were combined with a Linear Collider measurement for the LSP mass.
This essentially fixes the mass scale. Consequently, in the combined analysis the masses
themselves are determined with roughly the same precision as that of mass differences
determined at the LHC alone.
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