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Abstract

Scientific progress has traditionally been driven forward by the efforts of
individual experimentalists and theorists, but the highly complex chal-
lenges in today’s science and increasingly powerful technology calls for
new methods and tools: Computation, data analysis and collaboration
has become essential in most modern sciences. But despite that computer
power, data storage, and communication continue to improve exponen-
tially, computational resources are failing to keep up with scientists’ de-
mands. The purpose of this thesis is to study and develop new systems
for computation that will make better use of the resources we have. This
thesis will attempt to accomplish this goal by bridging the gap between
a local resource management system called Condor and a Grid middle-
ware called ARC that was developed under the NorduGrid project. The
culmination of this work is the successful application of the unified Con-
dor/ARC system in the highly demanding ATLAS Data Challenges.
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Chapter 1

Introduction

1.1 Computing Demands of New Physics

The next generation of particle physics experiments, such as CERN’s AT-
LAS [1] program, will accumulate an overwhelming amount of data for
scientific analysis. The LHC experiments alone will generate a data stream
of up to one terabit per second [2], which greatly exceeds our current ca-
pabilities to analyze, store, and transfer by network. Extensive real-time
filtering will make it more manageable by reducing the data flow by sev-
eral orders of magnitude, but one can still expect tens of petabytes per year
to be written to permanent storage for further analysis.

This section will give a very brief overview of modern particle physics,
and list some of the challenges issued by CERN’s next big project, ATLAS.

1.1.1 Accelerators and Detectors

Particle physics is the study of the fundamental constituents of matter and
their interactions. As experimental methods have improved, particles that
were believed to be elementary (i.e., indivisible particles without internal
structure) had to be reclassified and the theory revised.

The current theory is called the Standard Model, and it attempts to ex-
plain all phenomena of particle physics in terms of the properties and in-
teractions of a small number of particles of three distinct classes: leptons,
quarks and gauge bosons. The latter particle class is special in that it medi-
ates the interaction of two elementary particles; the notion is that a force
is felt between two particles when a gauge boson is exchanged between
them.

The experimental methods used to verify the Standard Model depend
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10 CHAPTER 1. INTRODUCTION

on a fundamental principle in special relativity, stating that matter can be
converted to energy, and vice versa. This means that when particles mov-
ing at very high speeds collide, the loss in kinetic energy can be balanced
by the creation of new particles.

Until the early 1950s, the only source of particles moving at sufficiently
high energies were cosmic rays, but nowadays, beams of high energy par-
ticles are created by accelerating stable charge particles using electromag-
netic fields. These devices are aptly named particle accelerators, and they
have the obvious advantage of allowing the experimenter to control the
energy and the types of particles used.

The constructed beam of accelerated particles is directed onto a target1

so that interactions may be produced, and the particles produced in the
interactions are in turn identified by observing their interactions with the
material of the detector.

1.1.2 The Large Hadron Collider

Particle accelerators and detectors have been used to turn the Standard
Model into a well-tested physics theory, that has predicted and explained
a number of phenomena with amazingly high precision.

Nevertheless, there are still a number of open questions, such as why
elementary particles have mass, why gravity and the strong force cannot
be described in the same theoretical framework as the electromagnetic and
the weak force, why antimatter is not the perfect opposite of matter, etc.

Physicists have come up with ideas for extending the Standard Model
so that it can explain many of these open questions, but this requires the
existence of particles for which there is no experimental evidence.

The reason why no one has yet been able to observe these hypothetical
particles could be that they cannot be created at the energy levels avail-
able in current accelerators. In order to make progress, CERN (the Euro-
pean Organization for Nuclear Research) has retired its old Large Electron
Positron (LEP) collider, and is building the Large Hadron Collider (LHC) in
its place. LHC is projected to begin operating during 2007 [3], and will
be able to accelerate two counter-rotating beams of protons to energies of
7 TeV, creating proton-proton collisions with a center of mass energy of
14 TeV. It will also do heavy ion (such as lead) collisions up to 1148 TeV,
making it the most powerful accelerator ever built. Figure 1.1 gives a very
high level illustration of the LHC layout.

1The target can either be stationary relative to the laboratory (a fixed target experiment),
or another particle beam moving in the opposite direction (a colliding beam experiment).
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Figure 1.1: A view of the LHC

1.1.3 The ATLAS Project

The ATLAS (A Toroidal LHC ApparatuS) project is an international collab-
oration involving 34 countries, that will study high energy proton-proton
collisions in the LHC.

The main goal of the experiment is to look for Higgs and supersymmetric
particles, but ATLAS will also be used to determine if quarks and leptons
really are elementary particles, to search for new heavy gauge bosons, and
perform more precise measurements on particles and phenomena we have
already seen.

The Higgs particle, if detected, will give invaluable support for the
Standard Model’s explanation for particle mass. The Standard Model pos-
tulates that the concept of mass is a result of the interaction between par-
ticles and a field almost indistinguishable from empty space that is called
the Higgs field. Particles that interact strongly with this field are heavy, and
particles that interact weakly are light. Associated with the Higgs field is
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at least one new particle, called the Higgs particle (or Higgs boson), and it
is hoped that the ATLAS detector installed in LHC will be able to detect it.

The concept of supersymmetry is particularly important in the context
of Grand Unified Theories (which try to unify the strong and electroweak
forces). The supersymmetric theories predict that every observable par-
ticle has a massive “shadow” partner. The lightest shadow particle is
thought to be stable, electrically neutral, massive but weakly interacting
and thus may also be the answer to the question of the nature of dark
matter2. No shadow particle has yet been detected, but the new ATLAS
detector will be capable of searching for a wide variety of supersymmetric
particles.

The results for all of the above experiments will be hidden in the enor-
mous amount of data produced by the ATLAS detector during collision
events: Up to 20 simultaneous events may be “piled up” on top of each
other at the same beam-crossing! Fortunately, the probability that two in-
teresting events pile up is insignificant and most of the pile-up is easy to
distinguish from the interesting signal. Computers will have to be used to
filter out the signal from the noise, and figure out the most likely particle
paths and decays, as well as anomalies from the expected behavior. LHC
and the ATLAS experiment will put unprecedented demands on computer
processing, so new tools were developed in the context of these experi-
ments, and much relies on the existence of a functional Grid infrastructure
in time for the opening of LHC.

1.1.4 The ATLAS Data Challenges

The ATLAS Data Challenges [4] were intended to be used to validate AT-
LAS’ computing and data model, its software, and to ensure correctness of
the technical choices to be made. It was originally planned for three parts
(DC0 to DC2) of increasing complexity, followed by annual Data Chal-
lenges whose goals would depend on the results of the preceding ones.
All but DC0 would require more processing power than CERN could pro-
vide locally, and for this reason, Data Challenges would run worldwide,
making as much use of Grid tools as possible.

A description of the goals of each individual part of the Data Chal-
lenges follows.

2Dark matter is believed to make up the vast majority of the mass of the universe,
and is called “dark” because it emits no radiation and is only inferred by its gravitational
effects on visible matter.
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Data Challenge 0

The primary goal of DC0 was to test the continuity of the software chain,
and to verify that it was ready for Data Challenge 1. It was intended to
simulate and reconstruct samples of the order of 105 Z + jet events, or
similar. Issues to be checked included:

• GEANT3 [5] (simulation of detector response to the final-state parti-
cles).

• “Pile-up” handling.

• Reconstruction running.

• Database access (read/write).

A few samples of single particle data (electrons, muons, and photons)
would also be generated to study the impact of the detector layout.

Data Challenge 1

DC1 increased the sizes of simulated event samples to 107, a number that
was too big to be handled locally by CERN, thus creating the need to in-
volve outside sites for extra processing power. DC1 had the following
goals:

• Provide a sample in the order of 107 di-jet events each, for High Level
Trigger [6] (HLT) studies.

• Do reconstruction and analysis on a large scale to find out where the
bottlenecks are.

• Provide samples of events for physics studies.

• Utilize Grid tools to involve outside sites and to gain experience with
this computing model in practice.

• Use some of the produced data to carry out evaluation of dBase tech-
nologies.
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Data Challenge 2

The details of this final Data Challenge depended on the results from DC0
and DC1, but the initial goals included:

• Use the Grid test bed that would be built in the context of the LHC
Computing Grid Project with the scale at a sample of the order of 108

events.

• GEANT4 simulation.

• Investigate generated samples for new physics.

• Extensive use of Grid middleware.

• Perform studies of the trigger system (a sequential series of hard-
ware- and software-based event filters).

1.2 Computational Tools for Modern Science

It is clear from the above that ATLAS and future projects will require new
tools for computing that encourage international collaboration.

While today’s personal computers are both faster and offer more stor-
age space than the supercomputers of the 1990s, they are not – by them-
selves – capable of meeting the coming demands for storage and com-
puting power. The concept of Grid computing has emerged as a means
to cope with this problem, by allowing computational tasks to be dele-
gated via the Internet to a large number of Grid clusters scattered around
the world, easily allowing off-site resources to contribute to the analy-
sis. However, traditional Grid computing has relied on dedicated com-
puter clusters, and this makes the threshold for participating higher than
it needs to be.

With the advent of the personal computer, something almost as impor-
tant as the increase in performance has happened. Traditionally, comput-
ing power was concentrated in a small number of supercomputers, and
could readily be taken advantage of when needed.

Today, the situation is different: As computers became more powerful
and affordable, the tremendous growth in the world’s combined comput-
ing power came not only from more powerful computers, but also from an
amazing growth in personal computer ownership. A natural consequence
of this is that the world’s computing power has become decentralized,
scattered around in millions of personal computers.
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The owner of each workstation has dedicated access to his own com-
puter’s resources at any time, but, unfortunately, most of the CPU cycles
provided by the hordes of personal computers are wasted, either because
the owner is away, or because most of the time the computer is running in-
teractive programs where it cannot do much of anything besides waiting
for user input.

The primary goal of the Condor Project was to develop software that
would enable scientists and engineers to harness these wasted resources,
while still giving the owner of each workstation its full capabilities when
he is present [7].

Simply put, the Condor software manages computing resources in an
effective manner – it provides job queuing mechanisms, scheduling poli-
cies, priority schemes, resource monitoring, and resource management;
it is a general batch system optimized for heterogeneous clusters of non-
dedicated computers. Users submit their jobs to Condor, which in turn
places them into a queue, chooses when and where to run the jobs based
upon a (configurable) policy, carefully monitors their progress, and ulti-
mately informs the user upon completion.

It is clear that allowing Condor pools to act as Grid clusters is a good
way to attract more computer power to the Grid. Wasted resources ben-
efit no one, so Condor can in theory provide the means to add extra re-
sources to the Grid at a very low cost and with relatively small effort. The
Grid connection is also a clear advantage from a Condor user’s point of
view, since the Grid extends Condor in a natural way: Condor by itself al-
lows for resource utilization across computer boundaries, and combined
with the Grid, this is taken one step further by also spanning institutional
boundaries.

The next two chapters will give a more detailed description of Condor
and Grid, the latter with a focus on the NorduGrid middleware that was,
for reasons that will be explained later, found to be the best candidate for
bringing Condor pools to the Grid. The chapter on Condor does in par-
ticular discuss some of the potential pitfalls with respect to performance
and security that a system administrator should be aware of. The last two
chapters describe the creation of the software that connects Condor to Nor-
duGrid, and experiences with the finished product under ATLAS’ Data
Challenge 2.



Chapter 2

The Condor Batch System

2.1 Exceptional Features

For users with access to computer parks where most machines are con-
nected by network filesystems and shared user databases, a simple and
unsophisticated batch system might not provide the incentive required to
make them want to learn and use a new system. After all, users privileged
with such an environment can simply log into any personal workstation
remotely and start their jobs by hand. This scheme burdens the user with
a lot of manual labor, but it works and gives him more direct control of his
job, which is something many people are very reluctant to give up.

Fortunately for site administrators who would like to deploy a batch
system in their computer park, Condor provides benefits beyond the tra-
ditional set of features, that might prove useful enough to sway the more
conservative and skeptical users. The most attractive feature is proba-
bly the checkpointing mechanism, which is an effective safeguard against
many types of problems.

For computing jobs that last weeks or even months, a sudden power
outage or a system crash would be catastrophic. The owner of the job may
have no choice but to start the job from scratch and hope that whatever
caused it to terminate prematurely will not happen again.

Condor’s checkpointing mechanism provides protection against this
scenario; by backing up the job’s memory image at regular intervals to
a checkpoint server (either a machine dedicated for this purpose or the
submit machine), the person who submitted the job is assured that the job
will finish, even in an unstable environment.

If a machine goes down or becomes unavailable, the last checkpoint
image will be sent to an available execute machine that matches the job’s

16
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requirements, and the job can continue running from the state of the last
image.

Unfortunately, checkpointing comes at a cost: It is only available to a
certain class of Condor jobs (so-called “standard universe” jobs, as will
be discussed later in this section), and there are many restrictions on jobs
which Condor has been asked to transparently checkpoint. Among the
things not allowed are: multiprocess jobs, interprocess communication,
alarms, timers, sleeping, memory mapped files, opening files for both
reading and writing at the same time, and dynamically linked executa-
bles1.

The same class of Condor jobs can also benefit from remote system calls,
which means that system calls2 accessing the file system are forwarded
from where the job is running to where the job was submitted. Conse-
quently, one does not need to worry about the data requirements of a sub-
mitted job: Data that is read or written by such a Condor job is continually
transferred between the submit and the execute machine, so that from the
job’s point of view, it is running on the submit machine. As long as the
data requirements are satisfied on the submit machine, they are guaran-
teed to be satisfied on any machine in the pool with compatible hardware.

Condor offers several execution environments, commonly referred to
as its “universes”: vanilla, standard, pvm, scheduler, globus, mpi, and java; of
these, the most important are vanilla and standard.

The vanilla universe is for any regular executable and script that one
could run from the command line. The vanilla universe places no restric-
tions on what the job is allowed to do, but neither does it allow for check-
pointing and remote system calls.

The standard universe is for executables that have been re-linked to the
Condor libraries using condor_compile, which is a special program in-
cluded with Condor that wraps around and alters the behavior of the nor-
mal command used to link executables. The standard universe is the only
universe that enables the aforementioned checkpointing mechanism and
remote system calls.

The remaining universes are less commonly used: scheduler is for jobs
acting as metaschedulers3 and java provides a way to run Java programs
without having to use the vanilla universe, which would have excluded

1The restriction on dynamically linked executables applies only on the Digital Unix
(OSF/1), HP-UX, and Linux operating systems.

2A system call is the mechanism used by an application program to request a service
from the operating system kernel.

3A metascheduler is a program that manages dependencies between jobs at a higher
level than the Condor Scheduler.
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available computers of otherwise incompatible architectures (Java pro-
grams run on a virtual machine, so the actual underlying hardware does
not matter).

Finally, Condor also provides an outgoing interface to PVM, MPI, and
Grid computing through the pvm, mpi, and globus universes, thus pro-
viding a consistent framework around these environments, making them
more accessible to users already familiar with Condor’s job submission
interface. A short description of these universes is given in Sections 2.7.1
(PVM), 2.7.2 (MPI) and 3.2 (Condor-G/Globus).

However, as these features are optional, they will not be available in
every Condor installation. In fact, the only universe that is guaranteed to
be available is vanilla, and the standard universe is available on operating
systems that support it.

2.2 The Topology of a Condor Pool

Perhaps the most important part of installing Condor is designing the
topology of the pool. A node in Condor can assume any combination
of the following four roles: central manager, execute, submit, and checkpoint
server.

The role of highest importance is that of the central manager, which
is responsible for collecting information, and for negotiating between re-
source providers and resource requesters. If the central manager is down,
no new jobs can be submitted, and jobs cannot migrate to a different ex-
ecute machine. It is therefore crucial that a reliable machine with a good
network connection to all machines in the pool is chosen for this role.

An execute machine is one that is configured to accept and run Condor
jobs. Any machine in the pool, including the central manager, can assume
this role. The same goes for the submit machines, which simply are com-
puters from which jobs can be queued.

Perhaps surprisingly, the resource requirements for a submit machine
can be greater than the requirements for an execute machine. For every
active standard universe job, there must be a so-called shadow process run-
ning on the machine from which it was queued (the shadow process is
there to handle forwarded system calls). Furthermore, unless a dedicated
checkpoint server is used, the memory checkpoints are stored on the sub-
mit machine, so some disk space is also needed for this (exactly how much
will of course depend on the job’s memory footprint). Since there is no
limit on the number of jobs that can be submitted from a single machine,
it is clear that a submit machine’s resources can easily be depleted.
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The fourth and final role of a Condor machine is the dedicated check-
point server. This role is optional; if configured, the chosen machine will
store checkpoint files for every job in the pool. It follows that the most im-
portant properties of the checkpoint server is a high bandwidth network
connection and lots of disk space.

2.3 Installing Condor on Linux

Although Condor is a portable system that runs on many different operat-
ing systems, it is probably the Linux version that is most frequently used.
This, and the fact that only the Linux version has been used in this the-
sis, justifies a short discussion on the specific problems encountered while
installing and setting up Condor on this operating system.

The first thing to note when preparing a Linux machine for Condor
is the specific Linux distribution installed. Condor is currently only sup-
ported on a select group of versions of the “Red Hat” and “SuSe Enterprise
Server” Linux distributions. Distributions and versions not listed may still
work, but are obviously less tested (if at all).

A potential problem that will be immediately apparent for all unsup-
ported distributions is that it can be difficult to prepare programs for the
standard universe using condor_compile with other compilers than the
one included with the distribution on which your Condor package was
designed to run.

On earlier versions of Condor, condor_compile required GCC (GNU
Compiler Collection) version 2.96, which is an unofficial version that only
existed on older Red Hat systems. If you did not have this particular ver-
sion of GCC, there were two possible solutions:

1. Compile and link the programs on a machine running a supported
version of Red Hat; needless to say, this would be terribly inconve-
nient.

2. Install Red Hat’s compiler on your own system. This alternative is
probably the best, but it’s not a trivial operation: The infamous GCC
version 2.96 was broken in many ways, and should not overwrite or
interfere with the standard system compiler.

Another potential source of problems for local area networks where IP
addresses are assigned dynamically4 is the hostname 7→ IP address map-

4This was not a problem in our group’s local Condor pool, as all machines used in our
pool have static IP addresses and hostnames that are registered in DNS.
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ping for any machine in the Condor pool. The Condor system will not
work properly if the hostname of a machine in the pool is mapped directly
to to the loopback5 address in /etc/hosts (the local address database on
Unix systems), which happens to be the default setting on Red Hat.

Unfortunately, this situation is not likely to change, since mapping
the machine’s name to the loopback address is a reasonable configuration
when the real IP address is dynamically assigned by a DHCP6 server. This
configuration ensures that, no matter what IP address the machine gets
from DHCP, the internal hostname to IP address lookup from /etc/hosts

will always refer to the right machine.
There are two ways to deal with this: One way is to hard-code the

current IP address in /etc/hosts and hope that it will not change in the
near future. This is not good enough in general, so a different method is
required. Depending on the DHCP client program used, it may be possible
to have /etc/hosts updated automatically by the DHCP client program
every time the IP address changes.

The following will describe how to accomplish this using a DHCP
client that makes it possible to run a customized program every time the
IP address changes. In a typical scenario, this feature would just be used
to log the event, but in this case, the program must update the IP address
for the local machine in /etc/hosts.

The program that updates /etc/hosts can be a simple shell script – an
example of such is given in the Appendix, Section A.1. What it does is
update the IP address of the line in /etc/hosts containing the machine’s
fully qualified hostname with the IP address of the network interface spec-
ified as its first argument (typically eth0, which is the first Ethernet inter-
face on a Linux system).

Next, the DHCP client needs to be instructed to execute the program
whenever the IP address changes. How to do this will, of course, depend
on the DHCP client. For recent versions of dhcpcd [8], which is one of the
more common DHCP clients on Linux systems, this is accomplished by
putting the command to be executed in /etc/dhcpc/dhcpcd.exe.

5The loopback address is a special address (127.0.0.1) that is used when the computer
needs to connect to itself.

6Dynamic Host Configuration Protocol: A protocol that provides a means to dynami-
cally allocate IP addresses to computers on a local area network.
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2.4 Preparing a Program for the Standard
Universe

Condor was designed to be able to run most existing computational jobs
without much effort on the programmer’s part. For vanilla jobs, nothing
needs to be done, except making the job’s data files available on the ex-
ecute node, either manually or by telling Condor which files need to be
transferred during job submission. This section only applies to jobs that
are built for the standard universe.

To prepare an executable for the standard universe, it will often be
enough to re-link the program with condor_compile. Specifically, this
means that one takes the full command line normally used to create the
program executable, and then sticks the text “condor_compile” in front of
it. This ensures that all the appropriate Condor libraries are linked in.

As mentioned in Section 2.1, there are restrictions on the behavior of a
checkpoint enabled job, and some modifications in the code will be nec-
essary if the application does not adhere to the limitations [9] mentioned
in the Condor manual. There could also be good reasons for rewriting the
program to improve efficiency under Condor. See Section 2.5 for more on
that – this section will only discuss the changes that are required because of
limitations in Condor.

The main issue when preparing applications for Condor will usually be
I/O (Input/Output). Network I/O is special, and the specific limitations
are rather vague: Unless network access is “brief”, checkpointing and job
migration will be delayed.

Regular disk I/O will usually work fine, but there can be surprises.
For example, if your program uses compressed data, be sure that it does
not use external applications to handle the decompression. Neither multi-
processing nor interprocess communications are allowed, so unless the
compressed data is not decompressed inside the job itself, it cannot be
used at all.

One should also be aware of the fact that the semantics of system calls
inside Condor’s standard universe is not necessarily the same as it is out-
side. It is possible for system calls to misbehave because of bugs in the
remote system call mechanism, and this can, obviously, produce quite un-
expected results.

For example, the system call mkstemp will normally create a unique
temporary file, and return the newly allocated file descriptor along with
the associated filename. In Condor version 6.1.10, no file is created; the
filename is generated, but the file itself is not. Instead, Condor’s mkstemp
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returns the file descriptor for standard output and, consequently, all out-
put destined for the temporary file is merged with the standard output
stream. Moreover, when closing the file descriptor returned from mkstemp,
it is actually standard output that is closed, and all further output is inex-
plicably lost. Since a valid file descriptor is returned, the program cannot
know that mkstemp is misbehaving. Note that this particular bug has since
been fixed; the problem no longer exists in version 6.6.3.

Obviously, the exact semantics of misbehaving system calls can readily
change from one version of Condor to another, so before starting a long-
term job under an untested version, one should preferably write and run a
simple test suite for all “unusual” system calls used by the job. The source
code used for verifying mkstemp can be seen in the Appendix, Section A.2.
Running this program under Condor 6.1.10 makes the “hello, world” text
go to standard output instead of the temporary file.

2.5 Optimizing for the Standard Universe

Although Condor is designed to provide an environment for high-through-
put computing as opposed to high-performance computing, using the sys-
tem would be far less desirable if it meant that each individual job would
finish much later than the same job running as a normal process.

This section discusses Condor’s impact on the efficiency of a single
standard universe process, and how to work around some of its inherent
pitfalls. This chapter does not apply to programs running in the vanilla
universe, since they are completely ordinary processes, and get neither the
safety benefits nor the performance and resource penalties that a standard
universe job would get.

All benchmarks have been run on the same system; an Intel Celeron
800 MHz with 256 MB RAM. In the case where a job is submitted to Con-
dor as a standard universe job, both the execute and the submit machine
had the same CPU and memory size. The benchmarks were run on Con-
dor version 6.1.10.

Knowing that system calls are forwarded to the submitting host, one
would expect that programs involving lots of I/O would be degraded
most in performance, while CPU/memory intensive applications should
run with little (if any) slowdown.

The CPU and memory performance impact was measured using the
Linux version [10] of BYTE Magazine’s “BYTEmark” [11] benchmark suite
(Nbench, release 2) which is specifically designed to expose the capabili-
ties of the CPU, FPU and memory system.
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The benchmark was first run nine times as a normal process (Table 2.1),
followed by nine runs as a standard Condor job (Table 2.2). The perfor-
mance figures in these tables are the performances relative to an AMD
K6 233 MHz baseline system. Table 2.3 compares the benchmark’s perfor-
mance as a standard Condor process to a normal process by presenting
the average over the nine runs in column one and two, and the ratio of
columns one and two in column three.

Nbench test #1 #2 #3 #4 #5 #6 #7 #8 #9 avg.
Numeric sort 3.12 3.06 3.06 3.07 3.06 3.12 3.13 3.13 3.11 3.10
String sort 2.42 2.24 2.23 2.24 2.25 2.24 2.24 2.24 2.24 2.26
Bitfield 4.19 4.18 4.19 4.19 4.19 4.18 4.19 4.18 4.17 4.18
FP emulation 1.98 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97 1.97
Fourier 4.59 4.59 4.59 4.59 4.59 4.58 4.59 4.59 4.59 4.59
Assignment 5.12 5.41 5.42 4.91 5.10 5.40 5.40 5.41 5.34 5.28
IDEA 2.99 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98
Huffman 3.03 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02
Neural net 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.46 4.44 4.45
LU decomposition 6.87 7.87 8.26 7.03 7.91 7.55 7.69 7.98 7.07 7.58
Memory (Linux) 3.734 3.697 3.711 3.589 3.634 3.695 3.701 3.700 3.684 3.683
Integer (Linux) 2.732 2.716 2.716 2.716 2.716 2.727 2.730 2.730 2.726 2.723
FP (Linux) 5.198 5.438 5.524 5.234 5.448 5.359 5.396 5.463 5.240 5.387

Table 2.1: Nbench as a normal process on an Intel Celeron 800 MHz

Nbench test #1 #2 #3 #4 #5 #6 #7 #8 #9 avg.
Numeric sort 3.10 3.06 3.10 3.12 3.12 3.16 3.11 3.02 3.11 3.10
String sort 2.25 2.24 2.25 2.24 2.24 2.24 2.24 2.25 2.24 2.24
Bitfield 4.20 4.20 4.20 4.19 4.21 4.20 4.16 4.19 4.20 4.19
FP emulation 1.95 1.96 1.96 1.95 1.96 1.96 1.95 1.95 1.95 1.95
Fourier 4.29 4.29 4.28 4.29 4.29 4.29 4.29 4.27 4.29 4.29
Assignment 4.94 5.41 5.42 5.41 5.42 5.10 5.40 5.30 5.41 5.31
IDEA 2.97 2.98 2.97 2.98 2.98 2.98 2.97 2.98 2.97 2.98
Huffman 3.00 3.00 3.00 3.00 3.00 3.00 3.00 2.99 3.00 3.00
Neural net 4.36 4.36 4.36 4.36 4.36 4.36 4.37 4.37 4.37 4.36
LU decomposition 7.81 8.00 7.37 7.35 7.62 8.10 8.11 5.57 7.83 7.53
Memory (Linux) 3.601 3.709 3.712 3.707 3.711 3.636 3.695 3.680 3.708 3.684
Integer (Linux) 2.711 2.703 2.712 2.716 2.716 2.725 2.713 2.693 2.714 2.711
FP (Linux) 5.267 5.310 5.165 5.163 5.225 5.334 5.334 4.701 5.276 5.197

Table 2.2: Nbench as a standard Condor process on an Intel Celeron
800 MHz

By calculating the arithmetic mean of the ratios in Table 2.3’s final col-
umn, we have an average performance penalty of approximately one per-
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Nbench test normal avg. standard Condor avg. normal/standard Condor
Numeric sort 3.10 3.10 1.000
String sort 2.26 2.24 1.009
Bitfield 4.18 4.19 0.998
FP emulation 1.97 1.95 1.010
Fourier 4.59 4.29 1.070
Assignment 5.28 5.31 0.994
IDEA 2.98 2.98 1.000
Huffman 3.02 3.00 1.007
Neural net 4.45 4.36 1.021
LU decomposition 7.58 7.53 1.007
Memory (Linux) 3.683 3.684 1.000
Integer (Linux) 2.723 2.711 1.004
FP (Linux) 5.387 5.197 1.037

Table 2.3: A comparison of Nbench run as a standard Condor process and
a normal process based on the averages over the nine runs in tables 2.1
and 2.2

cent. This confirms the expected results: One need not hesitate to use
Condor’s standard universe for CPU, FPU or memory intensive jobs, and
there is no need to do any Condor specific optimizations.

I/O is an entirely different matter: Since every interaction with the file
system must be forwarded to the submitting machine, one can expect a
lower bound on the system call latency to be at least equal to the network’s
round-trip time (as measured with the standard ping program). Based on
this fact, one would expect the I/O performance of a standard universe
job to degrade faster than a regular process on decreasing block sizes.

The latency of forwarded system calls was first examined by running
a benchmark program that stats the current directory one million times.
stat is a system call that returns status information on an entry in a Unix
file system, and must therefore be forwarded to the originating machine;
stat is suitable for this test because the amount of data transferred is small
enough to fit in a single network packet, and should therefore accurately
measure the minimum latency of forwarded system calls. See Section A.4
in the Appendix for the source code.

The test revealed that one million stats on the current working di-
rectory as a normal process took 1.4 × 10−6 s per call. When forwarded
by Condor’s remote system call mechanism, the same job was timed at
3.7 × 10−4 s per call. Considering that the current round-trip time of the
network was 2.0× 10−4 s, one can see that there is some additional over-
head in the Condor communication protocol.
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Next, a synthetic benchmark was written to measure the performance
impact on data transfers. The program basically writes a predetermined
amount of random data (randomized so that possible network compres-
sion would not influence the results) directly to disk, and calculates the
rate at which data is written – see Section A.3 in the Appendix for the
source code. The results are presented in Table 2.4.

Block size normal standard Condor normal/
(bytes) (kB/s) (kB/s) standard Condor

64 7666.34 141.332 54.2
128 11357.5 252.225 45.0
256 18657.8 444.575 42.0
512 22619.8 703.32 32.2

1024 26369.2 951.972 27.7
2048 28445.1 1493.56 19.0
4096 30926.5 47.651 649.0
8192 30600.4 2777.6 11.0

16384 30849.9 5542.3 5.6
32768 32062.5 6964.04 4.6
65536 27284.2 7241.96 3.8

Table 2.4: Results from I/O benchmark

The program revealed that Condor is extremely sensitive to the I/O
block size. This is in itself is not surprising, since two times the round-trip
time is added to each I/O operation; one would expect the performance
to increase strictly (but asymptomatically approaching a maximum) when
the block size is increased. This assumption turned out to be correct, ex-
cept for an anomaly at a particular block size, which turned out to be ter-
rible for performance.

As can be seen in Table 2.4, the relative difference in transfer rate be-
tween a normal process and a Condor process diminishes as the block size
increases, except for one particular block size: 4096 bytes. For some rea-
son, using a block size of 4096 bytes reduced the I/O transfer rate by a
factor of over 12 compared to a block size of merely 64 bytes!

Considering that 4096 bytes is one of the most commonly used block
sizes (it’s a typical buffer size in standard ANSI C file stream library func-
tions such as fread, fwrite, etc.), it would be wise to analyze every job
that does non-trivial I/O and make sure that the block size is efficient.
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2.6 Security Concerns in Condor

True Condor programs, in other words those linked for the standard uni-
verse, should not be any additional reason for concern. All allowed system
calls that interact with the filesystem are intercepted and forwarded back
to the submit machine, so this does not make it easier for the job owner to
abuse machines he normally wouldn’t have any access to. Illegal system
calls should cause the process to terminate, which means that they also
pose no additional threat (unless Condor failed to intercept the system
call, which is supposedly not possible).

The primary security concern with Condor is that it is susceptible to
denial of service attacks from vanilla programs – again, these are normal
programs that have not been re-linked for Condor, and thus their system
calls are not forwarded back to the originating machine. If the execute and
the submit nodes are in the same user ID domain, vanilla jobs run as the
user that owns the job; otherwise they run as the Unix user nobody.

Allowing vanilla jobs means that a malicious user could do things like
filling up world writable storage areas (such as /tmp), or bringing the sys-
tem to its knees by creating more processes than it can handle (an attack
known on Unix systems as fork death, where one repeatedly calls the sys-
tem call fork to create new processes until the system becomes so unre-
sponsive that the offending process can not be terminated, forcing a hard
restart).

Another problem is that, although Condor tries to clean up after a
vanilla job finishes, a malicious user could create child processes that are
left behind. If these lurker processes run as the user nobody, they could
easily attack the next job that comes in under the anonymous nobody user.
The only way Condor could be sure to terminate all child processes would
be to kill all processes owned by nobody, but this is not a viable solu-
tion: nobody is used for many non-privileged Unix daemons, and Con-
dor would have killed those as well. Fortunately, it is possible to instruct
Condor to use a user ID dedicated to Condor for anonymous jobs, mak-
ing it safe to kill all remaining processes owned by the dedicated user on
job completion, thus closing the security hole. Note that this implies that
multiprocessor systems need one dedicated user ID per CPU.

Finally, it is also worth mentioning that vanilla jobs pose yet another
minor threat in that they can access all world readable files. For environ-
ments where security is a high concern, the Condor manual recommends
using IP-based security mechanisms to restrict Condor access to machines
where the root user can be trusted. Condor also provides support for
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strong authentication, encryption, integrity assurance and authorization,
allowing site administrators to tighten security even further. Most of these
features can be enabled without affecting legitimate users.

See the proper section [12] in the Condor Manual for more detailed
information on securing Condor.

2.7 Parallel Programming for Condor

Both NorduGrid and Condor can be made to take advantage of parallel
programming, and the following two subsections details Condor’s two
supported parallel programming paradigms and the restrictions they im-
pose on a Condor pool. As will be explained in Section 4.1, these re-
strictions make parallel programming impractical in combination with the
NorduGrid middleware.

2.7.1 PVM

PVM [13] stands for Parallel Virtual Machine, and is a software system de-
signed to run parallel jobs on heterogeneous computer clusters. Applica-
tions written for this system can use Condor’s PVM universe.

PVM allows programs to run simultaneously on multiple machines,
while communicating with each other via an interface provided by PVM.
By assuming the role of the resource manager for the PVM daemon, Con-
dor makes it possible to use this system on non-dedicated machines by
dynamically constructing virtual machines from machines picked out of
the Condor pool.

Not all parallel processing paradigms would fit in Condor’s volatile
machine environment where nodes may come and go, so the master-worker
model was chosen. This model is based on one node – the submit node –
acting as a controlling master for the parallel application, sending pieces of
work to execute nodes as they become available. If a worker node vacates
a running job, the master can simply request a replacement node. The
number of workers is unimportant and changes in the virtual machine
size can be dealt with easily. For these reasons, the master-worker model
works very well with Condor.

Condor-PVM involves no changes to the PVM interface (neither the
programming nor the binary interface), so some master-worker PVM ap-
plications can be used unchanged under Condor-PVM; not even re-linking
is necessary!
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Still, when comparing PVM to Condor-PVM, there are a few changes
and new features. In particular, there is the concept of the “machine class”:
Machines of different architectures belong to different classes. The ma-
chine class concept is used in the job submission file, where it is specified
how many nodes should be allocated in each class. This change is also
the only thing thing in Condor-PVM that makes the job submission script
different from standard and vanilla scripts. Again, refer to the appropriate
section of the Condor manual [14] for the full details.

2.7.2 MPI

The message passing paradigm [15] is most commonly used on parallel ma-
chines with distributed memory. It provides an environment under which
parallel programs may synchronize, by providing communication sup-
port.

Over the years, different vendors developed their own message pass-
ing systems, so to facilitate ease of use and portability, a standardization
effort was made. The result of this standardization was the Message Pass-
ing Interface (MPI) standard [16].

Programs using MPI can be further simplified with Condor’s MPI in-
terface [17]. Condor dedicates machines for running the programs, and it
does so using the same interface used when submitting non-MPI jobs. Ex-
cept for the machine_count attribute that specifies the number of requested
machines, the submission script looks exactly like that of a normal vanilla
or standard job.

On the administration side, Condor-MPI requires special care. The
MPI system requires dedicated execute machines, and a dedicated MPI
scheduling server. These machines cannot be regular desktop systems,
since programs running in the MPI universe cannot be moved to a differ-
ent computer or suspended.

This means that once these MPI computers start running a program,
they will continue running it until it completes. From the user’s perspec-
tive, the biggest inconvenience related to running MPI jobs under Condor
versus normal jobs is that it requires all jobs to be submitted from the ded-
icated MPI scheduling server.

But despite this, using Condor for MPI jobs can be useful since the pro-
cedures for submitting programs are almost identical to normal Condor
jobs. A programmer who knows the programming interface for MPICH
[18] version ch p4 and the normal procedure for submitting Condor jobs
needs no more knowledge to start using the system.
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Grid Computing

3.1 An Overview of Grid Computing

As mentioned in Chapter 1, the primary goal of Condor was to harness the
lost computing power resulting from the tremendous growth in personal
computer ownership. With the features discussed so far, Condor would
be partly successful in solving this problem; by making it possible for a
single institution to pool together its computing power, a local user will
be able to tap into its resources and use as much as he currently needs, or
as much as he is permitted to use.

Unfortunately, the original problem still remains, but in a larger scale:
Although Condor provides the means to aggregate the resources of nu-
merous individual computers into a single pool per institution, the pools
themselves remain disconnected, just as individual computers were with-
out Condor. The consequence is the same; some pools might at times not
be able to satisfy the demands of its users, while others might waste a lot
of computing cycles.

Grid computing emerged from the desire to close the gap between site-
wide clusters such as Condor, making computing power available any-
where, independent of physical location. The name “Grid” comes from
the analogy to the power grid, where one does not need to know where
the electrical power comes from, only that it is readily available in the out-
let.
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3.2 Using Condor for Grid Computing

Condor has been extended to support Grid computing in two ways: flock-
ing and Condor-G.

Flocking is the simplest extension: If enabled, and a queued job cannot
be immediately started, Condor can move the job to a different Condor
pool. This provides a Grid solution in the sense that jobs are no longer
restricted to a single pool, but there are limitations to this technology. First
of all, there is no support for interoperability with other batch systems:
Flocking only works between Condor systems. Also, there is little support
for authentication, so one would typically only connect to “trusted” Con-
dor pools (i.e., pools where every local user is trusted by default). Both of
these points make it difficult for a Grid built on Condor’s flocking tech-
nology to grow beyond a certain size.

Condor-G is a more ambitious piece of software: Grid applications of-
ten involve large amounts of data and/or computing and often require
secure resource sharing across organizational boundaries, making it diffi-
cult to handle with today’s Internet and web infrastructures. Use of Grid
computing is not yet commonplace, mostly because of the various prob-
lems related to managing jobs over a large global network.

Condor-G makes it possible to submit jobs from Condor to widely dis-
tributed Grid resources, using the Globus [19] toolkit. At first glance, it
is not apparent why Condor-G is needed; obviously, it is possible to sub-
mit Grid jobs without it. But performing computations on resources that
belong to different sites can be difficult in practice. Because of the het-
erogeneity that is possible in a Grid network, there will likely be differ-
ent methods for authentication and authorization, different hardware and
software, and the user will in general have no easy way to obtain the nec-
essary information of his execution environment. On top of this, there are
the obvious issues with security, failure handling and job status. What
Condor-G brings is, among other things, a convenient interface to job
monitoring, failure and completion notification, and automatic renewal
of your Globus credentials, should they expire during operation.

Handling all of the above issues manually could make Grid computing
impractical and more trouble than it was worth, so Condor-G was created
in an effort to relieve the user from all of these problems by providing
a complete framework that allows the user to harness multi-domain re-
sources as if they all belong to one personal domain. Everything is done
using the same Condor tools that are used for managing local Condor jobs.
Also, Condor-G is a fault-tolerant system; no functionality is lost if the
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submit machine crashes while a job is running.
The above mentioned practical problems with Grid computing can be

grouped into three distinct problems: remote resource access, computation
management, and remote execution environment.

Condor-G solves the issue of remote resource access by requiring that
remote resources can be interfaced with standard protocols for resource
discovery and management. The protocols used are defined by the Globus
toolkit, a de facto standard for Grid computing [20]. The computation
management and remote execution environment components can be taken
from the Condor system (or any other resource management system sup-
ported by the Grid middleware).

3.3 Grid to Condor Job Submission

As described in the previous section, Condor-G makes it possible to sub-
mit Grid jobs with the standard Condor interface, but it does not provide
the means for Condor pools to receive jobs from the Grid.

There are several different types of Grid middleware, and a Condor
interface has to be written for each one that needs to be able to submit jobs
to Condor.

As the main part of this thesis, such an interface has been written for
the NorduGrid middleware, also known as the Advanced Resource Connector
(ARC) [21]. This interface will from now on be referred to as the ARC →
Condor interface, where the arrow indicates the direction in which jobs
travel.

3.4 The Advanced Resource Connector

ARC is a GPL licensed open source Grid solution, developed under the
NorduGrid project. Built atop a slightly modified version of the Globus
toolkit, it provides all the basic Grid services, such as authentication, job
submission, monitoring, etc. The software is mature, and is already in use
in several Grid projects: NorGrid [22], Swegrid [23], DCGC [24], NDGF
[25] and, of course, by the NorduGrid project [26] itself.

The NorduGrid middleware was selected as a suitable candidate for
development of a Condor interface for several reasons:

• It has an active and open development process.

• Its design is modular and encourages third party extensions.
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• It is used as the primary Grid tool for Northern-Europe in ATLAS
DC2.

Although ARC is primarily used with variants1 of PBS [27] (Portable
Batch System), its developers had anticipated the need to support other
batch systems.

It is obviously wise to build Grid middleware that is not too closely
modeled around a specific batch system, since several systems exist that
cater to different requirements and types of clusters. For example, Con-
dor is especially designed to operate on a non-dedicated heterogeneous
cluster where nodes can easily (and safely) be added or removed, while
PBS works best in a traditional environment with dedicated nodes. Batch
system independence makes it possible to build bridges between any lo-
cal resource management system and the Grid middleware. This makes it
much easier for the Grid to grow, and it also fits very well with the anal-
ogy to the electrical grid, where it is completely irrelevant what provides
the power and where it comes from; the only thing that matters is that it is
aggregated and available in the outlet.

1PBS Pro, OpenPBS and Torque (formerly ScalablePBS).
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The ARC → Condor Interface

4.1 Initial Goals

The design goal of highest importance in the ARC→ Condor interface was
that a Condor pool would not inconvenience the ARC user in any way. In
particular, a user submitting an ARC job should never need to rewrite a
job description that would have succeeded on PBS.

A typical cluster topology is illustrated in Figure 4.1. It shows a Con-
dor pool consisting of a number of submit/execute nodes (drawn with
dashed lines, to signify that they are non-essential1 for basic functional-
ity), a central manager for the Condor pool, and the Grid Manager which
is also configured as a Condor submit node. The arrowheads indicate the
direction in which jobs can flow, showing that external Grid jobs enter the
Condor pool via the Grid Manager, which acts as a single entry point for
all Grid jobs.

This cluster organization is ideal for vanilla jobs, which is the only re-
quired universe for Grid jobs. PVM, MPI, Condor’s standard universe,
and other special Condor features could naturally be supported in the fu-
ture but it will probably never happen.

PVM would have been a good candidate for future extensions to the
ARC → Condor interface since it does not require a dedicated computer
pool, but it is not currently supported by ARC. MPI is supported by ARC
but, unfortunately, it does require dedicated computers and thus it is un-
usable on most Condor installations.

1Both the Grid Manager and the Condor central manager can assume the roles of ex-
ecute machines, eliminating the need for additional execute nodes, but this is obviously
not recommended for a production system, since both machines are already under con-
siderable load.
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Figure 4.1: A typical ARC/Condor cluster configuration

Finally, the most important of the unsupported universes, the standard
universe, could never be efficiently supported, as a result of the architec-
tural design illustrated in Figure 4.1. The fact that all Grid jobs have a
single entry point is what precludes Grid jobs from Condor’s standard
universe; as previously mentioned, standard universe jobs forward their
system calls back to the submit machine; this is usually a good thing for
normal interactive use of Condor, since different people will usually sub-
mit their jobs from different machines, effectively distributing the load
among them. In the ARC → Condor case, all jobs are submitted from
the Grid Manager, creating a huge bottleneck for I/O intensive jobs, and
to top it off, there isn’t even the normal benefit of system call forwarding
(since all the data used by the job had to be uploaded to the Grid Manager
in the first place, it is easy to simply pass this along to the execute node,
using Condor’s file transfer mechanism for vanilla jobs).

Support for the standard universe would also require the user to re-link
his program using Condor’s tools, and to ensure compatibility, this should
be done using tools of the same version as that running on the remote
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cluster. Alternatively, the system could be written so that the user submits
an archive of his unlinked object code, allowing the link operation to be
performed on the cluster that will run the job. Either way, it is complicated
and clumsy and it makes support for the standard universe uninteresting,
even when disregarding the performance penalties mentioned above.

In summary, the normal benefits of the standard universe do not apply
in this special application, and would in fact only do harm. For all of these
reasons, vanilla will likely remain the only supported universe.

4.2 An Implementation Overview

The ARC → Condor software consists of two distinct interfaces: A Grid
Manager interface that deals with the actual job control (submission, can-
cellation, and finalization), and an interface to ARC’s Information System,
which provides detailed information on the cluster, its queues, and its jobs.
The user will typically access this information via the Grid Monitor web in-
terface.

Much of the work required for writing such an interface has already
been taken care of by the NorduGrid developers: All code that would be
common to the various batch system interfaces is already in place, and can
easily be used when developing the batch system side of the interface.

For example, the first task undertaken on the ARC → Condor project
was writing a parser2 for xRSL, the language used to submit jobs in ARC.
This proved difficult, because the xRSL grammar is not context free, and
the most common parser generators are designed for grammars where the
meaning of a symbol does not depend on its context. A solution to this
problem was found by altering the grammar to make whitespace an active
symbol, but unfortunately, this turned out to be highly complicated, very
prone to errors, and hard to extend.

Luckily, it was soon discovered that an xRSL parser did not need to be
written at all. Since this is something every batch system interface would
require, the NorduGrid team had wisely made its own parser do all the
work: The ARC software converts the xRSL job description to a simple
file (called the GRAMI file) containing a flat list of variable name/value
pairs, which is trivial to parse. By discarding the full xRSL parser in favor
of simple expressions for extracting the name/value pairs, the code was
greatly simplified.

2A program that determines the meaning of a sentence or string of symbols in a lan-
guage.
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4.3 The Grid Manager Interface

The programs that had to be written for Grid Manager communication
were: submit-condor-job, finish-condor-job, and cancel-condor-job.
Most of the information required to write this part was found in the Grid
Manager Administrator’s Manual [28].

4.3.1 submit-condor-job

When a job is first submitted, and is ready to be passed on to the local
batch system, the program submit-condor-job is started. The Grid Man-
ager will run this program with exactly one argument: the file containing
the list of name/value pairs that was generated from the job description
written in the xRSL language.

submit-condor-job starts by loading the name/value pairs into mem-
ory. Next, a shell script wrapper is created for starting the actual job exe-
cutable. In earlier versions of the ARC → Condor interface, there was no
wrapper script, and Condor was instructed to start the executable directly.
There were several problems with this approach:

• Condor’s job description language doesn’t provide the means to em-
bed whitespace or zero length strings in the job’s command line ar-
guments, both of which are required to be compatible with ARC and
PBS.

• ARC states that, if the job specifies a runtime environment (such as
ATLAS), it must run scripts associated with the runtime environ-
ment(s) before and after running the job, on the execute machine.
This is also impossible to do directly from the Condor job descrip-
tion.

• xRSL has a join attribute that instructs the batch system to merge its
standard output and error channels. Condor’s job description lan-
guage has no support for this.

• Errors in the list of output files causes Condor to re-run the job for-
ever. By omitting the list of output files, a mistyped output file in the
xRSL will never cause the job to be stuck in an infinite loop, but this
makes Condor transfer all files created by the job back to the Grid
Manager, regardless of whether they are required or not, wasting
both network bandwidth and storage space on the Grid Manager.
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These four points show that a more flexible tool than Condor’s job submis-
sion language is required, so submit-condor-job was extended to create
a wrapper script capable of handling them.

For the sake of debugging, the entire wrapper script is included in the
Grid Manager log (this also applies to most output produced by the ARC
→ Condor interface; it is always a good idea to ask for the Grid Manager
log by setting the xRSL attribute gmlog when submitting ARC jobs, as this
returns enough information to determine the cause of most errors).

Following the creation of the wrapper script, submit-condor-job will
create a job description for Condor. The created job description should
mirror the xRSL as closely as possible, except for the parts now handled by
the wrapper script. And of course, the executable used in the Condor job
description is now the wrapper script, not the actual executable specified
in the xRSL.

Having created both a wrapper script and a job description for Con-
dor, the only thing that remains in submit-condor-job is to queue the job
for execution in the Condor pool (job submission is done with Condor’s
standard user interface, i.e., condor_submit). Once the job is submitted to
Condor, submit-condor-job will append the job ID assigned by Condor
to the GRAMI file, allowing other parts of the ARC middleware to find the
Condor job associated with each GRAMI file.

4.3.2 finish-condor-job

The purpose of the next program, finish-condor-job, is to inform ARC
that a Condor job has finished. The normal way to handle job finalization
in ARC is to repeatedly poll each job with the program scan-condor-job.
This inefficient approach is thankfully not necessary with Condor, which
has asynchronous feedback: The typical Condor configuration is to inform
the job owner by email that his job has finished, but the mail program is
configurable. In this environment, it is the Grid Manager that needs to be
notified, not the owner (at least not at this time, and in this way). There-
fore, Condor must be configured to substitute the standard Unix mail pro-
gram, /bin/mail, with another program, finish-condor-job, written es-
pecially for communicating with the Grid manager.

finish-condor-job does basically two things: First, it determines the
exit code of the finished job, and second, it writes this code to a desig-
nated file in the Grid Manager’s control directory. Noticing the exit code,
the Grid Manager will know that the job has finished and will clean up
the job’s session directory, leaving only the output files, ready to be down-
loaded by the job owner.
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Note that, even though finish-condor-job renders scan-condor-job
useless, a program by that name is still installed. This is because ARC
expects all LRMSes to implement a scan-lrms -job, and will always try
to run this program, even when it does not exist. This fills up the log
with unnecessary error messages, and to fix it, a dummy version of scan-
condor-job, whose only action is to sleep for one hour, is installed. Mak-
ing the program sleep for this long might seem unnecessary, but scan-
condor-job is repeatedly restarted, so making it sleep for a long time ac-
tually minimizes the system load.

4.3.3 cancel-condor-job

The last program in the job control interface is cancel-condor-job. The
purpose of this script is obvious from the name: Cancel a Grid job running
in the Condor pool on receipt of a ARC cancellation request.

Like the previously mentioned submit-condor-job, this program takes
a GRAMI file as its only argument. The Condor job ID identifying the
Condor job associated with the GRAMI file is retrieved, and condor_rm is
used to terminate it immediately.

4.4 The Information System Interface

The second part of the ARC → Condor software, the Information Sys-
tem [29] interface, consists of two scripts: cluster-condor.pl and queue+

jobs+users-condor.pl. These scripts are run periodically by ARC, pro-
viding a snapshot of the cluster’s state at that time. Both scripts are based
on the excellent templates accompanying the NorduGrid middleware.

4.4.1 cluster-condor.pl

cluster-condor.pl provides high-level information on the cluster, such
as total number of CPUs, number of used CPUs, number of queued jobs,
batch system type, version, and so on. This information is extracted using
Condor’s standard user interface (condor_version, condor_status, and
condor_q).

4.4.2 queue+jobs+users-condor.pl

This program provides details on each individual job, both running and
finished. Since the complete job history will always grow, efficiency in its
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implementation was given high priority, and so communication with the
Condor pool and disk accesses were kept at a minimum (if the script is too
slow, the information system may assume that the cluster is down, causing
it to drop out of the Grid Monitor).

For running jobs, information is extracted using the Condor programs
condor_status and condor_q, while for finished jobs, the logs created by
submit-condor-job and finish-condor-job contain all the necessary in-
formation.

Aside from the performance issues in queue+jobs+users-condor.pl,
the primary challenge in writing the information system backend was
the interpretation of the various attributes that have to be set by the in-
formation system. Explanations for each attribute can be found in the
nordugrid.schema file distributed with ARC, but it was still not easy to
decide how to represent all the values. Since the description was often
very open for interpretation, careful thought had to be given to find values
that closely match the semantics of the data returned by the PBS system,
which in a way has set the standard by being the first supported batch
system.
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ARC → Condor User Experiences

5.1 ATLAS DC2 via ARC → Condor

Having written the above programs, and successfully run some simple toy
jobs, the ARC→ Condor interface was ready to be challenged with a more
realistic usage scenario. To really put it to the test, the system was used in
the University of Oslo’s participation in ATLAS Data Challenge 2 (DC2)
which, for Northern Europe, would require an ARC cluster [30].

Two Condor pools were available for this purpose, and a Grid Manager
was installed on both. One pool administered by the university’s central IT
department (USIT), the other one a smaller pool consisting of the desktop
computers belonging to the group of Experimental Particle Physics.

A realistic test such as DC2 proved very valuable, unearthing several
problems that were not detected in synthetic tests. Most of these problems
could be fixed immediately without involving the developers of Condor
or ARC, and are not worth a detailed discussion, but there was one issue
with heterogeneous versus homogeneous clusters that deserves mention.

Our Condor pools are heterogeneous, whereas ARC’s information sys-
tem works best with homogeneous clusters, meaning that integration with
ARC is easiest when every node in the cluster has approximately the same
hardware.

In particular, it was a problem that ARC only specifies a single mem-
ory value for the entire cluster. In a heterogeneous pool, the difference
in memory between the largest and smallest node will often be big. By
advertising the lowest value, ARC would reject the cluster for all DC2
jobs, since all of them required more memory than our low-end machines.
Conversely, increasing the advertised node memory to satisfy DC2’s min-
imum requirements turned our cluster into a “black hole” that would at-
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tract more jobs than it could handle.
The reason this happens is simple: ARC’s information system is told

the number of nodes in the Condor pool, and assumes they all have the
advertised amount of memory, and will thus make its queuing decisions
based on this. Condor, on the other hand, knows the exact amount of
memory on each node, and once all nodes that satisfy the memory require-
ment are taken, the remaining jobs will wait in Condor’s queue. How bad
this really is will depend on the ratio of machines that make the memory
cut to those that do not. In our pool, less than half the nodes made the cut,
causing the queue to grow more than twice as big as it should.

In an effort to improve on this situation, the ARC → Condor interface
was modified so that it would stop sucking in Grid jobs when the number
of free nodes that satisfy the memory requirement drops to zero, and this
change has the unfortunate consequence of also preventing smaller jobs
from being accepted, even when there may well be free nodes in the Con-
dor pool that could run them immediately, but it is the best solution until
ARC’s information system is extended to hold the entire memory distri-
bution in the pool instead of a single number that is used for all nodes.

As is mentioned in Section 5.2 on future development, a better solution
to the above problem is implementing virtual job queues that divide the
heterogeneous pool into groups of machines of similar capabilities. This
way, the queues with low-memory machines will still be available after
the high-memory nodes are all occupied.

In the meantime, there are some factors that make the situation more
tolerable: Small jobs that are submitted before all high-end machines are
occupied will not block big jobs, unless Condor happens to run them on
high-memory machines that exceed their minimum requirements.

The odds of that happening can be reduced by overriding the default
ranking algorithm (read about the condor_rank attribute in the Condor
setup section [31] in the ARC manual) to favor the lowest memory node
that can still run the job. A downside to this trick is that low-memory
nodes also tend to have slow CPUs, causing the fast nodes to be underuti-
lized on pools with little traffic.

Finally, it should also be mentioned that, although the pool will not
run jobs when there are no nodes that satisfy the memory limit advertised
to ARC, it does not mean that you cannot queue jobs for execution when
the nodes eventually become available. This should still be possible by
explicitly specifying the name of the cluster.
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5.2 Results and Future Development

At the time of writing, ATLAS DC2 has been running on Condor via the
ARC → Condor interface since early summer 2004, and lately the suc-
cess rate of DC2 jobs [32] has become the highest of all clusters in the
NorduGrid project. The statistics for September 2004 is also included in
Table 5.1. This period was chosen because the ARC → Condor interface
had, at this time, matured enough to become useful in a production en-
vironment, and coincidentally, it was a month when our computers and
network happened to be working smoothly. But still, considering that the
top cluster (grid.uio.no) is running Condor on regular desktop comput-
ers that are frequently used by students and professors, it is nonetheless a
surprisingly good result.

Cluster successful jobs failed jobs failure rate (%)
grid.uio.no 1005 23 2
bluesmoke.nsc.liu.se 452 13 3
hypatia.uio.no 1497 75 5
farm.hep.lu.se 771 36 5
sg-access.pdc.kth.se 1019 68 7
benedict.aau.dk 2000 174 9
sigrid.lunarc.lu.se 772 72 9
lheppc10.unibe.ch 87 10 11
fe10.dcsc.sdu.dk 1544 242 16
ingrid.hpc2n.umu.se 572 94 16
hagrid.it.uu.se 2508 541 22
fire.ii.uib.no 580 154 27
lscf.nbi.dk 131 36 27
atlas.hpc.unimelb.edu.au 312 93 30
brenta.ijs.si 2078 674 32
atlas.fzk.de 1534 498 32
morpheus.dcgc.dk 1289 483 37
charm.hpc.unimelb.edu.au 66 27 41
genghis.hpc.unimelb.edu.au 47 23 49
hive.unicc.chalmers.se 18 10 56
lxsrv9.lrz-muenchen.de 83 49 59

Table 5.1: DC2 results for September 2004, ranked by failure rate (clusters
using ARC → Condor are italicized)

The users of the machines allocated to the cluster used in DC2 were
surprised by how little this experiment affected them in their daily work.
Some extra fan noise was noted on hot summer days, since many of these
machines are now running at 100 percent, 24 hours a day. One would also
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occasionally notice a few seconds delay on login, when a running job was
suspended and memory was swapped in from disk, but clearly, these are
minor annoyances of no significance.

Our biggest problems had nothing to do with the ARC → Condor soft-
ware, but rather limitations in hardware, stability issues in the local area
network, and misconfigured machines. For example, there were initially
some problems with the way our hard disks were partitioned, causing
many jobs to fail because of disk space shortage. Another source of prob-
lems was the file server that hosted the multi-gigabyte ATLAS runtime
environment. The load exceeded the server’s capabilities, and this caused
numerous stability problems. The failure rate dropped considerably once
these issues had been taken care of. Finally, there was also a problem
where the ATLAS application expected to find a substantial amount of
free space on /tmp in addition to its working directory, and thus managed
to trick Condor’s ClassAd mechanism into guaranteeing sufficient disk
space on machines that did not meet the job’s actual requirements.

But overall, running ATLAS Data Challenge 2 on Condor via ARC was
successful enough to prove that the time spent writing the interface to
make this possible was well worth it. The Condor interface itself is cur-
rently very stable, and is now a standard part of the ARC distribution.

As for future development, support for multiple job queues is very
high on the to-do list. Condor’s tolerance for diversity can become a prob-
lem in environments that expect homogeneity1 and multiple job queues
can possibly be used to divide up a diverse cluster into multiple (more
or less) homogeneous queues. One could, for example, make partitions
based on memory, so that machines with less than 256 MB fall into one
queue, machines with 256–512 MB in another, and so on.

Also on the list is support for flocking-enabled Condor pools and non-
x86/x86-64 architectures. Flocking-enabled pools may already be working
but has not yet been tested, and support for other CPU architectures and
other flavors of Unix should be a trivial enhancement since all of the code
in this project is shell scripts and Perl code. As long as recent2 versions of
Perl and the GNU core utilities are installed, the software should behave
the same regardless of the flavor of Unix and the CPU architecture. It
should be as simple as making the program that creates the Condor job
description specify the appropriate (according the xRSL) architecture and
operating system.

1As discussed in Section 5.1.
2Software requirements for the Condor interface are specified in the documentation

accompanying ARC.
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Conclusion

The central theme in this thesis has been the continually growing demand
for computing resources in modern science – advanced resource manage-
ment systems such as Condor, and Grid tools for distributing jobs across
institutional and national borders have emerged to fill this need; the basis
for this thesis was the idea that these two technologies can be combined to
form an even more powerful tool.

The successful application of the ARC → Condor interface in ATLAS
Data Challenge 2 has proven this to be true and, hopefully, the creation
of the ARC → Condor interface will make it easier for many institutions
to participate in and contribute to Grid computing by enabling use of a
batch system that does not require large investments in dedicated com-
puter equipment, but instead makes use of hardware that is already used
for different purposes, and resources that would otherwise have gone to
waste.
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Source Code

A.1 update-hosts

This file is available for download at 〈http://folk.uio.no/hakonrk/src/
misc/update-hosts〉.

#!/bin/sh
#
# Update the IP address of the line in /etc/hosts that corresponds
# to the machine where this script is run. The current IP address
# is determined using ifconfig on the interface given as the
# command line argument. Typically called as ’update-hosts eth0’.
#

# Fail with usage description if no interface was specified.
if [ -z "$1" ]; then

echo "Usage: $(basename $0) INTERFACE" >&2
exit 1

fi

# Extract the IP address from the requested interface with "ifconfig".
IPADDR=$(/sbin/ifconfig $1 | sed -n ’s/^ *inet addr:\([^ ]*\).*/\1/p’)

# Verify that we got a valid IP address.
if ! ping -c 1 "$IPADDR" &>/dev/null; then

mail -s "updates-hosts: invalid IP address: $IPADDR" root </dev/null
exit 1

fi

# Remove junk files on exit.
trap "rm -f /etc/hosts.tmp /tmp/update-hosts.$$" EXIT
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# Update the IP address for the line with the fully qualified hostname.
TAB=$(printf \\t)
sed "/\<$(hostname -f)\>/s/^[ $TAB]*[^ $TAB]*\(.*\)/$IPADDR\1/" \

/etc/hosts >/etc/hosts.tmp

# If the update was a success, replace current /etc/hosts in a
# safe way.
if [ -s /etc/hosts.tmp ]; then

mv -f /etc/hosts.tmp /etc/hosts &>/tmp/update-hosts.$$
if [ -f /etc/hosts.tmp ]; then

mail -s ’update-hosts failed’ root </tmp/update-hosts.$$
fi

elif [ ! -f /etc/hosts.tmp ]; then
mail -s ’update-hosts: could not write /etc/hosts.tmp’ root </dev/null

else
mail -s ’update-hosts: no labeled line in /etc/hosts’ root </dev/null

fi

A.2 test_mkstemp.c

This file is available for download at 〈http://folk.uio.no/hakonrk/src/
misc/test_mkstemp.c〉.

/*
* A simple example of what a test program for verifying system
* calls could look like. This program tests the mkstemp() call
* (which was known to be broken in older versions of Condor).
* To run this test, compile the program for Condor using
* ’condor_compile gcc test_mkstemp.c’ and submit the resulting
* executable as a standard universe job.
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

int fd;
char tempfile[] = "tmp.XXXXXX";

if ((fd = mkstemp(tempfile)) == -1) {
perror("mkstemp");
return 1;

}

printf("mkstemp returned file descriptor %d and filename %s\n",



A.3. IOBENCH.C 47

fd, tempfile);
fflush(stdout);

if (write(fd, "hello, world\n", 13) != 13) {
perror("write");
return 1;

}
close(fd);

return 0;
}

A.3 iobench.c

This file is available for download at 〈http://folk.uio.no/hakonrk/src/
iobench/iobench.c〉.

/*
* This program was used to test I/O performance under Condor’s
* standard universe by writing DATASIZE bytes to disk in various
* block sizes (64, 128, ..., 65536). The time it took to write
* DATASIZE bytes for each block size is timed and displayed
* on stdout. The average system load is also displayed, to
* make it easier to discard results that were perturbed by other
* processes competing for CPU time.
*/

#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define DATASIZE (32 * 1024 * 1024)

/* Wrapper function for mkstemp() that terminates the program on errors. */
int Mkstemp(char *template)
{

int fd;

if ((fd = mkstemp(template)) < 0) {
perror(template);
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abort();
}

return fd;
}

/* Wrapper function for open() that terminates the program on errors. */
int Open(const char *pathname, int flags)
{

int fd;

if ((fd = open(pathname, flags)) < 0) {
perror(pathname);
abort();

}

return fd;
}

/* Create a temporary file using mktemp() and open(). */
int Tempfile(char *template)
{

if (mktemp(template) == NULL) {
abort();

}
unlink(template);
return Open(template, O_CREAT | O_WRONLY);

}

/* Wrapper function for close() that terminates the program on errors. */
int Close(int fd)
{

if (close(fd) != 0) {
perror("close()");
abort();

}

return 0;
}

/* Writes n bytes to file descriptor fd. Handles interrupts and
* incomplete writes. */

ssize_t writen(int fd, const void *buf, size_t n)
{

const char *ptr;
size_t nleft;
ssize_t nwritten;

ptr = buf;



A.3. IOBENCH.C 49

nleft = n;
while (nleft > 0) {

if ((nwritten = write(fd, ptr, nleft)) < 0) {
if (errno == EINTR) {

continue;
} else {

return -1;
}

}
nleft -= nwritten;
ptr += nwritten;

}
return (ssize_t) n;

}

/* Wrapper function for writen() that terminates the program on errors. */
ssize_t Write(int fd, const void *buf, size_t count)
{

if (writen(fd, buf, count) != (ssize_t) count) {
perror("write()");
abort();

}

return count;
}

/* Wrapper function for fsync() that terminates the program on errors. */
int Fsync(int fd)
{

if (fsync(fd) != 0) {
perror("fsync()");
abort();

}

return 0;
}

void print_loadavg(void)
{

char buf[50000];
FILE *loadavg;

if ((loadavg = fopen("/proc/loadavg", "r")) == NULL) {
perror("/proc/loadavg");
abort();

}
fgets(buf, sizeof(buf), loadavg);
fputs(buf, stdout);
fflush(stdout);
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fclose(loadavg);
}

void randomize_buffer(char *buffer, size_t blocksize)
{

unsigned i;
unsigned rest = blocksize % sizeof(int);

blocksize -= rest;

/* Copy whole "int"s, as long as possible. */
for (i = 0; i < blocksize; i += sizeof(int)) {

*((int *) &buffer[i]) = rand();
}

/* If "blocksize" wasn’t divisible by sizeof(int), fill
* the rest here. */

for (i = 0; i < rest; i++) {
*buffer++ = 1 + (int) (255.0 * rand() / (RAND_MAX + 1.0));

}
}

/*
* Run benchmark using given blocksize.
*/

void do_iobench(int blocksize)
{

struct timeval tv1, tv2;
char *buffer;
double dt;
long n_written = 0;
int fd;
char template[] = "out.iobench.XXXXXX";

/* Seed the random generator with a fixed number. This ensures that
* the file created is the same every time, but is still
* incompressible. */

srand(0);

/* Allocate memory for I/O buffer. */
if (!(buffer = malloc(blocksize))) {

perror("malloc");
abort();

}
memset(buffer, 0, blocksize);

/* Get file descriptor to tempfile (name now stored in template). */
fd = Tempfile(template);
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/* Write DATASIZE bytes using blocksize sized blocks, and get time
* before and after writing. */

gettimeofday(&tv1, NULL);
do {

randomize_buffer(buffer, blocksize);
n_written += Write(fd, buffer, blocksize);

} while (n_written < DATASIZE);
Fsync(fd);
gettimeofday(&tv2, NULL);

/* Get time delta in seconds. */
dt = tv2.tv_sec - tv1.tv_sec

+ (double) (tv2.tv_usec - tv1.tv_usec) / 1000000.0;

/* Print results. */
printf("---\n");
printf("Blocksize %d: %g sec, %g kB/s\n", blocksize, dt, (DATASIZE/1024) / dt);
print_loadavg();

Close(fd);
unlink(template);

free(buffer);
}

int main(void)
{

int blocksize;

/* Do benchmark for block sizes 64, 128, 256, ..., 65536. */
for (blocksize = 64; blocksize < (128*1024); blocksize *= 2) {

do_iobench(blocksize);
}

return 0;
}

A.4 scbench.c

This file is available for download at 〈http://folk.uio.no/hakonrk/src/
scbench/scbench.c〉.

/*
* This program was used to test the system call overhead in
* Condor’s standard universe. The method is simple: do the
* stat() system call on the current working directory N_ITER
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* times, and print the elapsed time on stdout once it’s finished.
* The average system load is also displayed on startup, to make
* it easier to discard results that were perturbed by other
* processes competing for CPU time.
*/

#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define N_ITER 1000000

/* Initialize the timer. */
#define TIME_START \

{ \
struct timeval t1, t2; \
double dt; \
gettimeofday(&t1, NULL);

/* Stop the timer and print out the elapsed time since the timer
* was started. */

#define TIME_STOP \
gettimeofday(&t2, NULL); \
dt = (t2.tv_sec - t1.tv_sec) * 1000.0 + \

(t2.tv_usec - t1.tv_usec) / 1000.0; \
printf("%s(): %g ms\n", __FUNCTION__, dt); \
fflush(stdout); \

}

void print_loadavg(void)
{

char buf[4096];
FILE *loadavg;

if ((loadavg = fopen("/proc/loadavg", "r")) == NULL) {
perror("/proc/loadavg");
abort();

}
fgets(buf, sizeof(buf), loadavg);
fputs(buf, stdout);
fflush(stdout);
fclose(loadavg);

}

int main(void)
{

struct stat buf;
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int i;

/* Print out the system load, so that we can be sure we’re using an
* idle system. */

print_loadavg();

/* Print out the inode number for verification. */
stat(".", &buf);
printf("inode: %d\n", (int) buf.st_ino);

TIME_START;
for (i = 0; i < N_ITER; i++) {

stat(".", &buf);
}
TIME_STOP;

return 0;
}
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The ARC → Condor Interface
Source Code

All files in this chapter is part of the NorduGrid middleware, which is
available for download at 〈http://www.nordugrid.org/〉.

B.1 LRMS_Condor.pm

This Perl module contains shared code that is used internally by both the
Grid Manager and the Information System interface.

package LRMS_Condor;

use strict;
use warnings;

BEGIN {
use base ’Exporter’;

# Set the version for version checking.
our $VERSION = ’1.000’;

# This export list can be generated with the following Vim command:
# :r !awk ’/\<sub (lrms|nord|condor_)/ { print " ", $2 }’ % | sort
our @EXPORT = qw(

condor_config
condor_get_job_field
condor_get_queued
condor_get_running
condor_job_suspended
condor_location
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condor_rank
condor_run
condor_status_total
lrms_get_job_executionnodes
lrms_get_job_executionnodes_completed
lrms_get_job_status
lrms_get_jobinfo_logged
lrms_get_localids_running
lrms_get_queued
lrms_get_total
nordugrid_authuser_freecpus
nordugrid_authuser_queuelength
nordugrid_cluster_cpudistribution
nordugrid_cluster_lrms_type
nordugrid_cluster_lrms_version
nordugrid_cluster_totalcpus
nordugrid_cluster_usedcpus
nordugrid_job_lrmscomment
nordugrid_job_queuerank
nordugrid_job_reqcput
nordugrid_job_usedcputime
nordugrid_job_usedmem
nordugrid_job_usedwalltime
nordugrid_queue_defaultcputime
nordugrid_queue_gridqueued
nordugrid_queue_gridrunning
nordugrid_queue_maxcputime
nordugrid_queue_maxqueuable
nordugrid_queue_maxrunning
nordugrid_queue_maxuserrun
nordugrid_queue_mincputime
nordugrid_queue_queued
nordugrid_queue_running
nordugrid_queue_status

);
}

#
# Total number of CPUs available for running jobs.
#
sub nordugrid_cluster_totalcpus {

return (condor_status_total())[1];
}

#
# Number of CPUs that are busy, either in a job or interactive use.
#
sub nordugrid_cluster_usedcpus {

my @total = condor_status_total();
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return $total[2] + $total[3];
}

#
# CPU distribution string (e.g., ’1cpu:5 2cpu:1’).
#
sub nordugrid_cluster_cpudistribution {

# List all machines in the pool. Machines with multiple CPUs are listed
# one time for each CPU, with a prefix such as ’vm1@’, ’vm2@’, etc.
my ($out,$err,$ret) = condor_run(’bin/condor_status -format "%s\n" Name’);

# Count the number of CPUs for all machines in the pool.
my %machines;
for (split /\n/, $out) {

next if /^\s*$/;
my ($hostname) = $_ =~ /([^@]+)$/;
$machines{$hostname}++;

}

# Count number of machines with one CPU, number with two, etc.
my %dist;
for (keys %machines) {

$dist{$machines{$_}}++;
}

# Generate CPU distribution string.
my $diststr = ’’;
for (sort { $a <=> $b } keys %dist) {

$diststr .= ’ ’ unless $diststr eq ’’;
$diststr .= "${_}cpu:$dist{$_}";

}

return $diststr;
}

#
# Text string containing the LRMS type.
#
sub nordugrid_cluster_lrms_type {

return ’Condor’;
}

#
# String containing LRMS version. (’UNKNOWN’ in case of errors.)
#
sub nordugrid_cluster_lrms_version {

my ($out, $err, $ret) = condor_run(’bin/condor_version’);
return ’UNKNOWN’ if $ret != 0;
$out =~ /\$CondorVersion:\s+(\S+)/;
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return $1 || ’UNKNOWN’;
}

#
# (Used to compute ’nordugrid-cluster-queuedjobs’.)
# Returns the number of queued jobs (idle and held) in the LRMS pool. Counts
# both Grid jobs and jobs submitted directly to the LRMS by local users.
#
sub lrms_get_queued {

my ($out, $err, $ret) = condor_run(’bin/condor_q -global’);
return 0 if $ret != 0;
return condor_get_queued($out);

}

#
# Returns the number of queued jobs (idle and held) in the LRMS pool. Counts
# both Grid jobs and jobs submitted directly to the LRMS by local users.
# TODO: handle multiple queues!
#
sub nordugrid_queue_queued {

return lrms_get_queued();
}

#
# Returns the number of queued jobs (idle and held) in the LRMS pool. Counts
# only Grid jobs.
# TODO: handle multiple queues!
#
sub nordugrid_queue_gridqueued {

my ($out, $err, $ret) = condor_run(’bin/condor_q’);
return 0 if $ret != 0;
return condor_get_queued($out);

}

#
# Helper function to lrms_get_queued() and lrms_get_gridqueued().
# Takes one argument, the output of a condor_q command.
# Returns the number of queued jobs (idle + held).
#
sub condor_get_queued {

my $out = shift;
my $sum = 0;
$sum += $_ for map { /(\d+) idle.*?(\d+) held/ && $1 + $2 }

grep { /^\d+ jobs;/ } split /\n/, $out;
return $sum;

}

#
# (Used to compute ’nordugrid-cluster-totaljobs’.)
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# Returns the number of active jobs (running) in the LRMS pool. Counts both
# Grid jobs and jobs submitted directly to the LRMS by local users.
#
sub lrms_get_total {

my ($out, $err, $ret) = condor_run(’bin/condor_q -global’);
return 0 if $ret != 0;
return condor_get_running($out);

}

#
# Takes one argument: the output from condor_q.
# Counts all running jobs listed in this output.
#
sub condor_get_running {

my $sum = 0;
$sum += $_ for $_[0] =~ /^\d+ jobs;.*?(\d+) running,/gm;
return $sum;

}

#
# Takes one optional argument: A string that, if defined, is placed on
# condor_status’ command line, just after -total.
#
# Returns a list of the values in the ’Total’ line in condor_status -total.
# (0:’Total’ 1:Machines 2:Owner 3:Claimed 4:Unclaimed 5:Matched 6:Preempting).
# On errors: (Total 0 0 0 0 0 0).
#
sub condor_status_total {

my $extra_args = (defined $_[0] ? " $_[0]" : ’’);
my @failval = qw(Error 0 0 0 0 0 0);
my ($out, $err, $ret) = condor_run("bin/condor_status -total$extra_args");
return @failval if $ret != 0;
$out =~ /^\s*(Total.*)$/m or return @failval;
return split ’ ’, $1;

}

#
# Returns ’inactive’ if condor_status fails.
#
sub nordugrid_queue_status {

my @total = condor_status_total();
return $total[0] eq ’Error’ ? ’inactive’ : ’active’;

}

#
# Returns total number of CPUs claimed by jobs. (This is equal to the number
# of running jobs.)
# TODO: handle multiple queues!
#
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sub nordugrid_queue_running {
return lrms_get_total();

}

#
# Returns number of running jobs on Condor that came from the Grid. Since
# condor_q by default lists only the jobs submitted from the machine where
# condo_q is running, and only the Grid Manager is allowed to submit from
# there, we can easily tell how many jobs belong to the Grid.
#
sub nordugrid_queue_gridrunning {

my ($out, $err, $ret) = condor_run(’bin/condor_q’);
return 0 if $ret != 0;
return condor_get_running($out);

}

#
# Returns the number of CPUs in the Condor pool, which is always equal to the
# maximum number of running jobs.
#
sub nordugrid_queue_maxrunning {

return nordugrid_cluster_totalcpus();
}

#
# Returns 2 * maxrunning, which is an arbitrary number. There is (as far as I
# know) no limit on the number of queued jobs.
#
sub nordugrid_queue_maxqueuable {

return 2 * nordugrid_queue_maxrunning();
}

#
# Returns the maximum number of jobs that a single user can run at once.
# TODO: I don’t know the details as to how Condor handles this.
# TODO: handle multiple queues!
#
sub nordugrid_queue_maxuserrun {

return nordugrid_queue_maxrunning();
}

#
# There’s no limit on the CPU time in Condor, so leave this blank.
#
sub nordugrid_queue_maxcputime {

return ’’;
}

#
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# There’s no limit on the CPU time in Condor, so leave this blank.
#
sub nordugrid_queue_mincputime {

return ’’;
}

#
# Always returns maxcputime, since there’s no limit on the CPU time in Condor.
#
sub nordugrid_queue_defaultcputime {

return nordugrid_queue_maxcputime();
}

#
# Takes two arguments:
#
# 1. A Condor ClassAd attribute name.
# 2. A Condor job ID (<ClusterId>.condor).
#
# Returns the value of the attribute named in the first argument for the job
# specified in the second argument.
#
{

my %jobdata;

sub condor_get_job_field {
my $field = $_[0];
my ($cluster) = $_[1] =~ /(.*)\.condor/;

if (%jobdata) {
return $jobdata{$cluster}{$field};

}

%jobdata = ();
my ($out, $err, $ret) = condor_run("bin/condor_q -long");
for my $jobdata (split /\n\n/, $out) {

my ($clusterid) = $jobdata =~ /^ClusterId = (.*)$/m;
for my $line (split /\n/, $jobdata) {

my ($field, $value) = $line =~ /^(.*?) = (.*)$/m or next;
$jobdata{$clusterid}{$field} = $value;

}
}
return $jobdata{$cluster}{$field};

}
}

#
# (Used in ’nordugrid-job-status’.)
# Takes two arguments:
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# 1. The LRMS job id as represented in the GM. (In Condor terms,
# it’s <cluster>.condor. <proc> is not included, since only
# one job is submitted at a time, so <proc> is always zero.)
# 2. The ’controldir’ attribute from nordugrid.conf.
#
# Returns the current status of the job by mapping Condor’s JobStatus
# integer into corresponding one-letter codes used by ARC:
#
# 1 (Idle) --> Q (job is queuing, waiting for a node, etc.)
# 2 (Running) --> R (running on a host controlled by the LRMS)
# 2 (Suspended) --> S (an already running job in a suspended state)
# 3 (Removed) --> E (finishing in the LRMS)
# 4 (Completed) --> E (finishing in the LRMS)
# 5 (Held) --> O (other)
#
# If the job couldn’t be found, E is returned since it is probably finished.
#
sub lrms_get_job_status {

my %num2letter = qw(1 Q 2 R 3 E 4 E 5 O);
my $s = condor_get_job_field(’JobStatus’, $_[0]);
return ’E’ if !defined $s;
$s = $num2letter{$s};
if ($s eq ’R’) {

$s = ’S’ if condor_job_suspended(@_);
}
return $s;

}

#
# There’s no easy way to define the job’s queue "position" in Condor.
#
sub nordugrid_job_queuerank {

return ’’;
}

#
# Takes one argument, the LRMS job id as represented in the GM. (In Condor
# terms, it’s <cluster>.condor. <proc> is not included, since only one job is
# submitted at a time, so <proc> is always zero.)
#
# Returns number of minutes of CPU time the job has consumed, rounded to the
# nearest minute.
#
sub nordugrid_job_usedcputime {

my $time = condor_get_job_field(’RemoteUserCpu’, $_[0]);
return 0 if !defined $time;
return sprintf "%.0f", $time / 60;

}
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#
# Takes one argument, the LRMS job id as represented in the GM. (In Condor
# terms, it’s <cluster>.condor. <proc> is not included, since only one job is
# submitted at a time, so <proc> is always zero.)
#
# Returns number of minutes the job has been allocated to a machine, rounded to
# the nearest minute.
#
sub nordugrid_job_usedwalltime {

my $time = condor_get_job_field(’RemoteWallClockTime’, $_[0]);
return 0 if !defined $time;
return sprintf "%.0f", $time / 60;

}

#
# Takes one argument, the LRMS job id as represented in the GM. (In Condor
# terms, it’s <cluster>.condor. <proc> is not included, since only one job is
# submitted at a time, so <proc> is always zero.)
#
# Returns virtual image size of executable in KB.
#
sub nordugrid_job_usedmem {

my $size = condor_get_job_field(’ImageSize’, $_[0]);
return defined $size ? $size : 0;

}

#
# Condor has no "requested CPU time" attribute.
#
sub nordugrid_job_reqcput {

return ’’;
}

#
# (Used in ’nordugrid-job-executionnodes’.)
# Takes one argument, the LRMS job id as represented in the GM. (In Condor
# terms, it’s <cluster>.condor. <proc> is not included, since only one job is
# submitted at a time, so <proc> is always zero.)
#
# Returns the node the job runs on, or last ran on in case the job is not
# currently running. Only returns one node, since we don’t support MPI
# jobs.
#
sub lrms_get_job_executionnodes {

my $tmp = condor_get_job_field(’RemoteHost’, $_[0]);
if ($tmp) {

my ($host) = $tmp =~ /^"(.+)"$/;
return $host if $host;

}
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$tmp = condor_get_job_field(’LastRemoteHost’, $_[0]);
if ($tmp) {

my ($host) = $tmp =~ /^"(.+)"$/;
return $host if $host;

}
return ’UNKNOWN’;

}

#
# Like lrms_get_job_executionnodes(), but this version looks at the
# job.ID.errors file to find out where completed jobs ran.
#
sub lrms_get_job_executionnodes_completed {

my $gmlog = shift;
local *GMLOG;
open GMLOG, "<$gmlog" or return ’’;
local $/;
my $logdata = <GMLOG>;
close GMLOG;
my ($exechost) = $logdata =~ /.+Job executing on host: <([^:]+)/s;
return $exechost || ’’;

}

sub lrms_get_jobinfo_logged {
my ($jobinfo, $ctldir) = @_;

my $e1 = ’----- starting finish-condor-job -----’;
my $e2 = ’.* Job executing on host: <.*>’;
my $e3 = ’Allocation/Run time:.*’;
my $e4 = ’Total Remote CPU Time:.*’;
my $tmp = ‘egrep -H ’($e1|finish-condor-job: ($e2|$e3|$e4))\$’ \\

$ctldir/job.*.errors‘;

for my $chunk (split /^.*:\Q$e1\E\n/m, $tmp) {
# Currently only fetching the last host the job executed on.
my ($exechost) =

$chunk =~ /.*finish-condor-job:[^\n]+executing on host: <([^:]+)/s;
next if !$exechost;

# The GM job id.
my ($id) = $chunk =~ /job\.([^.]+)\.errors:/;

# Strings in the form <days> <hours>:<minutes>:<seconds>.
my ($walltstr) = $chunk =~ m{.*Allocation/Run time:\s+([^\n]+)}s;
my ($cputstr) = $chunk =~ m{Total Remote CPU Time:\s+([^\n]+)};

# Convert wallclock time string to minutes.
my ($d, $h, $m, $s) = $walltstr =~ /(\d+) (\d\d):(\d\d):(\d\d)/;
{
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no warnings ’uninitialized’;
$m += $d * 24 * 60 + $h * 60 + $s / 60;
$m = sprintf ’%.0f’, $m;

}
$jobinfo->{$id}{WallTime} = $m;

# Convert CPU time string to minutes.
($d, $h, $m, $s) = $cputstr =~ /(\d+) (\d\d):(\d\d):(\d\d)/;
{

no warnings ’uninitialized’;
$m += $d * 24 * 60 + $h * 60 + $s / 60;
$m = sprintf ’%.0f’, $m;

}
$jobinfo->{$id}{CpuTime} = $m;

# Execution host.
$jobinfo->{$id}{exec_host} = $exechost;

# Required CPU time.
$jobinfo->{$id}{reqcputime} = ’’;

}
}

#
# Takes one argument, the LRMS job id as represented in the GM. (In Condor
# terms, it’s <cluster>.condor. <proc> is not included, since only one job is
# submitted at a time, so <proc> is always zero.)
#
# Returns no useful comment yet, but I’ll improve this in the future.
#
sub nordugrid_job_lrmscomment {

return ’’;
}

#
# Returns a list of job IDs corresponding to ’localid’ in the GM.
# Only lists currently running jobs.
#
sub lrms_get_localids_running {

my ($out, $err, $ret) = condor_run("bin/condor_q");
$out =~ s/.*?CMD[ \t]*\n//s;
$out =~ s/\n\n.*//s;
my @localids;
for (split /\n/, $out) {

/^\s*(\d+)/;
push @localids, "$1.condor";

}
return @localids;

}
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#
# Currently set to the number of free nodes.
#
sub nordugrid_authuser_freecpus {

return nordugrid_cluster_totalcpus() - nordugrid_cluster_usedcpus();
}

#
# Returns number of jobs queued by Grid.
#
sub nordugrid_authuser_queuelength {

return nordugrid_queue_gridqueued();
}

my %condor_runcache;

#
# Takes one argument, which is a path to an executable (relative to
# CONDOR_LOCATION) that is appended to CONDOR_LOCATION, plus optional
# arguments. The next time this function is called with exactly the
# same argument, the return value is fetched from %condor_runcache.
#
# Returns a list of three values:
#
# [0] String containing stdout.
# [1] String containing stderr.
# [2] Program exit code ($?) that was returned to the shell.
#
sub condor_run {

my $condorloc = condor_location();
if (not -e $ENV{CONDOR_CONFIG}) {

$ENV{CONDOR_CONFIG} = "$condorloc/etc/condor_config";
}
my $program = "$condorloc/$_[0]";
return @{$condor_runcache{$program}} if $condor_runcache{$program};
my $stderr_file = "/tmp/condor_run.$$";
my $stdout = ‘$program 2>$stderr_file‘;
my $ret = $? >> 8;
local *ERROR;
open ERROR, "<$stderr_file"

or return @{$condor_runcache{$program} = [$stdout, ’’, $ret]};
local $/;
my $stderr = <ERROR>;
close ERROR;
unlink $stderr_file;
return @{$condor_runcache{$program} = [$stdout, $stderr, $ret]};

}
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#
# Takes two arguments, the Condor job id and the ’controldir’ attribute from
# nordugrid.conf. This function searches controldir for the grami file that
# belongs to the given Condor job, and extracts the location of the Condor job
# from it. This log is parsed to see if the job has been suspended. (condor_q
# reports ’R’ for running even when the job is suspended, so we need to parse
# the log to be sure that ’R’ actually means running.)
#
# Returns true if the job is suspended, and false if it’s running.
#
{

my $initialized_condor_log_db = 0;
my %condor_log_db;

sub condor_job_suspended {
my ($localid, $controldir) = @_;

# The first time condor_job_suspended() is called, the log database
# must be initialized.
if (!$initialized_condor_log_db) {

$initialized_condor_log_db = 1;
my @out = ‘egrep -H ’^(joboption_jobid|condor_log)=’ \\

$controldir/job.*.grami‘;
my $i = 0;
while ($i + 1 < @out) {

my $joboptline = $out[$i]; # joboption_jobid=...
my $logline = $out[$i + 1]; # condor_log=...
my ($grami, $id) =

$joboptline =~ /^(.+\.grami):joboption_jobid=(.*)/;
if (!$grami || $out[$i + 1] !~ /^\Q$grami\E:/) {

# Grami didn’t have both joboption_jobid and condor_log;
# Should not happen, but you never know!
$i++;
next;

}
my ($log) = $logline =~ /^\Q$grami\E:condor_log=(.*)/;
$condor_log_db{$id} = $log;
$i += 2;

}
}

my $logfile = $condor_log_db{$localid};
return 0 if !$logfile;
local *LOGFILE;
open LOGFILE, "<$logfile" or return 0;
my $suspended = 0;
while (my $line = <LOGFILE>) {

$suspended = 1 if $line =~ /Job was suspended\.$/;
$suspended = 0 if $line =~ /Job was unsuspended\.$/;
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}
close LOGFILE;
return $suspended;

}
}

{
my ($progdir) = $0 =~ m#(.*)/#;

# Cached location so that subsequent calls are free.
my $location;

sub condor_location {
return $location if defined $location;

my $exe;

# Extract condor_location from nordugrid.conf.
my $nordugrid_conf = $ENV{NORDUGRID_CONFIG} || ’/etc/nordugrid.conf’;
if (-r $nordugrid_conf) {

$location = ‘eval "\$(egrep ’^[[:blank:]]*condor_location=’ \\
$nordugrid_conf)"; echo "\$condor_location"‘;

chomp $location;
return $location if -x "$location/bin/condor_submit";

}

# Search for condor_submit in PATH.
-x ($exe = "$_/condor_submit") and last for split /:/, $ENV{PATH};
($location) = $exe =~ m{(.*)/bin/condor_submit$} if -x $exe;
return $location if $location;

# Search for CONDOR_LOCATION in /etc/sysconfig/condor.
if (-f ’/etc/sysconfig/condor’) {

$location = ‘. /etc/sysconfig/condor; echo -n \$CONDOR_LOCATION‘;
return $location if -x "$location/bin/condor_submit";

}

# Use condor_master_location, if installed.
if (-x "$progdir/condor_master_location") {

($location) = ‘$progdir/condor_master_location‘ =~ m{(.*)/sbin$};
return $location if -x "$location/bin/condor_submit";

}

return $location = ’’;
}

my $config;

sub condor_config {
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return $config if defined $config;

my $nordugrid_conf = $ENV{NORDUGRID_CONFIG} || ’/etc/nordugrid.conf’;
if (-r $nordugrid_conf) {

$config = ‘eval "\$(egrep ’^[[:blank:]]*condor_config=’ \\
$nordugrid_conf)"; echo "\$condor_config"‘;

chomp $config;
return $config if -r $config;

}

$config = condor_location() . "/etc/condor_config";
return $config if -r $config;

$config = $ENV{CONDOR_LOCATION} || ’’;
return $config if -r $config;

return $config = ’’;
}

sub condor_rank {
my $nordugrid_conf = $ENV{NORDUGRID_CONFIG} || ’/etc/nordugrid.conf’;
return undef if !-r $nordugrid_conf;
my $rank = ‘eval "\$(egrep ’^[[:blank:]]*condor_rank=’ \\

$nordugrid_conf)"; echo "\$condor_rank"‘;
chomp $rank;
return $rank;

}
}

1;

B.2 submit-condor-job

#!/usr/bin/env perl

use File::Temp ’tempfile’;
use lib ($ENV{NORDUGRID_LOCATION} ? "$ENV{NORDUGRID_LOCATION}/libexec" : ’.’);
use LRMS_Condor;

use strict;
use warnings;

# True if the program is run in debugging mode.
my $debug;

# The name of the Condor job description file. This file is generated from the
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# GRAMI file.
my $cmd_filename;

# Pathname of the Condor log.
my $condor_log;

# Pathname of the real executable.
my $real_exe;

# Pathname of the wrapper script.
my $exewrapper;

my %grami;

$0 =~ s#.*/##;
warn "----- starting $0 -----\n";
die "Usage: $0 [-d] GRAMI_FILE\n" unless @ARGV;

if (@ARGV == 2 && $ARGV[0] eq ’-d’) {
$debug = 1;
shift;

}

parse_grami(my $gramifile = $ARGV[0]);
create_shell_wrapper();
create_condor_job_description();
submit_condor_job();
warn "$0: job submitted successfully\n",

"----- exiting $0 -----\n";
exit;

##############################################################################
## Function Definitons
##############################################################################

sub parse_grami {
local @ARGV = $_[0];
warn "$0: ----- begin grami file ($_[0]) -----\n";
while (my $line = <>) {

chomp $line;

# Dump every line of the grami file into the log.
warn "$0: $line\n";

my ($name, $value) = split /=/, $line, 2;
next if !$name;

# Remove outer layer of single quotes. Backslash escaped single quotes
# are stripped of their backslashes, and strings protected by single
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# quotes are stripped of the single quotes. This is supposed to work
# exactly like Bourne shell quote removal:
#
# foo’bar’ --> foobar
# foo\’’bar’\’ --> foo’bar’
#
{

no warnings ’uninitialized’;
$value =~ s/(?:\\(’))?’([^’]*)’(?:\\(’))?/$1$2$3/g;

}

# The variable names are case insensitive, so lowercase them and
# remember to always refer to them by their lowercase names!
$grami{lc $name} = $value;

}
warn "$0: ----- end grami file ($_[0]) -----\n";

}

#
# Returns the full path to the condor_submit executable, or an empty string on
# errors. If called in debug mode, a bogus path is returned.
#
sub find_condor_submit_exe {

return ’/DEBUG/condor_submit’ if $debug;
my $condor_location = condor_location();
my $exe = "$condor_location/bin/condor_submit";
return (-x $exe ? $exe : ’’);

}

#
# Creates a shell script that:
#
# (1) Sources the runtime scripts with argument "0" before evaluating the job
# executable. (This is in case the job refers to variables set by the
# runtime scripts.) TODO: should variables be expanded in
# joboption_runtime_0?
#
# (2) Sources the runtime scripts with argument "1" before running the job.
#
# (3) Runs the job, redirecting output as requested in the xRSL.
#
# (4) Sources the runtime scripts with argument "2" after running the job.
#
# (5) Exits with the value returned by the job executable in step (3).
#
sub create_shell_wrapper {

# Create the shell commands to run runtime environment files (stages 0-2).
my ($setrte0, $setrte1, $setrte2) = (’true’, ’’, ’’);
if (notnull($grami{joboption_runtime_0})) {
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$ENV{RUNTIME_CONFIG_DIR} ||= ’.’; # avoid undefined warning
for (my $i = 0; notnull(my $r = $grami{"joboption_runtime_$i"}); $i++) {

$setrte0 .= "; . \Q$ENV{RUNTIME_CONFIG_DIR}/$r\E 0";
$setrte1 .= qq{. "\$RUNTIME_CONFIG_DIR/$r" 1\n};
$setrte2 .= qq{. "\$RUNTIME_CONFIG_DIR/$r" 2\n};

}
}

# Set $real_exe to the path to the job executable (environment variables
# expanded). $exewrapper is the basename of $exe, plus some random
# characters for uniqueness. Also, the file $exportfile is created,
# containing shell statements in the form
#
# export NAME="value"
#
# for all environment variables in existence after sourcing the runtime
# scripts with argument 0.
my $exportfile = File::Temp::tempnam(’/tmp’, ’export.’);
$real_exe = ‘{ $setrte0; } >/dev/null

export >$exportfile
echo -n $grami{joboption_arg_0}‘;

$real_exe = "./$real_exe" if $real_exe !~ m{/};
$real_exe =~ m{([^/]+)$};
$exewrapper = File::Temp::tempnam($grami{joboption_directory}, "$1.");

# Get the name of the stdout file.
my $stdout = notnull($grami{joboption_stdout}) ?

$grami{joboption_stdout} : ’/dev/null’;
$stdout =~ s{^\Q$grami{joboption_directory}\E/*}{};

# Get the name of the stderr file.
my $stderr = notnull($grami{joboption_stderr}) ?

$grami{joboption_stderr} : ’/dev/null’;
$stderr =~ s{^\Q$grami{joboption_directory}\E/*}{};

# Start creating the output script. Note that the script is created
# in-memory, instead of being written to file, part by part. This is
# because we want to test for all I/O errors, and having just a single
# write means that there is only one place we have to test for write
# errors.
my $output = "#!/bin/sh\n";

# If the custom RSL attribute ’wrapperdebug’ is set, enable command
# tracing (set -x) and list all files in the session directory. (This
# output is sent to stderr.)
if (notnull($grami{joboption_rsl_wrapperdebug})) {

$output .= "set -x\nexec &>\Q$stderr\E\nls -la\n";
}
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# All environment variables in existence after sourcing the runtime scripts
# with argument 0 should be set in the wrapper script.
open EXPORTFILE, "<$exportfile" or die "$0: $exportfile: $!\n";
$output .= $_ for <EXPORTFILE>;
close EXPORTFILE;
unlink $exportfile;

# Source runtime scripts with argument 1.
$output .= $setrte1;

# Enable the executable bit for non-preinstalled executables.
if ($real_exe !~ m{^/}) {

$output .= "chmod +x \Q$real_exe\E\n";
}

# Incomplete job command; arguments may follow.
$output .= "\Q$real_exe\E";

# Add optional arguments to the command line.
if (defined $grami{joboption_arg_1}) {

for (my $i = 1; defined(my $arg = $grami{"joboption_arg_$i"}); $i++) {
$output .= $arg ne ’’ ? " \Q$arg\E" : " ’’";

}
}

# Redirect stdout/stderr. These variables are always set to something
# (/dev/null if unspecified), so it’s safe to unconditionally add these
# redirections.
$output .= " >\Q$stdout\E";
# If we’re debugging the wrapper script, we don’t do stderr redirection.
if (!notnull($grami{joboption_rsl_wrapperdebug})) {

if ($stdout eq $stderr) {
# We’re here if stdout and stderr is redirected to the same file.
# This will happen when (join = yes) in the xRSL.
$output .= ’ 2>&1’;

} else {
$output .= " 2>\Q$stderr\E";

}
}

# Always a newline to terminate the job command.
# Preserve the job’s exit code.
# Run runtime environment files with argument 2.
$output .= "\n_exitcode=\$?\n$setrte2";

# Delete all remaining files that are not listed in outputFiles.
if (notnull($grami{joboption_rsl_outputfiles})) {

# The format of this variable is:
# <filename1><SP>[<checksum1>]<SP>...<SP><filenameN><SP>[<checksumN>]
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# so split by / / and ignore the odd indexes (the checksums).
# Also ignores zero length filenames and the gmlog.
my $i = 0;
if (!defined $grami{joboption_rsl_gmlog}) {

# Avoid ’uninitialized’ warning when gmlog is unset.
$grami{joboption_rsl_gmlog} = ’’;

}
my @fileslst = grep { $i++ % 2 == 0 &&

$_ ne ’’ && $_ ne $grami{joboption_rsl_gmlog} }
split / /, $grami{joboption_rsl_outputfiles};

# Quote special chars in filenames and put a ’ ’ between each name.
my $files = join ’ ’, map { quotemeta } @fileslst;
# Now generate code that removes everything but the requested output.
# Note that, bashims have been avoided so that there are less strict
# requirements on /bin/sh on the execute nodes. (Note that the file
# utilities used (mkdir, dirname, find, etc.) may still be
# GNU-centric. TODO: fix this if we’re to support non-x86-Linux.)
$output .= <<EOF;

# Make a temporary directory, keep.N, where N is chosen for uniqueness.
N=0
while [ -e keep.\$N ]; do

N=‘expr \$N + 1‘
done
for i in $files; do

[ -e "\$i" ] || continue
destdir="keep.\$N/‘dirname "\$i"‘"
mkdir -p "\$destdir"
mv -f "\$i" "\$destdir"

done
# Wipe out anything that’s not moved into keep.N.
find . -mindepth 1 -path ./keep.\$N -prune -o -print0 | xargs -0 rm -rf
# Move the output files back to their correct location.
find keep.\$N -mindepth 1 -maxdepth 1 -exec mv {} . \\;
# Done, now we can remove the keep.N directory.
rmdir keep.\$N
EOF

}

# Exit with the job’s exit code.
$output .= "exit \$_exitcode\n";

# Create the actual shell script from $output.
open EXE, ">$exewrapper" or die "$0: creat $exewrapper: $!\n";
print EXE $output or die "$0: write $exewrapper: $!\n";
close EXE or die "$0: close $exewrapper: $!\n";
chmod 0755, $exewrapper or die "$0: chmod $exewrapper: $!\n";

# Log the Condor job submission script in gmlog/errors.
unless ($debug) {
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warn "$0: ----- begin wrapper script ($exewrapper) -----\n";
warn "$0: $_\n" for split /\n/, $output;
warn "$0: ----- end wrapper script ($exewrapper) -----\n";

}
}

#
# Create a Condor job description that submits the wrapper script created
# above. The Condor job description should mirror the xRSL as much as
# possible.
#
sub create_condor_job_description {

# As above, the job description is created in-memory, so that only one I/O
# operation has to be done when writing to disk.
my $output = "Executable = $exewrapper\n" .

"Input = $grami{joboption_stdin}\n";

if ($debug) {
# Use a bogus name for the logfile if debugging -- it doesn’t matter.
$condor_log = ’job.log’;

} else {
$condor_log = File::Temp::tempnam($grami{joboption_directory}, ’log.’);

}
$output .= "Log = $condor_log\n";

my @requirements;
if (notnull($grami{joboption_memory})) {

push @requirements, "Memory >= $grami{joboption_memory}";
}

if (notnull($grami{joboption_rsl_disk})) {
push @requirements, "Disk >= " . $grami{joboption_rsl_disk} * 1024;

}

if (notnull($grami{joboption_runtime_0})) {
for (my $i = 0; notnull(my $r = $grami{"joboption_runtime_$i"}); $i++) {

$r =~ s/\W/_/g;
push @requirements, "$r =?= True"

}
}

# This is a custom RSL attribute used for debugging. If the xRSL contains
# (machine = foo), the job will only run on machine "foo".
if (notnull($grami{joboption_rsl_machine})) {

push @requirements, qq{Machine == "$grami{joboption_rsl_machine}"};
}

# TODO: Remove this once there’s support for non-x86 CPUs!
push @requirements, ’(Arch == "INTEL" || Arch == "x86_64")’;
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if (@requirements) {
$output .= "Requirements = " . shift @requirements;
$output .= " && $_" for @requirements;
$output .= "\n";

}

if (notnull($grami{joboption_rsl_inputfiles})) {
# TODO: should I change the split pattern to / /, so that it doesn’t
# squeeze together multiple spaces? If the size.checksum pair is
# optional, the / / variant must be used. If not, the ’ ’ variant
# is better since it allows for variations in placing whitespace.
my @tmp = split ’ ’, $grami{joboption_rsl_inputfiles};
$output .= "Transfer_input_files = ";
for (my $i = 0; $i < @tmp; $i += 2) {

$output .= ’,’ if $i > 0;
$output .= $tmp[$i];

}
$output .= "\n";

}

if (notnull($grami{joboption_env_0})) {
$output .= "Environment = ";
my $first = 1;
for (my $i = 0; notnull($grami{"joboption_env_$i"}); $i++) {

$output .= ";" if $i > 0;
$output .= $grami{"joboption_env_$i"};

}
$output .= "\n";

}

if (notnull(my $rank = condor_rank())) {
$output .= "Rank = $rank\n";

}

$output .= "GetEnv = True\n" .
"Universe = vanilla\n" .
"When_to_transfer_output = ON_EXIT\n" .
"Queue\n";

if ($debug) {
print $output;

} else {
my $cmd_fh;
($cmd_fh, $cmd_filename) = tempfile(’XXXXXXXX’,

DIR => $grami{joboption_directory},
SUFFIX => ’.cmd’);

print $cmd_fh $output or die "$0: write $cmd_filename: $!\n";
close $cmd_fh or die "$0: close $cmd_filename: $!\n";
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# Log the Condor job submission script in gmlog/errors.
warn "$0: ----- begin condor job description ($cmd_filename) -----\n";
warn "$0: $_\n" for split /\n/, $output;
warn "$0: ----- end condor job description ($cmd_filename) -----\n";

}
}

sub submit_condor_job {
return if $debug;
chdir $grami{joboption_directory}
or die "$0: chdir $grami{joboption_directory}: $!\n";

my $condor_submit_exe = find_condor_submit_exe()
or die "$0: Couldn’t find the condor_submit executable!\n";

warn "$0: running $condor_submit_exe $cmd_filename\n";
my $cf = condor_config();
my $submit_out = ‘/usr/bin/env - CONDOR_CONFIG=\Q$cf\E /bin/sh -c \\

’\Q$condor_submit_exe\E \Q$cmd_filename\E’ 2>&1‘;
my $err = $?;
warn "$0: $_\n" for split /\n/, $submit_out;
die "$0: condor_submit failed!\n" if $err;

warn "$0: appending local job id to grami file $gramifile\n";
my ($localid) = $submit_out =~ /submitted to cluster (\d+)\./;
open GRAMI, ">>$gramifile" or die "$0: $gramifile: $!";
print GRAMI "joboption_jobid=$localid.condor\n" or die "$0: $gramifile: $!";
print GRAMI "condor_log=$condor_log\n" or die "$0: $gramifile: $!";
close GRAMI or die "$0: $gramifile: $!";

}

sub notnull {
return defined $_[0] && $_[0] ne ’’;

}

B.3 finish-condor-job

#!/bin/sh

progname=$(basename "$0")

# This program assumes the role of /bin/mail, so it’s called like this:
# /bin/mail -s ’[Condor] Condor Job <job-ID>’ <email-address>
# We extract the job-ID from the second argument.
#
# NOTE: The format of the email message is, unlike the job log, not guaranteed



B.3. FINISH-CONDOR-JOB 77

# to remain unchanged in future versions of Condor, but since we need the job
# id to locate the log file, there’s no way around this. :-(
lrmsid=${2##*Condor Job }
lrmsid=${lrmsid%%.*}.condor

: ${NORDUGRID_CONFIG:=/etc/nordugrid.conf}
if [[ ! -r $NORDUGRID_CONFIG ]]; then

echo "$progname: Couldn’t find nordugrid.conf!" >&2
exit 1

fi

# Set variable "controldir" from GM config.
eval "$(grep ’^[[:blank:]]*controldir=’ "$NORDUGRID_CONFIG")"

# Find the proper GRAMI file.
grami=$(grep -l "^joboption_jobid=$lrmsid$" "$controldir"/job.*.grami)

if [[ ! -f $grami ]]; then
echo "No GRAMI file for job $lrmsid could be found." >&2
exit 1

fi

# Logfile used by Grid Manager.
gmlog=$controldir/$(basename "$grami" .grami).errors

# IMPORTANT: Never change the format of this line!
# It is used in LRMS_Condor.pm to delimit job info.
echo "----- starting $progname -----" >>"$gmlog"

# Find the Condor log.
condor_log=$(sed -n ’s/^condor_log=\(.*\)/\1/p’ "$grami")

# Use /dev/null if we couldn’t find the log. Should never happen.
if [[ ! -f $condor_log ]]; then

echo "$progname: couldn’t find Condor log file ($condor_log)"
echo "$progname: using /dev/null as log file"
condor_log=/dev/null

fi >>"$gmlog" 2>&1

mbody=/tmp/mailbody.$$
trap "rm -f $mbody" EXIT

# Dump mail body and Condor log into gmlog.
{

cat >$mbody || echo "$progname: failed to write $mbody"
echo "$progname: ----- begin condor job completion message -----"
sed "s/^/$progname: /" $mbody
echo "$progname: ----- end condor job completion message -----"
echo "$progname: ----- begin condor log ($condor_log) -----"
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sed "s/^/$progname: /" "$condor_log"
echo "$progname: ----- end condor log ($condor_log) -----"

} >>"$gmlog" 2>&1

echo "$progname: searching for exit code in $condor_log"
failure_reason=
i=0
maxtries=4
while ((i < maxtries)); do

# Extract the program exit code from the Condor log.
exitcode=$(sed -n ’/Normal termination/{s/.*value \([0-9]*\).*/\1/p;q;}’ \

"$condor_log")

if [[ -z $exitcode ]]; then
exitcode=$(sed -n \

’/Abnormal termination/{s/.*signal \([0-9]*\).*/\1/p;q;}’ \
"$condor_log")

[[ $exitcode ]] && ((exitcode = exitcode + 128))
fi

if [[ $exitcode ]]; then
break

fi

((i = i + 1))
echo "$progname: failed to get exit code (attempt $i/$maxtries)"
sleep 15

done >>"$gmlog" 2>&1

if ((i == maxtries)); then
echo "$progname: giving up on log; trying condor job completion message"
exitcode=$(sed -n ’s/.*has exited.*with status \([0-9]*\).*/\1/p’ $mbody)
if [[ -z $exitcode ]]; then

exitcode=$(sed -n ’s/.*has died on signal \([0-9]*\).*/\1/p’ $mbody)
[[ $exitcode ]] && ((exitcode = exitcode + 128))

fi
fi >>"$gmlog" 2>&1

if [[ $exitcode ]]; then
echo "$progname: job $lrmsid finished with status $exitcode"
sessiondir=$(sed -n ’s/^sessiondir=\(.*\)/\1/p’ \

"$controldir"/$(basename "$grami" .grami).local)
if [[ $sessiondir ]]; then

echo "exitcode=$exitcode" >>"$sessiondir.diag"
fi
if [[ $exitcode != 0 ]]; then

failure_reason=’Job finished with non-zero exit code’
fi

else
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echo "$progname: failed to get exit code; using 255 as fallback"
failure_reason=’Failed to get exit code of job’
exitcode=255

fi >>"$gmlog" 2>&1

# Write exit code in job.ID.lrms_done to signal that we’re done.
echo "$exitcode $failure_reason" \

>"$controldir"/$(basename "$grami" .grami).lrms_done

echo "----- exiting $progname -----" >>"$gmlog"
exit 0

B.4 cancel-condor-job

#!/bin/sh

progname=$(basename "$0")
echo "----- starting $progname -----" >&2

if [[ ! -f $1 ]]; then
echo ’No GRAMI file’ >&2
exit 1

fi

#
# Try to extract condor_location from nordugrid.conf.
#
: ${NORDUGRID_CONFIG:=/etc/nordugrid.conf}
if [[ -r $NORDUGRID_CONFIG ]]; then

eval "$(egrep ’^[[:blank:]]*condor_(config|location)=’ "$NORDUGRID_CONFIG")"
condor_rm=$condor_location/bin/condor_rm
if [[ -x $condor_rm ]]; then

echo "$progname: found $condor_rm using $NORDUGRID_CONFIG"
echo "$progname: found $condor_config using $NORDUGRID_CONFIG"

fi >&2
fi

#
# Search PATH for condor_rm.
#
if [[ ! -x $condor_rm ]]; then

IFS=:
condor_rm=
for i in $PATH; do

if [[ -x "$i"/condor_rm ]]; then
condor_rm=$i/condor_rm
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echo "$progname: found $condor_rm using PATH" >&2
fi

done
unset IFS

fi

#
# If the file /etc/sysconfig/condor exists, see if it defines the variable
# CONDOR_LOCATION and look for condor_rm in $CONDOR_LOCATION/bin.
#
if [[ ! -x $condor_rm ]]; then

if [[ -f /etc/sysconfig/condor ]]; then
. /etc/sysconfig/condor
condor_rm=$CONDOR_LOCATION/bin/condor_rm

fi
if [[ -x $condor_rm ]]; then

echo "$progname:" \
"found $condor_rm from /etc/sysconfig/condor" >&2

fi
fi

#
# If all else fails, use the optional SUID root program condor_master_location
# to search /proc/<pid>/exe for links to the condor_master program, and use its
# directory to find condor_rm.
#
if [[ ! -x $condor_rm ]]; then

progdir=$(cd "$(dirname "$0")"; pwd)
if [[ -x $progdir/condor_master_location ]]; then

condor_bindir=$(cd "$("$progdir"/condor_master_location)"/../bin; pwd)
condor_rm=$condor_bindir/condor_rm

fi

if [[ -x $condor_rm ]]; then
echo "$progname:" \

"found condor_rm from condor_master_location ($condor_rm)" >&2
fi

fi

if [[ ! -x $condor_rm ]]; then
echo "$progname: could not find condor_rm!" >&2
exit 1

fi

if [[ ! -r $condor_config ]]; then
condor_config=$(dirname "$condor_rm")/../etc/condor_config
[[ -r $condor_config ]] && echo "$progname:" \

"$condor_config found above $condor_rm" >&2
fi
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if [[ ! -r $condor_config ]]; then
condor_config=$CONDOR_CONFIG
[[ -r $condor_config ]] && echo "$progname:" \

"$condor_config found using CONDOR_CONFIG environment variable" >&2
fi

if [[ ! -r $condor_config ]]; then
echo "$progname: could not find Condor configuration file!" >&2
exit 1

fi

eval "$(grep ’^joboption_jobid=’ "$1")"
echo "$progname: canceling job $joboption_jobid with condor_rm..." >&2
export CONDOR_CONFIG=$condor_config
$condor_rm ${joboption_jobid%.condor} >&2
echo "----- exiting cancel-condor-job -----" >&2
exit 0

B.5 cluster-condor.pl

#!/usr/bin/perl
use lib "$ENV{PWD}/";
use lib "$ENV{NORDUGRID_LOCATION}/libexec";
use lib $ENV{NORDUGRID_LOCATION}."/libexec/nordugrid";
use lib "/opt/nordugrid/libexec";
use infosys_shared;
use InfosysCluster qw(%config &clusterldif);
use LRMS_Condor;
#use warnings;

# populates the nordugrid-cluster LDAP entry with real GM and config
# The GM interface is factored into the InfosysCluster module.

#<LRMSPORT
# automatically determine the LRMS name(flavour) and version
$lrms_type = nordugrid_cluster_lrms_type();
$lrms_version = nordugrid_cluster_lrms_version();
#LRMSPORT>

#<LRMSPORT
# Calculate the totalcpus & cpudistribution & number of used cpus
# by collecting information from the LRMS
# Consult the schema for the syntax of the $cpudistribution
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# If $dedicated_node_string is set, nondedicated nodes, which are not marked
# with $dedicated_node_string should be skipped
$totalcpus = nordugrid_cluster_totalcpus();
$usedcpus = nordugrid_cluster_usedcpus();
$cpudistribution = nordugrid_cluster_cpudistribution();
#LRMSPORT>

#<LRMSPORT
# Calculate $lrms_queued, the number of jobs (both grid and nongrid)
# being queued in the LRMS
$lrms_queued = lrms_get_queued();
#LRMSPORT>

#<LRMSPORT
# Calculate the total number of jobs in the LRMS (running, queued, hold, being
# in any LRMS state; submitted by both grid and nongrid users): $lrms_total
$lrms_total = lrms_get_total();
#LRMSPORT>

# generating the cluster ldif
&clusterldif;

# some performance test
my $runtime = time - $^T;
if ($config{loglevel} == 2) {

&infosys_shared::write_log("execution time: $runtime");
}
elsif ($config{loglevel} == 1 and $runtime >= 4 ) {

&infosys_shared::write_log("SLOW script: $runtime");
}

exit;

B.6 queue+jobs+users-condor.pl

#!/usr/bin/perl
use lib "$ENV{PWD}/";
use lib "$ENV{NORDUGRID_LOCATION}/libexec";
use lib $ENV{NORDUGRID_LOCATION}."/libexec/nordugrid";
use lib "/opt/nordugrid/libexec";
use infosys_shared;
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use InfosysQJU qw(%config %hoh_gmjobs %users &queueldif &jobsldif &usersldif);
use LRMS_Condor;
#use warnings;

# generates everything under the nordugrid-queue-name=xz,
# creates the queue, job & user entries.
# Real GM and config values are used, but dummy values
# are set for LRMS-dependent attributes (13, 66 or "dummy").
# The GM interface is factored into the InfosysQJU module.
# Use this template to port the infosys.
# Don’t use ’my xyz’ for the interfacing GLOBAL variables!

$timestamp = time;

#<LRMSPORT
# read the queue info such as limits, authorized users’ list, etc from the LRMS
# "queue" command into %queue_info and @acl_users (list of LRMS-authorized
# unix users, undefined list means every unix user is LRMS authorized)

# queue limits, setting dummy values
# don’t set the values if they are not relevant to the LRMS
# nordugrid-queue-maxrunning
$queue_info{"max_running"} = nordugrid_queue_maxrunning();
# nordugrid-queue-maxinqueue
$queue_info{"max_queuable"} = nordugrid_queue_maxqueuable();
# nordugrid-queue-maxuserrun
$queue_info{"max_user_run"} = nordugrid_queue_maxuserrun();
# nordugrid-queue-maxcputime (in minutes)
$queue_info{"max.cput"} = nordugrid_queue_maxcputime();
# nordugrid-queue-mincput (in minutes)
$queue_info{"min.cput"} = nordugrid_queue_mincputime();
# nordugrid-queue-defaultcputime (in minutes)
$queue_info{"default.cput"} = nordugrid_queue_defaultcputime();

#LRMSPORT>

#<LRMSPORT
# read the job info from LRMS to a hash of hashes %hoh_lrmsjobs
# The LRMS jobid is the key of the hash, it MUST match the one stored
# in the GM’s job.xx.local file as ’localid’
# determine the queue rank of a LRMS queuing job
# $hoh_lrmsjobs{$jobid}{"rank"} = 1

for (lrms_get_localids_running()) {
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$hoh_lrmsjobs{$_}{’job_state’} =
lrms_get_job_status($_, $config{controldir});

$hoh_lrmsjobs{$_}{’rank’} = nordugrid_job_queuerank($_);
$hoh_lrmsjobs{$_}{’used.mem’} = nordugrid_job_usedmem($_);
$hoh_lrmsjobs{$_}{’used.walltime’} = nordugrid_job_usedwalltime($_);
$hoh_lrmsjobs{$_}{’used.cput’} = nordugrid_job_usedcputime($_);
$hoh_lrmsjobs{$_}{’req.cput’} = nordugrid_job_reqcput($_);
$hoh_lrmsjobs{$_}{’exec_host’} = lrms_get_job_executionnodes($_);
$hoh_lrmsjobs{$_}{’comment’} = nordugrid_job_lrmscomment($_);

}

lrms_get_jobinfo_logged(\%hoh_gmjobs, $config{controldir});

#LRMSPORT>

#<LRMSPORT
# scan the LRMS and count the number of running jobs with their multiciplity
# and the number or queued jobs
# count the jobs per unix users and the number of queueing jobs per users
# These values may be needed for the calculation of the per user freecpus
# useful variables: $user_jobs_queued{$username}, $user_jobs_running{$username}
# required values for the queue entry: $totalrunning_in_the_queue, $totalqueued
# nordugrid-queue-running
$totalrunning_in_the_queue = nordugrid_queue_running();
# nordugrid-queue-queued
$totalqueued = nordugrid_queue_queued();
#LRMSPORT>

#<LRMSPORT
# scan the LRMS in order to find out the $totalcpus and the $usedcpus
# Take into account the $dedicated_node_string or the $queue_node_string
# for distinguishing grid and non-grid enabled nodes (skip nonededicated nodes).
# The $totalcpus and the $usedcpus may be needed for the calculation of the per
# user freecpus.
# TODO ???
#LRMSPORT>

if ($config{loglevel} == 2) {
my $runtime = time - $timestamp;
&infosys_shared::write_log("LRMS I/O time: $runtime");

}

#<LRMSPORT
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# Count the running and queued GRID jobs in the LRMS (a subset of all LRMS jobs)
# running jobs are counted with their multiciplity
# you can loop through the hoh_gmjobs and use the
# "dummy13"=$hoh_gmjobs{$ID}{"localid"} and the
# $hoh_lrmsjobs{"dummy13"}{"job_state"} to find queuing and running grid jobs
# in the LRMS
# Provide the $gridrunning, $gridqueued numbers
#nordugrid-queue-gridrunning
$gridrunning = nordugrid_queue_gridrunning();
#nordugrid-queue-gridqueued
$gridqueued = nordugrid_queue_gridqueued();
#LRMSPORT>

#<LRMSPORT
# nordugrid-queue-status
# determine the $lrms_queue_status from the LRMS
# set it to ’active’ if the queue can accept jobs
$lrms_queue_status = nordugrid_queue_status();
#LRMSPORT>

# loop over the mapped local unix users and determine the LRMS-dependent
# freecpus and queuelength for each of them.
# Use the %users hash which contains the grid user -> local unix user
# mapping info: $users{Grid_User_SN}=mapped_unix_id
# Take into account queue limits (cpu & time), physically available cpus
# (values determined above) or use LRMS specific method
# Store the result in two hashes, take care of the syntax of the freecpus:
# cpus[:minutes] here the :minutes part is optional and used for specifying
# time limit on CPUs.
# $freecpus_for_mapped_users{unix_username}="13:33"
# $user_jobs_queued{$unix_username}=13

for (values %users) {
#nordugrid-authuser-freecpus
$users_freecpus{$_} = nordugrid_authuser_freecpus();
#nordugrid-authuser-queuelength
$users_jobs_queued{$_} = nordugrid_authuser_queuelength();

}

#LRMSPORT>

&queueldif;

&jobsldif;
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&usersldif;

my $runtime = time - $^T;
if ($config{loglevel} == 2) {

&infosys_shared::write_log("execution time: $runtime");
}
elsif ($config{loglevel} = 1 and $runtime >= 4 ) {

&infosys_shared::write_log("SLOW script: $runtime");
}
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