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Abstract

The Large Hadron Collider at CERN will produce proton-proton collisions with
a center of mass energy of 14 TeV, making it possible to examine physics at the
TeV scale. Four detectors are located along the LHC, one of them is ATLAS, a
general-purpose detector designed to identify a wide range of physics processes.
In order to discover new physics, presice measurements of the four-momentum of
the particles traversing the detector is important. For electrons this is done in two
detector sub-systems. The inner detector reconstructs the trajectories of all charged
particles, providing estimates of the momentum. The electromagnetic calorimeter
measures the energy of the electrons.

The Kalman filter (KF) is the optimal track reconstruction algorithm if all
stochastic processes encountered during the reconstruction procedure follow a nor-
mal distribution, and the track model is truly linear. Electrons lose energy predomi-
nantly through bremsstrahlung, which is a highly non-Gaussian stochastic process,
and in this situation it is plausible that a non-linear estimator better taking the actual
shape of the energy loss distribution into account can do better. The Gaussian-sum
filter (GSF) models the bremsstrahlung energy loss as a Gaussian mixture instead
of a single Gaussian, and the estimate of the track parameters provided by the GSF
also becomes a Gaussian mixture.

It has been shown in a simulation experiment in the CMS tracker that the GSF
can improve the momentum resolution of electrons as compared to the KF. In a
subsequent simulation experiment in the ATLAS Inner Detector, it has been shown
that also the invariant mass resolution can be improved compared to the standard
KF by "collapsing" the Gaussian mixture describing each reconstructed electron
into a single Gaussian, and then using the single Gaussian to reconstruct the invari-
ant mass.

This thesis gives a summary of some aspects of particle physics and the ATLAS
experiment. The process of track reconstruction is then discussed in more detail.
Finally, a method of invariant mass determination using the full shape of the GSF
track estimates is discussed and tested with simulated data.



iv

Acknowledgements

• First of all, I wish to thank my supervisors Are Strandlie an Lars Bugge for a
very interesting thesis subject, and for all the theoretical, technical and moral
support you have given me.

• Thank you, Anthony Morley, for guiding me through the jungle that is Athena,
and providing the tools to extract the information I needed.

• Thank you, Tom Atkinson, for letting me look at your ntuples and for writing
a thesis that helped me understand what the GSF is all about.

• Thank you, Ole Røhne and Erlend Bolle, for introducing me to the wonderful
world of 3DSi pixels, and giving me the opportunity to spend the summer at
CERN.

• Thanks to everybody working with the BCM for letting me play with dia-
monds.

• Thanks to the entire EPF group for being a very smart and very helpful group
of people.



Contents

Contents v

1 Introduction 1
1.1 Fundamental particles and forces . . . . . . . . . . . . . . . . . . 1
1.2 Problems with the Standard Model . . . . . . . . . . . . . . . . . 3
1.3 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . 4

2 The ATLAS detector 6
2.1 The inner detector . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The muon spectrometer . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Charged particles passing through matter 13
3.1 Particles passing through matter . . . . . . . . . . . . . . . . . . 13

3.1.1 Ionizing energy loss . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Radiative energy loss . . . . . . . . . . . . . . . . . . . . 13
3.1.3 Multiple scattering . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Material in the ATLAS inner detector . . . . . . . . . . . 17

4 Track reconstruction 18
4.1 Track recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.2 Track finding . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Track fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1 Track model . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 The track parameters in the ATLAS inner detector . . . . 20

4.3 The Least squares method . . . . . . . . . . . . . . . . . . . . . 20
4.3.1 Properties of the least squares method . . . . . . . . . . . 22

4.4 The Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Electron track fitting . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5.1 The Gaussian sum filter . . . . . . . . . . . . . . . . . . 24

v



vi Contents

5 Performance of the Gaussian Sum Filter 27
5.1 Track fitters and final estimates . . . . . . . . . . . . . . . . . . . 27
5.2 J/ψ → e+e− . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Single electron/positron tracks . . . . . . . . . . . . . . . 29
5.2.2 Invariant mass reconstruction . . . . . . . . . . . . . . . 32

5.3 H → ZZ∗ → e+e+e−e− . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Invariant mass reconstruction . . . . . . . . . . . . . . . 35

6 Calculating a probability distribution function of the invariant mass 39
6.1 Invariant mass of tracks described by Gaussian mixtures . . . . . 39

6.1.1 Calculating a probability distribution function of the in-
variant mass . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.2 Other estimates . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Simulating a probability distribution of the invariant mass . . . . . 42

7 Invariant mass reconstruction 47
7.1 Final estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 J/ψ → e+e− . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2.1 Probability transform . . . . . . . . . . . . . . . . . . . . 53
7.3 H → ZZ∗ → e+e−e+e− . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusions 59



Chapter 1

Introduction

Thanks to remarkable experimental and theoretical advances in the last decades, a
model describing what is assumed to be the fundamental building blocks of mat-
ter, and how these particles interact, has emerged. This is the Standard Model of
particle physics [3, 5].

The model is a relativistic quantum mechanical description of nature, and ac-
counts for all known fundamental interactions, sans gravity. The matter particles,
called fermions, interact by exchanging force mediating particles, called gauge-
bosons. There are four known fundamental forces. The Standard Model contains
quantum field theories describing strong, weak and electromagnetic interactions.

1.1 Fundamental particles and forces

There are two main groups of particles, fermions and bosons. All directly observed
matter consist of fermions, particles with half integer spin. Fermions are split into
two groups, quarks and leptons. The six quarks in the Standard Model are listed in
table 1.2. In addition to carrying an electric charge, the quarks carry one of three
color charges linked to the strong interaction. The other group of fermions, the
leptons, are listed in table 1.2. Lepton do not carry a color charge.

The leptons and quarks are further divided into three generations. Each genera-
tion consists of two quarks and two leptons. The quarks and leptons in the different
generations have the same quantum numbers, like electric charge, spin and color
charge, but the mass of the particles differ. The first generation contain the lightest
particles, the third has the heaviest. The heavier particles in the second and third
generation are not stable, and quickly decay to a lighter generation. Because of
this, all stable matter in the universe is made up of the quarks and leptons in the
first generation.

All the fermions in the Standard Model have anti-particles, particles with op-
posite quantum numbers, but the same mass.

With the discovery of the tau neutrino at the DONUT(Direct Observation of
the NU Tau) experiment at Fermi lab [18] in 2000, all the fermions in the Standard

1



2 1. Introduction

Quarks spin= 1/2 ~
Generation Flavor Mass Electric charge

First
Up(u) 1.5 - 3.0 MeV 2/3
Down(d) 3 - 7 MeV -1/3

Second
Charm(c) 1.25 GeV 2/3
Strange(s) 95 MeV -1/3

Third
Top(t) 172.5 GeV 2/3
Bottom(b) 4.2 GeV -1/3

Table 1.1: Standard Model quarks, with mass and electric charge. All the quarks
carry a color charge of either red, green or blue.

Leptons spin= 1/2 ~
Generation Flavor Mass Electric charge

First
Electron neutrino(νe) <2 eV 0
Electron(e−) 0.511 MeV -1

Second
Muon neutrino(νµ) < 0.19 MeV 0
Muon(µ−) 106 MeV -1

Third
Tau neutrino(ντ ) < 18.2 MeV 0
Tau(τ−) 178 GeV -1

Table 1.2: Standard Model leptons, with mass and electric charge.

Model have been observed.
Bosons are particles with integer spin. The standard model contain 12 force

mediating gauge-bosons with spin 1, and one spin 0 particle, called the Higgs bo-
son. The gauge-bosons are the mediators of the strong, weak and electro magnetic
force, as shown in figure 1.3.

Fundamental forces
Weak Electro magnetic Strong

Acts on flavor electric charge color charge
Particles experiencing fermions electrically charged quarks, gluons
gauge-boson Z, W± photon 8 gluons
gauge-boson mass 91GeV,80GeV 0 0
strength 10−5 10−2 1
range 10−18 ∞ 10−15

Table 1.3: The forces described by the Standard model. All the gauge-bosons have
spin=1~.

All the fundamental interactions in the model are derived from a single general
principle, the requirement of local gauge-invariance. Quantum Chrommo Dynam-
ics(QCD) are based on the symmetry group SU(3)C . This group describes the
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strong force, mediated by 8 gluons. The gluons couple only to particles carrying
a color charge, this means that only quarks and gluons can interact through the
strong force.

The electro magnetic force, mediated by the photon, and the weak force, me-
diated by the massive Z and W± bosons are unified in a single theory. This is
the Glashow - Weinberg - Salam theory of electro-weak processes, based on the
SU(2)L × U(1)Y symmetry group. Under SU(2)L, the fermions are ordered in
left-handed isodoublets and right-handed isosinglets, anti-particles in right-handed
doublets and left-handed singlets. A left-handed particle is a particle where the
spin and momentum point in opposite directions, a right-handed particle has a spin
pointing in the same direction as the momentum.

The Z and W± bosons only couple to left-handed fermions and right-handed
anti-fermions. Photons couple to all particles with an electric charge.

The standard model contains a mechanism that breaks the symmetry of the
SU(2)L × U(1)Y group. Without this spontaneous symmetry breaking, including
fermion masses or massive Z and W± bosons break the gauge invariance of the
theory. This mechanism is called the Higgs mechanism, after the British physicist
Peter Higgs. The mechanism uses a scalar field with a non-vanishing vacuum
expectation value, i.e. a field that is present throughout the universe, to break
the electro-weak symmetry. The symmetry breaking leads to massive Z and W±

bosons, and fermions obtain mass by interacting with the scalar field.
The scalar field is called the Higgs field, and a neutral, spin 0 particle, called the

Higgs boson, is associated with it. The Higgs boson is the only particle predicted
by the Standard Model that has not yet been observed.

1.2 Problems with the Standard Model

The Standard Model has gone through extensive experimental testing, and so far
all the observed QCD and electroweak processes observed are in agreement with
the theory. Because of this, the theory is a tremendous success. There are, how-
ever, several areas where the theory does not offer an explanation to observed phe-
nomenon.

The Standard Model is unable to account for the matter - anti-matter asymme-
try in the universe. A small preference for matter over anti-matter is introduced
due to CP-violation in the CKM-matrix. The CKM-matrix describes the transition
likelihood between up-type and down-type quarks in flavor-changing weak inter-
actions. This CP-violation is several orders of magnitude to low to account for the
observed matter - anti-matter asymmetry.

Observations of the cosmos suggest vast amounts of weakly interacting mas-
sive particles, called dark matter. Observation of neutrino oscillation suggests that
neutrinos are massive, but this is not enough to account for all the “missing” matter
in the universe. The existence of dark matter points to the existence of a new type
of fundamental particle that only undergo weak interactions.
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Super Symmetry(SUSY) models predict that all fermions has a partner boson,
and vice versa. This symmetry must be broken, so that the SUSY-partners are
heavier than their Standard Model counterparts. If this was not the case, SUSY-
particles would already have been observed in experiments. Some SUSY-models
predict stable, neutral particles, which would account for the dark matter.

The Higgs boson has not yet been observed. The mass of the Higgs boson is
not predicted by theory. A very heavy Higgs, mH & 1TeV , would lead certain
scattering processes to violate unitarity. The mass of the Higgs boson is very sensi-
tive to radiative corrections. Without an extreme fine-tuning of the parameters, the
radiative corrections to the mass by Standard Model particles could push the mass
close to the Planck-scale(1019GeV ). If SUSY-particles exist with a mass below
1 TeV, radiative corrections from these particles would cancel out the corrections
from Standard Model particles.

The Standard Model contains a number of free parameters. The fermion masses,
the matrix elements of the CKM-matrix, the coupling constant of the three forces,
the Higgs mass and the vacuum expectation value of the Higgs field are not pre-
dicted by theory, and must be experimentally determined. The fact that so many
parameters must be put in by hand, and that no explanation for gravity is included
in the theory, makes it hard to consider the theory fundamental.

1.3 The Large Hadron Collider

The Standard Model predicts the existence of the Higgs boson with a mass of less
than 1 TeV. Several SUSY-models predict SUSY- particles with masses of less than
1 TeV. In order to probe for these particles, a particle accelerator able to produce
collisions with unprecedented center of mass energies is needed.

The Large Hadron Collider(LHC) built at CERN is a proton-proton collider
able to accelerate protons to an energy of 7TeV. In the resulting collisions, the
quarks and gluons that make up the protons, called the partons, are able to collide
at high enough energies to probe the 1 TeV scale.

A cross section is a value describing the likelihood of a physics process taking
place. Colliding protons with anti-protons gives higher cross-sections, but at very
high energies the difference is small. The difference in cross sections is more
than made up for by the higher luminosity that can be achieved with proton-proton
collisions.

L =
n2
bfb

σ2
b4π

(1.1)

The LHC is designed to collide bunches of protons with nb = 1011 protons, with a
frequency of fb = 40MHz and a bunch width σb = 15.9µm, bringing the design
luminosity to approximately 1034cm−2s1.

The protons are extracted from a hydrogen plasma before being accelerated to
50MeV by a linear accelerator. Then they are further accelerated by the Proton
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Synchrotron Booster(PSB) to an energy of 1.4GeV. They are then injected to the
Proton Synchrotron, where the protons are ordered in bunches, further accelerated
and injected to the Super Proton Synchrotron(SPS). In the SPS they are accelerated
to an energy of 450GeV before being injected to the LHC, where the bunches are
accelerated to 7TeV.

Figure 1.1: The accelerator chain at CERN.

The LHC bunches are made to cross at four points along the ring. At the beam
crossing points, four detectors will examine the collisions produced in the LHC.
Two general purpose detectors, CMS(Compact Muon Solenoid) and ATLAS(A
Toroidal LHC AparatuS), and one dedicated B-physics experiment, LHCb are de-
signed for proton-proton collisions.

The LHC will also produce lead-lead ion collisions. ALICE(A Large Ion Col-
lider Experiment) is designed to investigate the heavy ion collisions.



Chapter 2

The ATLAS detector

The ATLAS detector(figure 2.1) has been designed to examine a wide range of
processes, in the full energy range produced by the 14 TeV center of mass proton-
proton collisions. The high luminosity and energy environment at the LHC places
strong requirements on the detectors.

Most interesting processes involve the creation of unstable particles, decaying
instantly after they have been created. These particles must be identified from the
decay products. This process requires precise four-momentum measurement for
a wide energy range, and good particle identification. Neutrinos and the possible
SUSY dark matter candidates can not be directly observed in the detector. For this
reason it is important that all the particles from an interesting decay are detected.
Non-interacting particles can then be indirectly observe by missing transverse en-
ergy. In order to prevent particles from escaping detection, the interaction point
must be enclosed by the detector.

Because of the high particle flux close to the interaction point, the detector
must be able to withstand huge amounts of radiation.

The ATLAS detector is cylindrical in shape, consisting of a central barrel re-
gion, with an end-cap on each side. Cylindrical coordinates are used to describe
the position of the detector elements, as well as particle momentum. The direc-
tion from the interaction point is give by an azimuthal angle, φ, and a polar an-
gle, θ. Another way of describing the polar angle is to use the pseudo rapidity,
η = −ln(tan(θ/2)). The reason for this, is that particle production is almost con-
stant as a function of η. The detector is also described by two planes, the Rφ plane
and the Rz plane. The z-axis runs along the center of the detector in the same
direction as the beam line, R is the distance of a point to the z-axis.

The detector consists of three major subsystems:

• The inner tracker, located closest to the interaction point. A 2 Tesla solenoidal
magnetic field bends the trajectories of charged particles. From the measure-
ments in the inner detector, these trajectories are calculated.

• Electro magnetic and a hadronic calorimeters, located outside the inner de-
tector. The calorimeters measure the energies of electrons, photons and

6
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Figure 2.1: The ATLAS detector(from the CERN web pages)
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Figure 2.2: The ATLAS inner detector detector(from the CERN web pages)

hadrons.

• The muon spectrometer, located farthest away from the interaction point.
The muon spectrometer measures the trajectories of muons.

2.1 The inner detector

The ATLAS inner detector [15–17] serves the purpose of measuring the trajecto-
ries of charged particles passing through it. A super conducting solenoid magnet
produces a 2T magnetic field that bends the trajectories of charged particles in the
Rφ plane. From the amount of bending a particle trajectory undergoes, the mo-
mentum of the particle can be determined. The direction of the bending is used to
determine the sign of the electric charge of the particle.

Precise measurements of the direction and momentum of the particles can be
used to determine the location of the production vertex of the particle. Most par-
ticles are created at the interaction point, or the primary vertex. However, some
particles, like taus and B-mesons, live long enough to create secondary vertices.
Recognizing secondary vertices is an important part of identifying b-jets and tau
leptons.

The inner detector is made up of three sub systems(figure 2.2), the pixel detec-
tor, the semi-conductor tracker(SCT) and the transition radiation tracker(TRT).
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The pixel detector

The pixel detector is the detector located closest to the interaction point. It con-
sists of three barrel layers and three discs in each end-cap. The barrel layers are
located 4, 10 and 13 cm away from the beam-line. Because of its proximity to the
interaction point, the measurements in the detector are very important in estimating
secondary vertices.

The pixels are significaly smaller in the bending plane, this is to provide accu-
rate measurements of the transverse momentum(pT ). The pixel detector covers the
range |η| < 2.5, producing 3 measurements per track.

The pixel detector consists of 1456 silicon modules in the barrel region, and
288 modules in the end-cap. The silicon pixels gives a two dimentional read out,
with a total of approximately 140 million channels, with a resolution of ∼ 10µm
in the Rφ plane and ∼ 115µm in the z direction(barrel layers) and R direction
(end-cap layers).

The SCT

The SCT lies outside the pixel detector, in the radial range from 30 to 56 cm. The
barrel region has four layers of silicon micro-strip sendsors, the end-caps have nine
layers. The SCT cover the range |η| < 2.5. The barrel modules are rectangular,
with two silicon wafers, one mounted on each side. Each silicon layer produce
a one dimentional measurement, but measurements from the front and back side
of the module can be combined to a two dimentional space point. The silicon
strips provide less granularity than the pixels, but because they are located further
away from the interaction point, less resolution is required. The average number
of hits per track is eight, leading to four space points. The resolution of the SCT is
∼ 17µm in Rφ, and ∼ 580µm in R and z.

The TRT

The bulk volume of the inner detector is made up of the transition radiation tracker(TRT)
It occupies the outermost part of the inner detector, with a radius from 56 to 107
cm. Like the other parts of the inner detector, it consists of a barrel and two end-cap
regions. The TRT coverage is limited to |η| < 2.0.

The TRT consists of straw tube detectors. The inside of each tube is covered
with a aluminum foil acting as a cathode. The tubes are filled with a xenon based
gas mixture, and have a central anode wire. When a charge particle passes through
a straw tube, the gas is ionized, the charge carriers drift in the electric field, and
a current is read out at the end of the straw tube. The TRT contributes with an
average of 35 one dimentional measurements, with a resolution of 130 µm, in the
Rφ plane per track.

In addition to these presision measure ments, the TRT can be used to identify
electrons. Between the straws there is embeded ploypropylene foils and fibers.
When a highly relativistic charged particle traverses a boundary between materials
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with different dielectric constants, it can emit soft photons, called transition radia-
tion. Because electrons are light particles, they move closer to the light speed than
heavier particles with the same momentum, and emits more transition radiation.
Electrons can be seperated from charged pions for momentum up to around 100
GeV. The transition radiation interacts with the gas in the straw tubes, and produce
a higher read out than charged particles.

The inner detector porvides a momentum estimates with uncertaionties of ∆pt/pt =
0.04%⊕2%, and approximately 15 µm for the impact parameters. The impact pa-
rameters are z and R estimates of the trajectory at the point where the trajectory is
closest to the z-axis. The uncertainties in the momentum estimates increases with
higher transverse momentum.

2.2 Calorimetry

The calorimeters measure the energy of electrons, photons and jets. The ATLAS
detector uses two types of calorimeters, an electromagnetic calorimeter(ECAL)
and a hadronic calorimeter(HCAL) [17].

Both calorimeters are sampling calorimeters. Thick absorbers are used to cre-
ate electromagnetic cascades in ECAL, and hadronic showers i HCAL. Between
the layers of absorbers, active detector material is used to sample the particle show-
ers.

The mean free path of a hadronic jet is about one order of magnitude greater
than the mean free path of an electron, the radiation length(x0). For this reason,
ECAL is located closer to the interaction point than HCAL. Electrons and photons
then create showers that are absorbed before they enter HCAL.

ECAL

The electromagnetic calorimeter uses lead absorbers to create cascades, and liq-
uid argon as sampling material. The cascades are created by electrons emitting
bremsstrahlung photons(e → eγ), and photons converting to electron/positron
pairs(γ → e+e−).

The thickness of the calorimeter is approximately 24 x0 in the in the barrel
region, and 35 x0 in the end caps. Before the electrons and photons reach the
ECAL, they pass through several radiation lengths(figure 3.4). To correft for the
energy loss in the inner detector, a liquid argon pre sampler is installed.

The ECAL covers the regiona up to |η| < 3.2, with uncertainties in the energy
measurement about σ(E)/E = 10%/

√
E ⊕ 0.2% [17].

HCAL

The HCAL uses iron plates as absorbers, and plastic scintillator tiles to sample the
showers. The hadronic showers are created through inelastic interactions between
the hadrons and the nuclei in the absorbers. This produces wide cascades of the
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a b
barrel 56% 5%
end-cap 70% 6%
FCAL 70% 3%

Table 2.1: Parameters describing uncertainties in energy measurements [17].

secondary leptons and hadrons. At large η there is a very high level of hadronic
radiation, that would damage the scintillator tiles. For this reason the end-caps use
the radiation hard liquid argon as active sensor material.

In order to keep particles escaping detection to a minimum, a forward calorime-
ter(FCAL) is installed to detect particles at high |η|. The HCAL and FCAL cover
the range |η| < 4.8.

The uncertainties in the energy measurements goes as σ(E)/E = a/
√
E ⊕ b.

The values for a and b differs in the different part of the calorimeter. Approximate
values for the parameters are listed in table 2.1

2.3 The muon spectrometer

The outermost detector system in ATLAS is the muon spectrometer. Three barrel
layers an four end-cap wheels are in place to measure the momentunm of muons. A
air-core torroidal magnet produces a field that bends the particles in the Rz plane.

Two different detector types are used to register hits. The range |η| < 2.0 is
covered by muon drift tubes. In the region 2.0 < |η| < 2.7, there is a higher
neutron-induced background. In this range cathode strip chambers are used, be-
cause they have a shorter responce time and higher granularity.

Resistiv plate chambers (|η| < 1.05) and thin gap chambers (1.05|η| < 2.4)
are used aswell, mostly to provide information to the event trigger.

2.4 Trigger

The LHC produces proton-proton collisions at a rate of 40MHz. This produces
an amount of data several orders of magnitude greater than what the ATLAS data
aquisition system can handle. A maximum frequnzy of ∼ 100 events per second
can be stored for offline analysis.

A three level trigger trigger is used to select events that show signs of interest-
ing physics processes. The first level is a hardware based trigger selecting events
with large energy deposits in the calorimeters, hits in the muon chambers or miss-
ing pT . The level-2 trigger is software based, and selects events based on a rudi-
mentary analysys of regions of interest identified in level-1. The level-3 trigger
does a preliminary reconstruction of the entire event, events that are selected by
this trigger is stored for offline analysis.
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Figure 2.3: Examples ofr particls passing through the detctor(from the CERN web
pages)



Chapter 3

Charged particles passing
through matter

Understanding the trajectories of charged particles in the detector, and how these
trajectories are impacted by the particle interacting with the detector material is
important for tracking to be successful. In this chapter the most important aspects
of how particles interact with matter, and how this relates to the ATLAS inner
detector are discussed.

3.1 Particles passing through matter

3.1.1 Ionizing energy loss

Except for electrons, moderately relativistic particles passing through matter lose
energy predominantly by ionization and atomic excitation. The mean ionization
energy loss is described by the Bethe-Block equation [4]:

−dE
dx

= Kz2Z

A

1
β2

[
1
2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ(βγ)
2

], (3.1)

where Tmax is the maximum kinetic energy the particle can lose in a single colli-
sion.

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.2)

The other constants and variables in the equation are described in table 3.1.
Ionizing energy loss is a stochastic process, but the standard deviation is small

compared to the mean, so a deterministic approximation is normally used [6].

3.1.2 Radiative energy loss

When a charge particle with high momentum is deflected by another charged par-
ticle, like an atomic nucleus, it can decelerate by emitting a photon. This process

13
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Figure 3.1: Stopping power for muons in copper. The central region is well de-
scribed by the Bethe-Bloch equation (From [4]).

Symbol Definition Units or value
K/A 4πNAr

2
emec

2/A 0.307075MeV g−1cm2

NA Avogadro’s number 6.0221415× 1023mol−1

re Classical electron radius 2.817940325(28)fm
mec

2 Electron mass ×c2 0.510998918(44)MeV
M Incident particle mass MeV/c2

Z Atomic number of absorber
A Atomic mass of absorber g mol−1

ze Charge of incident particle
β v2/c2

γ Lorentz factor 1√
1−v2/c2

δ(βγ) Density effect correction to ionization energy loss
T Kinetic energy MeV
I Mean excitation energy eV

Table 3.1: Constants and variables used in the Bethe-Bloch equation.
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is known as bremsstrahlung. The energy emitted is proportional to 1/m2, where
m is the mass of the incident particle [13]. Because of this dependence on mass,
the only particle substantially affected by bremsstrahlung is the electron. Above a
few tens of MeV the electron lose energy predominantly through bremsstrahlung,
as seen in figure 3.2.
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Figure 3.2: Fractional energy loss per radiation length for electron in lead as a
function of energy (From [4]).

Bremsstrahlung is a stochastic process with large variance relative to the mean.
In this case a deterministic approximation can not be used. This highly non-
Gaussian process is modelled by the Bethe-Heitler probability density function [2].

f(z) =
(−ln(z))c−1

Γ(c)
, (3.3)

where

c =
t

ln(2)
, (3.4)

and Γ(c) is the gamma function.
The probability density function models the fractional energy loss, final energy(Ef )

over initial energy(Ei).

z =
Ef
Ei

(3.5)
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t is the amount of material traversed measured in radiation lengths(x0).

t =
x

x0
(3.6)

Figure 3.3: The Bethe-Heitler distribution for different path lengths,t.

A radiation length is is a constant of a material connected with the probability
of radiative energy loss for electrons, and the probability of photons converting
to e+e− pairs. x0 is the mean distance for a high-energy electron to lose all but
1/e of its energy by bremsstrahlung, and 7/9 of the mean free path of high-energy
photons converting to an electron/positron pair.

For muons and pions radiative energy loss can not be ignored for energies &
100 GeV , but in this case, similar to the ionizing energy loss case, a deterministic
approximation is normally used.

3.1.3 Multiple scattering

Multiple scattering is the sum of many small deflections caused by Coulomb scat-
tering as the particle traverses the detector material. This contributes very little to
energy loss, but impacts the angle of the trajectory. In a given plane this process is
roughly Gaussian, with a mean of zero and the width:

θ0 =
13.6(MeV )

βcp
z

√
x

x0

[
1 + 0.038ln

(
x

x0

)]
, (3.7)

where βc is the speed of the particle, p the momentum, z the charge and x
x0

the
length of material traversed measured in radiation lengths(x0) [4]. Large angles
are underestimated by this Gaussian approximation, around 98% of the central
distribution is covered.
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3.1.4 Material in the ATLAS inner detector

Because of the high track density and frequency in the inner detector, quick read-
out, radiation hardness and high granularity are important. The pixels ,SCT and
TRT offer these features, but at the cost of a high amount of material in the detec-
tor. Compared to gaseous detectors, semi-conducting materials contribute more to
the amount of material in terms of radiation lengths. On top of active sensor mate-
rial, services like front-end electronics, power distribution and cooling are needed.
Because of the size of the detector, support structures are needed. All of this add
to the total amount of material a charged particle must traverse to pass through the
tracking detector.
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Figure 3.4: Accumulated material distribution in radiation lengths as function of
|η|(From [17]).

Figure 3.4 shows the accumulated material distribution in radiation lengths as
a function of the pseudo-rapidity, η.

η = −ln [tan(θ/2)] (3.8)

The material in figure 3.4 called external lies between the sensors in the inner
detector and ECAL, so it does not affect the tracking performance.

The amount of material in the inner detector leads to a high probability for high
energy electrons to lose a substantial amount of energy through bremsstrahlung.
The stochastic nature of radiative energy loss leads to problems when the trajecto-
ries of electrons are to be calculated.



Chapter 4

Track reconstruction

Track reconstruction is the process of going from measurements in the detector
to a description of the trajectories of particles. This task can be split into pattern
recognition and track finding. The job of the pattern recognition algorithms is to
associate a set of measurements with a track candidate. The track fitter tries to
obtain the optimal estimate of the trajectory with uncertainties from the measure-
ments provided by pattern recognition.

4.1 Track recognition

In the ATLAS inner detector track recognition is done in three steps: pre-processing,
track finding and post-processing.

4.1.1 Pre-processing

In the pre-processing stage, the raw detector read-out is prepared for further analy-
sis. For the pixels and the SCT this consists of identifying clusters. A cluster is the
set of pixels or silicon strips where there have been an above threshold readout.

A pixel sensor gives the local two dimensional position for each pixel above
threshold. Combining this two-dimentional measurement with the known location
of the module, the spatial position of the hit is calculated.

Each SCT layer gives a one dimensional position of a measurement in a silicon
strip. From a cluster in a SCT layer, the most probable one dimensional position of
a hit is calculated. Each SCT module consists of two layers of silicon micro-strips,
the direction of the strips are orthogonally aligned. Combining the information
from both layers give a two dimensional local coordinates for the hits.

From a read-out in a TRTstraw tube, the local radius describing the distance
from a track to the anode in the center of the straw is measured. Hits in the straw
tubes only produce a one dimentional measurement, so a space-point can not be
calculated.

18
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4.1.2 Track finding

Track finding is the process identifying a subset of the detector hits as belonging
to a track. The main track reconstruction method used ATLAS is to start with a
few hits close to the beam line, called a track seed. The track seed consists of
hits in the three pixel layers and the innermost SCT layer, taking advantage of the
high granularity in the innermost scilicon tracker layers. The trajectory suggested
by the track seed is then extrapolated through the SCT using a Kalman Filter. If
there are enough hits within this narrow “road” through the SCT, this set of hits is
considered a track candidate.

This method produces a high number of track candidates. A track fit is ap-
plied to the track candidates. The candidates are kept or discarded depending on a
number of factors including the goodness of fit, the number of hits shared between
candidates and the number of tracks with “holes”. A hole is in this case a track
passing through a sensor without creating a cluster.

The remaining track candidates are then extended through the TRT and refitted.
If the refit with the TRT hits improves the track fit, all hits are used in the final track
fit. If the fit with TRT hits does not improve the track fit, the TRT hits are associated
with the track, but only the pixel and SCT hits are included in the final track

4.1.3 Post-processing

The post-processing stage uses the information from the track finding stage to cal-
culate the position of the primary vertex, points of photon conversion and position
of second vertices.

4.2 Track fitting

In a physics analysis, the position of the individual measurements of a track is
not very interesting. However, with the help of a track fitter these measurements
can be used to obtain information about the momentum, charge and trajectory of a
particle.

Six parameters are needed to fully describe the position, momentum and charge
of a particle. However, if a track is described at an arbitrary surface, the state of the
track can be described by five parameters and a 5× 5 covariance matrix describing
the uncertainties. The surface often corresponds to a detector element, but it can
also be a completely abstract construction.

For this to be successful a detailed description of how charged particles behave
in the detector is crucial. This includes descriptions of the magnetic field, material
effects and the geometry of the detector.
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4.2.1 Track model

The track model is a mathematical model describing the trajectory of a charged
particle. If the state of a track is described at a surface, the track model can be used
to obtain an estimate of the state on a different surface.

In simple cases, the track model can be analytical. Examples of this is a vacuum
without a magnetic field, where the tracks are straight lines, or a vacuum with a
constant magnetic field, where the trajectories become helices.

The ATLAS inner detector does not have a homogeneous magnetic field, and
it has a complex geometry. The ATLAS track model is therefor not analytical, but
employs approximations and numerical methods.

4.2.2 The track parameters in the ATLAS inner detector

When a track is fitted, the five track parameters used are (locX, locY, φ, θ, q/p).
The track fitters examine the predicted state at the same surface as the detector
element containing a measurement. locX and locY are the local Cartesian coordi-
nates on the surface. φ and θ describe the direction of the particle, φ in the bending
plane and θ in the non bending plane. q/p is the charge of the particle divided by
the momentum. The transverse momentum of a particle determines the amount of
bending the particle undergoes in the magnetic field and the charge determines the
direction of the bending.

In the study of track fitter performance and invariant mass estimates in the fol-
lowing chapters, the tracks are evaluated at the perigee. The perigee is an abstract
surface where the track is closest to the z-axis. In this case the track parameters are
(d0, z0, φ, θ, q/p). d0 and z0 are called the impact parameters. d0 is the transverse
distance to the z-axis, z0 the position along the z-axis.

The parameters φ and d0 are sensitive to information only in the bending
plane(Rφ), θ and z0 only the non-bending plane(Rz). q/p depends on informa-
tion in both planes. pT measurements depend only on the Rφ plane, the total
momentum also requires an estimate of the angle θ.

pt = p sin(θ) (4.1)

4.3 The Least squares method

The state of the trajectory at a surface, k, can not be measured directly, a mea-
surement only contains information about the position of the trajectory at a spe-
cific surface. The measurements are, however, a function of the true state of the
track [1, 6].

mk = hk(xtrue) + εk (4.2)

mk is here a vector containing the measurement at surface k, xtrue is the true state
of the track, and εk is the noise vector corrupting the measurements. The noise
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vector depends on the detector modules, it should have an expectation value of
zero, and the uncertainties should be well known from calibration of the modules.

〈εk〉 = 0, cov(εk) ≡ Vk (4.3)

The function hk simply maps the state vector of the track to the local coordinates
of the measurement at the surface.

The process of track fitting is to find an optimal estimate of the true state vector,
xtrue. In the simplest case only the initial state of the track, x0, is estimated.

In this case, the measurements are a function of the initial state of the track.

mk = fk(x0) + γk (4.4)

The function fk(x) uses the track model to predict the state vector at surface k, and
maps this vector to local coordinates. γk is a combination of εk and uncertainties
arising from material effects.

All the local measurement vectors, noise vectors and functions are collected in
global vectors

m =


m1

.

.
mn

 , f =


f1

.

.
fn

 , γ =


γ1

.

.
γn

 , (4.5)

the full set of measurements are now described as

m = f(x0) + γ. (4.6)

If the track model is approximately linear,

f(x0) = Fx0 + c, (4.7)

the expression becomes

m = Fx0 + c+ γ, (4.8)

where F is the Jacobian of the function f .
From the covariance matrix V of γ, a weight matrix, W, can be found, de-

scribing the “quality” of the individual measurements.

W ≡ V−1 (4.9)

The track fitter is a function that estimates the state vector(x0), from the mea-
surement vector(m), without introducing bias and with minimum variance,

x̃0 = t(m), (4.10)

where x̃0 is the fitted state vector.
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The least squares method finds the state vector that minimizes the sum of
squares of the weighted residuals m− f(x).

M(x) = (m− f(x))TW (m− f(x)) (4.11)

The weight matrix, W, makes measurements with small variance contribute more
than measurements with a large variance.

The estimate of the least squares method is

x̃ = (F TWF )−1F TW (m− c), (4.12)

with a covariance matrix

C(x̃) = (F TWF )−1. (4.13)

4.3.1 Properties of the least squares method

If m is unbiased, i.e. 〈ε〉 = 0, the least squares method is an unbiased estimator.
The Gauss-Markov theorem states that the least squares method is the unbiased

estimator with the minimum variance given that:

• The measurements are unbiased.

• The experimental errors follow a Gaussian distribution.

• The track model is linear.

The least squares method is a consistent estimator. This means that the estimate
converges to the true value as the number of measurements increases.

4.4 The Kalman filter

If the requirements listed above hold, the least squares method is the optimal esti-
mator. When implemented as in the previous section it requires inversion of large
matrices, which is a time consuming operation. The Kalman filter [1, 6] is a re-
cursive formulation of the least squares method that improves the estimate sequen-
tially. It reads in one measurement at the time, avoiding large matrices. When all
the measurements are included, the estimate is equivalent to the one obtained by
the global least square estimator.

For each measurement that is included the Kalman filter goes through two
steps. The first step is to predict the state at a surface k, xk, from the state of
the track at surface k-1, xk−1. To do this it uses the system equation

x(sk) ≡ xk = fk(xk−1) + wk. (4.14)
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The function fk is the track model between the two layers, wk is the process noise
arising from material effects like multiple scattering and energy loss. Bias from
material interactions are accounted for in the track model, so wk is unbiased.

〈wk〉 = 0, cov(wk) ≡ Qk (4.15)

If the track model is linear, the predicted state at layer k, given the state at k-1 is

xk|k−1 = Fkxk−1 + wk, (4.16)

where Fk again is the Jacobian of the track model. The predicted state depends on
all the previous measurements.

Similar to the case of the least square method, the measurement can now be
expressed as a function of the predicted state at the surface.

mk = hk(xk|k−1) + εk (4.17)

The function hk maps xk to local coordinates. For the ATLAS track parameters
this is simply

hk → Hk =
(

1 0 0 0 0
0 1 0 0 0

)
. (4.18)

Again ε is the measurement errors.

〈εk〉 = 0, cov(εk) ≡ Vk ≡W−1
k (4.19)

The predicted covariance matrix is calculated using linear error propagation
on the covariance matrix at surface k-1. Linear error propagation is a method of
calculating how a transformation function changes the uncertainties of an estimate.

Ck|k−1 = FkCk−1FTk + Qk (4.20)

The term Qk, which is due to material effects, inflates the covariance matrix.
The next step is to update the estimate state with the measurement at surface

k. This is called filtering. The state vector is combined with the measurement and
becomes

xk|k = xk|k−1 + Kk(mk −Hkxk|k−1), (4.21)

where Kk is the Kalman gain matrix

Kk = Ck|k−1H
T
k (Vk + HkCk|k−1H

T
k )−1. (4.22)

The updated covariance matrix becomes

Ck|k = (I−KkHk)Ck|k−1, (4.23)
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where I is the unity matrix. In this step the covariance matrix shrinks because of
the additional information gained by the measurement.

If the Kalman filter starts far away from the beam pipe, reading in points as it
works its way to the interaction point, the optimal estimate is reached at the surface
of the innermost measurement. To obtain the optimal estimate on all surfaces, a
second Kalman filter runs in the opposite direction. Information from both Kalman
filters are used in the estimate at all surfaces, this way all the measurements are a
part of the estimate.

4.5 Electron track fitting

One of the requirements for the linear least squares method to be the optimal es-
timator, is that all the stochastic processes encountered should follow a Gaussian
distribution. This is often not the case in particle detectors. Energy loss by ion-
ization and excitation follow a Landau distribution in thin layers and multiple scat-
tering has non-Gaussian tails, the same can be true for the errors in the detector
modules. In these cases the use of a linear estimator can be defended because the
uncertainties in energy loss adds little to the covariance matrix of the estimate, and
can be treated as a deterministic process. The distributions of multiple scattering
and measurement errors are close to being Gaussian, and can be approximated as
such.

This can not be said for the energy loss of electrons. Electrons lose energy pre-
dominately through bremsstrahlung. This stochastic, highly non-Gaussian process
follow the Bethe-Heitler distribution(eq.3.3, fig.3.3).

The only way for bremsstrahlung energy loss to be included in a Kalman filter
is to model it as a Gaussian. This can be done by using a Gaussian with the same
mean and variance as the Bethe-Heitler distribution, but this is a crude approxima-
tion. In this case it is plausible that a non linear track fitter that takes the actual
shape of the energy loss distribution into consideration can perform better than the
Kalman filter.

4.5.1 The Gaussian sum filter

Athena, the ATLAS software framework, contains a track fitter specialized for
electron tracks called the Gaussian-Sum Filter(GSF) [1, 8, 10, 11]. The GSF is
a non-linear generalization of the Kalman filter.

The GSF deals with the energy loss of electrons by modelling the Bethe-Heitler
distribution as a weighted sum of Gaussians with a fixed number of components,
NBH .

g(z) =
NBH∑
i=0

giϕ(z; zi, var(zi)) (4.24)
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z is the fractional energy loss, Ef/Ei and ϕ is the probability density function
describing a Gaussian with mean zi and variance var(zi). Each component also
has a weight, gi.

NBH∑
i=0

gi = 1 (4.25)

The Gaussian mixture is calculated by minimizing this distance between the
cumulative distribution functions of the Bethe-Heitler distribution , F (z), and the
Gaussian sum modeling it, G(z) [9].

DCDF =
∫ ∞
−∞
|F (z)−G(z)|dz (4.26)

For a given number of components, the mean, weight and variance of the compo-
nents are calculated as a function of the amount of material traversed in radiation
lengths, t = x/x0. In ATLAS, the default number of components used in the
model is NBH = 6.

In order to use this model in track fitting, the mean and variance of the compo-
nents must be transformed from z to the track parameter q/p.

g(z)→ g(∆(q/p)) =
NBH∑
i=0

giϕ(∆(q/p); ∆(q/p)i, var(∆(q/p)i)) (4.27)

Like the Kalman filter, the state on a surface is predicted using all the previous
measurements, and then updated with the measurement at the surface. In the case
of the Kalman filter, the state on the surface is a multivariate Gaussian probability
density function, described by a state vector and covariance matrix.

p(xk|Mk−1) = ϕ(x; xk|k−1,Ck|k−1), Mk−1 = (m1.....mk1) (4.28)

For the GSF, the state of the track is generally non-Gaussian, described by a sum
of multivariate Gaussian components

p(xk|Mk
) =

NSoS∑
i=0

πikϕ(x; xik|k−1,C
i
k|k−1), (4.29)

whereNSoS is the number of components describing the state on the surface. Each
component in the Gaussian mixture has its own state vector with a corresponding
covariance matrix and a weight.

In the prediction step, each component in the Gaussian mixture is updated with
several independent Kalman filters. Each Kalman filter uses one of the components
in the Gaussian mixture modeling the Bethe-Heitler distribution, g(∆(q/p)), to
describe the energy loss.

p(xk|k−1) =
NBH∑
j=1

N
(k−1)
SoS∑
i=1

giπi

ϕ(x; xi + Hel[∆(q/p)j ],Ci + HT
el[var(∆(q/p)j)]Hel) (4.30)
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Hel is a matrix that maps ∆(q/p) to the state vector and var(∆(q/p)) to the co-
variance matrix of the trajectory estimate.

Hel =
(

0 0 0 0 1
)

(4.31)

The result of this is that for each prediction step the number of components
describing the state on the surface increases.

Nk
SoS = Nk−1

SoSNBH (4.32)

This quickly leads to an unmanageable number of components, so component re-
duction is needed. If the number of components exceeds a fixed maximum, the two
closest components are collapsed into a single equivalent Gaussian. This process
of merging the two closest components continues until the total number of com-
ponents becomes less than a preset maximum. The default maximum number of
components in ATLAS is NSoS = 12.

When the state on a surface is predicted, the state vector and covariance matrix
of each component is updated with the measurement at the surface in the same way
as for the Kalman filter (eq 4.21 and eq. 4.23).

The implementation of the GSF in ATLAS is made to deal with non-Gaussian
energy loss for electrons, but a GSF can be made to deal with any stochastic non-
Gaussian process encountered in the fitting process, including measurements mod-
eled as Gaussian mixtures. If the measurements are modeled as Gaussian mixtures,
the number of components increase in the update step, not the prediction step.



Chapter 5

Performance of the Gaussian
Sum Filter

In this chapter three different track fitters are used on Monte Carlo simulated data.
The tracks are estimated at the perigee, the point where the trajectory is closest to
the center of beam pipe. The estimates of single electron tracks for the different
track fitters are compared to each other, as well as the estimated invariant mass for
physics processes for events with pure electron final states. For a more in depth
analysis of single electron tracks, and analysis of the same simulated data sample
as used here, see [1].

5.1 Track fitters and final estimates

The Gaussian sum filter is compared with two Kalman filters.

• Kalman filter - Bethe-Bloch(KF-BB): Energy loss is treated as a determin-
istic process. The Bethe-Bloch equation is used to calculate the energy loss
between two surfaces. Radiative energy loss is disregarded, witch means that
energy loss is under-estimated when the fitter is used on electron tracks.

• Kalman filter - Bethe-Heitler(KF-BH): Energy loss is treated as a stochastic
process modeled by a single Gaussian. The model uses the first and second
moment of the Bethe-Heitler distribution as mean and variance [14].

〈z〉 =
〈Ef
Ei

〉
= e−t (5.1)

var(z) =e−t(ln3/ln2) − e−2t (5.2)

In analysis, the variance and shape of an estimate is very often disregarded. A
final estimate is needed, a numerical value to be used for cuts and histogramming.
For a Gaussian estimate the probability amplitude reaches its maximum at the mean

27
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value. The distribution is also symmetric around this value, so the mean value is
clearly the best estimate.

The estimates from the GSF are non-Gaussian. The mean and the value with
maximum probability amplitude is generally not the same. In the following, two
values are used as final estimates of the GSF, the mean and the mode, the most
probable value, of the distribution.

The mean of the distribution can be obtained simply as a weighted sum of the
means of the components. However, similar to the component reduction step in
the track fitting process, the Gaussian components can be merged into a single
Gaussian [8].

x =
Nc∑
i=1

qixi (5.3)

C =
Nc∑
i=1

qiCi +
Nc∑
i=1

∑
k>i

qiqk(xi − xk)(xi − xk)T (5.4)

xn, Cn and qn is the mean vector, the covariance matrix and the weight of com-
ponent n, Nc is the total number of components. Although information about the
shape of the estimate is lost, a single covariance matrix describing the uncertainties
greatly simplifies the analysis.

The mode estimate uses the Newton-Raphson method to obtain the mode of
the q/p track parameter. The track model takes energy loss into account by adding
a ∆(q/p) to the q/p parameter, so q/p is generally the track parameter least resem-
bling a Gaussian. The mean of the other parameters are used.

There is no trivial way of getting an accurate variance describing the distri-
bution around the mode, so the estimate is collapsed into a single point. Unless
specifically mentioned, the estimate used in this chapter is the mode of the proba-
bility distribution function produced by th GSF.

5.2 J/ψ → e+e−

The J/ψ is a meson consisting of a charm and an anti-charm quark. It has a
mass of 3096.916 ± 0.011 MeV and a width of 93.4 ± 2.1 keV [4]. It can decay
to an electron and a positron, with a branching ratio of BR(J/ψ → e+e−) =
(5.94± 0.06)× 10−2.

5000 J/ψ decaying to an electron and a positron have been generated, and
ATLAS full simulation has been used to determine the response of the inner de-
tector. The Monte Carlo truth momentum distributions of the leading and trailing
momentum of the J/ψ decays are shown in figure 5.1. The leading lepton is the
lepton with the highest momentum in a decay, the trailing the one with the lowest
momentum.
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Figure 5.1: True simulated momentum of the electrons and positrons in the J/ψ
decay.

5.2.1 Single electron/positron tracks

To determine the resolution of the collapsed estimates, the normalized residuals,

xRec − xtruth
xtruth

, (5.5)

are calculated for each event. To get a resolution with sensitivity to the true value,
the symmetric half width around the origin of the distribution of normalized resid-
uals is used. The half width containing 68% of the events is the 1σ resolution. This
resolution describes the width of the core of the distribution. The 2σ half width,
containing 95% of the entries, is also sensitive to tails in the distribution.

The simulated J/ψ decays occur at the ideal interaction point, (d0, z0) = (0,0).
For this reason, the residuals are not normalized and half widths are calculated
from standard residuals. Figure 5.2 shows the normalized residuals for the track
parameters, except d0 and z0, where standard residuals are shown.

The q/p resolutions have been histogrammed separately to show how the mo-
mentum resolution decreases with momentum. Figure 5.3 shows the difference
between the two estimates from the GSF.

Table 5.1 lists the 1σ and 2σ resolutions of the track parameter q/p and the
momentum. The residual momentum distributions are shown in figure 5.4. It is
interesting to note that the Kalman filter disregarding radiative energy loss has the
second best q/p resolution for both the leading and trailing lepton. However, the
resolution of the estimated momentum is more important in a physics analysis, and
in this regard, the Bethe-Bloch Kalman filter does not compare well to the other
track fitters.

The GSF mode gives the best 1σ resolution for both q/p and the momentum,
but the 2σ resolution shows that it has a long tail. For the 2σ momentum resolution,
the Bethe-Heitler Kalman filter performs best.

Table 5.2 shows the half width of the residuals of d0 and z0, and the half widths
of the normalized residuals of φ and θ. The GSF improves the 1σ resolution of the



30 5. Performance of the Gaussian Sum Filter

recd0
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

1400
GSF

Kalman filter - Bethe-Bloch

Kalman filter - Bethe-Heilter

(a) d0 distribution

recz0
-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 10

100

200

300

400

500

600

GSF

Kalman filter - Bethe-Bloch

Kalman filter - Bethe-Heilter

(b) z0 distribution
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(c) Normalized residuals for q/p for the leading
lepton

truth
)/ (q/p)

truth
 - (q/p)

rec
( (q/p)

-0.4 -0.2 0 0.2 0.4 0.6 0.8 10

200

400

600

800

1000

1200

GSF

Kalman filter - Bethe-Bloch

Kalman filter - Bethe-Heilter

(d) Normalized residuals for q/p for the trailing
lepton
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(e) Normalized residuals for φ
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(f) Normalized residuals for θ

Figure 5.2: The track parameters for electrons and positrons from a J/ψ-decay.
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(b) Normalized residuals of the trailing lepton

Figure 5.3: Normalized residuals for q/p for the GSF mode and mean.
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(a) Normalized Residuals of the leading lepton
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(b) Normalized residuals of the trailing lepton

Figure 5.4: Distribution of momentum residuals

(q/p)l (q/p)t pl pt

GSF - Mode
1σ = 0.0342 1σ = 0.0266 1σ = 0.119 1σ = 0.0738
2σ = 0.589 2σ = 0.328 2σ = 1.00 2σ = 0.592

GSF - Mean
1σ = 0.0696 1σ = 0.0553 1σ = 0.149 1σ = 0.106
2σ = 0.367 2σ = 0.233 2σ = 0.687 2σ = 0.357

KF - BH
1σ = 0.0786 1σ = 0.0625 1σ = 0.169 1σ = 0.127
2σ = 0.373 2σ = 0.247 2σ = 0.649 2σ = 0.349

KF - BB
1σ = 0.0542 1σ = 0.0322 1σ = 0.222 1σ = 0.122
2σ = 0.766 2σ = 0.370 2σ = 1.156 2σ = 0.604

Table 5.1: Half widths of the normalized residuals of momentum and (q/p). pl and
(q/p)l refer to the leading lepton, pt and (q/p)t to the trailing.
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d0 z0 φ0 θ

GSF
1σ = 0.111 1σ = 0.222 1σ = 0.000840 1σ = 0.00106
2σ = 0.500 2σ = 0.930 2σ = 0.0113 2σ = 0.00356

KF - BH
1σ = 0.121 1σ = 0.221 1σ = 0.000928 1σ = 0.00105
2σ = 0.495 2σ = 0.903 2σ = 0.0113 2σ = 0.00350

KF - BB
1σ = 0.139 1σ = 0.214 1σ = 0.000962 1σ = 0.00104
2σ = 0.605 2σ = 0.830 2σ = 0.0142 2σ = 0.00332

Table 5.2: (Normalized) residuals for track parameters.

parameters that rely on information in the bending plane, φ, z0 and q/p. The
track parameters using information only in the non bending plane, θ and d0 have a
similar resolution for all the track fitters.

5.2.2 Invariant mass reconstruction

The GSF produces better estimates of the momentum than the Kalman filter. In
this section the invariant mass of the J/ψ is calculated from tracks reconstructed
in the inner detector.

The energy of the decaying particle is

E2 = m2 + p2. (5.6)

The energy and momentum is conserved, and can be reconstructed from the elec-
tron and positron produced in the decay,

E2 = (
∑

Eie)
2 = (

∑
me)2 + |

∑
pe|2, p =

∑
pie, (5.7)

where Ee, me and pe are the energy, mass and momentum of the particle. In this
case me � Ee, and can be disregarded.

E2 ≈ |
∑

pe|2 = p2
ex + p2

ey + p2
ez (5.8)

The reconstructed mass of the decayed particle then becomes

m =
[(∑√

p2
ex + p2

ey + p2
ez

)2

−
(∑

pex

)2
−
(∑

pey

)2
−
(∑

pez

)2
]1/2

(5.9)

Figure 5.5 shows the reconstructed invariant mass of the J/ψ. The resolution
of the invariant mass is, like earlier, determined by the symmetric half width of the
normalized residuals of the mass estimates. The normalized residuals are shown in
figure 5.6 for the two Kalman filters and the GSF mode estimate, and figure 5.7 for
the two GSF estimates.

The resolutions for the different estimators are listed in table 5.3. The GSF esti-
mate coming from the mode of the momentum distribution is a clear improvement
on the 1σ resolution. The GSF mean estimate produces the best 2σ resolution.
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Figure 5.5: Reconstructed invariant mass of J/ψ.

Figure 5.6: Normalized residuals of J/ψ invariant mass.
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Figure 5.7: Normalized residuals of J/ψ invariant mass.

Half width 1σ 2σ
GSF mode 0.092 0.343
GSF mean 0.120 0.317
KF(BH) 0.138 0.329
KF(BB) 0.160 0.384

Table 5.3: 1σ(68%) and 2σ(95%) resolution of J/ψ invariant mass

5.3 H → ZZ∗ → e+e+e−e−

In order to add boson and fermion masses to the standard model without breaking
gauge invariance and the renormalizability of the Lagrangian, a mechanism that
breaks the electro weak symmetry is needed. This mechanism is the Higgs mech-
anism [5]. This mechanism predicts the existence of the Higgs boson, the only
particle in the standard model not yet discovered.

Experiments at LEP have put a lower bound on the Higgs mass of mH =
114 GeV. The ATLAS detector will search for the Higgs boson in the mass range
114GeV < mH < 1000GeV .

The branching ratios of the decay modes of the Higgs boson are shown in figure
5.8. The Higgs only couples directly to massive particles. The coupling to fermions
is proportional to mf , the coupling to the massive vector bosons is proportional to
m2
V . For this reason the WW and ZZ decay modes are dominant if the Higgs

mass is large enough to allow these decays.
Due to the clean final state and low background, the H → ZZ → 4l± decay is
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Figure 5.8: Branching ratios of the Higgs boson as function of the Higgs mass,
from [4]
.

called the “gold plated mode”. The Higgs boson can decay to ZZ∗, where Z∗ is an
off shell Z boson, so this decay is also allowed below the mH > 2mZ threshold.
For mH above ∼ 130 GeV, this is the most promising discovery mode for the
Higgs boson.

The width of the Higgs boson increases rapidly with mh [7], and for a heavy
Higgs boson, the experimental mass resolution is dominated by the intrinsic width
of the Higgs, not the detector resolution.

5.3.1 Invariant mass reconstruction

20,000 H → ZZ∗ → e+e−e+e− events have been generated to test the perfor-
mance of the GSF, with mH = 130GeV . At this mass, the resolution of mH is
dominated by the uncertainties in the tracker. The tracks are reconstructed with
the three track fitters and the true simulated momentum distributions for the four
leptons are shown in figure 7.10.

Figure 5.10 shows the normalized residuals of the reconstructed momentum of
the four leptons. Table 5.4 shows the resulting half widths. As in the case of J/ψ
decays, the decreasing resolution with rising momentum is clear.

The best 1σ resolution is provided by the mode of the GSF estimate, but the
Bethe-Heitler Kalman filter still has a better 2σ half width. However, in this case
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Figure 5.9: Monte Carlo truth distribution of the momentum of the four leptons

p1 p2 p3 p4

GSF - Mode
1σ = 0.144 1σ = 0.106 1σ = 0.0882 1σ = 0.0709
2σ = 2.10 2σ = 1.74 2σ = 1.48 2σ = 1.16

GSF - Mean
1σ = 0.178 1σ = 0.144 1σ = 0.127 1σ = 0.108
2σ = 1.79 2σ = 1.54 2σ = 1.26 2σ = 1.00

KF - BH
1σ = 0.189 1σ = 0.155 1σ = 0.140 1σ = 0.123
2σ = 1.87 2σ = 1.61 2σ = 1.36 2σ = 1.00

KF - BB
1σ = 0.273 1σ = 0.207 1σ = 0.173 1σ = 0.135
2σ = 3.25 2σ = 2.71 2σ = 2.10 2σ = 1.66

Table 5.4: Normalized residuals for the momentum. p1 is the momentum of the
hardest lepton, p4 of the softest.
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Figure 5.10: Normalized residuals of the momentum of the four leptons

the GSF mean estimate produce a better 2σ resolution than all the other estimates.
The reconstructed invariant mass distributions are shown in figure 7.11, nor-

malized residuals in figure 5.12. The peak of the distribution of the GSF mode
estimate is close the true value, and table 5.5 shows it has the narrowest 1σ half
width.

mh

GSF - Mode
1σ = 0.118
2σ = 0.402

GSF - Mean
1σ = 0.126
2σ = 0.364

KF - BH
1σ = 0.131
2σ = 0.360

KF - BB
1σ = 0.211
2σ = 0.473

Table 5.5: Normalized residuals of the reconstructed Higgs boson mass.
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Figure 5.11: Reconstructed invariant mass of the Higgs boson
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Figure 5.12: Normalized residuals of the reconstructed Higgs boson mass



Chapter 6

Calculating a probability
distribution function of the
invariant mass

6.1 Invariant mass of tracks described by Gaussian mix-
tures

Taking the mean or mode of the probability distribution describing the tracks dis-
cards a lot of the available information. It is plausible that a method for calculating
the invariant mass keeping all information in the probability distribution functions
describing the tracks can improve the invariant mass estimates. The method dis-
cussed here calculates a probability distribution function for the invariant mass,
from tracks described as Gaussian mixtures.

6.1.1 Calculating a probability distribution function of the invariant
mass

The method discussed here assumes that Gaussian track estimates transform to
Gaussian invariant mass distributions. This is not strictly the case, but it leads to a
straight forward way of calculating the invariant mass distribution.

This section will describe a way of transforming a set of n track estimates into a
probability distribution function describing the invariant mass. The invariant mass
distribution becomes a sum of single variate Gaussians, where each component is
fully described by a mean, variance and a weight.

In order to calculate a probability distribution function from tracks described
as Gaussian mixtures, a method of transforming Gaussian tracks to a Gaussian es-
timate of the invariant mass is needed. A Gaussian tracks is described in full by
a vector containing the estimated mean of the track parameters(~µi) and the cor-
responding covariance matrix(Ci). When calculating the invariant mass, only the
parameters containing information about the momentum and direction of the track

39
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are relevant. For the ATLAS track parameters, only φ, θ and (q/p), with the corre-
sponding 3× 3 covariance matrix, are needed in the calculation.

~µi = [φi, θi, (q/p)i] (6.1)

Ci =

 σ2
φi

cov(φi, θi) cov(φi, (q/p)i)
cov(θi, φi) σ2

θi
cov(θi, (q/p)i)

cov((q/p)i , φi) cov((q/p)i , θi) σ2
(q/p)i

 (6.2)

The set of n tracks can be described by a single Gaussian with a n × 3 mean
vector, ~µ, and a (n× 3)× (n× 3) covariance matrix, C.

~µ = [~µ1, ~µ2...~µn] (6.3)

C =


C1 C12 . . .
C21 C2 . . .
. . . . .
. . . C(n−1) C(n−1)n

. . . Cn(n−1) Cn

 (6.4)

The matrices Cij in C are matrices describing the covariance between two
tracks. This information, as well as better track estimates, can be found using a
vertex fitter. If a set of tracks originate from a common vertex, the position of
this vertex is estimated. The tracks are then refitted with the estimated vertex used
as a measurement. The fact that all tracks sharing a common vertex are used in
estimating this fake measurement, leads to covariance between the tracks. A GSF
vertex fitter has not yet been implemented in ATLAS, so the covariance matrix of
the n tracks becomes block diagonal, with no covariance between tracks.

C =


C1 0 . . .
0 C2 . . .
. . . . .
. . . C(n−1) 0
. . . 0 Cn

 (6.5)

Using the assumption that Gaussian tracks transform to a Gaussian invariant
mass estimate, all that is needed is to calculate a mean and variance of this esti-
mate. The mean of the invariant mass is calculated from the estimated energy and
momentum of the reconstructed particle.

W = h(~µ) =
√
E2 −

(
p2
x + p2

y + p2
z

)
(6.6)
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The energy and momentum is calculated from the estimated track parameters. In
the relativistic approximation, the electron mass can be disregarded.

px =
n∑
i=1

pxi =
n∑
i=1

qi (q/p)−1
i cos(φi)sin(θi) (6.7)

py =
n∑
i=1

pyi =
n∑
i=1

qi (q/p)−1
i sin(φi)sin(θi) (6.8)

pz =
n∑
i=1

pzi =
n∑
i=1

qi (q/p)−1
i cos(θi) (6.9)

E =
n∑
i=1

Ei =
n∑
i=1

√
p2
xi + p2

yi + p2
zi (6.10)

The variance of the invariant mass is calculated using linear error propagation.

var(W ) = JCJT , (6.11)

where J is the 1× (n× 3) Jacobian of the transformation function.

J = ∇W (6.12)

Using the chain rule multiple times leads to analytic expressions for the partial
derivatives.

dW

dφi
=

1
2W

[
2E

1
2Ei

(
2pxi

dpxi
dφi

+ 2pyi
dpyi
dφi

+ 2pzi
dpzi
dφi

)
− 2px

dpxi
dφi
− 2py

dpyi
dφi
− 2pz

dpzi
dφi

]
(6.13)

dW

dθi
=

1
2W

[
2E

1
2Ei

(
2pxi

dpxi
dθi

+ 2pyi
dpyi
dθi

+ 2pzi
dpzi
dθi

)
− 2px

dpxi
dθi
− 2py

dpyi
dθi
− 2pz

dpzi
dθi

]
(6.14)

dW

d (q/p)i
=

1
2W

[
2E

1
2Ei

(
2pxi

dpxi
d (q/p)i

+ 2pyi
dpyi

d (q/p)i
+ 2pzi

dpzi
d (q/p)i

)
− 2px

dpxi
d (q/p)i

− 2py
dpyi

d (q/p)i
− 2pz

dpzi
d (q/p)i

]
, (6.15)

where i = 1, ..., n.
The transformation function, h(~µ), and its Jacobian are dependent on the num-

ber of tracks involved in the transformation. However, using this formulation the
method can be implemented to work with any number of tracks.

As discussed earlier, the Gaussian sum filter describes the track as a weighted
sum of Gaussian components, where each component is described by a state vector,
a covariance matrix and a weight.
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To transform a set of tracks described by Gaussian mixtures, the method above
is repeated several times. Each iteration produces a Gaussian estimate of the in-
variant mass using one component from each of the tracks involved. This estimate
then gets a weight, calculated from the track components used

gi =
n∏
j=1

δj , (6.16)

where gi is the weight of the invariant mass component, and δj the weight of the
track component.

One Gaussian mass component is calculated for every possible combination of
track components. If each track has nSoS components, the resulting invariant mass
estimate gets

nW =
n∏
j=1

nSoS (6.17)

components.
The full probability distribution of the invariant mass is the sum of the compo-

nents, each described by a mean, W , variance and weight.

f(x) =
nW∑
i

gi√
2var(Wi)π

exp [−(x−Wi)/ (2var(Wi))] (6.18)

6.1.2 Other estimates

In addition to calculating the probability distribution function of the invariant mass,
a probability distribution function describing the square of the invariant mass is cal-
culated. The reason for this is to test if the transformation from track parameters
to the square of the invariant mass is more linear than the transformation to the in-
variant mass. This is accomplished simply by changing the transformation function
and its Jacobian in the method described above.

Using equations 5.3 and 5.4, the Gaussian components in the probability distri-
bution functions describing the tracks can be merged into a single Gaussian around
the mean. From these Gaussian track estimates, a single Gaussian probability dis-
tribution function of the invariant mass can be calculated. The mean of this estimate
is the same as the GSF - Mean invariant mass estimate used in the previous chapter,
but in this case the variance of the estimate is known.

6.2 Simulating a probability distribution of the invariant
mass

To test the calculated probability distribution of the invariant mass, a way to simu-
late the distribution is needed.
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To simulate the invariant mass distribution from Gaussian tracks, all that is
needed is to pull out covariant, Gaussianly distributed random numbers from the
tracks involved and calculate the invariant mass. The method used for getting co-
variant random numbers, is to fill a vector ~xg with Gaussianly distributed random
numbers, multiply this vector with the Cholesky decomposed covariance matrix
and then add the vector containing the mean of the track parameters, ~µ [4].

~x = ~µ+ L ~xg (6.19)

Cholesky decomposition is a method of obtaining a lower triangular matrix, L,
from a symmetric and positive definite matrix,

C = LLT . (6.20)

The covariance matrix, C, satisfies these criteria. A matrix element, l, of the matrix
L can be calculated from the matrix elements, c, in C [12],

lii =

√√√√(cii − i−1∑
k=1

l2ik

)
(6.21)

lij =

(
cji −

i−1∑
k=1

ljklik

)
/lii, (6.22)

where i = 1, ..., n and j = i+ 1, ...n.
Because the full track mixtures do not have one covariance matrix, but a set of

matrices, getting covariant random numbers is more tricky. The method used is to
choose one component each cycle, and then get covariant random numbers from
this component. The component is chosen based on its weight, using a random
number from a uniform distribution. For Gaussian mixtures, this method is not
optimal, but it appears to be a good approximation.

Figures 6.1, 6.2 and 6.3 show the simulated and calculated invariant mass dis-
tributions. Each simulation consists of 500,000 Monte Carlo simulated invariant
masses.

From figure 6.2, where the invariant masses are calculated from Gaussian tracks,
it is clear that the simulated distributions differ from the calculated ones. The sim-
ulated distributions are not Gaussians, generally they have a positive skewness, i.e.
the tails of the distributions are heavier to the right. The mode of the simulated
distribution also generally differ from the calculated distributions.

In the cases where the distributions come from tracks described by Gaussian
mixtures, figure 6.1 and 6.3,the difference between the simulated and calculated
distributions is generally smaller. The reason for this is that the invariant masses
are calculated from the components of the track mixtures, who generally have a
smaller variance than the approximated single Gaussian around the mean.
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(f) H → e+e−e+e−

Figure 6.1: Example of calculated and simulated invariant mass probability distri-
butions calculated from GSF track estimates.
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Figure 6.2: Example of calculated and simulated invariant mass probability distri-
butions calculated from Gaussian track estimates.
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Figure 6.3: Example of calculated and simulated probability distributions of the
squared invariant mass, calculated from GSF track estimates.



Chapter 7

Invariant mass reconstruction

To test the new invariant mass estimate, two physics processes are considered,
J/ψ → e+e− and H → ZZ∗ → e+e−e+e−.

The physics events have been generated from proton-proton bunch crossings
using PYTHIA. Geant has then been used to simulate material effects and detector
response. The digital detector response and the Monte Carlo truth is stored in
RDO(Raw Data Object) files. The RDO’s are normally converted to ESD’a(Event
Summary Data) and AOD’s(Analysis Object Data) files, that are smaller in size
and uses an abstract description of the particles in the event instead of raw detector
read out. Most physics analysis is done on ntuples produced by processing AOD’s
or ESD’s, and replicas of the datasets are generally available at several grid-sites.

The curent implementation of th GSF, however, works directly on RDO’s. Be-
cause of the large size of the RDO files, they are normally not replicated, and very
often stored on tape. This makes the RDO datasets hard to access by the distributed
analysis tools. The Higgs data sample used in this chapter does not contain as many
events as desiered.

The package InDetRecExample has then been used through Athena to fit tracks
using the GSF on the inner detector response. The track fitter is configured to treat
all tracks as electrons, leading to a bias on all non-electron tracks.

The standard approach of the GSF is to collapse the track mixtures to a single
Gaussian after the track is fitted, so an algorithm, GSFPerigeeValidation, has been
developed by Anthony Morley to extract the full track mixture at the perigee. Full
mixture information from the tracks, the collapsed estimate of the track and Monte
Carlo truth obtained from the RDOs are stored in ntuples.

In the analysis, electron and positron tracks are identified from Monte Carlo
truth information. From the Monte Carlo truth, the invariant mass is reconstructed,
and if the reconstructed mass is sufficiently close to the true mass of the decaying
particle, the mass is estimated using the reconstructed tracks.

The fact that the events evaluated in this chapter are generated from proton-
proton bunch crossings, unlike the case in chapter 5, leads to large amounts of
tracks per event. An average LHC bunch crossing produces ∼ 20 inelastic inter-
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actions per event. Selecting tracks based on the invariant mass reconstructed from
Monte Carlo truth alone is not a stringent enough cut. The Monte Carlo truth of
the z0 track parameter of the involved particles are used as a crude estimate of
the vertex. If the particles involved in the invariant mass reconstruction appear to
originate from different vertices, the event is cut.

From events that pass these cuts, the invariant mass is reconstructed from the
fitted tracks. Probability distribution functions of the invariant mass and the square
of the invariant mass are calculated from the track mixtures. The track mixtures
are collapsed, and the probability distribution function arising from these Gaussian
track estimates are calculated. These track estimates are compared to the estimated
invariant mass arising from the mode of the track mixtures, the estimate with con-
sistently the best 1σ resolution in chapter 5.

7.1 Final estimates

To obtain resolution quantities from the invariant mass estimates, the calculated
probability distributions must be collapsed into a single point. Similar to the case
of the (q/p) track parameter, the mode and mean of the invariant mass distribution
is calculated and used as the final estimate.

The mean of a Gaussian mixture can be obtained simply by taking the weighted
average of the mean of the components.

mmean =
∑

i giµi∑
i gi

(7.1)

To calculate the mode, the Newton-Raphson method has been implemented to
obtain the root of the first derivative of the probability distribution function. The
Newton-Raphson method takes an initial guess of the mode(x0) as input, and uses
the first and second derivative of the probability distribution to improve on this
initial guess iteratively.

xi+1 = xi −
f ′(x)
f ′′(x)

(7.2)

Figure 7.1 shows the first and second derivatives of an invariant mass distri-
bution. If the mode finder is to be successful, the initial guess has to be within a
region where the first iteration moves the initial guess in the direction towards the
mode. The mean of the Gaussian mixture is often outside this region, and using it
as the initial guess has a low success rate.

The maximum probability amplitude of a Gaussian component can be calcu-
lated from the weight and the variance of the component.

Amax =
g

σ
√

2π
(7.3)
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Figure 7.1: PDF of invariant mass with first and second derivatives. The first and
second derivatives have been scaled up.

Figure 7.2: Event with multiple modes. The first and second derivatives have been
scaled up.

Using the mean of the component with the highest maximum probability ampli-
tude as initial guess has a success rate of ∼ 95% in the case of invariant masses
calculated from J/ψ → e+e−.
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Some events get mass distributions with more than one local maximum(Fig
7.2). These events can be identified by using the the Newton-Raphson several
times, using the mean of the n components with highest probability amplitudes
as initial guesses. If more than one peak is identified using the different initial
guesses, the event is discarded. Using n = 5 in the case where the invariant mass is
calculated from two tracks, each described by 12 Gaussian components, all events
with multiple local maxima are detected. Even though some events are discarded,
the overall statistics is increased. This is because the success rate for events with a
single maximum is very close to 100% when multiple initial guesses are used.

7.2 J/ψ → e+e−

∼ 8500 J/ψ invariant masses have been reconstructed from electron and positron
tracks. The J/ψ events are simulated from direct proton-proton collisions in the
bunch crossings. The resulting electron and positron both have energy above 3
GeV. Figure 7.3 shows th momentum distribution of the electrons and positrons.

For each event, combinations of electron and positron tracks are used to calcu-
late invariant masses. If the invariant mass of a combination is sufficiently close to
the J/ψ mass of 3097 MeV, the combination is kept.

The impact parameters of electron/positron combinations close to the J/ψ
mass are shown in figure 7.4. Figure 7.5 shows the difference between the z0
parameters from the two tracks. The distribution has long tails. Events in the core
of the distribution are assumed to come from the same vertex, and these events are
kept.
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Figure 7.3: Monte Carlo truth momentum distribution
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Figure 7.4: Distribution of Monte Carlo truth for the impact parameters[µm].
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Figure 7.5: The difference of the z0 true track parameter for the electron and
positron.

The reconstructed invariant mass is shown in figure 7.6. The three estimates
used, are the mode of the calculated probability distribution function of the in-
variant mass, the mode of the calculated probability distribution function for the
square of the mass and the estimate using the mode of the track mixtures. The
three invariant mass distributions are very similar.

Figure 7.7 shows the normalized residuals of the same estimates, the 1σ(68%)
and 2σ(95%) symmetric half widths of the residuals are listed in table 7.1. The
performance of the estimator using the mode of the calculated probability distribu-
tion is close to identical to the estimator using the mode of the track mixtures. The
mode of the probability distribution of the squared mass performs slightly worse.

The half widths of the normalized invariant mass residuals calculated from the
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Figure 7.6: Reconstructed J/ψ invariant mass.
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Figure 7.7: Normalized residuals of the reconstructed J/ψ mass.
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Mass resolution

Mass PDF - Mode
1σ = 0.114
2σ = 0.505

Square mass PDF - Mean
1σ = 0.118
2σ =0.524

GSF - Mode
1σ = 0.115
2σ = 0.506

Table 7.1: Halfwidths of the normalized residuals for the reconstructed J/ψ mass.

mode of the track mixtures is larger than in the case discussed in section 5.2.2. Part
of the difference is explained by the higher momentum of the leptons involved in
the invariant mass resonstruction.

The resolution of the invariant mass residual from the calculated probabil-
ity distributions show a strong dependance on track selection. The results pre-
sented here accepts events where the mass reconstructed from Monte Carlo truth
is 3096.88 ± 0.1 MeV, and the Monte Carlo truth z0 parameters are seperated by
less than 0.015µm. Several different cuts have been explored. The resolution of
the estimate stemming from the calculated probability distribution and the mode
of the track estimates only differ by a few percent for all cuts. It is very plausible
that some of the reconstructed tracks do not truely originate from a J/ψ decay.
The relativly low momentum electrons that dominate the final states of the decays,
generally have a small variance compared to the mean. Tracks like this transform
to invariant mass distributions with relativly narrow peaks, which give little room
for improvement.

Figure 7.8 is a scatter plot of the normalized residuals for the mode of the calcu-
lated distribution versus the estimate using the mode of the track mixtures. Events
where the two estimates are very different are generally above the diagonal. This
implies that for events where the two methods disagree, the new method generally
return lower estimates. The vast majority of the estimates are located close to the
diagonal, where the two estimators return similar results.

7.2.1 Probability transform

A way of testing the accuracy of the probability distribution functions is to cal-
culate the p-value of the distributions. This is done by integrating the probability
distribution functions from −∞ to the true value.

p =
∫ m

−∞
f(x)dx = 0.5 +

n∑
i=1

0.5 gierf

(
m−Wi√
2var(Wi)

)
, (7.4)

where Wi, var(Wi) and gi are the mean, variance and weight of a component, n
the total number of components , m the true value, and erf is the error function.
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Figure 7.8: Normalized residuals of the mode of the calculated probability distri-
bution function vs the mode of the track mixtures.

If the calculated probability distribution function accurately describes the un-
certainty in the invariant mass, the p-values should become a flat distribution be-
tween 0 and 1.

The probability distribution functions of the mass and squared mass are com-
pared to the probability distribution calculated from tracks collapsed into a single
Gaussian around the mean. Figure 7.9 indicates that the probability distributions
calculated from the full track mixtures give a better description of the uncertainties
than the probability distribution from the collapsed tracks.

7.3 H → ZZ∗ → e+e−e+e−

A sample of 50,000 130GeV Higgs bosons decaying to two Z bosons have been
studied. The Z bosons furter decay to electrons/positrons or muons. The probabil-
ity of a Z boson decaying to electrons is equal to the probability of it decaying to
muons, BR(Z → e+e−) = BR(Z → µ+µ−) = 1.12%. This means that 3/4 of
the events have muons in the final state. The muons are biased because they are
fitted with the GSF, so only events with four electrons in the final state are kept.

The momentum of the final state electrons/positrons are shown in figure 7.10.
The electrons in this case have significantly higher momenta than in the J/ψ case.
The momentum resolution decreases as the momentum rises, leading to larger vari-
ance in the q/p estimates, which in turn leads to larger uncertainties in the invariant
mass estimate. The fact that there now are four particles in the final states instead
of two, also lead to larger variance in the invariant mass estimates. Because of this,
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Figure 7.9: p-values of the calculated probability distribution functions.

the invariant mass resolutio of of Higgs decays are worse than in the J/psi case.
The peaks in the invariant mass probability distribution functions are therefore ex-
pected to be wider, which means there is more room for improvement.
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Figure 7.10: Monte Carlo truth momentum distribution.

The invariant mass is again calculated from Monte Carlo truth, and cuts on
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the z0 parameters are applied to see if the track originate from approximately the
same vertex. ∼ 1200 events pass these cuts, and the invariant masses are estimated
from the reconstructed tracks. The tracks reconstructed by the GSF are described
by 12 components each, and all 124 possible combinations of track components
are needed to calculate the invariant mass probability distribution function. This is
obviously a slow process.

The reconstructed invariant masses of events where the Monte Carlo truth re-
turn a Higgs mass of (130±0.1) Gev, and a spread in the z0 parameters of less than
0.015µm are shown in figure 7.11. The three estimates used are the mode of the
calulated probability distribution function describing the invariant mass, the mode
of the calulated probability distribution function describing the squared invariant
mass and the estimate using the mode of the track mixtures.
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Figure 7.11: Reconstructed Higgs invariant mass.

Figure 7.12 shows the normalized residuals of the invariant mass estimates,
the 1σ and 2σ halfwidths are listed in table 7.2. Both the calculated probabilty
distribution functions produce better resolution than the estimate discarding the
shape of the traks. Different cuts have been explored, and the new method always
improves the mass resolution with between 7% and 10% compared to the estimate
using the collapsed tracks. The probability distribution function describing the
mass consistently outpreforms the estimate of the square mass.

Figure 7.13 shows the normalized residuals of the estimate from the mass prob-
ability distribution vs the estimate from the collapsed tracks. Similar to the J/ψ
case, events where the estimates are very different are generally located above the
diagonal.

The p-values for the two probability distribution functions describing the mass
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Figure 7.12: Normalized residuals of the reconstructed Higgs invariant mass.

Mass resolution

Mass PDF - Mode
1σ = 0.135
2σ = 0.409

Square mass PDF - Mode
1σ = 0.138
2σ =0.417

GSF - Mode
1σ = 0.147
2σ = 0.442

Table 7.2: Halfwidths of the normalized residuals of the reconstructed Higgs mass.

and the square mass are compared with a probability distribution calculated from
the tracks collapsed to a single Gaussian around the mean. The estimates described
by Gaussian mixtures give p-value distributions that closer resembles a uniform
distribution than the single Gaussian estimate, implying a better description of the
uncertainties. The p-value distribution of the Gaussian estimate is, however, con-
siderably closer to the multi-Gaussian p-values than in the J/ψ case.
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Figure 7.13: Normalized residuals of the mode of the calculated probability distri-
bution function vs the mode of the track mixtures.
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Figure 7.14: p-values of the calculated probability distribution functions.



Chapter 8

Conclusions

In this thesis, a method of calculating a probability distribution function describing
the invariant mass using track estimates produced by the Gaussian sum filter(GSF)
has been presented. The GSF track estimates are given by a weighted sum of Gaus-
sian components, describing the tracks as a non-Gaussian probability distribution
function.

The method has been tested on Monte Carlo simulated data of J/ψ → e+e−

and H[130GeV ] → ZZ∗ → e+e−e+e− and compared with the invariant mass
estimated from the mode of the GSF track estimates.

In the J/ψ decays, no significant improvement in the invariant mass resolution
has been found. However, the distribution of the p-values of the calculated invari-
ant mass imply that the calculated probability distribution function gives a more
accurate description of the invariant mass than estimates using the collapsed track
mixtures.

In the analysis of the sample of Higgs decays, an improvement in the invariant
mass resolution is found. This is a very promising result, but the sample used does
not contain sufficient amount of data. In both cases the simulated events contain
large numbers of tracks, and the track selection used is not optimal. A large sample
of clean Higgs decays should be produced to further test the method. The p-value
distribution again implies that the new method gives a better description of the
uncertainties of the invariant mass.

The analysis in this thesis is based solely on tracks reconstructed in the inner
detector. Combining the track estimates with information from ECAL will affect
the invariant mass estimates. A GSF vertex fitter is currently not available, if this
is implemented, it will also affect the invariant mass estimates. How this will
influence the performance of the new method compared to using the collapsed
track mixtures is hard to tell, and further testing is needed when methods for doing
this become available.
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