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Abstra
tThis thesis presents multidimensional likelihood methods for 
al
ulating 
on-�den
es and ex
lusion limits on the CP -even, neutral Higgs s
alar h0 of theMSSM Higgs se
tor using the h0A0 ! b�bb�b 
hannel at 189 GeV. The limits are
al
ulated using the ALRMC implementation of a maximum likelihood ratiotest.The likelihood methods prepare signal, ba
kground, and observed 
andidatedistributions using various binning algorithms and di�erent dis
riminating va-riables. A total of six methods are presented, using mass estimators of thebest and se
ond best jet pairings as dis
riminating variables, in addition to avariable obtained from a neural network-like analysis. The three dimensionaland two dimensional methods use mass estimators of the best pairing, while a�ve dimensional method uses mass estimators of the two best pairings.The mh limit for all methods at a 95 % 
on�den
e level are 
ompared, and
on
lusions drawn on whi
h methods are preferred.
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Chapter 1Introdu
tionParti
le physi
s is the s
ien
e of the fundamental parti
les that 
onstitute mat-ter, and the intera
tions these parti
les parti
ipate in. The theory known as theStandard Model (SM) summarizes the present knowledge in parti
le physi
s.Several extensions of the SM exist, but no experiment has yet rendered the SMinadequate.1.1 Fundamental Parti
lesThe SM 
lassi�es the fundamental parti
les in two main groups: Fermions andbosons. Fermions are matter 
onstituents, while bosons a
t as for
e 
arriersbetween the fermions.Fermions are further grouped into leptons and quarks, and they exist in threedi�erent generations, or families. The three lepton families are the ele
tron (e),the muon (�), the tau (�), and their neutrino partners (�e; ��; ��). The quarks
ome in six 
avors : up (u), down (d), 
harm (
), strange (s), top (t) and bottom(b); two 
avors in ea
h family. Ea
h fermion also has an antiparti
le partner ofthe same mass but with opposite 
harge. In addition to the six 
avors, quarksexist in three di�erent 
olor states. Thus, matter 
onsists of 6 leptons and 18quarks, while antimatter 
onsists of 6 antileptons and 18 antiquarks. Figure 1.1gives a list of the fermion properties.The for
e 
arriers, or mediators, of the fundamental for
es are known asgauge bosons. The strong for
e is mediated by eight gluons (g), the ele
tro-magneti
 for
e by the photon (
), and the weak for
e is mediated by W+, W�and Z0 bosons. Gluons 
ouple to quarks, photons 
ouple to ele
tri
 
harge, andW+, W� and Z0 
ouple to left-handed quarks and leptons. Left-handed meansthat the parti
le spin dire
tion is opposite to its momentum. Figure 1.2 givesa list of the boson properties.1.2 Fundamental For
esFour fundamental for
es exist in nature: The strong for
e, the weak for
e,the ele
tromagneti
 for
e, and the gravitational for
e. The strong for
e keepsthe quarks inside the nu
leus, and the strength of the for
e in
reases as the



2 CHAPTER 1. INTRODUCTION
Figure 1.1: Fermion properties in the Standard Model [1℄.quarks separate. It is in fa
t impossible to separate a quark-antiquark pair,be
ause the energy needed is in�nite. An example of this is seen in e+e�annihilations at high energies, performed at several a

elerators around theworld in
luding LEP (dis
ussed in Chapter 3), in whi
h a quark-antiquark (q�q)pair is produ
ed. The high energy of the 
ollision for
es the q�q pair to separate,but be
ause quarks do not exist as single parti
les, the quarks instead appearas jets of hadrons. A hadron is a parti
le intera
ting via the strong for
e.The jet momentum along the original quark dire
tion is large 
ompared to thetransverse jet momentum, and the jets are 
ollimated around the q and �q axes.The transverse momentum is used as a measure to determine whi
h jet a tra
kbelongs to. Chapter 5 presents the 
lustering of the individual tra
ks into jetsin more detail, in addition to a dis
ussion on kinemati
al �ts.The weak and the ele
tromagneti
 for
e are di�erent manifestations of asingle for
e named the ele
troweak for
e. The weak for
e makes the stars shine,and is responsible for natural radioa
tivity, for example �-de
ay of a neutronin a nu
leus. The ele
tromagneti
 for
e keeps the ele
trons in orbit aroundthe nu
leus and thus holds the atoms together. It also makes the atoms grouptogether to form mole
ules and solid obje
ts. Without the ele
tromagneti
 for
eall matter would exist as ionized plasma.The gravitational for
e is responsible for the motions of the solar systemand the universe. It is the weakest of all the fundamental for
es, and whendealing with elementary parti
les, it 
an be negle
ted.1The SM des
ribes strong intera
tions (QCD), ele
tromagneti
 intera
tions(QED), and weak intera
tions. The gravitational for
e is not in
luded in theSM, but extensions of the SM try to explain all four fundamental for
es withinone single theory. Glashow, Weinberg and Salam 
on
luded that the weak andele
tromagneti
 for
e 
an be des
ribed as one single ele
troweak for
e. Futureextensions of the SM, Grand Uni�
ation Theories (GUT), may show that allthe for
es are in fa
t only di�erent manifestations of a single for
e.1The Plan
k mass (� 1019 GeV) is the mass s
ale at whi
h the gravitational 
ouplingapproa
hes unity, and at this mass s
ale the gravitational for
e may no longer be negle
ted.
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Figure 1.2: Gauge boson properties in the Standard Model [1℄.1.3 Standard Model ProblemsIt is widely believed that the SM is not a �nal answer in parti
le physi
s.One of the most important arguments for a more fundamental theory is thegreat number of independent parameters needed as input to the SM: Eighteenparameters must be given by experiment (even more if the neutrinos are notmassless) for whi
h no SM explanations exist.The missing understanding of the hierar
hy of mass s
ales needed to explainthe fundamental intera
tions, 
ommonly known as the hierar
hy problem, isanother serious problem. Thus, physi
ists need to understand nature at a deeperlevel in order to give answers to these fundamental questions.Among the extensions of the SM, supersymmetri
 (SUSY) extensions areparti
ularly interesting be
ause SUSY evades the hierar
hy problem. The Min-imal Supersymmetri
 extension of the Standard Model (MSSM) more thandoubles the number of parti
les in the SM, be
ause ea
h SM parti
le adopts aSUSY partner.1.4 The Higgs Me
hanismIn order to explain how the fundamental parti
les a
quire mass, the theory ofthe Higgs me
hanism has been developed. This theory suggests that a 
ertainsymmetry of nature is broken through spontaneous symmetry breaking and,as a 
onsequen
e of that, a Higgs parti
le is produ
ed. In the SM only oneHiggs parti
le exists, but the MSSM 
ontains �ve Higgs parti
les. The Higgsparti
les are not easy to dis
over experimentally be
ause they 
ouple to fermionsproportional to the mass of the fermion, and the most available fermions atparti
le a

elerators are the light ones. Thus, the 
han
e of dis
overing a Higgsparti
le is proportional to the amount of energy put into the a

elerator. Therehas not yet been any experimental data supporting the existen
e of the Higgsparti
le. Therefore extensive Higgs sear
hes are being 
arried out at parti
lephysi
s laboratories and universities all over the world in order to dis
over theHiggs parti
le and measure its mass, or 
ome up with an alternative theory.Chapter 2 
ontains the theory of the SM, MSSM and Higgs me
hanism.



4 CHAPTER 1. INTRODUCTION1.5 The AnalysisThis thesis presents the analysis performed to test di�erent likelihood methodsby 
omparing the obtained mass limits of the neutral MSSM Higgs s
alar h0.The sear
h 
hannel is the h0A0 ! b�bb�b 
hannel at 189 Gev. The ba
kgrounds,signals and data 
andidates of the sear
h are presented in Chapter 4.The statisti
al treatment of the data, using a maximum likelihood test, are
arried out by the ALRMC pa
kage whi
h 
al
ulates 
on�den
e levels for thedi�erent signal hypotheses. Chapter 6 gives a brief dis
ussion on the statisti
sof hypothesis testing in general, together with the spe
i�
s of ALRMC.Chapters 7 and 8 present the di�erent likelihood methods and algorithmsdeveloped to treat the signal, ba
kground and 
andidate distributions prior toALRMC 
al
ulations.The 
andidates used are the 189 GeV data 
olle
ted by the DELPHI dete
torat CERN. The DELPHI dete
tor and its subdete
tors are outlined in Chapter 3.Finally, the tests performed on the di�erent likelihood methods are ex-plained in Chapter 9, and the 
on
lusions presented in Chapter 10.Natural units (�h
 = 1) are used throughout this thesis ex
ept where expli
-itly spe
i�ed.



Chapter 2The TheoryThis 
hapter presents the Standard Model (SM), the Minimal Supersymmetri
extension of the Standard Model (MSSM), the Higgs me
hanism, and the Higgsspe
trum of both the SM and the MSSM.The SM Higgs theory is a one-doublet model whi
h des
ribes only one Higgsparti
le, �0. The SM theory and the SM Higgs me
hanism are presented inSe
. 2.1. More 
ompli
ated Higgs stru
tures produ
e a larger number of Higgsparti
les, and thus additional possibilities for dis
overy. The simplest extensionsof the one-doublet Higgs are models with two-doublets. No experiment hasyet found eviden
e whi
h favors the one-doublet model over more 
ompli
atedstru
tures [2℄. Among the two-doublet models, the supersymmetri
 (SUSY)extension is parti
ularly interesting be
ause it solves some of the SM problems.The MSSM Higgs model produ
e two 
harged Higgs bosons, H�, and threeneutral Higgs bosons, h0, H0, and A0. The motivations of SUSY and MSSM,together with the MSSM Higgs me
hanism, are presented in Se
. 2.2.2.The presentation of the SM theory and the SM Higgs se
tor are strongly in-spired by the books \Dynami
s of the Standard Model" by Donoghue, Golowi
hand Holstein [3℄, and \Quarks & Leptons" by Halzen and Martin [4℄. The dis-
ussion on SUSY and the MSSM motivations are mainly in
uen
ed by thearti
le \A `theory of everything'?" by G.G.Ross [5℄, and the thesis \Sear
hfor Non-Minimal Higgs Bosons in Z0 De
ays with the L3 Dete
tor at LEP" byAndr�e Sop
zak [2℄. The presentation of the MSSM Higgs se
tor is inspired by"The Higgs Hunter's Guide", by John F. Gunion, Howard E. Haber, GordonKane and Sally Dawson [6℄.2.1 The Standard ModelThe SM is a gauge theory, and within a gauge theory only two kinds of par-ti
les exist: Those who 
arry 
harge, and thus gives rise to 
urrents, andthose who mediate intera
tions between the 
urrents by 
oupling dire
tly tothe 
harge. Fermions 
arry 
harge and produ
e 
urrents, gauge bosons 
ouplesto the 
urrents. If a gauge boson itself 
arries 
harge, the boson undergoesself-intera
tions. Charges and 
urrents are treated in Se
. 2.1.3.Quarks and leptons are both members of the fermion group. All leptons,



6 CHAPTER 2. THE THEORYapart from the neutrinos, 
arry ele
tri
 
harge, while quarks in addition 
arry
olor 
harge. Neutrinos only parti
ipate in weak intera
tions, while the otherleptons also experien
e ele
tromagneti
 intera
tions. Quarks parti
ipate inweak, ele
tromagneti
 and strong intera
tions.Abelian1 gauge bosons 
ouple to 
urrents with 
oupling 
onstants deter-mined by the 
harge of the parti
le produ
ing the 
urrent (the 
oupling of thephoton to the ele
tron is �e). Sin
e the non-Abelian gauge bosons are both
harge 
arriers and mediators they undergo self-intera
tions that give rise toloop 
orre
tions 
ompli
ating the renormalization of the theory.A theory that is invariant under 
ertain gauge transformations is said to begauge invariant. Gauge transformations are 
lassi�ed as group transformations,and the SM is 
onstru
ted to be gauge invariant under the SU(3)
 SU(2)L
U(1)Y gauge group transformation. The SU(3) invarian
e is an exa
t symme-try and 
auses gluons to be massless, while the spontaneous breaking of theSU(2)L
 U(1)Y invarian
e, through the Higgs me
hanism, 
auses the W� andthe Z0 to be massive. How this 
omes about is dis
ussed in Se
 2.1.5.2.1.1 FermionsQuarks and leptons are inputs to the SM in the sense that the model does notexplain the variety and number of quarks and leptons, nor their properties.That is for experiments to de
ide.Quarks and leptons exhibit 
ertain empiri
al 
onservation laws that is notyet observed broken: Firstly ea
h of the leptons belonging to a 
ertain familyhas its own lepton number of value 1, whi
h is 
onserved within the fermionfamily in every known intera
tion. Se
ondly quark 
avor is 
onserved in allknown strong intera
tions, but not in weak intera
tions.Mixing o

ur between quarks, but not between leptons. The quark 
hargedweak 
urrents are responsible for the mixing. The quark states parti
ipating intransitions of the 
harged weak 
urrent are linear 
ombinations of quark masseigenstates. The quark-mixing matrix V 
ontains the information about thelinear 
ombinations, and is named the Cabbibo matrix in the two quark family
ase, and the Cabbibo-Kobayashi-Maskawa matrix in the three family 
ase aftertheir inventors. The elements of the matrix are not predi
ted by theory, buthave to be inferred from experiments.In the three family 
ase the matrix is a 3� 3 matrixVCKM = 0� Vud Vus VubV
d V
s V
bVtd Vts Vtb 1A ; (2.1)where the subs
ripts indi
ate whi
h quarks parti
ipate in the transitions. Be-
ause the VCKM matrix 
ontains a 
omplex phase fa
tor, the SM is not CPinvariant, whi
h is 
on�rmed by experiments.1Abelian groups is groups with a 
ommutative group multipli
ation, in 
ontrast to non-Abelian groups.



2.1. THE STANDARD MODEL 7The diagonal elements of the VCKM matrix are all very 
lose to one. Thisre
e
ts the experimental fa
t that transitions between quarks belonging to thesame family are dominant.The VCKM matrix is unitary and, sin
e quarks 
ome in doublets, the ele
-troweak theory �t experimental results showing that 
avor 
hanging neutral
urrents (FCNC) are highly suppressed. For example, the rate of neutral- to
harged-
urrent rates in kaon de
ay is [7℄K+ ! �+��K+ ! �0�+�� < 10�5 : (2.2)2.1.2 Gauge BosonsThe SM des
ribes strong intera
tions, ele
tromagneti
 intera
tions and weakintera
tions. The strong intera
tions are des
ribed by the SU(3) group, andthe ele
tromagneti
 and weak intera
tions are des
ribed by the SU(2)L
U(1)Ygroup as ele
troweak intera
tions.The SU(3) group is represented by eight generators. If the theory des
rib-ing strong intera
tions is to be SU(3) gauge invariant, eight gauge �elds mustbe introdu
ed, ea
h �eld asso
iated with a gauge boson. Thus, the eight gaugebosons are a 
onsequen
e of the imposed SU(3) gauge invarian
e, and the num-ber of bosons 
orresponds to the number of generators of the group. The eightgauge bosons of the strong intera
tion are the massless, 
olor 
harged gluons.Gluons are massless be
ause the SU(3) gauge invarian
e is an exa
t invarian
e.Weak intera
tions are mediated by three massive gauge bosons, while ele
-tromagneti
 intera
tions are mediated by one massless gauge boson. Weinbergand Salam showed that weak and ele
tromagneti
 intera
tions both arise fromthe ele
troweak for
e. The imposed SU(2)L
U(1)Y gauge invarian
e is not anexa
t invarian
e, be
ause three of the gauge bosons are massive, and is bro-ken via the Higgs me
hanism to produ
e four gauge �elds W 1� ;W 2� ;W 3� andB�. Two 
harged �elds are de�ned as linear 
ombinations of the W 1� and W 2��elds, and the 
harged �elds 
orrespond to two massive, 
harged gauge bosons,W+ and W�. Two neutral �elds, 
orresponding to a massive Z0 and a mass-less photon, are 
onstru
ted by rotating the W 3� and B� �elds by an angle �W(see (2.26)). The ele
troweak theory 
ontains three massive bosons be
ausethe SU(2)L group is represented by three generators, and one massless bosonbe
ause the U(1)Y group is represented by one single generator. The Higgsme
hanism uses spontaneous symmetry breaking to produ
e massive bosonswithin a gauge invariant theory.Lo
al gauge invarian
e, spontaneous symmetry breaking, and transforma-tions will be further dis
ussed in se
tions 2.1.4 and 2.1.5.2.1.3 Charges, Currents and GroupsThree di�erent kinds of 
harge appear in the SM: 
olor 
harge, weak isospinand weak hyper
harge.



8 CHAPTER 2. THE THEORYColor ChargeEa
h quark exists in one of three 
olor states, red (R), blue (B) and green(G). These three 
olor 
harges represent the fundamental representation of theSU(3) symmetry group. The generators of this group are a set of eight 3 � 3matri
es denoted �i; i = 1; :::; 8, where the 
olor states R,G,B are the base statesof the group.Weak IsospinThe three weak 
urrents J i�; i = 1; 2; 3, one neutral and two 
harged, form anisospin triplet of weak 
urrents whose 
orresponding 
harge operator is denotedT i; i = 1; 2; 3. These three operators generate an SU(2)L algebra[T i; T j℄ = i"ijkT k : (2.3)The term 'isospin' is introdu
ed be
ause the isospin operators obey the samealgebra as regular spin operators. The subs
ript L on SU(2) is a reminder ofthe fa
t that weak 
urrents only 
ouple to left-handed fermions.The symmetry of SU(2)L is broken by the observed weak neutral 
urrentbe
ause the neutral 
urrent has a right-handed 
omponent. However, the ele
-tromagneti
 
urrent 
omes to res
ue be
ause it is a neutral 
urrent with bothright- and left-handed 
omponents. Neither the weak neutral 
urrent nor theele
tromagneti
 
urrent respe
ts the SU(2)L symmetry alone, but two orthog-onal 
ombinations of the two 
urrents diagonalize the mass matrix. One 
om-bination, J3�, 
ompletes the weak 
urrent isospin triplet, while the other are theweak hyper
harge 
urrent, JY� .Weak Hyper
hargeWeak hyper
harge Y is de�ned byQ = T 3 + Y2 ; (2.4)with T 3 representing the isospin 
harge operator of J3� , and Q being the ele
tri

harge operator of the ele
tromagneti
 
urrent. The hyper
harge operator Ygenerates a symmetry group U(1)Y , and the ele
tromagneti
 intera
tions havebeen in
orporated in the ele
troweak theory. By enlarging the symmetry groupto SU(2)L
U(1)Y the ele
tromagneti
 and the weak intera
tions have beenuni�ed, but ea
h group still has its own 
oupling strength. Be
ause the gaugebosons of the weak intera
tions are massive, the SU(2)L
U(1)Y gauge group isspontaneously broken, indu
ed by the Higgs me
hanism, and an exa
t U(1)emgauge symmetry is left giving the photon zero mass.The di�erent groups presented in this se
tion play a very important role inthe SM. If, in the 
ase of the SU(3) group, the free Lagrangian of the quark
olor �elds is 
onstru
ted to be invariant under a SU(3) transformation, the�eld theory of strong intera
tions (QCD) follows as a 
onsequen
e. This kindof invarian
e is 
alled gauge invarian
e.



2.1. THE STANDARD MODEL 92.1.4 Gauge Invarian
eThe SM is a quantum �eld theory. A quantum �eld theory is 
onstru
ted by �rstquantizing the 
lassi
al Lagrangian in order to produ
e �elds that 
reate andannihilate parti
les. The �elds themselves are also des
ribed by Lagrangians,and the �eld equations are obtained by substituting the Lagrangian of ea
h �eldinto the Euler-Lagrange equation.If a �eld  (x�) is given and a spa
etime transformation x� ! x� + a�leaves the physi
s of the �eld un
hanged, the �eld is said to be invariant underspa
etime transformations; the �eld  (x�) has a spa
etime symmetry.Other symmetries exist apart from the spa
etime symmetry, and Noether'sTheorem states that for any invarian
e2 there exists a 
lassi
al, time-independent
harge Q asso
iated with a 
onserved 
urrent, ��J�= 0.Spa
etime symmetry is an external symmetry and leads to the 
onservationof energy and momentum. Internal symmetries are more interesting, and inparti
ular phase transformations written as (x�)! ei� (x�) ; (2.5)where � is a real 
onstant. Sin
e � is independent of x�, (2.5) is 
alled a globalphase transformation. Phase transformations of the kind U(�) � ei� forms aunitary Abelian group; the U(1) group.A generalization of (2.5) gives the transformation (x�)! ei�(x�) (x�) ; (2.6)where �(x�) now depends on time and spa
e 
oordinates. The transformation(2.6) is known as a lo
al gauge transformation; it is possible to de�ne �(x�)lo
ally in spa
e and time, not just globally as in (2.5).U(1) Gauge Invarian
eAs an example, the Lagrangian of the Dira
 �eld equation is given byL = i 
��� �m  : (2.7)If (2.7) is supposed to be U(1) gauge invariant, a 
ovariant derivativeD� � �� � ieA� (2.8)must be 
onstru
ted to repla
e ��. A� is the gauge �eld, and if (2.7) is to begauge invariant it must transform asA�!A� + 1e��� (2.9)where � is the same � as in (2.5). The gauge �eld A� is a 
onsequen
e of theimposed gauge invarian
e on (2.7), and A� gives rise to a gauge boson, thephoton. Thus, by demanding gauge invarian
e of the Dira
 Lagrangian (2.7),2Invarian
e of the a
tion under a 
ontinuous transformation.



10 CHAPTER 2. THE THEORYplus adding a term 
orresponding to the kineti
 energy of the photon �eld3, theQED Lagrangian follows:LQED =  (i
��� �m) + e 
�A� � 14F��F�� : (2.10)A mass term like 12m2A�A� is prohibited in (2.10) by gauge invarian
e, and thephoton is massless. If massive bosons are to derive from a gauge theory, theHiggs me
hanism is needed.SU(3) Gauge Invarian
eIf the SU(3) gauge group of phase transformations is imposed on the quark
olor �elds, the Lagrangian of QCD is derived. The derivation is a bit more
ompli
ated than in the QED 
ase be
ause SU(3) is a non-Abelian group.Gauge invarian
e of the quark 
olor �eld leads to eight ve
tor gluon �elds Ga�,a = 1; :::; 8, that 
orrespond to eight massless gluons intera
ting with quarks andgluons as dis
ussed in Se
. 2.1.3. The �nal gauge invariant QCD Lagrangian,for the simpli�ed 
ase of one quark 
avor, is given byL = �q(i
��� �m)q � g3(�q
�Taq)Ga� � 14Ga��G��a ; (2.11)where q is the quark 
olor �eld, Ta, a = 1; :::; 8, are the eight generators of theSU(3) group, and g3 is the 
oupling 
onstant of SU(3).2.1.5 The Higgs Me
hanismBe
ause gauge invarian
e prohibits mass terms of the gauge �elds in the La-grangian, alternative te
hniques must be used if a gauge theory of massivefermions and bosons is to be 
onstru
ted. The Higgs me
hanism produ
esmassive fermions and gauge bosons by spontaneously breaking a lo
al gaugesymmetry, and introdu
es a new massive parti
le; the Higgs parti
le. Thus, ob-servation of the Higgs parti
le is a very good signature of the Higgs me
hanism.This se
tion presents a more elaborate dis
ussion on the Higgs me
hanism andtry to explain how elementary parti
les a
quire mass.The Higgs me
hanism has not yet been 
on�rmed by experimental data.Future experiments may reveal that the Higgs theory is not the 
orre
t oneafter all, but the general opinion among parti
le physi
ists is that there mustbe something left to dis
over beyond the SM. Whatever that may be, it 
ouldprovide answers to the problems presently en
ountered in the SM.On SymmetriesA given symmetry of the Lagrangian 
an behave in a number of di�erent ways.� The symmetry remains exa
t. U(1) symmetry of QED and SU(3) sym-metry of QCD are examples, and the reason why photons and gluons aremassless.3Be
ause the kineti
 energy term must be gauge invariant, it 
an only involve the invariant�eld strenght tensor F�� = ��A� � ��A�:



2.1. THE STANDARD MODEL 11� The apparent symmetry may have an anomaly, and is not a true symme-try.� The symmetry may be expli
itly broken by terms in the Lagrangian whi
hare not invariant under the symmetry. Isospin symmetry, broken by ele
-tromagnetism, and light-quark (up and down) mass di�eren
e, are exam-ples.� The symmetry may be hidden, meaning that it is an invarian
e of theLagrangian but not of the ground state. This may 
ome about if one ormore s
alar �elds a
quire va
uum expe
tation values, and thus symmetryis spontaneously broken.If a theory of massive fermions and gauge bosons is to be renormalizable, spon-taneous symmetry breaking is required.Spontaneous Symmetry BreakingThe SU(2) gauge invariant Lagrangian density, 
ontaining the Higgs-gauge bo-son 
oupling, is given byLHG = (D��)�D��� V (�) ; (2.12)where � is an SU(2) doublet of 
omplex s
alar �elds� = � �+�0 � =r12 � �1 + i�2�3 + i�4 � ; (2.13)the 
ovariant derivative ensuring SU(2) invarian
e isD� = �� + ig �a2 W a� ; (2.14)and the potential V (�) = ��2�y�+ �(�y�)2 ; (2.15)with �2 > 0 and � > 0. The global SU(2) phase transformation is given by�! ei�a�a=2 � : (2.16)Three gauge�elds are represented in (2.14) by W a� (x�) with a = 1; 2; 3, and�a denote the three generators of the group. The number of generators and thenumber of �elds are always the same in a gauge theory. If (2.14) is 
omparedto (2.8) it is easy to see that the U(1) group has only one generator, while theSU(2) group has three generators.The minima of (2.15) is given by�V�� = �y(��2 + 2��y�) = 0 (2.17)



12 CHAPTER 2. THE THEORYand the non-trivial solution of these minima ish�y�i0 = v22 ; (2.18)with v �r�2� : (2.19)The original symmetry is now broken in the ground state by expanding �about a parti
ular minimum�1 = �2 = �4 = 0; �23 = v2 ; (2.20)giving the va
uum expe
tation valueh�i0 = � 0v=p2 � : (2.21)The expansion looks like�(x�) =r12 � 0v + h(x�) � ; (2.22)where h(x�) is the expanded Higgs �eld around the va
uum expe
tation value v.The four degrees of freedom of the Higgs doublet are transformed into massiveW� and Z0 bosons, and a neutral, physi
al Higgs �eld. The Higgs boson massis given as the 
urvature of the Higgs �eld at the minimum of the potential(2.15) [2℄ m2H = �V 2�2� j�=v = 2v2� : (2.23)The mass of the Higgs boson is not predi
ted by the theory, sin
e the Higgsself-
oupling � is a free parameter.Gauge Boson MassesTo get the masses of the gauge bosons, substitute (2.21) and a de�nition of the
harged Higgs �elds into the Lagrangian (2.12). It leads to a mass term for the
harged gauge bosons mW = v2g ; (2.24)where g is the 
oupling 
onstant of SU(2)L. A mixing o

ur in the neutral gaugebosons, but the �elds Z� and A� diagonalize the mass matrix, as dis
ussed inSe
. 2.1.3 and Se
. 2.1.2, and lead tomZ = v2pg2 + g02 and m
 = 0 ; (2.25)



2.1. THE STANDARD MODEL 13where g0 is the 
oupling 
onstant of U(1)Y . The ratio between the two 
oupling
onstants de�nes the mixing angle �W , tan�W � g=g0. The Higgs me
hanismthus leads to the important mass relationmWmZ = 
os �W : (2.26)Any extension of the one-doublet Higgs model must keep this fundamentalrelation in agreement with experiment, and a �-parameter is de�ned by� = mWmZ 
os �W : (2.27)The experimental world average is [2℄� = 0:995� 0:013 ; (2.28)and thus in perfe
t agreement with the model.Fermion MassesThe 
omplete Higgs Lagrangian LH also 
ontains a Higgs-fermion 
oupling termLHF LH = LHG + LHF ; (2.29)but for simpli
ity, only the Higgs-ele
tron Lagrangian is given hereLHe = �ge �(�e e)L� �+�0 � eR + eR(���0�)� �ee �L� : (2.30)Analogous terms exist for the other fermions. If the expanded Higgs �eld va
-uum expe
tation value (2.21) is substituted into (2.30), the ele
tron mass isobtained. The masses of the other fermions follow equivalently, and are givenby mf = vp2gf ; (2.31)with gf being the Higgs-fermion 
oupling 
onstant. Thus, even if v is known, themasses of the fermions still remain unpredi
ted. Equation (2.31) also imply thatthe Higgs boson tend to de
ay into the most massive kinemati
ally a

essiblefermion pair, and thus makes Higgs observations depend on the a

elerator-energy.2.1.6 Higgs Produ
tionThe main SM Higgs produ
tion me
hanism in e+e� 
ollisions at LEP2 energiesis Higgs-strahlung : e+e� ! �0Z0 : (2.32)The fusion pro
ess W+W� fusion : e+e� ! ��e�e�0 (2.33)has a 
onsiderably smaller 
ross se
tion at LEP2 energies. The Feynman dia-grams for the pro
esses (2.32) and (2.33) are given in Fig. 2.1.



14 CHAPTER 2. THE THEORYZ0�e�e+ Z0�0 W�W+e�e+ �e �0��e
Figure 2.1: Fusion Feynman diagrams of Higgs produ
tion in the StandardModel. The left diagram is the Higgs-strahlung, and right diagram is theW+W�-fusion2.2 SupersymmetryThe SM is in perfe
t agreement with all existing data. Why is it then ne
essaryto 
onstru
t theories that go beyond the SM? Even if the SM explains all parti
lephysi
s observations, many questions still remain unanswered if physi
ists areto understand nature at a deeper level. Su
h a theory is often referred to as a'theory of everything'.One of the problems suggesting that the SM is not �nal is the large num-ber of unpredi
ted parameters in the model whi
h have to be determined byexperiment. These parameters in
lude the three gauge 
ouplings of the threegauge groups (SU(3), SU(2)L and U(1)Y ), the six quark and the three lep-ton masses (as seen in Eq.(2.31)), the three relative mixing angles between thequark families whi
h spe
ify how the W� boson 
ouples to quarks, the phasewhi
h determines the magnitude of CP violation, the mass of the W� boson,and �nally the mass of the Higgs s
alar [5℄. A total of eighteen parameters.A fundamental theory has to explain the origin of these parameters from �rstprin
iples.A se
ond problem is the origin of the stru
ture assumed when 
onstru
tingthe SM: Why do fermions only intera
t with the weak 
urrent in a left-handedmanner? Why are the 
harges of the quarks quantized in fra
tions one-third the
harges of the leptons? Why are there three families of fermions, ea
h havingthe same 
oupling to the gauge bosons but greatly di�erent mass?Further, the strengths of the intera
tions in the SM, the 
oupling 
onstants,are not related by the model and the SM does not explain why they shouldbe so di�erent when measured. The Higgs me
hanism spontaneously breaksthe weak gauge symmetry and thus gives mass to the weak gauge bosons. Butno reason is given for why the weak gauge bosons are massive, and not theele
tromagneti
 nor strong gauge bosons.Another 
aw of the SM is that it only des
ribes three of the four fundamentalfor
es. Gravity is not in
luded in the SM. A theory of everything would have todes
ribe gravitational intera
tions as a quantum theory. At present the most
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Figure 2.2: Some quadrati
ally divergent Higgs self-energies.promising 
andidate of su
h a theory is the String Theory, whi
h will not bereviewed here.However, the perhaps strongest argument for an extension of the SM isthe hierar
hy problem: What generates the hierar
hy of mass s
ales needed todes
ribe the fundamental intera
tions?2.2.1 The Hierar
hy ProblemThe hierar
hy of masses goes as follows: The Plan
k mass mP lan
k , governingthe gravitational 
oupling, is approximately 1019 GeV. The W� boson massmW , governing the weak 
oupling, is some 17 orders of magnitude smaller thanmP lan
k , approximately 102 GeV. The fermion masses range from 1210�3 GeVfor the ele
tron to 74102 GeV for the top quark, while the neutrinos are 
lose tobeing massless. The 
entral question is what 
auses su
h a mass hierar
hy? To
ompli
ate the problem even further, radiative 
orre
tions to the ele
troweakbreaking s
ale estimated in the SM seem to drive the breaking s
ale up to thePlan
k s
ale.The hierar
hy problem is 
onne
ted to the point-like nature of elementaryparti
les. Virtual pro
esses, in whi
h a parti
le splits into more than one el-ementary state, lead to large radiative 
orre
tions to the parti
le mass. Aone-loop ele
tromagneti
 
orre
tion to the ele
tron mass, me, is quite modest.A 
uto� �e is imposed on the momentum 
owing through the loop, and even if�e is the entire mass of the observable universe the 
orre
tion only amounts tome ' 1:7me;0 [3℄. The radiative 
orre
tion to the Higgs mass does not behavequite as ni
e. The �rst diagram in Fig. 2.2 shows a Higgs loop with quadrati
self-
oupling. The shift of the Higgs mass is given by [3℄m2H = m2H;0 + 316 ��2�2H : (2.34)If �H is as large as the Plan
k mass, the parameter m2H;0 must be negative and�ne-tuned up to 30 de
imal pla
es, whi
h is highly unnatural, if a renormalizedmass governed by the ele
troweak breaking s
ale is to be obtained. Be
ause ofthis unnatural tuning, the hierar
hy problem is sometimes also referred to asthe naturalness problem.Even if these radiative pro
esses are 
lassi
ally forbidden, they 
an pro
eedprovided, in a

ordan
e with the un
ertainty prin
iple, the virtual states onlyexist for a short period of time. These radiative 
orre
tions push the mass of



16 CHAPTER 2. THE THEORYthe Higgs towards the Plan
k mass, whi
h in turn leads to W� and Z0 massesof the same order as the Higgs. Suggestions have therefore been made that theHiggs is not an elementary parti
le, but is 
omposite and has stru
ture on a
ertain mass s
ale, making virtual pro
esses impossible above this mass s
ale.Thus, radiative 
orre
tions do not blow up the Higgs mass. Te
hni
olour is oneof these 
omposite theories in whi
h the Higgs boson is a fermion-antifermionstate with a new 
lass of fermions 
alled te
hniquarks.But what if all the SM states, in
luding the Higgs, really are elementary?How do we then evade the hierar
hy problem? How do we avoid radiative 
or-re
tions driving the Higgs mass to the Plan
k s
ale? If there exists a symmetryin nature under whi
h, if the symmetry is exa
t, the ele
troweak group is unbro-ken, then the radiative 
orre
tions are absent. The W� andZ0 masses wouldbe naturally small if the breaking of the symmetry is small. Only one symmetry
onsistent with relativity 
an play this role: Supersymmetry (SUSY).2.2.2 MSSMThe Minimal Supersymmetri
 extension of the Standard Model (MSSM) is thetop 
andidate of a non-
omposite theory without the hierar
hy or naturalnessproblem. In MSSM, every elementary parti
le adopts a partner with a halfinteger spin di�eren
e 
ompared to the SM parti
les. Thus, every SM fermionstate is related to a SUSY boson state, and every SM boson state is related toa SUSY fermion state. In 
ontrast, the lo
al gauge symmetry of the SM onlyrelates states of the same spin.The partners of spin-12 quarks and leptons are spin-0 squarks and sleptons,respe
tively. The gluon, W�, Z0, and photon gauge bosons, adopt spin-12 part-ners named gluino, Wino, Zino and photino, respe
tively. These new states are
onsiderably heavier than the SM states, and thus explains why no dire
t evi-den
e of the existen
e of the SUSY parti
les has yet been found in experiments.The fa
t that the SUSY parti
les are heavier than their SM partners imply thatSUSY must be broken. Hen
e, SUSY is not an exa
t symmetry.SUSY parti
les 
ontribute as virtual states to radiative 
orre
tions of themasses, even though they are too heavy to be observed on-shell. The 
ru
ialdi�eren
e now is that the radiative 
orre
tions of the new states is of the samemagnitude as the radiative 
orre
tions of the SM states but with opposite signs.If SUSY were an exa
t symmetry, there would be no 
orre
tions to the Higgsmass. But be
ause SUSY is broken on a s
ale mSUSY , the new SUSY statesa
quire masses of order O(mSUSY ). Can
ellation is spoilt. However, no needfor pani
. If the resultant 
ontribution of order O(mSUSY ) is not too large(i.e. � O(1TeV)), it is 
onsistent with the observed ele
troweak breaking. Thehierar
hy problem is solved. But the pri
e paid is more than twi
e as manystates as in the SM, and no explanations of the MSSM multiplet stru
ture and
ouplings are provided.Another important aspe
t of SUSY is en
ountered in 
onne
tion with GUTs(Grand Uni�ed Theories). If the three gauge 
ouplings of the SM are to beuni�ed as one single 
oupling 
onstant, SUSY is needed. Without SUSY, thethree 
ouplings never meet at the same point [8℄.



2.2. SUPERSYMMETRY 172.2.3 ConstraintsExtensions of the SM Higgs se
tor must satisfy three general 
onstraints arisingfrom the �-parameter measurements, absen
e of 
avor 
hanging neutral 
ur-rents, and unitary requirements [2℄. The two �rst are experimental 
onstraints,while the last is a theoreti
al 
onstraint.�-parameterExtensions of the Higgs se
tor must not spoil the su

essful predi
tions of theW� and Z0 mass relation, that is to deviate from � = 1 (see (2.27)). If measure-ments indi
ate � 6= 1, new physi
s beyond the SM are required. It is thereforeof great importan
e to determine � as a

urately as possible. Higgs models
onsisting of any number of singlets and doublets satisfy � = 1. Other ways ofsatisfying the � measurements are restri
ted to models satisfying [6℄(2T + 1)2 � 3Y 2 = 1 ; (2.35)with T and Y representing the total SU(2)L isospin and hyper
harge, respe
-tively. The two-doublet model with T = 12 and Y = �1 satisfy (2.35). Possi-bilities beyond T = 12 , Y = �1 are usually dismissed be
ause of 
ompli
atedrepresentations.Absen
e of FCNCAs mentioned in se
tion 2.1.1, 
avor 
hanging neutral 
urrents (FCNC) arehighly suppressed (see (2.2)). The absen
e of FCNC strongly restri
ts possibleSM extensions. A Higgs mass of order 1 TeV would suÆ
iently suppress tree-level FCNCmediated by Higgs ex
hange. A more elegant possibility is restri
tedto models with more than one Higgs doublet, and is based on a theorem statingthat tree-level FCNC are absent if fermions of a given ele
tri
 
harge only
ouples to one Higgs doublet. The last possibility is favored over an unnaturallyhigh Higgs boson mass [2℄.The 
oupling of the Higgs bosons to fermions in a two-doublet model gen-erally pro
eed through one of two s
enarios: The �rst possibility is that onedoublet 
ouples to up-type fermions and the other doublet 
ouples to down-type fermions. MSSM requires this stru
ture be
ause the two Higgs doubletshave opposite hyper
harge, and the Y = �1 doublet only 
ouples to down-type fermions while the Y = 1 doublet only 
ouples to up-type fermions. This
hoi
e is also required if both up- and down-type fermions are to be massive ina supersymmetri
 theory.Another two-doublet model avoiding FCNC is a model in whi
h one doublet
ouples to both type of fermions, while the other doublet 
ouples to none of thefermions. This kind of a two-doublet model is not useful if the doublets haveopposite hyper
harge.To sum up: A two-doublet model is favored over a high Higgs boson mass,and MSSM requires the two doublets to 
ouple to up- and down-type fermionsseparated.



18 CHAPTER 2. THE THEORYUnitarity ConditionThe unitarity 
ondition is not only useful as a MSSM 
onstraint: In the Fermitheory of �-de
ay the four fermions involved are assumed to have a pointlikeintera
tion spe
i�ed by the Fermi 
onstant GF . This assumption is 
orre
t atlow energies, but at high energies the s
attering amplitudeM is highly divergentand thus violates the unitarity 
onditionjM(s)j � 1 ; (2.36)where s represents the available energy. The introdu
tion of a heavy inter-mediating parti
le, the W� boson, prevents the divergen
e, and the unitarity
ondition is satis�ed. A s
attering amplitude greater than one impli
ates aprobability greater than one, whi
h 
learly shows the importan
e of the unitar-ity 
ondition.Another example of the usefulness of the unitarity 
ondition provide an al-ternative argument for the SM Higgs: The unitarity 
ondition must be satis�edin VLVL ! VLVL and f+ �f+ ! VLVL amplitudes by any ele
troweak break-ing model. (VL is a left-handed W� or Z0 and f+ is a fermion with positiveheli
ity.) If a gauge theory is to be renormalizable, non-trivial 
an
ellationsamong Feynman diagrams of a given pro
ess are required. As an example, thes
attering amplitude of the tree level W+W� ! W+W� intera
tion is givenby MWWWW = �g2 s4m2W + O(1) : (2.37)The divergen
e of (2.37) is 
ured by introdu
ing a diagram involving the ex-
hange of a (neutral) spin-0 parti
le, i.e. by introdu
ing a new intera
tion ofthe ve
tor �eld W with a s
alar �eld. The new parti
le is the SM Higgs boson�0, and the tree-level relation g�0WW = gmW , where g is the gauge 
oupling,guarantees 
an
ellation of the growing energy terms. The Feynman diagram ofthe W+W� ! W+W� intera
tion is shown in Fig. 2.3. The Higgs parti
le isoften explained as the origin of massive fermions and bosons, but the unitarity
ondition alone provides an eviden
e for a new s
alar parti
le if the SM is tobe renormalizable at a 
ertain energy level.The MSSM two-doublet model do not depend on a single s
alar boson to
ure these unitarity problems alone. It suÆ
es to obey the following sum rulesfor the s
alar boson V V and f �f 
ouplingsXi g2h0iV V = g2�0V V ; (2.38)Xi gh0i V V gh0i f �f = g�0V V g�0f �f : (2.39)These sum rules only apply if the Higgs �elds are made of doublets and singlets.If all these 
onstraints, the �-parameter, the absen
e of FCNC and theunitarity 
ondition are to be satis�ed, the MSSM Higgs theory must be a two-doublet theory.



2.2. SUPERSYMMETRY 19�0W+W� W+W�igmWg�� igmWg��Figure 2.3: The lowest order Feynman diagram for W+W� ! W+W� involv-ing a neutral, s
alar parti
le; the Standard Model Higgs �0.2.2.4 The MSSM Higgs ModelIn se
tion 2.1.5 the spontaneous symmetry breaking of a one-doublet Higgsmodel is dis
ussed. The spontaneous breaking of a two-doublet model followsthe same stru
ture as in the one-doublet 
ase, although the Higgs potential ismore 
omplex, and the Higgs spe
trum is ri
her: The two-doublet model haseight degrees of freedom, in 
ontrast to the four degrees of freedom in the one-doublet 
ase. It is important to point out that the two doublet model is notparti
ular for SUSY models. Two-doublet models may exist within the SM aswell, but MSSM requires a two-doublet, as dis
ussed in Se
. 2.2.3Two 
omplex jY j = 1, SU(2)L doublet s
alar �elds are given by�1 = � �+1�01 � ; �2 = � �+2�02 � : (2.40)A gauge invariant Higgs potential that avoids FCNC4 has the formV (�1; �2) = �1(�y1�1 � v21)2 + �2(�y2�2 � v22)2+ �3 h(�y1�1 � v21)(�y2�2 � v22)i2+ �4 h(�y1�1)(�y2�2)� (�y1�2)(�y2�1)i+ �5 hRe (�y1�2)� v1v2 
os �i2+ �6 hIm (�y1�2)� v1v2 sin �i2 : (2.41)The va
uum expe
tation values that minimize this potential for arbitrary realand positive parameters �i, i = 1; :::; 6, areh�1i0 = � 0v1 � ; h�2i0 = � 0v2ei� � : (2.42)If sin � 6= 0, it leads to large CP violations in 
ontradi
tion with measurements,and the phase fa
tor � is therefore set to zero. Thus, the Higgs se
tor in MSSMis CP invariant even though the MSSM as a whole is not CP invariant. Thereis no argument for why the CP violation should o

ur in the Higgs se
tor.4FCNC are avoided by making the Higgs potential respe
t the dis
rete symmetry�1 $ ��1.



20 CHAPTER 2. THE THEORYHiggs Spe
trumA spontaneous breaking of the symmetry has o

urred, and the Higgs spe
trumis obtained by expanding the Higgs �elds around their va
uum. Three Gold-stone bosons are identi�ed by their derivative 
ouplings to the three W� �eldsappearing in the 
ovariant derivative (2.14). The resulting gauge boson massesare given bym2Z = (v21 + v22) g22 
os �W ; m
 = 0; m2W = (v21 + v22)g22 : (2.43)If (2.43) is 
ompared to (2.24) and (2.25) it follows that the quadrati
allysummed v1 and v2 must be equal to the square of the SM va
uum expe
ta-tion value v. A key parameter in MSSM is de�ned as the ratio between the twova
uum expe
tation values: tan � � v2=v1 : (2.44)The three Goldstone bosons must be removed if the physi
al Higgs statesare to be determined. The Higgs states are orthogonal to the Goldstone bosons.In the 
harged se
tor the physi
al states are given byH� = ���1 sin � + ��2 
os � : (2.45)Be
ause of the assumed CP -invarian
e the imaginary and real parts of theneutral s
alar �elds de
ouple. The neutral Goldstone orthogonal Higgs statebelongs to the imaginary (CP -odd) se
tor and is given byA0 = p2(�Im�01 sin � + Im�02 
os �) : (2.46)In the real (CP -even) se
tor the mass matrixM that mix the two neutral higgsbosons is given byM = � 4v21(�1 + �3) + v22�5 (4�3 + �5)v1v2(4�3 + �5)v1v2 4v22(�1 + �3) + v21�5 � ; (2.47)and the mass eigenstates areH0 = p2 �(Re�01 � v1) 
os�+ (Re�02 � v2) sin�� ;h0 = p2 �(�Re�01 � v1) sin�+ (Re�02 � v2) 
os�� : (2.48)The masses of the Higgs bosons are given bym2H� = �4(v21 + v22) ;m2A0 = �6(v21 + v22) ; (2.49)m2h0;H0 = 12 �M11 +M22 �q(M11 �M22)2 + 4M212� :At tree-level the Higgs masses simplify tom2H� = m2A0 +m2W� ;m2h0;H0 = 12 �m2A0 +m2Z0 �q(m2A0 +m2Z0)2 � 4m2Z0m2A0 
os2 2�� :(2.50)



2.2. SUPERSYMMETRY 21The mixing angle � that diagonalizes the mass matrix M 
an in the tree-level
ase be expressed as
os2(� � �) = m2h0(m2Z �m2h0)(m2H0 �m2h0)(m2H0 +m2h0 �m2Z) : (2.51)The mass of the lightest MSSM neutral Higgs parti
le h0 is bound to besmaller than the Z0 mass at tree-level, but radiative 
orre
tions raise the uppermass limit of h0 to about 150 Gev [9℄.To summarize, the following Higgs spe
trum has been obtained:� One neutral CP -odd s
alar A0, often 
alled a pseudos
alar.� Two neutral CP -even s
alars H0 and h0.� Two 
harged s
alars H�.The initial eight degrees of freedom (six � parameters and two va
uum ex-pe
tation values) have been turned into �ve Higgs boson mass parametersmH� ; mA0 ; mH0 ; mh0 and tan�, while the remaining three have been ab-sorbed in order to give mass to the three gauge bosons Z0; W+; W�. Thetwo-doublet model has six free parameters: Four Higgs masses, tan� and themixing angle �. At tree-level the Higgs spe
trum is determined by the weakgauge boson masses, the CP -odd Higgs boson mass,mA0 , and tan �. The otherparameters of the model only enter through radiative 
orre
tions to the Higgsmasses.2.2.5 Higgs 
ouplingsThe Higgs 
ouplings 
ontrol produ
tion and de
ay of the Higgs bosons. TheJPC quantum numbers for the Higgs bosons determine whi
h pro
esses areallowed and whi
h are not. If fermions are ignored, every boson of the MSSMtheory is assigned a unique JPC quantum number. If fermions are in
luded Pand C are no longer separately 
onserved, although CP still remains a goodquantum number.The JPC quantum numbers of A0, Z0 and W� is 0+�, 1�� and 1�, re-spe
tively, and explain why there are no tree-level A0W+W� and A0Z0Z0
ouplings. Another argument is that in a CP 
onserving theory5 the spon-taneous symmetry breaking me
hanism does not generate a 
oupling for theCP -odd A0. The 
oupling only o

ur at the one-loop level through fermionloops. Be
ause of this, there 
an be no A0 bremsstrahlung emission of Z0 orW� at tree-level.The 
oupling of the Z0 to a pair of identi
al Higgs bosons, Z0h0h0 orZ0A0A0, is forbidden by Bose symmetry. In the 
ase of a nonidenti
al Higgspair, the 
oupling is only present if the two Higgses have opposite CP quantumnumbers, i.e. pair produ
tion.5Re
all that the � fa
tor in (2.41) were set to zero to avoid large CP violations



22 CHAPTER 2. THE THEORYW�W+e�e+ �e h0; H0��e Z0Z0e�e+ e� h0; H0e+
Figure 2.4: Fusion Feynman diagrams of Higgs produ
tion in the MSSM model.Left diagram is W+W�-fusion, and right diagram is Z0Z0-fusion.The 
ouplings of H0 and h0 to W+W� and Z0Z0 are suppressed 
omparedto the SM Higgs 
ouplings a

ording to the following sum rule derived from themore general rule (2.38) g2h0V V + g2H0V V = g2�0V V : (2.52)The SM and MSSM Higgs 
oupling relations expressed in terms of the angles� and � are given by gh0V Vg�0V V = sin(� � �)gH0V Vg�0V V = 
os(� � �) ; (2.53)whi
h satisfy (2.52). The Feynman diagrams of W+W� and Z0Z0 fusion pro-
esses are given in Fig. 2.4.The remaining intera
tions for Higgs produ
tion near the Z0 resonan
e are:� The Bjorken pro
ess Z0� ! Z0h0 or Z0� ! Z0H0.� Neutral pair produ
tion Z0� ! h0A0 or Z0� ! H0A0.� Charged pair produ
tion Z0� ! H+H�.The 
orresponding Feynman diagrams are given in Fig. 2.5.The Higgs 
ouplings gZhZ and gZhA are 
omplementary fun
tions of themixing angle � and tan�:gZhZ / sin(� � �) ; gZhA / 
os(� � �) : (2.54)Chapter 4 will give more details on h0A0 and h0Z0 intera
tions.
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Figure 2.5: Feynman diagrams of Higgs produ
tion in the MSSM model. Thetop diagram is Higgs bremsstrahlung, the middle diagram is neutral Higgs pair-produ
tion, and the bottom diagram is 
harged Higgs pair-produ
tion.



Chapter 3The Dete
torCERN is a laboratory dedi
ated to the experimental and theoreti
al study ofparti
le physi
s. The name CERN is an a
ronym for Centre Europ�een pour laRe
her
he Nu
l�eaire.CERN is lo
ated at the border between Fran
e and Switzerland with theJura mountains to the west and Geneva to the east. CERN was establishedin 1953 to make new dis
overies both in experimental and theoreti
al parti
lephysi
s, in addition to help foster European 
ooperation after the war. Atpresent CERN has twenty member 
ountries. One of the most re
ent su

essesof CERN 
ame in 1983 when Carlo Rubbia and Simon van der Meer wereawarded the Nobel Prize in physi
s for leading the UA1 experiment whi
hmade the �rst dis
overy of the Z0 and W� parti
les.LEP is an a
ronym for Large Ele
tron Positron 
ollider, and it is the biggestof the a

elerators at CERN. The LEP 
ollider is situated inside a 
ir
ulartunnel 50 to 100 m below ground surfa
e. The tunnel is 3.5 m in diameter witha 
ir
umferen
e of 26.7 km, and is one of the biggest a

elerators yet built. Theplanning of the 
ollider and the subsequent dete
tors started in 1976, and the
onstru
tion work began in 1982. The �rst 
ollisions were performed August13, 1989 at a 
enter-of-mass energy of 87 Gev, and the LEP a

elerator hasbeen running with great su

ess up to now, rea
hing an energy of 208.8 GeV.The ability to probe the 
onstituents of matter at a small s
ale and to produ
eheavy parti
les are 
losely related to the available a

elerator energy via thefamous Einstein equation E = m
2.LEP a

elerates 
ounter-rotating beams of bun
hes of e+ and e� until themaximum energy is rea
hed. The beams are then brought into head-on 
ollisionsat four intera
tion points in the 
enter of the four LEP dete
tors. The e+ ande� annihilate to produ
e a on- or o�-shell Z0, depending on the energy of the
olliding beams. The Z0 bosons de
ay with an average lifetime of (2:65�0:01)�10�25 s [2℄, and the outmoving de
ay produ
ts are studied.Year 2000 is the last year of data-taking with the LEP 
ollider, and thedismantling of LEP is planned to start in the autumn 2000. LEP will then berepla
ed by the LHC (Large Hadron Collider) a

elerator whi
h is planned tostart running at a 
enter-of-mass energy of 14 TeV in 2005.The main 
ontribution of the LEP 
ollider has been pre
ision measurements
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Figure 3.1: The DELPHI dete
tor with all its subdete
tors.of the Z0 and W� masses, and other tests of the SM, both in the ele
troweakand QCD se
tors. The parti
le physi
s groups of the Oslo and Bergen univer-sities made large 
ontributions to the proje
t measuring the number of fermionfamilies using the now repla
ed SAT-dete
tor of the DELPHI experiment.Information on the DELPHI dete
tor presented in this 
hapter is 
olle
tedfrom DELPHI www-sites [10℄.3.1 DELPHIDELPHI is an a
ronym for DEte
tor with Lepton, Photon and Hadron Iden-ti�
ation. DELPHI is one of the four dete
tors at LEP, the others are L3,OPAL and ALEPH. Fig. 3.1 gives a layout of the DELPHI dete
tor and all itssubdete
tors.The main part of the dete
tor, the 
entral 
ylindri
al se
tion, is often re-ferred to as the barrel. The barrel are 
losed with to end
aps, referred to asthe forward se
tion. These end
aps 
an be removed during maintenan
e andservi
e. The overall length and diameter of the dete
tor are over 10 m, and thetotal weight is 3500 tons.A huge super
ondu
ting solenoid, the magenta 
ylinder in Fig. 3.1, produ
esa magneti
 �eld of 1.23 Tesla that bends the traje
tory of the 
harged parti
les.The radius of the traje
tory is proportional to the momentum of the parti
le.The dete
tor is made up of minor subdete
tors spe
ialized to extra
t asmu
h information as possible about the parti
le properties and traje
tories in



26 CHAPTER 3. THE DETECTORthe dete
tor. The dete
tor has a layer stru
ture of subdete
tors similar to thelayers of an onion. The subdete
tors are 
lassi�ed a

ording to what kind ofinformation they provide:� Tra
king Dete
torsThese dete
tors are pla
ed 
lose to the intera
tion point, and measuresthe parti
le path.{ Vertex Dete
tor (VD) Pla
ed 
losest to the intera
tion point. Itis a sili
on dete
tor, and the barrel part is 
omposed of three layers ofsili
on strip plaquettes lo
ated at 66 mm, 92 mm, and 106 mm fromthe intera
tion point. The VD provides pre
ise tra
king informationin order to dete
t very short lived parti
les, and 
overs a polar angleof about 20 degrees. The tra
ks are extrapolated ba
kwards to theintera
tion point.{ Inner Dete
tor (ID) Lo
ated between the vertex dete
tor and thetime proje
tion 
hamber. Provides intermediate positions of highpre
ision in addition to trigger information. It 
onsists of the JET
hamber and the Trigger Layers (TL). A JET 
hamber is a drift
ham-ber divided into se
tors �lled with sense wires that measures thedrifttime. The trigger layers 
onsist of 
ylindri
al layers of strawtubes. Angular 
overage down to 15 degrees. The resolution of thewires in the JET 
hamber is 90 �m, and after 
alibration the tra
kextrapolation (TE) resolution is 40 �m in r� and about 1.2 mradin �. The r� measurement is used in the TL to provide an r� TEresolution of 150 �m.{ Time Proje
tion Chamber (TPC) The prin
ipal tra
king de-vi
e of DELPHI. It also assists in identifying 
harged parti
les bymeasuring dE=dX (energy loss per unit length). Some trigger infor-mation are also given. It is a 2 x 1.3 m 
ylinder situated betweenthe radii 0.29 m and 1.22 m. A 
harged parti
le passing through theTPC ionizes the gas, and an ele
tri
 �eld 
auses the ele
trons of theionized gas to drift toward one of the proportional 
hambers inside.The ele
tri
 �eld originates from a plate separating the two drift vol-umes. The TPC provides information on the parti
le traje
tory atradii from 40 to 110 
m between polar angles from 39 to 141 degrees.Pre
ision of r� is 250 �m per point, and the z pre
ision is 900 �mper point.{ Outer Dete
tor (OD) A narrow 
ylinder pla
ed outside the BarrelRing Imaging Cherenkov dete
tor (Barrel RICH). It is made of �velayers of drift tubes lo
ated between the radii 197 and 206 
m. Thea
tive length 
orresponds to polar angles from 42 to 138 degrees.It provides �nal pre
ise measurements of the momenta of 
harged
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les after the Barrel RICH. Pre
ision of r� is 100 �m per tra
k,and the z pre
ision is 4.4 
m.{ Forward Chamber A (FCA) Covering polar angles from 11 to 32and 148 to 169 degrees. It is situated 160 
m from the intera
tionpoint and 
overs the ends of the TPC.{ Forward Chamber B (FCB) It is a drift 
hamber 
onsisting oftwo independent modules at ea
h end
ap at an average distan
e of275 
m from the intera
tion point. The sensitive area 
orrespondsto polar angles from 11 to 36 and 148 to 169 degrees. Ea
h hit ismeasured twi
e, �rst with an a

uran
y of 2ns, and se
ond with ana

uran
y of 8 ns.{ Very Forward Tra
ker (VFT) Lo
ated on both sides of the vertexdete
tor. It 
overs polar angles from 19 to 25 and 155 to 170 degrees.The VFT is the forward part of the Sili
on Tra
ker (Vertex Dete
tor).{ Muon Chambers (MUC) The DELPHI dete
tor 
ontains threemuon 
hambers: Barrel Muon Chambers (MUB), Forward MuonChambers (MUF) and Surrounding Muon Chambers (SMC). Theyare lo
ated furthest away from the intera
tion point be
ause muonsare the only 
harged parti
les that traverse the lead and iron of both
alorimeters essentially una�e
ted: Most muons of momenta above2 GeV are expe
ted to rea
h the muon 
hambers, whereas the other
harged parti
les are stopped at an earlier point in their traje
tory.The muon identi�
ation is a
hieved by 
omparing extrapolations ofre
onstru
ted tra
ks, provided by subdete
tors 
loser to the intera
-tion point, and hits in the Barrel and Forward muon drift 
hambers.The SMC was installed in 1994 to �ll the gap between the MUB andthe MUF. Design a

ura
y for the MUB is 1 mm in r� and 10 mm inz, and the a

ura
y when spa
e points are asso
iated to extrapolatedtra
ks is 2 mm in r� and 80 mm in z. The MUF a

ura
y on the xand y 
oordinates is about 5 mm. The muon 
hambers are the outergreen layers in Fig. 3.1.Having passed the tra
king dete
tors, the parti
le has now traversed 5 mof the dete
tor.� Ele
tromagneti
 Calorimeters and S
intillator CountersEle
tron and photon identi�
ation are provided primarily by the ele
-tromagneti
 
alorimetry system. The system is 
omposed of a barrel
alorimeter (HPC), a forward 
alorimeter (FEMC), and two very forward
alorimeters; the Small angle TIle Calorimeter (STIC), and the Very SmallAngle Tagger (VSAT). The latter two are mainly used for luminosity mea-surements. The STIC repla
ed the Small Angle Tagger (SAT) in 1994.



28 CHAPTER 3. THE DETECTOR{ High-density Proje
tion Chamber (HPC) The barrel ele
tro-magneti
 
alorimeter. Installed as a 
ylindri
al layer outside the OD.It is mounted on the inside of the solenoid, and 
onsists of 144 in-dependent modules, arranged in 6 rings of 24 modules ea
h. Ea
hmodule is a trapezoidal box �lled with 41 layers of lead separated bygas gaps. An ele
tromagneti
 parti
le produ
e a shower in the leadand ionizes the gas. The ele
trons drift to one end of the box wherethey are 
olle
ted by a proportional 
hamber, as in the TPC. TheHPC is a 
ylinder of 2 x 254 
m situated between the radii 208 and260 
m. The polar angle 
overage is 43 to 137 degrees. Granularityis 1 degree in �, 4 mm in z and 9 samples in r. The HPC in Fig. 3.1is the green 
ylinder inside the super
ondu
ting 
oil.{ Forward Ele
troMagneti
 Calorimeter (FEMC) Ele
tromag-neti
 
alorimeter in the forward region of the dete
tor. It 
onsistsof two disks with diameter of 5 m, and is made of lead-glass. Thefront fa
es are pla
ed at a distan
e of 284 
m from the intera
tionpoint, 
overing polar angles from 8 to 35 and 145 to 172 degrees. Forneutral showers of energy above 2 GeV the average pre
ision on there
onstru
ted hit position in x and y, proje
ted to jzj = 284 
m, isabout 0.5 
m. Fig. 3.1 shows the FEMC as the green dis
 outsidethe forward HACL.{ S
intillators In order to a
hieve maximal 
overage for high energyphotons under all emission angles with minimal leakage, a so-
alledhermeti
ity 
ounter, s
intillators have been installed between thebarrel and end
ap, and in the HPC. In addition, the Time Of Flight(TOF) is situated in the barrel, and the HOrizontal Flight (HOF)tagger in the forward se
tion. The s
intillators are also used as fasttriggers. The eÆ
ien
y of the HOF is about 80 %, the rate is 0.1-0.4Hz, and the response-time is less than 50 ns.� Hadron Calorimeter (HACL)Measures the kineti
 energy of neutral and 
harged strong intera
tingparti
les (hadrons). Situated between the super
ondu
ting 
oil and thetwo outermost muon 
hambers in the barrel, and between the forwardEM 
alorimeter and the outermost muon 
hamber in the forward se
tion.Both the barrel and forward 
alorimeter 
ontain a muon 
hamber. Thehadron 
alorimeters are indi
ated by red in Fig. 3.1. It is a sampling gasdete
tor in
orporated in the magnet yoke 
onsisting mainly of iron. Thebarrel part 
overs polar angles from 42.6 to 137.4 degrees, and the twoend
aps from 11.2 to 48.5 and 131.5 to 168.8 degrees.� Charged Hadron Identi�
ationParti
le identi�
ation of strongly intera
ting parti
les. In DELPHI it
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Figure 3.2: Figure showing the stru
ture of the RICH dete
tors of DELPHI.relies on the dE=dX measurement of the TPC, and on the velo
ity mea-surement of the RICH dete
tors. The RICH te
hnique is based on thedete
tion of Cherenkov light emitted by the moving parti
le. The DEL-PHI RICH 
ontains two radiators: A liquid radiator operating in themomentum range from 0.7 to 9 GeV, and a gas radiator used from 2.5 to25 GeV. Full solid angular 
overage is provided by a Forward RICH anda Barrel RICH, both indi
ated by yellow in Fig. 3.1. Fig. 3.2 shows thestru
ture of the RICH dete
tors of DELPHI. The radius of the ring givesthe velo
ity of the moving parti
le. The photon dete
tor is a gas drift
hamber with multi wire proportional 
hambers (MWPC) to dete
t thedrift ele
trons.{ Barrel RICH Lo
ated between the TPC and the OD. It is a 350
m long 
ylinder with inner radius 123 
m and outer radius 197 
m.It 
overs polar angles between 40 and 140 degrees.{ Forward RICH Covers polar angles between 15 and 35 degrees. Itis about 1 m thi
k, and is lo
ated 1.7 m away from the intera
tionpoint. The most important di�eren
e between the Barrel and For-ward RICH is the presen
e of the magneti
 �eld of 1.23 Tesla in theForward RICH.� Luminosity MeasurementThe luminosity at e+e� dete
tors is measured by 
ounting the numberof events with a 
lear experimental signature. Events with high statisti
sand a 
ross se
tion that 
an be theoreti
ally 
al
ulated to high pre
isionare used. The pro
ess 
hosen is Bhabha s
attering (e�e+ ! e�e+) atsmall angles, whi
h pro
eeds almost entirely through the ex
hange of aphoton in the t-
hannel. In DELPHI the absolute luminosity is measuredusing the Small angle TIle Calorimeter (STIC) and the Very Small AngleTagger (VSAT).{ Small Angle Tile Calorimeter (STIC) It is a sampling lead-



30 CHAPTER 3. THE DETECTORs
intillator 
alorimeter formed by two 
ylindri
al dete
tors pla
edon either side of the DELPHI intera
tion region at a distan
e of 220
m, and 
overs polar angles between 29 and 185 mrad (from 6.5 to42 
m in radius). The lead-s
intillator 
alorimeter are made up of47 lead-s
intillator layers, ea
h with 1600 holes to let the wavelengthshifter �bers go through. The energy resolution at 45 GeV is 3 %,and the spatial resolution of the 
alorimeter alone is 1.5 degrees in �and 300 �m to 1 mm in radius. The resolution of the sili
on is 400�m in radius, and the expe
ted systemati
 error on luminosities is0.2 %.{ Very Small Angle Tagger (VSAT) Consists of 4 
alorimetermodules, ea
h made of 11 sili
on diodes separated by tungsten alloyabsorber. Three sili
on strip planes, pla
ed at 5, 7 and 9 radiationlengths into the modules, are used for (x; y) shower position measure-ments. A lead blo
k of 10 radiation lengths are pla
ed at the ba
kof ea
h module to de
rease the number of parasite events (photonsor o�-momentum leptons) from the intera
tion point. The VSATdete
ts ele
trons and positrons 
oming from Bhabha s
attering, andphotons between 5 and 7 mrad. The energy resolution at 45 GeVis 5 %, at 95 Gev around 4 %. The resolution of the sili
on stripsis about 170 �m of the x and y 
oordinates. Expe
ted systemati
error is 1 %. The energy resolution at 45 GeV is 5 %, and at 95 GeVaround 4 %. The resolution of the sili
on strips is about 170 �m.



Chapter 4The h0A0 AnalysisThe Higgs analysis presented is performed on the Z0!h0A0! b�bb�b 
hannel ofthe MSSM Higgs se
tor. The Feynman diagram of the h0A0 
hannel is givenin Fig. 4.1.Z0!h0A0 dominates over Z0!h0Z0 at high tan�, and h0A0 ! b�bb�b is thedominant de
ay 
hannel. A full s
an of the (mA; tan�) plane is not performed,only �vemA and two tan� values have been used in the limit 
al
ulations. Thislimited s
an is performed be
ause the obje
tive of this analysis is to 
omparelikelihood methods using di�erent binning pro
edures and dis
riminating vari-ables, rather than determine an ex
luded region of the (mA; tan�) plane. Thelikelihood methods are presented in Chapter 7 and Chapter 8.The de
ay modes of the h0A0 
hannel are presented in Se
. 4.2, the relevantba
kground pro
esses in Se
. 4.3, and the signals in Se
. 4.4.4.1 Higgs Produ
tionAt LEP2 the neutral MSSM Higgs bosons h0 and A0 are produ
ed mainlythrough the following two pro
esses:Higgs� strahlungAsso
iated pair produ
tion : e+e� ! h0Z0: e+e� ! h0A0 (4.1)The Feynman diagrams of these pro
esses are given in Fig. 2.5. The fusionpro
esses (Fig. 2.4) play a minor role at the kinemati
al limit of Higgs-strahlungprodu
tion of h0. A0 is only produ
ed through pair produ
tion (to leadingorder).The 
ross se
tions of the h0Z0 and h0A0 pro
esses in (4.1), expressed interms of the 
ross se
tion �SM for Higgs-strahlung in the SM (Fig. 2.1), aregiven by �(e+e� ! h0Z0) = sin2(� � �)�SM (4.2)�(e+e� ! h0A0) = 
os2(� � �)���SM ; (4.3)where �� is the momentum fa
tor of the two parti
le phase spa
e. The 
rossse
tions for Higgs-strahlung, h0Z0, and pair produ
tion, h0A0, for tan�=2.0



32 CHAPTER 4. THE H0A0 ANALYSISZ0� h0A0e+
e�

�b b�bb
Figure 4.1: Feynman diagram of the MSSM pro
ess e+e� ! Z0� ! h0A0 !b�bb�b.and tan�=20.0, are given in Fig. 4.2 [11℄, illustrating that pair produ
tiondominates over Higgs-strahlung at high tan�.4.2 De
ay ModesThe CP -even s
alar Higgs boson h0 de
ays almost ex
lusively into a fermion-antifermion pair if tan � > 1 and mh < 100 GeV, whi
h is the 
ase for all thesignal hypotheses of this analysis. Fermion de
ays are also the dominant de
aymode of the CP -odd pseudos
alar Higgs boson A0. The partial de
ay widths� of all the neutral Higgs bosons � into fermions f in the limit m2� � m2f aregiven by [9℄ �(�! f �f ) = N
GFm2f4p2� g2�ffm� �1 + 173 �s� � ; (4.4)where GF (the Fermi 
onstant) is the weak 
oupling 
onstant, g�ff are theHiggs-fermion 
ouplings, and �s is the QCD running 
oupling 
onstant.Fig. 4.3 [11℄ shows the bran
hing ratios of h0 and A0 into SM parti
les, andit is evident that the dominant de
ay mode at both tan� = 2 and tan� = 20is b�b.4.3 Ba
kgroundThe three most important ba
kground pro
esses to a Higgs sear
h in the h0A0
hannel are: Z0�!W+W�! q�qq�q, Z0
 ! q�q
 and Z0Z0 ! q�qq�q(q�ql�l). Thedominating pro
ess is the Z0
 pro
ess, followed by the W+W� pro
ess, and asmall 
ontribution from the Z0Z0 pro
ess. Fig. 4.5 [12℄ shows the ba
kgroundlevel vs. the eÆ
ien
y for the di�erent Monte Carlo generated ba
kgrounds,together with the data of the 189 GeV run.



4.4. SIGNAL 33EventsChannel after 
ut � [pb℄ EÆ
ien
y [%℄ Eventsq�q(
) 2040 99.0 (13:9 � 0:31) � 10�2 13:4 � 0:83q�qq�q 1144 17.733 (18:3 � 0:54) � 10�2 9:45 � 0:35l�lq�q; l = �; � 146 0.3688 (69:4 � 5:7) � 10�2 0:417 � 0:036Ba
kground 3330 | | 23:2 � 0:90Data 33 | | 33Signal, tan� = 270 1404 0.08329 70:2 � 1:0 9:24 � 0:16mA 75 3735 0.06482 72:0 � 0:62 7:37 � 0:098[GeV℄ 80 3753 0.04890 75:2 � 0:61 5:81 � 0:07585 3900 0.03549 75:0 � 0:60 4:21 � 0:05490 2083 0.02457 74:4 � 0:82 2:89 � 0:043Signal, tan� = 2070 1508 0.15892 75:4 � 0:96 18:9 � 0:31mA 75 3779 0.11352 75:6 � 0:60 13:6 � 0:17[GeV℄ 80 3808 0.07287 76:2 � 0:60 8:77 � 0:1185 3551 0.03844 74:0 � 0:63 4:50 � 0:5990 2094 0.01270 69:8 � 0:84 1:40 � 0:22Table 4.1: The �nal 
ut number of events, 
ross-se
tions, eÆ
ien
ies and ex-pe
ted number of events for the di�erent Monte Carlo generated ba
kgroundsand signals, together with the 189 GeV data.4.4 SignalThe h0A0 sear
h presented is restri
ted to limit 
al
ulations of only ten pointsin the (mA; tan�) plane: Five mA values (70, 75, 80, 85, 90 GeV) at twotan� values (2, 20). The small number of (mA; tan�) points is allowed be
ausethe obje
tive of this sear
h is to 
ompare likelihood methods using di�erentbinning algorithms and dis
riminating variables, rather than ex
lude a regionof the (mA; tan�) plane. No interpolation between the Monte Carlo generatedsignal distributions is performed (see Se
. 6.3 and Fig. 6.2).The signal, ba
kground and 189 GeV data distributions are provided byJ�rgen Hansen, using the DELPHI TEAM C standard tra
k [13, 14℄ and 4jetsele
tion [15, 14℄. The �nal 
ut is set using a neural network-like variable(presented in ref. [14℄), and the 
ut 
orresponds to 33 observed 
andidates.Figures 4.6, 4.7, 4.8, 4.9 and 4.10 shows the the mA = 80 GeV, tan� = 20 sig-nal, together with the di�erent Monte Carlo ba
kgrounds and the observed
andidates at 189 GeV.Table 4.1 gives the number of events after the �nal 
ut, 
ross se
tions,eÆ
ien
ies, and expe
ted number of events of the Monte Carlo generated ba
k-grounds and signals, together with the 189 GeV data. The quoted un
ertaintiesin
lude a 
ommon 1 % relative error on both signals and ba
kgrounds, to a
-
ount for un
ertainties in 
enter-of-mass energy, luminosity, and 
ross se
tion,



34 CHAPTER 4. THE H0A0 ANALYSISin addition to a systemati
 error on the di�eren
e between di�erent generatorsof the various ba
kground 
hannels and the modeling of the su

essive 
uts, esti-mated to be 5.7 % for the PYTHIA ba
kground, and 2 % for the EXCALIBURba
kgrounds [14, 16℄.
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e�

�qu;
;tqd;s;b�qu;
;tqd;s;b
Z0e+

e�
�q q


Z0Z0e+
e�

�q; �l q; l�qq
Figure 4.4: Feynman diagrams of the three most important ba
kground pro-
esses to a sear
h in the h0A0 
hannel: Z0�! W+W�! q�qq�q, Z0�
 ! q�q
and Z0Z0 ! q�qq�q(q�ql�l).
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Figure 4.5: Figure showing the ba
kground level vs. the eÆ
ien
y for thedi�erent Monte Carlo generated ba
kground samples, together with the data ofthe 189 GeV run [12℄.
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ut. Stri
tly speaking the variable of ref. [14℄ is nota neural network variable, but be
ause of many 
ommon features it is referredto as su
h (see Se
. 7.1). The signal sample used is the Monte Carlo generatedsignal for mA = 80 GeV, tan� = 20.



Chapter 5Jet Clustering andKinemati
al FitsThe single �nal-state parti
les of a high energy intera
tion event have to begrouped together in 
lusters in order to re
onstru
t the jet topology of the event,and 
al
ulate the jet momentum and energy. The jet 
lustering of the signals,ba
kgrounds and data 
andidates used in the analysis of the likelihood methodspresented in Chapter 7 and Chapter 8, is the standard DELPHI Durham [17℄algorithm programmed by J�rgen Hansen. The presentation of the Durham jet
lustering is based on the PYTHIA 5.7 manual by T. Sj�ostrand [18℄.To 
orre
t the event data for dete
tor ineÆ
ien
ies, a kinemati
al �t on thesingle parti
le tra
ks of the jets is performed. The e�e
t is sharper mass dist-ributions, as is seen in Fig. 5.1. Se
. 5.2 dis
uss kinemati
al �ts in more detail.The dis
ussion on kinemati
al �ts are in
uen
ed by the book \ Statisti
s for Nu-
lear and Parti
le Physi
ists" by Louis Lyons [19℄, and private 
ommuni
ationswith J�rgen Hansen.5.1 Jet ClusteringThe single hadroni
 tra
ks of an event have to be 
ombined into 
lusters oftra
ks in order to 
al
ulate the momentum and energy of the jets.To determine the individual jet axes in events of more than three jets, ate
hnique known as 
luster �nding is developed: Ea
h �nal-state parti
le isinitially 
onsidered to be a 
luster. The two nearest 
lusters are found usingsome distan
e measure. If the distan
e is smaller than a 
ut-o� value, the
lusters are joined to form a new 
luster. This routine is repeated until thedistan
e between any two 
lusters are above the 
ut-o� value. The 
ut-o� value
ontrols the �nal jet pi
ture, and it is possible to have the 
luster algorithm�nd a predetermined number of jets, whi
h is the 
ase for the 4 jet 
lusteringof h0A0 ! b�bb�b events.A jet is de�ned as a 
olle
tion of parti
les whi
h have a limited transversemomentum with respe
t to a 
ommon jet axis, and hen
e also with respe
tto ea
h other [18℄. The distan
e measure used should only depend on thetransverse momentum, and the distan
e measure of the Durham algorithm is



44 CHAPTER 5. JET CLUSTERING AND KINEMATICAL FITSwritten as [18℄ ~yij = 2min(E2i ; E2j )(1� 
os �ij)E2
m ; (5.1)where Ei and Ej are the energy of the two 
lusters, �ij is the relative anglebetween the 
lusters, and E
m is the 
enter-of-mass energy of the intera
tion.The physi
al interpretation of the ~yij distan
e measure is the transverse mo-mentum of the softer parti
le with respe
t to the dire
tion of the harder one.In 
ontrast, the LUCLUS routine [18℄ uses a distan
e measure with the physi
alinterpretation as the transverse momentum of either parti
le with respe
t tothe 
ommon dire
tion given by the momentum ve
tor sum.Initially, ea
h parti
le is 
onsidered to be a 
luster, and the two 
lusterswith smallest relative distan
e ~yij are found and joined to one if ~yij < ~yjoin,with ~yjoin some predetermined distan
e. The momentum of the new 
lusteris the ve
tor sum of the momenta of the joined 
lusters. This pro
edure isrepeated until the distan
e between any two 
lusters are greater than ~yjoin. Ifthe number of �nal 
lusters do not mat
h a predetermined number of jets, thevalue of ~yjoin is modi�ed, and the 
lustering algorithm repeated until the �nalnumber of 
lusters mat
h the predetermined jet number.The main di�eren
e between the Durham algorithm and the LUCLUS routine,is that Durham does not allow reassignments. Reassignment is performed inthe LUCLUS routine after ea
h joining be
ause the parti
les of a new 
luster maybe 
loser to another 
luster.5.2 4C FitA kinemati
al �t is performed to make the measured quantities of an observedintera
tion satisfy a set of kinemati
al 
onstraints. This is done by 
onsideringall 
on�gurations of the four-momentum ve
tors of the outgoing parti
les thatsatis�es these 
onstraints. From this in�nity of four-momentum ve
tor sets, theset that has the least �2 value are used.A set of n measurements xm1 ; xm2 ; :::; xmn with errors �1; �2; :::; �n are pro-vided by the dete
tor. These measurements are subje
ted to a number of 
on-straints, Cj(x1; x2; :::; xn), j = 1; :::; n
, satis�ed by the numbers �x1; �x2; :::; �xn.The quadrati
 sum S2 is de�ned asS2 = nXi=1 �xmi � �xi�i �2 ; (5.2)whi
h gives a measurement of how mu
h the xi set of measurements have tobe moved in order to �t the �xi set of values.1 Further, �2 is de�ned as the1The S2 de�nition (5.2) 
orresponds to the �2 de�nition [20℄�2 = nXi=1 �xi � �� �2 ;provided the measured values xmi are all 
olle
ted from a normal distribution N(�i= �xi; �2i ),



5.2. 4C FIT 45minimum of S2 when varying �xi�2 = min(S2) : (5.3)The problem now is to �nd the set �x1; �x2; :::; �xn, among the in�nite number ofsets, that minimize S2.In the 
ase of a h0A0 ! b�bb�b intera
tion the measured values are the mo-mentum and energy of the four jets: (pix; piy; piz; Ei), i = 1; :::; 4.5.2.1 The ConstraintsThe four 
onstraints of a 4C �t are the 
onstraints leading to 
onservation ofmomentum and energy and, in the 
ase of a 
olliding beam experiment, the
onstraints are given as:� C1 =Ptra
ks px = 0� C2 =Ptra
ks py = 0� C3 =Ptra
ks pz = 0� C4 =Ptra
ksE = ECM = psThese 
onstraints are not hypothesis dependent; they are well founded physi
allaws. In 
ontrast, a 5C �t imposes a �fth 
onstraint: The masses of the twopairs of jets, resulting from a pairing of the four 
lustered jets two by two, areequal. This 
onstraint is hypothesis dependent, and a 5C �t is rarely used inthe h0A0 ! b�bb�b 
hannel.After the kinemati
al �t is performed, the problem of whi
h two jets belongto whi
h two initial heavy obje
ts must be addressed. If a 4C �t is used, thepairing of least mass di�eren
e is 
onsidered to be the best pairing. If a 5C�t is used, the pairing of least �2 is 
onsidered to be the best pairing. Theh0A0 events used in the analysis presented in this thesis are subje
ted to a4C �t, using the PUFITC pa
kage programmed by N. J. Kjaer of CERN andM. Mulders of NIKHEF/DELPHI. The three possible pairings are 
lassi�eda

ording to their jet mass di�eren
e. Chapter 8 provides a more elaboratedis
ussion on the pairing problem.Fig. 5.1 shows the invariant mass of h0A0 ! b�bb�b events before and aftera 4C �t performed by PUFITC [12℄. The e�e
t of the �t is a sharper massdistribution.where �i is the mean. However, there is of 
ourse no reason to expe
t the xmi to be normaldistributed with �i = �xi prior to the kinemati
al �t. Hen
e, the de�nition (5.2) is referred toas a quadrati
 sum, S2, not as �2.
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Figure 5.1: Plots of mass estimators of the h0A0 ! b�bb�b 
hannel before andafter a 4C �t performed by the PUFITC pa
kage [12℄. The plots to the left arethe distributions of the mass estimator before the 4C �t, and the plots to theright are the distributions of the mass estimators after the 4C �t. As is evidentfrom these plots, the 4C �t sharpens the mass distributions by redu
ing theRMS. The signal sample used is mA = 80 GeV, tan� = 20 (mh = 79:53 GeV).



Chapter 6The ALRMC ProgramThe ALRMC program [21℄ o�ers an optimal method for setting ex
lusion limitson the Higgs mass for multi
hannel sear
hes using a likelihood ratio te
hnique.The program is used for 
al
ulating 
on�den
e levels based on signal and ba
k-ground distributions prepared by the likelihood methods presented in Chapter 7and Chapter 8. The limits are presented in Table 10.1.A brief summary of hypothesis testing in general, together with the ALRMCspe
i�
s, are presented in Se
. 6.1. Se
. 6.2 presents the inputs of ALRMC,and Se
. 6.3 explains the 
ustomizations performed to make ALRMC �t therequirements of the analysis.6.1 Statisti
s TheoryThe dis
ussion presented in this se
tion is inspired by the book \Probabilityand Statisti
s in Parti
le Physi
s" by Frodesen, Skjeggestad and T�fte [20℄, andthe Delphi-note \Optimal Statisti
al Analysis of Sear
h Results based on theLikelihood Ratio and its Appli
ation to the Sear
h for the MSM Higgs Bosonat ps = 161 and 172 GeV" by Alex L. Read [21℄.6.1.1 Hypothesis TestingThe true value of a parameter � is wanted. A number of n random sam-ples, or observables, x1; x2; :::; xn are 
olle
ted from a population des
ribedby a probability density fun
tion F (xj�) whi
h depends on �. A test-statisti
X(x1; x2; :::; xn), whi
h does not depend on any unknown parameters, is 
on-stru
ted from the n samples. It is essential that X has some 
orresponden
eto �; X is an estimator of �. A null hypothesis is formulated stating a one- ortwo-sided limit on the true value of �. A 
on�den
e level is interpreted as theprobability of �nding the true value of � in the region stated in the null hypoth-esis. The 
on�den
e level is the integral of the probability distribution fun
tionof the test-statisti
, P (X), between the limits stated in the null hypothesis.A 
on�den
e limit is the value of a population parameter (su
h as a parti
lemass or produ
tion rate) whi
h is ex
luded at a spe
i�
 
on�den
e level[21℄. A
on�den
e level expresses the 
on�den
e asso
iated with a hypothesis.



48 CHAPTER 6. THE ALRMC PROGRAMConstru
ting a sear
h analysis follows three general steps: De�ne the ob-servables, de�ne a test-statisti
, and de�ne rules for ex
lusion and dis
overy.The rules lead to ranges of values of the test-statisti
, and these ranges are ob-tained by 
al
ulating the integration limits of the probability density fun
tionintegral that gives the spe
i�ed 
on�den
e level. Typi
al observables may bethe number of 
andidates satisfying a set of 
riteria, the re
onstru
ted invariantmass of the 
andidates, b-quark tagging probabilities, or a dis
riminant variable
onstru
ted from a neural network. The test-statisti
 is 
onstru
ted to rank theexperiments from the least to most signal-like, and the ALRMC program utilizethe likelihood ratio test-statisti
 for parameter estimation.Two kinds of probability density fun
tions enter a sear
h: The signal dist-ribution of the mass hypothesis, and the ba
kground distribution of the knownba
kground. A number of 
andidates, satisfying 
ertain 
riteria, are identi�edfrom the re
onstru
ted data provided by the dete
tor. To 
orre
t the 
andidatesfor ba
kgrounds, the ba
kground rates are subtra
ted from the 
andidates. In
ase of small or absent signal rates, the result of this pro
edure may lead tounphysi
al rates. The way to deal with this is to normalize the 
on�den
elevel observed for the signal+ba
kground together hypothesis, CLs+b, to the
on�den
e level observed for the ba
kground only hypothesis CLb;CLs � CLs+bCLb : (6.1)The test-statisti
 X depends on the observables and the population param-eters of the known ba
kground distribution and the signal hypothesis distribu-tion, and it is 
onstru
ted to in
rease monotoni
ally for in
reasingly signal-likeexperiments. Hen
e, the 
on�den
e in the signal+ba
kground hypothesis isgiven as the probability that the test-statisti
 is less than or equal to the ob-served experimental value, Xobs:CLs+b = Ps+b(X � Xobs) ; (6.2)with Ps+b(X � Xobs) = Z Xobs0 dPs+bdX dX ; (6.3)and where dPs+b=dX is the probability distribution fun
tion of the test-statisti
X for the signal+ba
kground hypothesis. The 
on�den
e in the ba
kgroundonly hypothesis is similarly given asCLb = Pb(X � Xobs) ; (6.4)with Pb(X � Xobs) = Z Xobs0 dPbdX dX ; (6.5)and where dPb=dX is the probability distribution fun
tion of the test-statisti
X for the ba
kground only hypothesis.The signal hypothesis will be 
onsidered ex
luded at the 
on�den
e levelCL when CLs � 1� CL : (6.6)



6.1. STATISTICS THEORY 496.1.2 Maximum Likelihood MethodIf a population has a probability distribution given by F (xj�), the likelihood ofthe observations x1; x2; :::; xn for a spe
i�
 � is given byL(x1; x2; :::; xnj�) = nYi=1F (xij�) ; (6.7)and it expresses the joint 
onditional probability for obtaining the measure-ments, given �. The likelihood-ratio � is generally given as� � L(!̂)L(
̂) ; (6.8)where 
̂ is the parameter spa
e of �, and !̂ is a subspa
e of 
̂, hen
e 0 < � < 1.F (xj�) is now 
onsidered a fun
tion of � = f�1; �2; :::; �kg 2 
̂. If the null hy-pothesis is true, the parameters belong to the subgroup !̂.In sear
h for new parti
les the approximate likelihood ratioQ is given by [21℄Q = L(s + b)L(b) ; (6.9)i.e. the ratio of produ
ts of probability densities for the signal+ba
kgroundhypothesis, to the produ
ts of probability densities for the ba
kground only(signal-free) hypothesis. The likelihood ratio, as a 
onsequen
e of the Neyman-Pearson theorem [22, 21℄, maximizes the probability of reje
ting a false hypoth-esis at a given 
on�den
e level, and 
onversely minimizes the probability ofmaking a false dis
overy at a given dis
overy 
on�den
e level.When sear
hing for small signals in the presen
e of small ba
kgrounds inseveral distin
t 
hannels, and where more than just the number of 
andidateswill enter the likelihood ratio, it is in general not possible to obtain analyti
expressions for the likelihood ratio probability distribution fun
tions (p.d.f).The p.d.f's may instead be obtained by Monte Carlo generations of experimentsa

ording to the relevant hypothesis, and 
on�den
e levels, 
omputed as thefra
tion of Monte Carlo experiments satisfying Q � Qobs [21℄ (see (6.2) and(6.4)).Fig. 6.1 shows �ve di�erent mass hypothesis distributions, normalized toone, together with the observed 
andidates, and gives a simple illustration ofhow the maximum likelihood method works in a sear
h where the dis
riminatingvariable is the re
onstru
ted mass of the 
andidate. Five Monte Carlo generatedsignal distributions are given for mA values ranging from 70 to 90 GeV in stepsof 5 GeV in the tan� = 20:0 se
tor at ps = 189. The verti
al bars on thetop of the plot are the experimentally measured values, i.e. the re
onstru
tedinvariant mass of ea
h observed 
andidate. As is seen in the plot, the meanof the signal distributions moves towards higher masses, and the width of thedistributions in
reases as mA in
reases. The likelihood is in this simple 
asegiven as L = nYi=1 Smi(mi) ; (6.10)
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30 40 50 60 70 80 90Figure 6.1: Five signal hypothesises with in
reasing mass in the tan� = 20 se
-tor together with the observed 
andidates of the 189 GeV data. The 
andidatesare indi
ated by a verti
al bar at the top of the plot.where n is the number of observed 
andidates, Smi(mi) is the signal distributionfor a given mass hypothesis evaluated for the i'th 
andidate, and mi is thedis
riminating variable value of the i'th observed 
andidate. This likelihoodis 
al
ulated for all the signal distributions, and the signal distribution thatmaximizes the likelihood L is the most likely mA hypothesis.In 
ontrast to the single mj used here, the methods of Chapter 7 use threedis
riminating variables, and the methods of Chapter 8 use �ve dis
riminatingvariables to separate signal from ba
kground.Generi
 Likelihood RatioThe likelihood ratio Q for experiments with N
han independent sear
h 
hannels,with measurements of a single dis
riminating variable x for ea
h 
andidate, and



6.2. THE INPUTS 51with known absolute signal and ba
kground rates, 
an be written as [21℄:Q(mH) = QN
hani=1 e�(si+bi)(si+bi)nini!QN
hani=1 e�bibniini! Qnij=1 siSi(xij)+biBi(xij)si+biQnij=1Bi(xij) ; (6.11)where ni is the number of observed 
andidates in ea
h 
hannel, xij is the valueof the dis
riminating variable measured for ea
h of the 
andidates, si and bi arethe integrated signal and ba
kground rates per 
hannel, and Si(xij) and Bi(xij)are the probability distribution fun
tions of the dis
riminating variable for thesignal and ba
kground, respe
tively.6.2 The InputsThe user de�ned inputs required by ALRMC are probability distributions forthe signal hypotheses and the known ba
kground, the dis
riminating variablevalues of the observed 
andidates, and the eÆ
ien
ies for ea
h 
hannel. Prede-�ned inputs are tables of 
ross-se
tions and bran
hing ratios used in the limit
al
ulations.The ba
kground distribution together with the signal distributions for all
hannels and mass hypotheses to be used in the ALRMC 
al
ulation, are pro-vided by a �le named distributions.dat, 
reated from PAW-histograms ofthe distributions. It is of utmost importan
e to use same upper and lower edgesfor all the histograms of distributions.dat.ALRMC only handles one or two dis
riminating variables. The values of thedis
riminating variable(s) for ea
h observed 
andidate is given as DATA state-ments in the subroutine d xx 
hannels of d higgs.f, where xx is the name ofthe sear
h 
hannel1. d higgs.f is a 
olle
tion of Fortran subroutines that 
on-trol whi
h 
hannels and eÆ
ien
ies are used in the limit 
al
ulations, read the
orre
t �les, interpolate2 the signal distributions, and return the SM expe
tedsignal, SM 
ross-se
tions and SM bran
hing fra
tions.The eÆ
ien
ies3 are not given as the eÆ
ien
ies obtained at ea
h simulated(mA; tan�) point. Instead, a �t of the eÆ
ien
y vs. mass is given as FortranReal Fun
tions. The eÆ
ien
y-�ts used in the limit 
al
ulations presented inthis thesis are produ
ed using the program fiteff.kuma
[23℄ whi
h takes ntu-ples of eÆ
ien
y and mass as inputs. The eÆ
ien
y Real Fun
tions to be usedin the 
al
ulations are 
on
atenated into effi
ien
y.f.The prede�ned tables of 
ross-se
tions and bran
hing fra
tions are madeusing the HZHA generator, and the tables are found in ref. [11℄.The README �leof ref. [11℄ 
ontains more details on the HZHA generations.1xx is either ha, hz or hinv2The interpolation pro
edure is not used in the analysis presented3EÆ
ien
y used in this 
ontext means the experimentally obtained eÆ
ien
y of ea
h 
han-nel



52 CHAPTER 6. THE ALRMC PROGRAM6.3 ALRMC CustomizationIn a full limit 
al
ulation several 
hannels at di�erent 
enter-of-mass energiesare used. But the likelihood methods presented in this thesis are limited to onesingle 
hannel at one single 
enter-of-mass energy: h0A0 ! b�bb�b at 189 Gev.The other 
hannels are inhibited in the subroutine fill array of mssm.f bysetting the boolean array QCHAN(I), where I is the 
hannel number, false forall 
hannels ex
ept for the h0A0 
hannel.The Higgs mass hypothesis is 
hara
terized by three parameters in the h0A0(or h0Z0) 
hannel: The ratio tan� between the two va
uum expe
tation valuesin the MSSM Higgs model, the mass mA of the neutral CP -odd s
alar, andthe mixing parameter � that diagonalizes the mass matrix. Se
tion 2.2.4 givesmore details on the parameters and mass spe
trum of the MSSM Higgs model.The h0A0 analysis presented is 
on�ned to 
al
ulate limits for only tenpoints in the (mA; tan�) plane, be
ause the obje
tive of the analysis is to testdi�erent binning pro
edures and dis
riminating variables. Files of the generalform e
ms mixing.dat [11℄ are tables of 
ross se
tions and bran
hing fra
tions
al
ulated for givenmA, tan� andmh values. The 
enter-of-mass energy is givenby e
ms, and mixing equals no, max or typ 
orresponding to the mixing appliedin the HZHA generations. In order to 
ustomize ALRMC to only 
al
ulatelimits for 
ertain (mA,tan�) points, e
ms mixing.dat is modi�ed to 
ontainonly the mA and tan� values given by the signal hypotheses.Further, the subroutine ex
l fast of mssm.f is modi�ed to only read themA and tan� values listed in the modi�ed e
ms mixing.dat.ALRMC 
ontains an interpolation routine whi
h interpolates between twoMonte Carlo generated signal distributions in order to 
al
ulate limits for in-termediate mh values. However, the distributions produ
ed by the likelihoodmethods presented in Chapter 7 and 8, are too 
ompli
ated for the ALRMC in-terpolation pro
edure. The e�e
t of the ALRMC interpolation routine is shownin Fig. 6.2 whi
h is plot of the expe
ted CLs 
al
ulated with and without theinterpolation pro
edure. From this plot it is evident that the intermediate CLs(indi
ated by +), based on interpolated signal distributions, are not 
orre
t.Hen
e, the interpolation routine is skipped, using a GOTO statement in subrou-tine d sigdis interpol of mssm.f.Finally the title-
ard mssm.tit must be set up 
orre
tly. The LUMINOSITY
ag is set to the lowest mA and tan� value, and the OBSERVED 
ag is set to avalue that spe
i�es whi
h 
al
ulations ALRMC should perform.
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ted CLs 
al
ulated with and without the interpo-lation routine. The likelihood method used to 
al
ulate the CLs of this plot isthe variable/�xed binning pro
edure presented in Chapter 7.



Chapter 73D Likelihood MethodsIn a sear
h for a parti
ular signal in a number of observed 
andidates, 
olle
tedfrom a distribution of both ba
kground and signal, the signal is distinguishedfrom the ba
kground using a variable with di�erent distributions for signal andba
kground. Su
h a variable is 
alled a dis
riminating variable. The betterthe dis
riminating variable distinguishes the signal from ba
kground, the lowersignal 
on�den
e levels (CLs) are 
al
ulated, in the absen
e of a true signal,and the ex
luded region in
reases.If three dis
riminating variables provide more information about the signalthan two dis
riminating variables, it is likely to expe
t an improvement of theex
lusion limits, in the absen
e of a true signal, if the three variables are used.This is the reasoning behind the development of the three dimensional (3D)likelihood methods.ALRMC is implemented to handle a maximum of two dis
riminating varia-bles. The 3D likelihood methods use three dis
riminating variables despite theALRMC limit of two variables. This is possible be
ause the three dis
riminatingvariable distributions are mapped into a one dimensional (1D) dis
riminatingvariable spa
e. The mapping algorithm is presented in Se
. 7.5.The three dis
riminating variable distributions are binned before the onedimensional dis
riminating variable is 
onstru
ted. Fixed binning is the basi
binning pro
edure, and variable binning is designed to enhan
e the resolutionof the distributions, 
ompared to the �xed binning pro
edure, by applying theavailable bins where the distributions 
hange rapidly. The binning pro
eduresare presented in Se
. 7.2 and Se
. 7.3, respe
tively.There is a danger of overtraining the 
al
ulated 
on�den
e levels of thesignal and ba
kground distributions if the bins are too small. Overtraining isfurther dis
ussed in Se
. 7.4.The observed 
andidates are given a treatment slightly di�erent from thetreatment of the signal and ba
kground distributions. The 
andidate binningand mapping are presented in Se
. 7.6.Finally the PAW ma
ros 
alling the binning and mapping routines, andinitializing the appropriate 3D and 1D ve
tors of the 3D likelihood methods arepresented in Se
. 7.7.The term '3D likelihood method' is in this thesis used to denote a method



7.1. THREE DISCRIMINATING VARIABLE DISTRIBUTIONS 55that takes a total of three dis
riminating variables as input, and gives one �naldis
riminating variable, to be used with ALRMC, as output.7.1 Three Dis
riminating Variable DistributionsTwo sets of three dis
riminating variables are used as input to the 3D likelihoodmethods. The �rst set 
onsists of the invariant massesmh andmA of the neutralMSSM Higgs s
alars h0 and A0 (see Se
. 2.2.4) of the h0A0 ! b�bb�b 
hannel,and a dis
riminating variable whi
h is the result of an analysis resembling aneural network analysis1 presented in ref. [14℄. Be
ause the third dis
riminatingvariable resembles a neural network (NN) variable, it is for simpli
ity referredto as the NN variable in the following. Fig. 7.1 gives histograms of Monte Carlogenerated mh, mA, and NN distributions for the mA = 80 GeV, tan� = 20:0signal hypothesis, one of a total of ten signal hypotheses used with the 3Dlikelihood methods.The se
ond set of dis
riminating variables is only used with the �xed binning3D likelihood method. This set 
onsists of the sum of the invariant masses of the�rst set,M = mh+mA, the di�eren
e of the masses, �m = mA�mh, and thesame NN variable as in the �rst set. The implementation of the �xed binningmethod that uses the mh; mA set is identi
al to the implementation of the �xedbinning method that uses the M;�m set. Only the mh; mA implementationis treated in detail in this 
hapter. Chapter 8 presents a 5D extension of the�xed binning 3D method, and the M;�m set is dis
ussed in more detail inChapter 8.The three distributions of Fig. 7.1 are 
ombined to form the 3D dis
rimi-nating variable signal distribution of Fig. 7.2: The x-axis is the distribution ofmA, the y-axis is the distribution ofmh, and the z-axis is the distribution of theNN variable. The 3D ba
kground distribution is also shown in Fig. 7.2. Thenext step is to 
onstru
t a 3D ve
tor 
ontaining the 3D distribution by binningthe distribution. The 3D ve
tor is further treated in PAW using algorithms toprodu
e a �nal 1D ve
tor 
ontaining the dis
riminating variable distributionto be used as input to ALRMC. It is essential that exa
tly the same binningpro
edure is applied to all signal, ba
kground and 
andidate distributions usedin the limit 
al
ulations.7.2 Fixed BinningThe binning is performed by separating the 3D spa
e of the 3D distribution intoblo
ks, or bins, of a given size 
ontaining a small part of the whole distribution.An event of the distribution is a unique (mA; mh; NN) point in the 3D spa
espanned by the three variables, and a bin is a 3D sub-spa
e that 
ontains thenumber of events 
on�ned between the bin walls. A Fortran sele
tion routineallo
ates ea
h event to its 
orresponding bin. The routine loops over all the1The analysis 
ontain many features of a neural network, but the analysis is stri
tly speak-ing not a neural network. The variable is nonetheless referred to as a neural network variablefor simpli
ity.
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Figure 7.1: Monte Carlo generated distributions for the mA = 80 GeV, tan� =20:0 signal hypothesis in the h0A0 ! b�bb�b 
hannel at 189 Gev. The top plots arethe invariant mass distributions of mh and mA, respe
tively, and the bottomplot is the distribution of the neural network-like variable presented in ref. [14℄.
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Figure 7.2: The three dis
riminating variable distributions ofmA, mh, and NNplotted as 3D distributions. The top plot is the ba
kground 3D distribution,and the bottom plot is the mA = 80 GeV, tan� = 20:0 signal 3D distribution.The xy-plane is spanned by the two invariant masses, and the z-axis is thedistribution of the neural network-like variable presented in ref. [14℄.



58 CHAPTER 7. 3D LIKELIHOOD METHODSevents of the distribution, and three bin index numbers, I� , are 
al
ulated forea
h dis
riminating variable � usingI� = �(j)� �min�� + 1 ; (7.1)where � is mh, mA, or NN , j is the event number, �min is the minimum valueof the � distribution, and �� is the binwidth of the bins of the � distribution.The 
ontent of the bin is stored in a 3D ve
tor of index (Imh ; ImA ; INN), and a
ontrol routine gives an error message if an event is not pla
ed in any bin. Thepro
edure given here is referred to as the �xed binning pro
edure.7.2.1 ResolutionThe total number of bins, N3D, used in a 3D binning pro
edure, i.e. the size ofthe 3D ve
tor, is given by N3D = NmANmhNNN ; (7.2)and the number of bins N� used to bin ea
h variable � is given byN� = �max � �min�� ; (7.3)where �max and �min are the maximum and minimum value of the � distribution,respe
tively. The only way to improve the resolution of a given distribution of�xed bins is to redu
e ��. Hen
e, in the 
ase of �xed binning, the size ofthe distribution ve
tor is very sensitive to the resolution. In an attempt toin
rease the resolution, but not the size of the ve
tor, a pro
edure referred to asvariable binning is developed. It is also interesting to vary the binning withoutin
reasing the total size of the ve
tor be
ause ALRMC sets an upper limit onthe number of bins the ve
tor might 
ontain2.7.3 Variable BinningAs is seen in Fig. 7.2 the 3D distribution of the signal is 
on
entrated to thefurthest 
orner of the box, leaving a lot of empty spa
e in the box. Thus, when�xed binning is applied to the distribution, a few bins of the 3D distribution
ontain large samples of the distribution while a lot of the bins are almostempty. The information on the distribution inside the bin is lost after thebinning has been performed. Hen
e, the larger portion of a distribution a singlebin 
ontains, the more information is lost, and the e�e
t is a lower resolution ofthe distribution. The resolution therefore strongly depends on the size of thebins. If the resolution is to be enhan
ed without 
hanging the total number ofbins, the use of the bins must be optimized by applying the available bins tothe parts of the distribution where the important information is. Thus, better2The ALRMC maximum number of bin limit is not �nal, and may be 
hanged in theALRMC setup. However, a higher limit will result in using more CPU time and hen
e slowthe 
al
ulations down.



7.3. VARIABLE BINNING 59resolution is a
hieved by making the size of the bin depend on the numberof events inside the bin. This pro
edure is 
ommonly known as a Fuzzy Boxpro
edure. In the variable binning pro
edure presented here, the size of thebin is made to depend on the position of the bin rather than number of events,thus trying to simplify the implementation of the variable binning pro
edure.Be
ause the number of events inside the bin depends on the position of thebin, the binsize of the variable binning pro
edure only indire
tly depend on thenumber of events. Hen
e, variable binning is only an approximate Fuzzy Boxpro
edure. The di�erent binwidth regions are determined by inspe
tion of thedistributions.The �rst step of variable binning is to bin the whole distribution usingthe binwidths required for the sensitive region of the signal or ba
kgrounddistribution. The result is a large ve
tor with many still empty bins, but thenumber of events in the �lled bins is lower than in the �xed binning 
ase be
auseseveral bins have now been used to bin a part of the distribution that one singlebin 
overed earlier.The next step is to redu
e the size of the ve
tor by 
ombining the bins thatdo not 
ontain any important information about the distribution; a rebinningof the ve
tor must be performed. The rebinning is done in a separate Fortranroutine that takes the large ve
tor 
ontaining the distribution in small, �xedbins as input, and gives a rebinned ve
tor with a redu
ed number of entriesas output, 
ontaining the distribution in bins of a size that depends on theposition of the bin. The rebinning pro
edure adds the 
ontents of the bins thatare to be 
ombined, and stores the sum in the 
orre
t bin of the output ve
tor.The bins that are not to be 
ombined, i.e. the bins that 
ontain importantdistribution information, are just transferred to the 
orre
t bin of the outputve
tor with their original bin 
ontent. A 
ontrol routine is 
alled after therebinning is performed to 
he
k if the total number of events of the distributionhas 
hanged during rebinning. Fig. 7.3 gives the bins in the �rst and last stepof the variable binning pro
edure to the left and right, respe
tively.Two variable binning pro
edures are implemented. The �rst pro
edure ap-plies variable binning to mh and mA, while the bins of the NN variable isun
hanged. This pro
edure only takes the sensitive regions of the signal distri-butions into a

ount. Se
. 7.3.1 provides more details.The se
ond pro
edure applies variable binning to all three variables. Thispro
edure takes the sensitive regions of both the signal and ba
kground distri-butions into a

ount. Se
. 7.3.2 provides more details.7.3.1 Rebinning of mh and mAIn the 
ase of the mh and mA distributions, the region where the smallest binsare used is the region of about two standard deviations 
entered around themean, as seen in Fig. 7.3. The signal distribution of the NN variable in Fig. 7.1is 
lose to 
at, i.e. no region of divergent event density exists, and �ne binningis not needed to in
rease the resolution of the signal NN distribution.The same binning pro
edure and resolution must be applied to all the dist-ributions that enter the sear
h. Hen
e, the appropriate region for �ne binning
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20 40 60 80 100Figure 7.3: Plot of the mh distribution where the bins are indi
ated by dottedlines. The plot to the left shows the bins in the �rst step of the variable binningpro
edure, and the plot to the right shows the bins after the rebinning pro
edurehas been applied.is the region that 
overs the peak of all the distributions that are to be re-binned. Fig. 7.6 and 7.7 show s
atter plots of the mh distribution versus themA distribution for the ten signal hypotheses, and the ba
kground distribution,presented in Chapter 4. As seen in these plots, the region of �ne binning always
overs the most event dense, or peaked, area of the plot.7.3.2 Rebinning of mh, mA and NNFig. 7.4 shows the ba
kground NN distribution, and the distribution is not 
at,as for the signal NN distribution, but monotoni
ally de
reasing. Thus, a higherresolution of the NN variable is of interest for only one distribution; the ba
k-ground distribution of the NN variable. A better resolution of the ba
kgrounddistribution, might as well result in a lower CLs as a better resolution of thesignal distributions.7.4 OvertrainingThe smaller the bins are, the more information is transferred from the originaldistribution to the binned distribution. Be
ause the 
al
ulated limit dependson the resolution of the input distribution, it follows that the limit is a fun
tionof the size of the bins. There is, however, a statisti
al limit on how smallthe bins might be, depending on the number of Monte Carlo (MC) generatedevents. If the bins are too small, an overtraining of the 
al
ulated limits o

ur.The result is a limit not based on the observed data, and a falsely ex
ludedmass region. However, a plot of the 
on�den
e level as a fun
tion of binwidth,CLs(��), exposes the overtraining region. Three fun
tions are needed in orderto make su
h a plot: CLs of the �rst half MC events, CLs of the se
ond half
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kground hypothesis in theh0A0 ! b�bb�b 
hannel at 189 Gev. The bins are indi
ated by dotted linesMC events, and CLs of all MC events. A plot of three CLs fun
tions is givenin Fig. 7.5 for the �xed binning 3D likelihood method. The area to the left ofthe verti
al line in Fig. 7.5 is the region where there is an overtraining of thelimits, be
ause in this area the CLs of all MC events (green line) is no longerthe mean value of the CLs of the �rst (red line) and se
ond half (blue line) MCevents. Overtraining plots of all the presented likelihood methods are given inFig. 10.1.7.5 Mapping from 3D Spa
e to 1D Spa
eBe
ause ALRMC does not handle three dis
riminating variables, the three va-riables are redu
ed to one variable by mapping a bin in 3D spa
e to the 
orre-sponding bin in 1D spa
e. The mapping is performed by a Fortran subroutinenamed dim3tool.f that takes the 3D ve
tor of 3D bins as input, and assignsa 1D bin to ea
h of the 3D bins. The subroutine loops over all the 1D bins ofthe 1D ve
tor, and the index number I of the 1D bin that the 
ontent of the3D bin of index (Imh ; ImA ; INN) is transferred to is given byI = (ImA � 1)Nmh + (INN � 1)NmhNmA + Imh ; (7.4)where Nmh and NmA are the total number of bins of the mh and mA distribu-tions, respe
tively.7.6 The CandidatesThe observations of a sear
h experiment are often referred to as 
andidates,and the 
andidates are identi�ed by their position in the generated dis
riminat-ing variable distributions. The likelihood L of the observed 
andidates is theprodu
t of the dis
riminating variable distribution evaluated at ea
h 
andidate,
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on�den
e level as a fun
tion of binwidth. This kind of plotis used to determine the optimal binwidth that does not lead to any overtrainingof the obtained results.see (6.10). Fig. 6.1 shows di�erent signal distributions for one single dis
rimi-nating variable, together with the observed 
andidates. If three dis
riminatingvariables are used in the limit 
al
ulations, three values must be given for ea
h
andidate, 
orresponding to the position of the 
andidate in ea
h of the threedistributions.No information is stored during the binning pro
esses des
ribed in Se
. 7.2or Se
. 7.3 about in whi
h 3D bin the single events of the 3D distribution endsup. A bin of a signal or ba
kground distribution 
ontains the sum of eventsinside the bin. In 
ontrast, a bin of a 
andidate 
ontains a number that identifywhi
h 
andidate(s) belongs to the bin.7.6.1 Fixed BinningOnly the bins 
ontaining 
andidates have to be mapped into 1D spa
e, and thebinning and mapping of the 
andidates are performed by one single routine.Whi
h bin the 
andidate belongs to in 3D spa
e is 
al
ulated using (7.1) forea
h of the three variables, and the 3D bin is mapped into 1D spa
e using(7.4). The three variables given for ea
h 
andidate is redu
ed to a single integernumber that is the position of the 
andidate in the 1D spa
e of the �nal 1Ddis
riminating variable.7.6.2 Variable BinningIf variable binning is applied to the distributions, the binning and mappingof the 
andidates are more 
ompli
ated than in the �xed binning 
ase. Whenseveral small bins are 
ombined into one single large bin by the rebinning routineof Se
. 7.3, it is ne
essary to know whi
h small bins 
ontain whi
h 
andidates,
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andidate number, identifying the 
andidates of the resulting large bin, isto be 
orre
t. Two 3D ve
tors of equal size are needed in order to keep re
ordof whi
h bin 
ontains whi
h 
andidate(s): A denotes a 3D ve
tor that 
ontaina number whi
h represent the 
andidate(s) of the bin, while B denotes a 3Dve
tor whi
h is a 
ounter of how many 
andidates belong to the bin.One bin may 
ontain more than one 
andidate, and a simple algorithm thatadds a new 
andidate to a bin without erasing the old 
andidate is given byAxyz = BxyzXi=1 Ci102(i�1) ; (7.5)where Axyz is a number representing the 
andidates in bin (Ix; Iy; Iz), Bxyz isthe total number of 
andidates in the same bin, and Ci 2 [1; 33℄ is the 
andidatenumber of the i'th 
andidate of the bin.3 If the 
andidates numbered 3, 12, 27all end up in the bin of index (1,1,2), the 
ontent of A112 is 271203, and the
ontent of B112 is 3.The 
andidate bins have to be rebinned in the same way as the distributionbins. The rebinning of the 
andidates is however more 
ompli
ated than therebinning of the distributions, be
ause the 
ontents of both A and B must berebinned simultaneously. There is also an upper limit on how many 
andidatesthe A ve
tor 
an keep tra
k of. If more than four 
andidates end up in thesame bin, the over
ow 
andidate(s) is pla
ed in an over
ow A+ ve
tor. Thelimit on four 
andidates is purely te
hni
al. A PAW ve
tor 
an only 
ontaininteger numbers less than 108, and Axyz > 108 if Bxyz > 4 and C > 1.The 
ontents of the bins of the rebinned A ve
tor, A0, are 
al
ulated usingA0xyz = nXi=1 Axiyizi102(Bxiyizi�1) ; (7.6)where A0xyz is a number representing the 
andidates in bin (I 0x; I 0y; I 0z), n is thenumber of small bins 
ontained in the large bin,Axiyizi is the number represent-ing the 
andidate(s) of the i'th small bin, Bxiyizi is the number of 
andidatesin the i'th small bin, and A0xyz is the number representing the 
andidate(s) ofthe n small bins.The last step of the 
andidate preparation is to map the rebinned 
andidatebins from 3D spa
e to 1D spa
e while keeping tra
k of whi
h 
andidate ends upin whi
h 1D bin. The mapping pro
edure is implemented in a separate routine.A 
andidate number C is read from A0 usingC = A0xyz102B0xyz ; (7.7)where B0xyz is the number of 
andidates in A0xyz . Be
ause C in de
lared to bean integer in the Fortran routine, the result of (7.7) is the integer part of theexpression. The 
ontents of A0xyz after 
andidate C is read is the modulo of3The analysis presented use the data of the 189 GeV run, and a total of 33 observed
andidates are identi�ed in the 189 GeV data (see Table 4.1).



64 CHAPTER 7. 3D LIKELIHOOD METHODSA0xyz and 102B0xyz . Thus, if A112 
ontain 271203, the value of C is 27, and thenew value of A112 is 1203. The value of B0xyz is redu
ed by one ea
h time a
andidate number C is read, and (7.7) is repeatedly used until B0xyz = 0.The index numbers I of the 1D bins that 
ontain all 33 
andidates are
al
ulated using (7.4) with the bin index numbers (I 0x; I 0y; I 0z) of A0xyz as input.The resulting 
andidate list, 
ontaining the 33 index numbers of the 
andidates,is given as DATA-statements in subroutine d ha 
hannels of h higgs.f.7.7 The 3D Input Ma
rosAll the di�erent algorithms and Fortran routines des
ribed in this 
hapter are
alled from three di�erent PAW ma
ros. Fig. 7.8 gives the stru
ture of thethree PAW ma
ros as one single 
ow 
hart. Ea
h of the PAW ma
ros are usedwith the signals, ba
kgrounds, and 
andidates presented in Chapter 4.Fig. 7.9 gives outputs of the 3D likelihood methods presented in the 
aseof one signal hypothesis and the ba
kground hypothesis. The plots in the left
olumn are ba
kground 1D distributions, and the plots in the right 
olumn aresignal 1D distributions. As seen in the plots, the resolution of the ba
kgrounddistribution is best when all three variables are binned with di�erent binsizes,but the signal distribution is best when only the mass variables are binned withdi�erent binsizes. The resolution of both the ba
kground and signal distributionis low in the 
ase of �xed binning of all variables. However, what really mattersis whi
h �nal dis
riminating variable provides the most di�erent signal andba
kground distribution.Chapter 10 presents the limits 
al
ulated using the 3D methods, andSe
. 10.2.1 presents the 
on
lusions on the 3D methods presented in this 
hap-ter.
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kground hypoth-esis and the �ve signal hypotheses mA = 70, 75, 80, 85, 90 GeV at tan � = 2 inthe h0A0 ! b�bb�b 
hannel at 189 GeV . The dotted lines indi
ate the bins usedin the variable binning of the distributions.
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hart of the three PAW ma
ros preparing 3D inputs.
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Figure 7.9: Plots of the �nal 1D dis
riminating variable distribution. Theplots in the left 
olumn are ba
kground distributions, and the plots in theright 
olumn are signal distributions. The top row plots show distributions inthe �xed binning 
ase, the middle row plots show distributions in the 
ase ofvariable binning of the masses, and the bottom row plots show distributions inthe 
ase of di�erent binsizes in all three variables.



Chapter 85D Likelihood MethodsThe jet 
lustering of the de
ay produ
ts of a h0A0 ! b�bb�b event results in afour-jet event where ea
h jet originates from one of the b-quarks. The problemof whi
h two jets originate from h0, and whi
h two jets originate from A0 is theproblem of pairing the jets.The mass of h0 and A0 are 
al
ulated as the invariant mass of the sum of thefour-momenta of two of the four jets (see (8.1). The three possible 
ombinationsof grouping four jets into two groups of two jets ea
h, are ordered a

ordingto a 
ertain 
riterion. The 
riterion used for the 5D likelihood methods is thedi�eren
e in mass, �m, between the two groups of paired jets, i.e. �m =mA �mh. Cal
ulation and sele
tion of the two best pairing h0 and A0 massesare further dis
ussed in Se
. 8.1. However, the best pairing of the jets, a

ordingto the 
riterion, is not always the 
orre
t pairing of the jets. It is therefore ofinterest to look at a pairing extension of the 3D likelihood method of Chapter 7whi
h only in
luded the best pairing.The most intuitive approa
h to su
h an extension is to use the two invariantmass distributions (mh and mA, or M and �m) of the se
ond and third bestpairing in addition to the three dis
riminating variable distributions used by the3D likelihood method. The result is a 7D dis
riminating variable distribution.The binning and mapping of a 7D distribution is very 
ompli
ated, and inaddition the size of the 7D distribution rapidly in
reases beyond the limitsimposed by ALRMC: If four bins are used to bin ea
h of the seven distributions,the total number of bins is 47 = 16384. Therefore, the extension of the 3Dlikelihood method is limited to in
lude only the se
ond best pairing, and a 5Ddis
riminating variable distribution is 
onstru
ted. The size of a 5D distributionwith four bins in ea
h variable is 45 = 1024.Se
. 8.2 present two sets of �ve dis
riminating variables used by the 5Dlikelihood methods. The two sets are two-pairing extensions of the two one-pairing sets used with the 3D likelihood methods. The binning and mappingof the distributions and the 
andidates are dis
ussed in Se
. 8.3 and Se
. 8.4,respe
tively.The PAW ma
ros of the two 5D methods, ea
h using one of the two sets ofdis
riminating variables, are brie
y dis
ussed in Se
. 8.5The term `5D likelihood method' is in this thesis used to denote a method



70 CHAPTER 8. 5D LIKELIHOOD METHODSthat takes a total of �ve dis
riminating variable distributions as input, and givesone �nal dis
riminating variable, to be used with ALRMC, as output.8.1 Cal
ulation of Two Best PairingsEa
h event of the distributions used with the 5D likelihood methods are iden-ti�ed by the following variables: The two invariant masses mh1 and mA1 of thebest pairing, the NN variable, the weight of the event, and the four-momentump�� of ea
h of the four jets, where � = 1; :::; 4 is the jet number. The invariantmass m�� of the �� pair is 
al
ulated usingm2�� = g��(p�� + p��)(p�� + p��) ; (8.1)where � and � are the numbers of the two 
ombined jets, � 6= �, and m�� =m��. If tan� > 1, the lightest mass of am�� andm
Æ pair, with � 6= � 6= 
 6= Æ,is mh, while the other mass is mA.The three m��; m
Æ pairs are ordered a

ording to the di�eren
e �m be-tween the masses of ea
h pair. The pair with the lowest �m is the best pair,and the pair with the se
ond lowest �m is the se
ond best pair. The massesmh1 andmA1 are provided by the ntuple, together with the four-momenta, priorto the 
al
ulations. These masses are used to make a 
onsisten
y 
he
k of the
al
ulated best pairing masses. An error message is given if mh1 and mA1 donot mat
h the 
al
ulated best pairing masses.One ntuple is �lled with the masses of the best pairing, and another ntupleis �lled with the masses of the se
ond best pairing. The mass 
al
ulations andthe �lling of the new ntuples are performed by a Fortran routine that is 
alledfor ea
h of the ten signal distributions, the ba
kground distribution, and theobserved 
andidates.8.2 The Dis
riminating VariablesTwo di�erent sets of dis
riminating variables are used in the 5D likelihoodmethod. The �rst set is a 5D extension of the �rst set of the 3D dis
riminatingvariables of Chapter 7: The two invariant masses mh1 and mA1 of the bestpairing, the two invariant masses mh2 and mA2 of the se
ond best pairing, andthe NN variable.The se
ond set of dis
riminating variables is the �rst set repla
ed by thesum M = mA +mh, and the di�eren
e �m = mA �mh. The variables of these
ond set are: M1 and �m1 of the best pairing, M2 and �m2 of the se
ondbest pairing, and the NN variable.Fig. 8.1 shows distributions of the masses of both sets of dis
riminatingvariables for one parti
ular signal hypothesis. The plots 
learly show that themasses of the se
ond best pair are less peaked than the masses of the best pair,and no variable binning of the distributions is performed. The reason is thatno region of the se
ond best pair distribution is suÆ
iently peaked.Where the �rst bin of a distribution S�(�) starts and the last bin ends, isdetermined by �min and �max. Be
ause exa
tly the same binning is applied
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riminating distributions of the two best pair-ings used by the 5D likelihood methods. The top left plot shows mh1 andmh2, and the top right plot shows mA1 and mA2. The bottom left plot showsM1 = mh1 + mA1 and M2 = mh2 + mA2, and the bottom right plot shows�m1 = mA1�mh1 and �m2 = mA2�mh2. All four distributions are from thesignal hypothesis mA = 80 GeV, tan� = 20, whi
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72 CHAPTER 8. 5D LIKELIHOOD METHODSto all the distributions, �min and �max are 
al
ulated by looping over all thedistributions that enter the sear
h. The routine that 
al
ulates the masses ofthe di�erent pairings also provides the �min and �max values used in the binningof the distributions.The treatment of the two di�erent sets of dis
riminating variables is identi-
al, and only the M;�m variable set is dis
ussed in this 
hapter.8.3 Binning and Mapping of the DistributionsThe binning of the 5D dis
riminating variable distribution 
an not pro
eed byallo
ating ea
h (M1;�m1;M2;�m2; NN) event to its 
orresponding bin in 5Dspa
e dire
tly, as is the 
ase with the 3D distribution, be
ause PAW only sup-ports ve
tors of maximum three dimensions. Hen
e, the 5D distribution mustsomehow be separated into less dimensioned distributions that is multiplied to
onstru
t an approximate 5D distribution. The distribution fun
tion S of the�ve dis
riminating variables is approximated asS(M1;�m1;M2;�m2; NN) � S1(M1;�m1)S2(M2;�m2)SNN(NN) ; (8.2)whi
h does not in
lude 
orrelations between masses of di�erent pairings, norbetween the masses and the NN variable. If all 
orrelations are to be in-
luded, ea
h event of the dis
riminating variable distribution must be treatedas single (M1;�m1;M2;�m2; NN) points and not as three separate (M1;�m1),(M2;�m2), and (NN) points.The 5Dmethod 
ould more 
orre
tly be referred to as a 2D+2D+1Dmethodbe
ause the 5D distribution of the �ve dis
riminating variables is redu
ed totwo 2D and one 1D distribution. The term '5D' is instead used as a shorthandnotation.The 2D mass distributions Sp;1(Mp;�mp), where p = 1 or 2, are binnedusing a binning pro
edure similar to the �xed binning pro
edure des
ribed inSe
. 7.2. The only di�eren
e is that this is a 2D binning instead of a 3D binning.Two bin index numbers IMp and I�mp are 
al
ulated using (7.1) twi
e for ea
hSp;1(Mp;�mp) distribution.The 2D bins of the two mass distributions are mapped from 2D spa
e to 1Dspa
e using a 2D version of (7.4):I = (I�mp � 1)NMp + IMp ; (8.3)where I is the index of the 1D ve
tor, and NMp is the total number of bins ofthe SMp(Mp) distribution.The distribution SNN(NN) is binned using (7.1) on
e to 
al
ulate the 1Dbin index number INN . No mapping is required.All three 1D distributions are normalized to one, and a simple Fortranroutine 
al
ulates the 2D distribution of the four mass variables as the produ
tof S1D1 (M1;�m1) and S1D2 (M2;�m2). The resulting 2D distribution of the fourmasses is mapped from 2D to 1D spa
e using (8.3). A 2D distribution of all�ve variables is 
al
ulated as the produ
t of the 1D distributions of the four



8.4. BINNING AND MAPPING OF THE CANDIDATES 73masses and SNN(NN). The �nal 1D version of the dis
riminating variable is
al
ulated using (8.3) on
e again.Fig. 8.2 gives the signal distributions S1(M1;�m1)S2(M2;�m2)SNN(NN)and S3(mh1; mA1)S4(mh2; mA2)SNN(NN) to the top and bottom right, respe
-tively, as well as the ba
kground distributions B1(M1;�m1)B2(M2;�m2)BNN(NN) and B3(mh1; mA1)B4(mh2; mA2)BNN(NN) to the top and bottomleft, respe
tively. From these plots it looks as the peaks of the S1(M1;�m1)S2(M2;�m2)SNN(NN) distribution is wider than the peaks of the S3(mh1; mA1)S4(mh2; mA2)SNN(NN) distribution, whi
h might indi
ate a better resolutionin the former distribution. This is also the 
ase for the two ba
kground distribu-tions. The explanation might be that the events of theM1;�m1;M2;�m2; NNset are more evenly distributed among the �xed bins than the events of themh1; mA1; mh2; mA2; NN set, and thus a better resolution is obtained for theS1(M1;�m1)S2(M2;�m2)SNN(NN) andB1(M1;�m1)B2(M2;�m2)BNN(NN)distribution.8.4 Binning and Mapping of the CandidatesThe binning and mapping of the �ve dis
riminating variable distributions givenfor ea
h signal or ba
kground hypothesis, is performed in order to produ
e thenumber of events inside ea
h bin of the �nal 1D distribution. In 
ontrast, thebinning and mapping of the �ve dis
riminating values given for ea
h observed
andidate, is performed to produ
e the index number of the bin of the �nal1D distribution that 
ontains the �ve values given for the 
andidate; i.e. ea
h
andidate must be given a map of where to go in the 1D distribution. Noinformation about the distribution of 
andidates is needed.Before the address of a 
andidate bin of the �nal 1D distribution is 
al
u-lated, �ve bin index numbers, 
orresponding to ea
h of the initial �ve distribu-tions, are 
al
ulated using (7.1) �ve times. The resulting bin index numbers,IM1 , I�m1 , IM2 , I�m2 , and INN are redu
ed to a single 1D bin index number Iby applying (8.3) four times.Fig. 8.3 gives a visualization of how the bin index number in the 1D spa
eof the �nal distribution is 
al
ulated based on the bin index numbers of the�ve dis
riminating variable distributions. The 2D mapping algorithm (8.3) isapplied at ea
h vertex of Fig. 8.3.8.5 The 5D Input Ma
rosTwo di�erent PAW ma
ros prepare the 5D inputs: One ma
ro handles theS1(M1;�m1)S2(M2;�m2)SNN(NN) distribution, while the other ma
ro han-dles the S3(mh1; mA1)S4(mh2; mA2)SNN(NN) distribution. The stru
tures ofthe ma
ros are identi
al. The only di�eren
es between the two ma
ros are theinput distributions, and hen
e the �min and �max values. Fig. 8.4 shows the
ow 
hart of the ma
ros.
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riminating variable distribution of the 5D meth-ods for the ba
kground distribution to the left, and the mA = 80, tan� = 20signal distribution to the right. The top plots are the ba
kground and signaldistributions of the �rst set of dis
riminating variables, M1; �m1; M2; �m2,and NN . The bottom plots are the ba
kground and signal distributions of these
ond set of dis
riminating variables mh1; mA1; mh2; mA2, and NN .



8.5. THE 5D INPUT MACROS 75
IM1 PPPPPPPPHHHHHHHHI�m1�������� ZZZZZZIM2 PPPPPPPP��������I�m2��������INN ���������������������� IFigure 8.3: Redu
tion of bin index numbers in the 5D method. IM1 , I�m1 , IM2 ,I�m2 , and INN are the bin index numbers of ea
h of the �ve dis
riminatingvariables, and I is the bin index number of the �nal 1D distribution of thedis
riminating variables.



76 CHAPTER 8. 5D LIKELIHOOD METHODSCal
ulate ntuplesof 2 best pairingsInit ve
torsBin S1(M1;�m1)and S2(M2;�m2)Map 2D ! 1DNormalizeS1D1 (M1;�m1)�S1D2 (M2;�m2)Map 2D ! 1D����1

����1Bin SNN(NN)S1Dp (Mp;�mp)�SNN(NN)Map 2D ! 1DWrite to �le
Figure 8.4: Flow 
hart of the PAW ma
ros preparing the S1(M1;�m1)S2(M2;�m2)SNN(NN) inputs. The stru
ture of the S3(mh1; mA1)S4(mh2; mA2)SNN(NN) ma
ro is identi
al.



Chapter 9The TestsA total of six likelihood methods are presented in Chapter 7 and Chapter 8:Four 3D methods, and two 5D methods. The 3D methods di�er in the 
hoi
eof binning pro
edures: Fixed binning of all three distributions, variable binningof two distributions and �xed binning of the third, or variable binning of allthree distributions. Only a �xed binning 5D method is implemented.The �xed binning 3D and 5D methods both use two sets of dis
riminat-ing variables: The 3D method uses the distribution S1;NN(�m1;M1; NN) andS3;NN(mh1; mA1; NN), and the 5D methods use the produ
ts of distributionsS1(�m1;M1)S2(�m2;M2)SNN(NN) and S3(mh1; mA1)S4(mh2; mA2)SNN(NN).The only di�eren
e between the two sets is the 
hoi
e of mass estimators,M;�m or mh; mA.Two new likelihood methods are presented in this 
hapter: A 2D methodand a 2D+1D method. The 2D method uses the distribution SM1;NN(M1; NN)as the dis
riminating variable, and the 2D+1D method uses the produ
t of dist-ributions S1(M1;�m1)SNN(NN) as the dis
riminating variable. The 2D+1Dmethod is a simpli�
ation of the �xed binning 3D method, and the 2D methodis again a simpli�
ation of the 2D+1D method.The 2D and 2D+1D methods are used to investigate features of the 3D and5D method that a dire
t 
omparison do not reveal. The 2D method is 
omparedto the 3D method to investigate the e�e
t of a third dis
riminating variable,and the 2D+1D method is 
ompared to the 5D method to investigate the e�e
tsof using two pairings instead of one pairing. Be
ause the 3D method use thedistribution S1;NN(�m1;M1; NN) and the 2D+1D method use the produ
t ofdistributions S1(�m1;M1)SNN(NN), a 
omparison of the two methods revealsthe e�e
ts of the 
orrelation between the NN variable and the mass variables.The 5D method1 does not take these 
orrelations into a

ount either, and hen
ethe 5D method is 
ompared to the 2D+1D method instead of the 3D methodto investigate the e�e
ts of the se
ond best pairing mass variables. The 2D+1Dmethod is presented in Se
. 9.1, and the 2D method is presented in Se
. 9.2.All the tests are performed by 
omparing expe
ted mh limits 
al
ulatedusing the distributions prepared by the di�erent likelihood methods. Be
ause1The 5D method is a
tually a 2D+2D+1D method be
ause it uses the produ
tS1(�m1;M1)S2(�m2;M2)SNN (NN) as dis
riminating variable.



78 CHAPTER 9. THE TESTSthere is a danger of overtraining the 
on�den
e levels if the binwidths get toosmall an overtraining test, as explained in Se
. 7.4, is performed for the �xedbinning methods. The variable binning methods are not subje
ted to an over-training test due to 
omplexity: If an overtraining test is to be performed, themethod under investigation must be exe
uted repeatedly with in
reasing num-ber of bins if the three CLs(��) fun
tions, where �� is the width of the bin, areto be obtained. The 
al
ulation of CLs(��) is 
onsiderably more 
ompli
atedwith variable binning than with �xed binning. Overtraining tests are dis
ussedin further detail in Se
. 9.3.The �nal tests of the total of nine 
ombinations of methods and dis
rimi-nating variables should answer three questions :� What type of binning provides the optimal limit?� What kind of mass estimator(s) provides the optimal limit?� What number of jet pairings provides the optimal limit?The tests fo
used on these questions are presented in Se
. 9.4, and the 
on
lu-sions of the tests are presented in Chapter 10.9.1 A 2D+1D Likelihood MethodThe �xed binning 3D method, using a 3D distribution of (M1;�m1; NN) eventsas the dis
riminating variable distribution, is transformed into a �xed binning2D+1D method by separating the 3D distribution into a 2D distribution of(M1;�m1) events and a 1D distribution of (NN) events.The binning of the 2D and the 1D distribution are performed using (7.1),just as in the 3D 
ase. The 2D ve
tor 
ontaining the two mass distributionsis mapped into 1D spa
e using (8.3). The resulting 1D ve
tor is normalized toone before it is multiplied with the 1D ve
tor 
ontaining the normalized NNdistribution to give the produ
t S1(M1;�m1)SNN(NN) stored in a 2D ve
tor.The 2D bin index numbers of the 2D ve
tor are mapped into the 1D spa
e of the�nal variable using (8.3) on
e again for ea
h 2D bin. Be
ause the S1(M1;�m1)and SNN(NN) distributions are multiplied, the 
orrelation between the NNvariable and the mass variables is not taken into a

ount.The 
andidates are mapped into the �nal 1D variable spa
e by applying(8.3) in the same manner as for the distributions. The only di�eren
e is thatthe �nal 1D bin do not 
ontain the number of 
andidates, as is the 
ase forthe distributions, but instead a number that identi�es whi
h 
andidates are
on�ned to the bin.9.2 A 2D Likelihood MethodThe 2D likelihood method is a simpli�
ation of the 2D+1D likelihood method:The S1(M1;�m1)SNN(NN) distribution produ
t of the 2D+1D method arerepla
ed by a SM1;NN(M1; NN) distribution whi
h is binned using (7.1) twi
efor ea
h (M1; NN) event, and mapped using (8.3) for ea
h 2D bin.



9.3. OVERTRAINING TESTS 79To map the 
andidates it suÆ
es to apply (8.3) on
e for ea
h 
andidate.9.3 Overtraining TestsAs explained in Se
. 7.4 an overtraining test gives the limit on how small thebins used in the binning of a distribution 
an get before an overtraining ofthe 
al
ulated 
on�den
e levels o

ur. In other words the plot of the threeCLs(��) fun
tions at di�erent numbers of MC events expresses the potentialof the method: How low signal 
on�den
e levels (and a

ordingly high mhlimits) the method is able to produ
e before overtraining e�e
ts in
uen
e thelimits.Overtraining tests are performed for the 5D method, the �xed binning 3Dmethod, the 2D+1D method, and the 2D method. The tests monitor the de-velopment of the CLs as a fun
tion of de
reasing ��, and �� is determined bythe width of the distribution and the number of bins in the following manner:�� = �max � �minN� ; (9.1)where �max and �min are the maximum and minimum value of �, respe
tively,and N� is the number of bins in the � distribution.To give the mass variables equal weight the number of bins is sele
ted tokeep the binwidth of all the mass distributions equal. The width of the mhand mA distribution are the same, hen
e Nmh = NmA . However, the di�eren
ebetween the widths of the M and �m distributions is approximately 30 GeV,as is seen in Fig. 8.1, hen
e NM > N�m.The overtraining plots of the di�erent methods, with 
uts on the binwidths,are given in Chapter 10. The CLs at the �� 
ut is the minimum CLs (maximummh) not in
uen
ed by overtraining e�e
ts.9.4 The Final TestsA plot of expe
ted signal 
on�den
e level versus mh hypothesis, CLs(mh), isthe �nal test of the likelihood methods. A signi�
an
e level of 95 % is required,and a 
ut is set at CLs=0.05 (see (6.6)). The mh limit 
orresponding to the
ut is the upper limit of the mass region where the existen
e of the h0 s
alar.Three series of tests are performed in order to answer the questions regardingtype of binning, type of mass estimator, and number of pairings:Type of Binning The three 3D methods presented in Chapter 7, all usingS3;NN(mh1; mA1; NN) as the dis
riminating variable distribution, are 
om-pared to 
on
lude on whi
h of the methods provides the most e�e
tivebinning. No overtraining test of the three methods are performed be
ausethe implementation of su
h a test using variable binning methods is very
omplex. The results of the binning tests are presented in Se
. 10.2.1.Type of Mass Estimator To investigate the use of mass estimators in de-tail, three mass estimator tests are performed: Firstly the �xed bin-ning 3D method using S3;NN(mh1; mA1; NN) as dis
riminating variable



80 CHAPTER 9. THE TESTSis 
ompared to the 2D method using SM1;NN(M1; NN) as dis
riminatingvariable. Se
ondly the 3D method using S3;NN(mh1; mA1; NN) is again
ompared to the 3D method using S1;NN(M1;�m1; NN) as the dis
rim-inating variable. The third 
omparison is performed between the 5Dmethod using S3(mh1; mA1)S4(mh2; mA2)SNN(NN) and the 5D methodusing S1(M1;�m1)S2(M2;�m2)SNN(NN) as the dis
riminating variable.All three 
omparisons are performed in order to determine if the M;�mset or the mh; mA set of dis
riminating variables is the best. All methodsare �xed binning methods. Overtraining tests is used to set a limit on thebinwidths. The results of the overtraining tests are presented in Se
. 10.1,and the results of the mass estimator tests are presented in Se
. 10.2.2.Number of Pairings Two tests are performed: The 5D method using theprodu
t S1(M1;�m1)S2(M2;�m2)SNN(NN) as dis
riminating variable is
ompared to the 2D+1Dmethod using the produ
t S1(M1;�m1)SNN(NN)as dis
riminating variable, to 
on
lude on the e�e
ts of using mass estima-tors of the two best pairings as dis
riminating variables. The 5D methoddoes not take the 
orrelations between the masses of di�erent pairings norbetween the mass variables and the NN variable into a

ount. A 
ompar-ison of the �xed binning 3D method using S1;NN(M1;�m1; NN) and the2D+1D method using S1(M1;�m1)SNN(NN) as dis
riminating variableis performed to investigate the importan
e of the NN 
orrelations. The
orrelations between the mass estimators of di�erent pairings are not in-vestigated any further, but there is no reason why su
h 
orrelations shouldnot be present.



Chapter 10Con
lusionsSignal and ba
kground distributions are 
reated using the likelihood methodspresented in Chapter 7, Chapter 8 and Chapter 9. Signal 
on�den
e levels(CLs) based on these distributions are 
al
ulated, using the ALRMC imple-mentation of a maximum likelihood ratio test, and the mh limit at a 95 %
on�den
e level (CL) is stated (CLs = 0:05).The 
on
lusions are based on expe
ted CLs instead of observed CLs be
ausethe observed CLs are sensitive to the observed 
andidates of the sear
h, i.e. theposition of a 
andidate in the �nal distribution might have a major e�e
t onthe limits. Su
h an e�e
t is not present if the expe
ted CLs are used.10.1 The Overtraining PlotsFig. 10.1 shows overtraining plots for the 2D, 2D+1D, 3D and 5D methods,all with �xed binning. The 3D and 5D methods are used with both sets ofdis
riminating variables, M;�m and mh; mA.The verti
al line in the plots of Fig. 10.1 is the 
ut on the binwidth that setsan upper limit on number of bins allowed in the distributions. The ti
k markson the CLs(��) fun
tion of all Monte Carlo (MC) events (the green line) is theCLs 
omputed for a given number of bins for the mA = 80 GeV, tan� = 20signal hypothesis. The binwidth �� is the average binwidth of the bins used.No 
ut is applied to the 5D method in neither set of dis
riminating variablesbe
ause the ALRMC limit on maximum number of allowed bins in the �nal 1Ddistribution is rea
hed before the overtraining o

urs.10.2 The Final TestsExpe
ted CLs are 
al
ulated at the binsize 
ut provided by the overtrainingplots in Fig.10.1. The nine di�erent 
ombinations of methods, binning, and dis-
riminating variables are summarized in Table 10.1 together with the mh limitsat tan� = 20 and tan� = 2. The nine 
ombinations are further 
ompared twoby two, and 
on
lusions drawn on whi
h method o�ers the best limit regardingtype of binning, type of mass estimators, and number of pairings. All limitspresented 
orrespond to a 95 % CL.



82 CHAPTER 10. CONCLUSIONS
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2 4 6 8 10 12 14 16

First half MC events
All MC events
Second half MC events

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

5 10 15 20 25 30

First half MC events
All MC events
Second half MC events

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

6 8 10 12 14 16

First half MC events
All MC events
Second half MC events

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

5 10 15 20 25 30

First half MC events
All MC events
Second half MC events

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

18 20 22 24 26

First half MC events
All MC events
Second half MC events

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 22 24 26 28 30 32

First half MC events
All MC events
Second half MC eventsFigure 10.1: Overtraining plots for all �xed binning methods. The CLs of allMC events (green line) is situated in the middle between the CLs of the �rstand se
ond half MC events if no overtraining is present. The verti
al line inthe plot is a 
ut on the binsize.



10.2. THE FINAL TESTS 83mh [GeV℄Method Binning Dis
riminating variables tg� = 20 tg� = 22D Fixed SM1;NN(M1; NN) 80.85 57.592D+1D Fixed S1(M1;�m1)SNN(NN) 80.25 57.43S3;NN(mh1; mA1; NN) 81.10 57.57Fixed S1;NN(M1;�m1; NN) 81.23 57.853D S3;NN(mh1; mA1; NN) 81:57y 58:37yFix/Var S3;NN(mh1; mA1; NN) 81:85y 58:70yVariable S3;NN(mh1; mA1; NN) 81:73y 58:40y5D Fixed S3(mh1; mA1)S4(mh2; mA2)SNN(NN) 80.37 57.37S1(M1;�m1)S2(M2;�m2)SNN(NN) 80.46 57.54y Not subje
ted to overtraining test, and not 
omparable to the other limitsTable 10.1: Summary table of themh limits of all nine 
ombinations of method,binning pro
edure and dis
riminating variables.10.2.1 BinningFig. 10.2 shows two plots of CLs(mh) fun
tions at tan� = 20:� Fixed binning of mh1; mA1; NN versus �xed binning of NN and variablebinning of mh1; mA1.� Fixed binning of NN and variable binning of mh1; mA1 versus variablebinning of mh1; mA1; NN .Fig. 10.3 shows the same plots of CLs(mh) fun
tions at tan� = 2, and Table 10.2gives the measured di�eren
es of the mh limits.The 
on
lusion drawn is that the method using both variable and �xed binsimproves the �xed binning only method limit by 0.28 GeV (0.33 GeV), andthe variable binning only method limit by 0.12 GeV (0.30 GeV) at tan� = 20(tan� = 2). Hen
e, the method using both variable and �xed bins o�ers themost optimal binning of the S3;NN(mh1; mA1; NN) distribution.Sin
e the limits of these three methods have not been subje
ted to an over-training test, the limits are not 
omparable to the other limits.10.2.2 Mass EstimatorFig. 10.4 shows three plots of CLs(mh) fun
tions at tan� = 20:� SM1;NN(M1; NN) versus S3;NN(mh1; mA1; NN).� S3;NN(mh1; mA1; NN) versus S1;NN(M1;�m1; NN).� S3(mh1; mA1)S4(mh2; mA2)SNN(NN) versusS1(M1;�m1)S2(M2;�m2)SNN(NN).



84 CHAPTER 10. CONCLUSIONSFig. 10.5 shows the same plots of CLs(mh) fun
tions at tan� = 2. The di�eren
ebetween the limits of these plots are given in Table 10.3.Two 
on
lusions are drawn from these tests: Firstly the M;�m set of dis-
riminating variables improves the limit obtained using the mh; mA sets by0.13 GeV (0.28 GeV) in the 3D 
ase, and by 0.11 GeV (0.17 GeV) in the 5D
ase at tan� = 20 (tan� = 2). This is probably due to the fa
t that the eventsof the M;�m distributions are less 
lustered than the events of the mh; mAdistribution, hen
e the M;�m set is more 
onvenient to use with �xed bins.The se
ond 
on
lusion is that S1;NN(M1;�m1; NN) improves the limit ob-tained using SM1;NN(M1; NN) by 0.38 GeV (0.30 GeV), and in additionS3;NN(mh1; mA1; NN) also improves the limit obtained using SM1;NN(M1; NN)by 0.25 GeV (0.02 GeV) at tan� = 20 (tan� = 2). Hen
e, a 3D dis
riminatingvariable gives a better limit than a 2D dis
riminating variable. The improve-ment is however not impressive, and it is ne
essary to ask if not alternativeextensions of a 2D likelihood method 
ould result in larger improvements.10.2.3 PairingFig. 10.6 shows two plots of CLs(mh) fun
tions at tan� = 20:� S1(M1;�m1)S2(M2;�m2)SNN(NN) versus S1(M1;�m1)SNN(NN).� S1(M1;�m1)SNN(NN) versus S1;NN(M1;�m1; NN).Fig. 10.7 shows the same plots of CLs(mh) fun
tions at tan� = 2. The di�eren
ebetween the mh limits of the tests are given in Table 10.4.Two 
on
lusions are drawn from the tests: Firstly the two pairing vari-able S1(M1;�m1)S2(M2;�m2)SNN(NN) improves the limit obtained usingthe S1(M1;�m1)SNN(NN) variable by 0.21 GeV (0.11 GeV) at tan� = 20(tan� = 2). Hen
e, the two best pairing variable gives a slightly better mhlimit than the best pairing variable. The e�e
t is not so 
lear at tan� = 2.However the most interesting se
tor for the h0A0 
hannel is the tan� = 20 se
-tor be
ause the h0Z0 
ross se
tion is mu
h greater than the h0A0 
ross se
tionat tan� = 2 (see Fig.4.2).The se
ond 
on
lusion is that the S1;NN(M1;�m1; NN) variable improvesthe limit obtained using the S1(M1;�m1)SNN(NN) variable by 0.98 Gev attan� = 20 and 0.36 Gev at tan� = 2. Hen
e, the NN 
orrelation is very signif-i
ant to the mh limit, and is at least some of the explanation to why the 3Dmethod produ
e a better limit than the 5D method (see Table 10.1). This isone of the most important results obtained. If the S1(M1;�m1)S2(M2;�m2)SNN(NN) variable is repla
ed by S(M1;�m1;M2;�m2; NN) themh limit prob-ably in
reases beyond the limit 
omputed using S1;NN(M1;�m1; NN).10.3 Final Con
lusionOnly minor improvements are obtained by extending the likelihood methodfrom two dis
riminating variables to three and �ve dis
riminating variables,and the extension of the methods were probably not worth the e�ort.



10.3. FINAL CONCLUSION 85The most important results seen are the the positive e�e
t of using variablebins instead of �xed bins when the distributions are binned (see Fig. 10.2, 10.3and Tab. 10.2), and espe
ially the 
lear positive e�e
t of in
luding 
orrelationsbetween the dis
riminating variables (see Fig. 10.6, 10.7 and Tab. 10.4).�mh[GeV℄Test tg� = 20 tg� = 2mh(Sfix=var3;NN )�mh(Sfix3;NN) 0.28 0.33mh(Sfix=var3;NN )�mh(Svar3;NN) 0.12 0.30Table 10.2: Di�eren
e in mh limit between the three 3D methods usingS3;NN(mh1; mA1; NN) as dis
riminating variable. �mh[GeV℄Test tg� = 20 tg� = 2mh(S3;NN)�mh(SM1;NN) 0.25 0.02mh(S1;NN)�mh(S3;NN) 0.13 0.28mh(S1; S2; SNN)�mh(S3; S4; SNN) 0.11 0.17Table 10.3: Di�eren
e in mh limits between the 3D, 2D and 5D methods usingthe M;�m and mh; mA sets of dis
riminating variables.�mh[GeV℄Test tg� = 20 tg� = 2mh(S1; S2; SNN)�mh(S1; SNN) 0.21 0.11mh(SM1;NN)�mh(S1; SNN) 0.98 0.36Table 10.4: Di�eren
e in mh limits between the 5D, 3D and 2D+1D methodusing the M;�m sets of dis
riminating variables.
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