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AbstratThis thesis presents multidimensional likelihood methods for alulating on-�denes and exlusion limits on the CP -even, neutral Higgs salar h0 of theMSSM Higgs setor using the h0A0 ! b�bb�b hannel at 189 GeV. The limits arealulated using the ALRMC implementation of a maximum likelihood ratiotest.The likelihood methods prepare signal, bakground, and observed andidatedistributions using various binning algorithms and di�erent disriminating va-riables. A total of six methods are presented, using mass estimators of thebest and seond best jet pairings as disriminating variables, in addition to avariable obtained from a neural network-like analysis. The three dimensionaland two dimensional methods use mass estimators of the best pairing, while a�ve dimensional method uses mass estimators of the two best pairings.The mh limit for all methods at a 95 % on�dene level are ompared, andonlusions drawn on whih methods are preferred.



AknowledgementFirstly I would like to thank my supervisor professor Lars Bugge for his eminentsupport and omments during the work with these interesting problems. I wouldalso like to thank professor Alex L. Read for his most helpful assistane andpatiene. Ph.D. student J�rgen Hansen deserves speial thanks for providingthe 189 GeV data, and not giving up on my repetitive questions. Speialthanks also to Ph.D. student Trond Myklebust for all his assistane whenever aomputer problem ourred. I am also thankful to the other graduate and Ph.D.students for making the Experimental Partile Physis Group an exellent plaeto work. Jan Ludvig VinninglandBlindern, OsloJune 15, 2000

ii



Contents1 Introdution 11.1 Fundamental Partiles . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Fundamental Fores . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Standard Model Problems . . . . . . . . . . . . . . . . . . . . . . 31.4 The Higgs Mehanism . . . . . . . . . . . . . . . . . . . . . . . . 31.5 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 The Theory 52.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 52.1.1 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.2 Gauge Bosons . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.3 Charges, Currents and Groups . . . . . . . . . . . . . . . 7Color Charge . . . . . . . . . . . . . . . . . . . . . . . . . 8Weak Isospin . . . . . . . . . . . . . . . . . . . . . . . . . 8Weak Hyperharge . . . . . . . . . . . . . . . . . . . . . . 82.1.4 Gauge Invariane . . . . . . . . . . . . . . . . . . . . . . . 9U(1) Gauge Invariane . . . . . . . . . . . . . . . . . . . . 9SU(3) Gauge Invariane . . . . . . . . . . . . . . . . . . . 102.1.5 The Higgs Mehanism . . . . . . . . . . . . . . . . . . . . 10On Symmetries . . . . . . . . . . . . . . . . . . . . . . . . 10Spontaneous Symmetry Breaking . . . . . . . . . . . . . . 11Gauge Boson Masses . . . . . . . . . . . . . . . . . . . . . 12Fermion Masses . . . . . . . . . . . . . . . . . . . . . . . . 132.1.6 Higgs Prodution . . . . . . . . . . . . . . . . . . . . . . . 132.2 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.1 The Hierarhy Problem . . . . . . . . . . . . . . . . . . . 152.2.2 MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 17�-parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 17Absene of FCNC . . . . . . . . . . . . . . . . . . . . . . 17Unitarity Condition . . . . . . . . . . . . . . . . . . . . . 182.2.4 The MSSM Higgs Model . . . . . . . . . . . . . . . . . . . 19Higgs Spetrum . . . . . . . . . . . . . . . . . . . . . . . . 202.2.5 Higgs ouplings . . . . . . . . . . . . . . . . . . . . . . . . 21iii



3 The Detetor 243.1 DELPHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 The h0A0 Analysis 314.1 Higgs Prodution . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.2 Deay Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.3 Bakground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.4 Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 Jet Clustering and Kinematial Fits 435.1 Jet Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.2 4C Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445.2.1 The Constraints . . . . . . . . . . . . . . . . . . . . . . . 456 The ALRMC Program 476.1 Statistis Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 476.1.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . 476.1.2 Maximum Likelihood Method . . . . . . . . . . . . . . . . 49Generi Likelihood Ratio . . . . . . . . . . . . . . . . . . 506.2 The Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.3 ALRMC Customization . . . . . . . . . . . . . . . . . . . . . . . 527 3D Likelihood Methods 547.1 Three Disriminating Variable Distributions . . . . . . . . . . . . 557.2 Fixed Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557.2.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 587.3 Variable Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . 587.3.1 Rebinning of mh and mA . . . . . . . . . . . . . . . . . . 597.3.2 Rebinning of mh, mA and NN . . . . . . . . . . . . . . . 607.4 Overtraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607.5 Mapping from 3D Spae to 1D Spae . . . . . . . . . . . . . . . . 617.6 The Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617.6.1 Fixed Binning . . . . . . . . . . . . . . . . . . . . . . . . 627.6.2 Variable Binning . . . . . . . . . . . . . . . . . . . . . . . 627.7 The 3D Input Maros . . . . . . . . . . . . . . . . . . . . . . . . 648 5D Likelihood Methods 698.1 Calulation of Two Best Pairings . . . . . . . . . . . . . . . . . . 708.2 The Disriminating Variables . . . . . . . . . . . . . . . . . . . . 708.3 Binning and Mapping of the Distributions . . . . . . . . . . . . . 728.4 Binning and Mapping of the Candidates . . . . . . . . . . . . . . 738.5 The 5D Input Maros . . . . . . . . . . . . . . . . . . . . . . . . 739 The Tests 779.1 A 2D+1D Likelihood Method . . . . . . . . . . . . . . . . . . . . 789.2 A 2D Likelihood Method . . . . . . . . . . . . . . . . . . . . . . . 789.3 Overtraining Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 799.4 The Final Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79iv



10 Conlusions 8110.1 The Overtraining Plots . . . . . . . . . . . . . . . . . . . . . . . . 8110.2 The Final Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8110.2.1 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8310.2.2 Mass Estimator . . . . . . . . . . . . . . . . . . . . . . . . 8310.2.3 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8410.3 Final Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



List of Figures1.1 Fermion properties in the Standard Model. . . . . . . . . . . . . 21.2 Gauge boson properties in the Standard Model. . . . . . . . . . . 32.1 Fusion Feynman diagrams of Higgs prodution in the StandardModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2 Some quadratially divergent Higgs self-energies. . . . . . . . . . 152.3 The lowest order Feynman diagram for W+W� ! W+W� in-volving a neutral, salar partile; the Standard Model Higgs �0. . 192.4 Fusion Feynman diagrams of Higgs prodution in the MSSM model. 222.5 Feynman diagrams of Higgs prodution in the MSSM model. . . 233.1 The DELPHI detetor with all its subdetetors. . . . . . . . . . . 253.2 Figure showing the struture of the RICH detetors of DELPHI. 294.1 Feynman diagram of the MSSM proess e+e� ! Z0� ! h0A0 !b�bb�b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.2 Cross setions of MSSM Higgs-strahlung, h0Z0, and pair produ-tion, h0A0, for tan� = 2:0 and tan� = 20:0. . . . . . . . . . . . . 344.3 Branhing ratios of the MSSM Higgs bosons h0 and A0 into Stan-dard Model partiles. . . . . . . . . . . . . . . . . . . . . . . . . . 354.4 Feynman diagrams of the three most important bakground pro-esses to a searh in the h0A0 hannel. . . . . . . . . . . . . . . . 364.5 Figure showing the bakground level vs. the eÆieny for thedi�erent Monte Carlo generated bakground samples, togetherwith the data of the 189 GeV run. . . . . . . . . . . . . . . . . . 374.6 Figure showing the lightest of the paired jet masses, mh. . . . . . 384.7 Figure showing the heaviest of the paired jet masses, mA. . . . . 394.8 Figure showing the sum of the paired jet masses, M = mh +mA. 404.9 Figure showing the di�erene of the paired jet masses, �m =mA �mh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.10 Figure showing the neural network-like variable presented afterthe �nal ut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425.1 Plots of mass estimators of the h0A0 ! b�bb�b hannel before andafter a 4C �t performed by the PUFITC pakage. . . . . . . . . . 466.1 Five signal hypothesises with inreasing mass in the tan� = 20setor together with the observed andidates of the 189 GeV data. 50vi



6.2 Plot of the expeted CLs alulated with and without the inter-polation routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 537.1 Monte Carlo generated distributions for the mA = 80 GeV,tan� = 20:0 signal hypothesis in the h0A0 ! b�bb�b hannel at189 Gev. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567.2 The three disriminating variable distributions of mA, mh, andNN plotted as 3D distributions. . . . . . . . . . . . . . . . . . . . 577.3 Plot of themh distribution where the bins are indiated by dottedlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607.4 The NN variable distributions for the bakground hypothesis inthe h0A0 ! b�bb�b hannel at 189 Gev. . . . . . . . . . . . . . . . . 617.5 Plot of on�dene level as a funtion of binwidth. . . . . . . . . . 627.6 Satter plots of mh and mA distributions of the bakground hy-pothesis and the �ve signal hypothesesmA = 70,75,80,85,90GeVat tan � = 2 in the h0A0 ! b�bb�b hannel at 189 GeV . . . . . . . 657.7 Satter plots of mh and mA distributions of the bakground hy-pothesis and the �ve signal hypothesesmA = 70,75,80,85,90GeVat tan � = 20 in the h0A0 ! b�bb�b hannel at 189 GeV . . . . . . . 667.8 Flow hart of the three PAW maros preparing 3D inputs. . . . . 677.9 Plots of the �nal 1D disriminating variable distribution. . . . . . 688.1 Plots of the mass disriminating distributions of the two bestpairings used by the 5D likelihood methods. . . . . . . . . . . . . 718.2 Plots of the �nal disriminating variable distribution of the 5Dmethods for the bakground and the signal hypothesis mA = 80,tan� = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748.3 Redution of bin index numbers in the 5D method. . . . . . . . . 758.4 Flow hart of the PAW maros preparing 5D inputs. . . . . . . . 7610.1 Overtraining plots for all �xed binning methods. . . . . . . . . . 8210.2 Comparisons of the two variable binning 3D methods and the�xed binning 3D method for the tan� = 20 signal hypotheses. . . 8610.3 Comparisons of the two variable binning 3D methods and the�xed binning 3D method for the tan� = 2 signal hypotheses. . . 8610.4 Comparisons of the 2D, 3D and 5D method in the tan� = 20 se-tor using the M;�m and mh; mA sets of disriminating variables. 8710.5 Comparisons of the 2D, 3D and 5Dmethod in the tan� = 2 setorusing the M;�m and mh; mA sets of disriminating variables. . . 8810.6 Plot of the 2D+1D versus the 5D method, both using theM;�mset of disriminating variables, for the tan� = 20 signal hypotheses. 8910.7 Plot of the 2D+1D versus the 5D method to the left, both usingtheM;�m set of disriminating variables, for the tan� = 2 signalhypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89vii



List of Tables4.1 The �nal ut number of events, ross-setions, eÆienies and ex-peted number of events for the di�erent Monte Carlo generatedbakgrounds and signals, together with the 189 GeV data. . . . . 3310.1 Summary table of the mh limits of all nine ombinations ofmethod, binning proedure and disriminating variables. . . . . . 8310.2 Di�erene in mh limit between the three 3D methods usingS3;NN(mh1; mA1; NN) as disriminating variable. . . . . . . . . . 8510.3 Di�erene in mh limits between the 3D, 2D and 5D methodsusing the M;�m and mh; mA sets of disriminating variables. . . 8510.4 Di�erene in mh limits between the 5D, 3D and 2D+1D methodusing the M;�m sets of disriminating variables. . . . . . . . . . 85

viii







Chapter 1IntrodutionPartile physis is the siene of the fundamental partiles that onstitute mat-ter, and the interations these partiles partiipate in. The theory known as theStandard Model (SM) summarizes the present knowledge in partile physis.Several extensions of the SM exist, but no experiment has yet rendered the SMinadequate.1.1 Fundamental PartilesThe SM lassi�es the fundamental partiles in two main groups: Fermions andbosons. Fermions are matter onstituents, while bosons at as fore arriersbetween the fermions.Fermions are further grouped into leptons and quarks, and they exist in threedi�erent generations, or families. The three lepton families are the eletron (e),the muon (�), the tau (�), and their neutrino partners (�e; ��; ��). The quarksome in six avors : up (u), down (d), harm (), strange (s), top (t) and bottom(b); two avors in eah family. Eah fermion also has an antipartile partner ofthe same mass but with opposite harge. In addition to the six avors, quarksexist in three di�erent olor states. Thus, matter onsists of 6 leptons and 18quarks, while antimatter onsists of 6 antileptons and 18 antiquarks. Figure 1.1gives a list of the fermion properties.The fore arriers, or mediators, of the fundamental fores are known asgauge bosons. The strong fore is mediated by eight gluons (g), the eletro-magneti fore by the photon (), and the weak fore is mediated by W+, W�and Z0 bosons. Gluons ouple to quarks, photons ouple to eletri harge, andW+, W� and Z0 ouple to left-handed quarks and leptons. Left-handed meansthat the partile spin diretion is opposite to its momentum. Figure 1.2 givesa list of the boson properties.1.2 Fundamental ForesFour fundamental fores exist in nature: The strong fore, the weak fore,the eletromagneti fore, and the gravitational fore. The strong fore keepsthe quarks inside the nuleus, and the strength of the fore inreases as the



2 CHAPTER 1. INTRODUCTION
Figure 1.1: Fermion properties in the Standard Model [1℄.quarks separate. It is in fat impossible to separate a quark-antiquark pair,beause the energy needed is in�nite. An example of this is seen in e+e�annihilations at high energies, performed at several aelerators around theworld inluding LEP (disussed in Chapter 3), in whih a quark-antiquark (q�q)pair is produed. The high energy of the ollision fores the q�q pair to separate,but beause quarks do not exist as single partiles, the quarks instead appearas jets of hadrons. A hadron is a partile interating via the strong fore.The jet momentum along the original quark diretion is large ompared to thetransverse jet momentum, and the jets are ollimated around the q and �q axes.The transverse momentum is used as a measure to determine whih jet a trakbelongs to. Chapter 5 presents the lustering of the individual traks into jetsin more detail, in addition to a disussion on kinematial �ts.The weak and the eletromagneti fore are di�erent manifestations of asingle fore named the eletroweak fore. The weak fore makes the stars shine,and is responsible for natural radioativity, for example �-deay of a neutronin a nuleus. The eletromagneti fore keeps the eletrons in orbit aroundthe nuleus and thus holds the atoms together. It also makes the atoms grouptogether to form moleules and solid objets. Without the eletromagneti foreall matter would exist as ionized plasma.The gravitational fore is responsible for the motions of the solar systemand the universe. It is the weakest of all the fundamental fores, and whendealing with elementary partiles, it an be negleted.1The SM desribes strong interations (QCD), eletromagneti interations(QED), and weak interations. The gravitational fore is not inluded in theSM, but extensions of the SM try to explain all four fundamental fores withinone single theory. Glashow, Weinberg and Salam onluded that the weak andeletromagneti fore an be desribed as one single eletroweak fore. Futureextensions of the SM, Grand Uni�ation Theories (GUT), may show that allthe fores are in fat only di�erent manifestations of a single fore.1The Plank mass (� 1019 GeV) is the mass sale at whih the gravitational ouplingapproahes unity, and at this mass sale the gravitational fore may no longer be negleted.



1.3. STANDARD MODEL PROBLEMS 3
Figure 1.2: Gauge boson properties in the Standard Model [1℄.1.3 Standard Model ProblemsIt is widely believed that the SM is not a �nal answer in partile physis.One of the most important arguments for a more fundamental theory is thegreat number of independent parameters needed as input to the SM: Eighteenparameters must be given by experiment (even more if the neutrinos are notmassless) for whih no SM explanations exist.The missing understanding of the hierarhy of mass sales needed to explainthe fundamental interations, ommonly known as the hierarhy problem, isanother serious problem. Thus, physiists need to understand nature at a deeperlevel in order to give answers to these fundamental questions.Among the extensions of the SM, supersymmetri (SUSY) extensions arepartiularly interesting beause SUSY evades the hierarhy problem. The Min-imal Supersymmetri extension of the Standard Model (MSSM) more thandoubles the number of partiles in the SM, beause eah SM partile adopts aSUSY partner.1.4 The Higgs MehanismIn order to explain how the fundamental partiles aquire mass, the theory ofthe Higgs mehanism has been developed. This theory suggests that a ertainsymmetry of nature is broken through spontaneous symmetry breaking and,as a onsequene of that, a Higgs partile is produed. In the SM only oneHiggs partile exists, but the MSSM ontains �ve Higgs partiles. The Higgspartiles are not easy to disover experimentally beause they ouple to fermionsproportional to the mass of the fermion, and the most available fermions atpartile aelerators are the light ones. Thus, the hane of disovering a Higgspartile is proportional to the amount of energy put into the aelerator. Therehas not yet been any experimental data supporting the existene of the Higgspartile. Therefore extensive Higgs searhes are being arried out at partilephysis laboratories and universities all over the world in order to disover theHiggs partile and measure its mass, or ome up with an alternative theory.Chapter 2 ontains the theory of the SM, MSSM and Higgs mehanism.



4 CHAPTER 1. INTRODUCTION1.5 The AnalysisThis thesis presents the analysis performed to test di�erent likelihood methodsby omparing the obtained mass limits of the neutral MSSM Higgs salar h0.The searh hannel is the h0A0 ! b�bb�b hannel at 189 Gev. The bakgrounds,signals and data andidates of the searh are presented in Chapter 4.The statistial treatment of the data, using a maximum likelihood test, arearried out by the ALRMC pakage whih alulates on�dene levels for thedi�erent signal hypotheses. Chapter 6 gives a brief disussion on the statistisof hypothesis testing in general, together with the spei�s of ALRMC.Chapters 7 and 8 present the di�erent likelihood methods and algorithmsdeveloped to treat the signal, bakground and andidate distributions prior toALRMC alulations.The andidates used are the 189 GeV data olleted by the DELPHI detetorat CERN. The DELPHI detetor and its subdetetors are outlined in Chapter 3.Finally, the tests performed on the di�erent likelihood methods are ex-plained in Chapter 9, and the onlusions presented in Chapter 10.Natural units (�h = 1) are used throughout this thesis exept where expli-itly spei�ed.



Chapter 2The TheoryThis hapter presents the Standard Model (SM), the Minimal Supersymmetriextension of the Standard Model (MSSM), the Higgs mehanism, and the Higgsspetrum of both the SM and the MSSM.The SM Higgs theory is a one-doublet model whih desribes only one Higgspartile, �0. The SM theory and the SM Higgs mehanism are presented inSe. 2.1. More ompliated Higgs strutures produe a larger number of Higgspartiles, and thus additional possibilities for disovery. The simplest extensionsof the one-doublet Higgs are models with two-doublets. No experiment hasyet found evidene whih favors the one-doublet model over more ompliatedstrutures [2℄. Among the two-doublet models, the supersymmetri (SUSY)extension is partiularly interesting beause it solves some of the SM problems.The MSSM Higgs model produe two harged Higgs bosons, H�, and threeneutral Higgs bosons, h0, H0, and A0. The motivations of SUSY and MSSM,together with the MSSM Higgs mehanism, are presented in Se. 2.2.2.The presentation of the SM theory and the SM Higgs setor are strongly in-spired by the books \Dynamis of the Standard Model" by Donoghue, Golowihand Holstein [3℄, and \Quarks & Leptons" by Halzen and Martin [4℄. The dis-ussion on SUSY and the MSSM motivations are mainly inuened by theartile \A `theory of everything'?" by G.G.Ross [5℄, and the thesis \Searhfor Non-Minimal Higgs Bosons in Z0 Deays with the L3 Detetor at LEP" byAndr�e Sopzak [2℄. The presentation of the MSSM Higgs setor is inspired by"The Higgs Hunter's Guide", by John F. Gunion, Howard E. Haber, GordonKane and Sally Dawson [6℄.2.1 The Standard ModelThe SM is a gauge theory, and within a gauge theory only two kinds of par-tiles exist: Those who arry harge, and thus gives rise to urrents, andthose who mediate interations between the urrents by oupling diretly tothe harge. Fermions arry harge and produe urrents, gauge bosons ouplesto the urrents. If a gauge boson itself arries harge, the boson undergoesself-interations. Charges and urrents are treated in Se. 2.1.3.Quarks and leptons are both members of the fermion group. All leptons,



6 CHAPTER 2. THE THEORYapart from the neutrinos, arry eletri harge, while quarks in addition arryolor harge. Neutrinos only partiipate in weak interations, while the otherleptons also experiene eletromagneti interations. Quarks partiipate inweak, eletromagneti and strong interations.Abelian1 gauge bosons ouple to urrents with oupling onstants deter-mined by the harge of the partile produing the urrent (the oupling of thephoton to the eletron is �e). Sine the non-Abelian gauge bosons are bothharge arriers and mediators they undergo self-interations that give rise toloop orretions ompliating the renormalization of the theory.A theory that is invariant under ertain gauge transformations is said to begauge invariant. Gauge transformations are lassi�ed as group transformations,and the SM is onstruted to be gauge invariant under the SU(3)
 SU(2)L
U(1)Y gauge group transformation. The SU(3) invariane is an exat symme-try and auses gluons to be massless, while the spontaneous breaking of theSU(2)L
 U(1)Y invariane, through the Higgs mehanism, auses the W� andthe Z0 to be massive. How this omes about is disussed in Se 2.1.5.2.1.1 FermionsQuarks and leptons are inputs to the SM in the sense that the model does notexplain the variety and number of quarks and leptons, nor their properties.That is for experiments to deide.Quarks and leptons exhibit ertain empirial onservation laws that is notyet observed broken: Firstly eah of the leptons belonging to a ertain familyhas its own lepton number of value 1, whih is onserved within the fermionfamily in every known interation. Seondly quark avor is onserved in allknown strong interations, but not in weak interations.Mixing our between quarks, but not between leptons. The quark hargedweak urrents are responsible for the mixing. The quark states partiipating intransitions of the harged weak urrent are linear ombinations of quark masseigenstates. The quark-mixing matrix V ontains the information about thelinear ombinations, and is named the Cabbibo matrix in the two quark familyase, and the Cabbibo-Kobayashi-Maskawa matrix in the three family ase aftertheir inventors. The elements of the matrix are not predited by theory, buthave to be inferred from experiments.In the three family ase the matrix is a 3� 3 matrixVCKM = 0� Vud Vus VubVd Vs VbVtd Vts Vtb 1A ; (2.1)where the subsripts indiate whih quarks partiipate in the transitions. Be-ause the VCKM matrix ontains a omplex phase fator, the SM is not CPinvariant, whih is on�rmed by experiments.1Abelian groups is groups with a ommutative group multipliation, in ontrast to non-Abelian groups.



2.1. THE STANDARD MODEL 7The diagonal elements of the VCKM matrix are all very lose to one. Thisreets the experimental fat that transitions between quarks belonging to thesame family are dominant.The VCKM matrix is unitary and, sine quarks ome in doublets, the ele-troweak theory �t experimental results showing that avor hanging neutralurrents (FCNC) are highly suppressed. For example, the rate of neutral- toharged-urrent rates in kaon deay is [7℄K+ ! �+��K+ ! �0�+�� < 10�5 : (2.2)2.1.2 Gauge BosonsThe SM desribes strong interations, eletromagneti interations and weakinterations. The strong interations are desribed by the SU(3) group, andthe eletromagneti and weak interations are desribed by the SU(2)L
U(1)Ygroup as eletroweak interations.The SU(3) group is represented by eight generators. If the theory desrib-ing strong interations is to be SU(3) gauge invariant, eight gauge �elds mustbe introdued, eah �eld assoiated with a gauge boson. Thus, the eight gaugebosons are a onsequene of the imposed SU(3) gauge invariane, and the num-ber of bosons orresponds to the number of generators of the group. The eightgauge bosons of the strong interation are the massless, olor harged gluons.Gluons are massless beause the SU(3) gauge invariane is an exat invariane.Weak interations are mediated by three massive gauge bosons, while ele-tromagneti interations are mediated by one massless gauge boson. Weinbergand Salam showed that weak and eletromagneti interations both arise fromthe eletroweak fore. The imposed SU(2)L
U(1)Y gauge invariane is not anexat invariane, beause three of the gauge bosons are massive, and is bro-ken via the Higgs mehanism to produe four gauge �elds W 1� ;W 2� ;W 3� andB�. Two harged �elds are de�ned as linear ombinations of the W 1� and W 2��elds, and the harged �elds orrespond to two massive, harged gauge bosons,W+ and W�. Two neutral �elds, orresponding to a massive Z0 and a mass-less photon, are onstruted by rotating the W 3� and B� �elds by an angle �W(see (2.26)). The eletroweak theory ontains three massive bosons beausethe SU(2)L group is represented by three generators, and one massless bosonbeause the U(1)Y group is represented by one single generator. The Higgsmehanism uses spontaneous symmetry breaking to produe massive bosonswithin a gauge invariant theory.Loal gauge invariane, spontaneous symmetry breaking, and transforma-tions will be further disussed in setions 2.1.4 and 2.1.5.2.1.3 Charges, Currents and GroupsThree di�erent kinds of harge appear in the SM: olor harge, weak isospinand weak hyperharge.



8 CHAPTER 2. THE THEORYColor ChargeEah quark exists in one of three olor states, red (R), blue (B) and green(G). These three olor harges represent the fundamental representation of theSU(3) symmetry group. The generators of this group are a set of eight 3 � 3matries denoted �i; i = 1; :::; 8, where the olor states R,G,B are the base statesof the group.Weak IsospinThe three weak urrents J i�; i = 1; 2; 3, one neutral and two harged, form anisospin triplet of weak urrents whose orresponding harge operator is denotedT i; i = 1; 2; 3. These three operators generate an SU(2)L algebra[T i; T j℄ = i"ijkT k : (2.3)The term 'isospin' is introdued beause the isospin operators obey the samealgebra as regular spin operators. The subsript L on SU(2) is a reminder ofthe fat that weak urrents only ouple to left-handed fermions.The symmetry of SU(2)L is broken by the observed weak neutral urrentbeause the neutral urrent has a right-handed omponent. However, the ele-tromagneti urrent omes to resue beause it is a neutral urrent with bothright- and left-handed omponents. Neither the weak neutral urrent nor theeletromagneti urrent respets the SU(2)L symmetry alone, but two orthog-onal ombinations of the two urrents diagonalize the mass matrix. One om-bination, J3�, ompletes the weak urrent isospin triplet, while the other are theweak hyperharge urrent, JY� .Weak HyperhargeWeak hyperharge Y is de�ned byQ = T 3 + Y2 ; (2.4)with T 3 representing the isospin harge operator of J3� , and Q being the eletriharge operator of the eletromagneti urrent. The hyperharge operator Ygenerates a symmetry group U(1)Y , and the eletromagneti interations havebeen inorporated in the eletroweak theory. By enlarging the symmetry groupto SU(2)L
U(1)Y the eletromagneti and the weak interations have beenuni�ed, but eah group still has its own oupling strength. Beause the gaugebosons of the weak interations are massive, the SU(2)L
U(1)Y gauge group isspontaneously broken, indued by the Higgs mehanism, and an exat U(1)emgauge symmetry is left giving the photon zero mass.The di�erent groups presented in this setion play a very important role inthe SM. If, in the ase of the SU(3) group, the free Lagrangian of the quarkolor �elds is onstruted to be invariant under a SU(3) transformation, the�eld theory of strong interations (QCD) follows as a onsequene. This kindof invariane is alled gauge invariane.



2.1. THE STANDARD MODEL 92.1.4 Gauge InvarianeThe SM is a quantum �eld theory. A quantum �eld theory is onstruted by �rstquantizing the lassial Lagrangian in order to produe �elds that reate andannihilate partiles. The �elds themselves are also desribed by Lagrangians,and the �eld equations are obtained by substituting the Lagrangian of eah �eldinto the Euler-Lagrange equation.If a �eld  (x�) is given and a spaetime transformation x� ! x� + a�leaves the physis of the �eld unhanged, the �eld is said to be invariant underspaetime transformations; the �eld  (x�) has a spaetime symmetry.Other symmetries exist apart from the spaetime symmetry, and Noether'sTheorem states that for any invariane2 there exists a lassial, time-independentharge Q assoiated with a onserved urrent, ��J�= 0.Spaetime symmetry is an external symmetry and leads to the onservationof energy and momentum. Internal symmetries are more interesting, and inpartiular phase transformations written as (x�)! ei� (x�) ; (2.5)where � is a real onstant. Sine � is independent of x�, (2.5) is alled a globalphase transformation. Phase transformations of the kind U(�) � ei� forms aunitary Abelian group; the U(1) group.A generalization of (2.5) gives the transformation (x�)! ei�(x�) (x�) ; (2.6)where �(x�) now depends on time and spae oordinates. The transformation(2.6) is known as a loal gauge transformation; it is possible to de�ne �(x�)loally in spae and time, not just globally as in (2.5).U(1) Gauge InvarianeAs an example, the Lagrangian of the Dira �eld equation is given byL = i ��� �m  : (2.7)If (2.7) is supposed to be U(1) gauge invariant, a ovariant derivativeD� � �� � ieA� (2.8)must be onstruted to replae ��. A� is the gauge �eld, and if (2.7) is to begauge invariant it must transform asA�!A� + 1e��� (2.9)where � is the same � as in (2.5). The gauge �eld A� is a onsequene of theimposed gauge invariane on (2.7), and A� gives rise to a gauge boson, thephoton. Thus, by demanding gauge invariane of the Dira Lagrangian (2.7),2Invariane of the ation under a ontinuous transformation.



10 CHAPTER 2. THE THEORYplus adding a term orresponding to the kineti energy of the photon �eld3, theQED Lagrangian follows:LQED =  (i��� �m) + e �A� � 14F��F�� : (2.10)A mass term like 12m2A�A� is prohibited in (2.10) by gauge invariane, and thephoton is massless. If massive bosons are to derive from a gauge theory, theHiggs mehanism is needed.SU(3) Gauge InvarianeIf the SU(3) gauge group of phase transformations is imposed on the quarkolor �elds, the Lagrangian of QCD is derived. The derivation is a bit moreompliated than in the QED ase beause SU(3) is a non-Abelian group.Gauge invariane of the quark olor �eld leads to eight vetor gluon �elds Ga�,a = 1; :::; 8, that orrespond to eight massless gluons interating with quarks andgluons as disussed in Se. 2.1.3. The �nal gauge invariant QCD Lagrangian,for the simpli�ed ase of one quark avor, is given byL = �q(i��� �m)q � g3(�q�Taq)Ga� � 14Ga��G��a ; (2.11)where q is the quark olor �eld, Ta, a = 1; :::; 8, are the eight generators of theSU(3) group, and g3 is the oupling onstant of SU(3).2.1.5 The Higgs MehanismBeause gauge invariane prohibits mass terms of the gauge �elds in the La-grangian, alternative tehniques must be used if a gauge theory of massivefermions and bosons is to be onstruted. The Higgs mehanism produesmassive fermions and gauge bosons by spontaneously breaking a loal gaugesymmetry, and introdues a new massive partile; the Higgs partile. Thus, ob-servation of the Higgs partile is a very good signature of the Higgs mehanism.This setion presents a more elaborate disussion on the Higgs mehanism andtry to explain how elementary partiles aquire mass.The Higgs mehanism has not yet been on�rmed by experimental data.Future experiments may reveal that the Higgs theory is not the orret oneafter all, but the general opinion among partile physiists is that there mustbe something left to disover beyond the SM. Whatever that may be, it ouldprovide answers to the problems presently enountered in the SM.On SymmetriesA given symmetry of the Lagrangian an behave in a number of di�erent ways.� The symmetry remains exat. U(1) symmetry of QED and SU(3) sym-metry of QCD are examples, and the reason why photons and gluons aremassless.3Beause the kineti energy term must be gauge invariant, it an only involve the invariant�eld strenght tensor F�� = ��A� � ��A�:



2.1. THE STANDARD MODEL 11� The apparent symmetry may have an anomaly, and is not a true symme-try.� The symmetry may be expliitly broken by terms in the Lagrangian whihare not invariant under the symmetry. Isospin symmetry, broken by ele-tromagnetism, and light-quark (up and down) mass di�erene, are exam-ples.� The symmetry may be hidden, meaning that it is an invariane of theLagrangian but not of the ground state. This may ome about if one ormore salar �elds aquire vauum expetation values, and thus symmetryis spontaneously broken.If a theory of massive fermions and gauge bosons is to be renormalizable, spon-taneous symmetry breaking is required.Spontaneous Symmetry BreakingThe SU(2) gauge invariant Lagrangian density, ontaining the Higgs-gauge bo-son oupling, is given byLHG = (D��)�D��� V (�) ; (2.12)where � is an SU(2) doublet of omplex salar �elds� = � �+�0 � =r12 � �1 + i�2�3 + i�4 � ; (2.13)the ovariant derivative ensuring SU(2) invariane isD� = �� + ig �a2 W a� ; (2.14)and the potential V (�) = ��2�y�+ �(�y�)2 ; (2.15)with �2 > 0 and � > 0. The global SU(2) phase transformation is given by�! ei�a�a=2 � : (2.16)Three gauge�elds are represented in (2.14) by W a� (x�) with a = 1; 2; 3, and�a denote the three generators of the group. The number of generators and thenumber of �elds are always the same in a gauge theory. If (2.14) is omparedto (2.8) it is easy to see that the U(1) group has only one generator, while theSU(2) group has three generators.The minima of (2.15) is given by�V�� = �y(��2 + 2��y�) = 0 (2.17)



12 CHAPTER 2. THE THEORYand the non-trivial solution of these minima ish�y�i0 = v22 ; (2.18)with v �r�2� : (2.19)The original symmetry is now broken in the ground state by expanding �about a partiular minimum�1 = �2 = �4 = 0; �23 = v2 ; (2.20)giving the vauum expetation valueh�i0 = � 0v=p2 � : (2.21)The expansion looks like�(x�) =r12 � 0v + h(x�) � ; (2.22)where h(x�) is the expanded Higgs �eld around the vauum expetation value v.The four degrees of freedom of the Higgs doublet are transformed into massiveW� and Z0 bosons, and a neutral, physial Higgs �eld. The Higgs boson massis given as the urvature of the Higgs �eld at the minimum of the potential(2.15) [2℄ m2H = �V 2�2� j�=v = 2v2� : (2.23)The mass of the Higgs boson is not predited by the theory, sine the Higgsself-oupling � is a free parameter.Gauge Boson MassesTo get the masses of the gauge bosons, substitute (2.21) and a de�nition of theharged Higgs �elds into the Lagrangian (2.12). It leads to a mass term for theharged gauge bosons mW = v2g ; (2.24)where g is the oupling onstant of SU(2)L. A mixing our in the neutral gaugebosons, but the �elds Z� and A� diagonalize the mass matrix, as disussed inSe. 2.1.3 and Se. 2.1.2, and lead tomZ = v2pg2 + g02 and m = 0 ; (2.25)



2.1. THE STANDARD MODEL 13where g0 is the oupling onstant of U(1)Y . The ratio between the two ouplingonstants de�nes the mixing angle �W , tan�W � g=g0. The Higgs mehanismthus leads to the important mass relationmWmZ = os �W : (2.26)Any extension of the one-doublet Higgs model must keep this fundamentalrelation in agreement with experiment, and a �-parameter is de�ned by� = mWmZ os �W : (2.27)The experimental world average is [2℄� = 0:995� 0:013 ; (2.28)and thus in perfet agreement with the model.Fermion MassesThe omplete Higgs Lagrangian LH also ontains a Higgs-fermion oupling termLHF LH = LHG + LHF ; (2.29)but for simpliity, only the Higgs-eletron Lagrangian is given hereLHe = �ge �(�e e)L� �+�0 � eR + eR(���0�)� �ee �L� : (2.30)Analogous terms exist for the other fermions. If the expanded Higgs �eld va-uum expetation value (2.21) is substituted into (2.30), the eletron mass isobtained. The masses of the other fermions follow equivalently, and are givenby mf = vp2gf ; (2.31)with gf being the Higgs-fermion oupling onstant. Thus, even if v is known, themasses of the fermions still remain unpredited. Equation (2.31) also imply thatthe Higgs boson tend to deay into the most massive kinematially aessiblefermion pair, and thus makes Higgs observations depend on the aelerator-energy.2.1.6 Higgs ProdutionThe main SM Higgs prodution mehanism in e+e� ollisions at LEP2 energiesis Higgs-strahlung : e+e� ! �0Z0 : (2.32)The fusion proess W+W� fusion : e+e� ! ��e�e�0 (2.33)has a onsiderably smaller ross setion at LEP2 energies. The Feynman dia-grams for the proesses (2.32) and (2.33) are given in Fig. 2.1.



14 CHAPTER 2. THE THEORYZ0�e�e+ Z0�0 W�W+e�e+ �e �0��e
Figure 2.1: Fusion Feynman diagrams of Higgs prodution in the StandardModel. The left diagram is the Higgs-strahlung, and right diagram is theW+W�-fusion2.2 SupersymmetryThe SM is in perfet agreement with all existing data. Why is it then neessaryto onstrut theories that go beyond the SM? Even if the SM explains all partilephysis observations, many questions still remain unanswered if physiists areto understand nature at a deeper level. Suh a theory is often referred to as a'theory of everything'.One of the problems suggesting that the SM is not �nal is the large num-ber of unpredited parameters in the model whih have to be determined byexperiment. These parameters inlude the three gauge ouplings of the threegauge groups (SU(3), SU(2)L and U(1)Y ), the six quark and the three lep-ton masses (as seen in Eq.(2.31)), the three relative mixing angles between thequark families whih speify how the W� boson ouples to quarks, the phasewhih determines the magnitude of CP violation, the mass of the W� boson,and �nally the mass of the Higgs salar [5℄. A total of eighteen parameters.A fundamental theory has to explain the origin of these parameters from �rstpriniples.A seond problem is the origin of the struture assumed when onstrutingthe SM: Why do fermions only interat with the weak urrent in a left-handedmanner? Why are the harges of the quarks quantized in frations one-third theharges of the leptons? Why are there three families of fermions, eah havingthe same oupling to the gauge bosons but greatly di�erent mass?Further, the strengths of the interations in the SM, the oupling onstants,are not related by the model and the SM does not explain why they shouldbe so di�erent when measured. The Higgs mehanism spontaneously breaksthe weak gauge symmetry and thus gives mass to the weak gauge bosons. Butno reason is given for why the weak gauge bosons are massive, and not theeletromagneti nor strong gauge bosons.Another aw of the SM is that it only desribes three of the four fundamentalfores. Gravity is not inluded in the SM. A theory of everything would have todesribe gravitational interations as a quantum theory. At present the most



2.2. SUPERSYMMETRY 15
Figure 2.2: Some quadratially divergent Higgs self-energies.promising andidate of suh a theory is the String Theory, whih will not bereviewed here.However, the perhaps strongest argument for an extension of the SM isthe hierarhy problem: What generates the hierarhy of mass sales needed todesribe the fundamental interations?2.2.1 The Hierarhy ProblemThe hierarhy of masses goes as follows: The Plank mass mP lank , governingthe gravitational oupling, is approximately 1019 GeV. The W� boson massmW , governing the weak oupling, is some 17 orders of magnitude smaller thanmP lank , approximately 102 GeV. The fermion masses range from 1210�3 GeVfor the eletron to 74102 GeV for the top quark, while the neutrinos are lose tobeing massless. The entral question is what auses suh a mass hierarhy? Toompliate the problem even further, radiative orretions to the eletroweakbreaking sale estimated in the SM seem to drive the breaking sale up to thePlank sale.The hierarhy problem is onneted to the point-like nature of elementarypartiles. Virtual proesses, in whih a partile splits into more than one el-ementary state, lead to large radiative orretions to the partile mass. Aone-loop eletromagneti orretion to the eletron mass, me, is quite modest.A uto� �e is imposed on the momentum owing through the loop, and even if�e is the entire mass of the observable universe the orretion only amounts tome ' 1:7me;0 [3℄. The radiative orretion to the Higgs mass does not behavequite as nie. The �rst diagram in Fig. 2.2 shows a Higgs loop with quadratiself-oupling. The shift of the Higgs mass is given by [3℄m2H = m2H;0 + 316 ��2�2H : (2.34)If �H is as large as the Plank mass, the parameter m2H;0 must be negative and�ne-tuned up to 30 deimal plaes, whih is highly unnatural, if a renormalizedmass governed by the eletroweak breaking sale is to be obtained. Beause ofthis unnatural tuning, the hierarhy problem is sometimes also referred to asthe naturalness problem.Even if these radiative proesses are lassially forbidden, they an proeedprovided, in aordane with the unertainty priniple, the virtual states onlyexist for a short period of time. These radiative orretions push the mass of



16 CHAPTER 2. THE THEORYthe Higgs towards the Plank mass, whih in turn leads to W� and Z0 massesof the same order as the Higgs. Suggestions have therefore been made that theHiggs is not an elementary partile, but is omposite and has struture on aertain mass sale, making virtual proesses impossible above this mass sale.Thus, radiative orretions do not blow up the Higgs mass. Tehniolour is oneof these omposite theories in whih the Higgs boson is a fermion-antifermionstate with a new lass of fermions alled tehniquarks.But what if all the SM states, inluding the Higgs, really are elementary?How do we then evade the hierarhy problem? How do we avoid radiative or-retions driving the Higgs mass to the Plank sale? If there exists a symmetryin nature under whih, if the symmetry is exat, the eletroweak group is unbro-ken, then the radiative orretions are absent. The W� andZ0 masses wouldbe naturally small if the breaking of the symmetry is small. Only one symmetryonsistent with relativity an play this role: Supersymmetry (SUSY).2.2.2 MSSMThe Minimal Supersymmetri extension of the Standard Model (MSSM) is thetop andidate of a non-omposite theory without the hierarhy or naturalnessproblem. In MSSM, every elementary partile adopts a partner with a halfinteger spin di�erene ompared to the SM partiles. Thus, every SM fermionstate is related to a SUSY boson state, and every SM boson state is related toa SUSY fermion state. In ontrast, the loal gauge symmetry of the SM onlyrelates states of the same spin.The partners of spin-12 quarks and leptons are spin-0 squarks and sleptons,respetively. The gluon, W�, Z0, and photon gauge bosons, adopt spin-12 part-ners named gluino, Wino, Zino and photino, respetively. These new states areonsiderably heavier than the SM states, and thus explains why no diret evi-dene of the existene of the SUSY partiles has yet been found in experiments.The fat that the SUSY partiles are heavier than their SM partners imply thatSUSY must be broken. Hene, SUSY is not an exat symmetry.SUSY partiles ontribute as virtual states to radiative orretions of themasses, even though they are too heavy to be observed on-shell. The ruialdi�erene now is that the radiative orretions of the new states is of the samemagnitude as the radiative orretions of the SM states but with opposite signs.If SUSY were an exat symmetry, there would be no orretions to the Higgsmass. But beause SUSY is broken on a sale mSUSY , the new SUSY statesaquire masses of order O(mSUSY ). Canellation is spoilt. However, no needfor pani. If the resultant ontribution of order O(mSUSY ) is not too large(i.e. � O(1TeV)), it is onsistent with the observed eletroweak breaking. Thehierarhy problem is solved. But the prie paid is more than twie as manystates as in the SM, and no explanations of the MSSM multiplet struture andouplings are provided.Another important aspet of SUSY is enountered in onnetion with GUTs(Grand Uni�ed Theories). If the three gauge ouplings of the SM are to beuni�ed as one single oupling onstant, SUSY is needed. Without SUSY, thethree ouplings never meet at the same point [8℄.



2.2. SUPERSYMMETRY 172.2.3 ConstraintsExtensions of the SM Higgs setor must satisfy three general onstraints arisingfrom the �-parameter measurements, absene of avor hanging neutral ur-rents, and unitary requirements [2℄. The two �rst are experimental onstraints,while the last is a theoretial onstraint.�-parameterExtensions of the Higgs setor must not spoil the suessful preditions of theW� and Z0 mass relation, that is to deviate from � = 1 (see (2.27)). If measure-ments indiate � 6= 1, new physis beyond the SM are required. It is thereforeof great importane to determine � as aurately as possible. Higgs modelsonsisting of any number of singlets and doublets satisfy � = 1. Other ways ofsatisfying the � measurements are restrited to models satisfying [6℄(2T + 1)2 � 3Y 2 = 1 ; (2.35)with T and Y representing the total SU(2)L isospin and hyperharge, respe-tively. The two-doublet model with T = 12 and Y = �1 satisfy (2.35). Possi-bilities beyond T = 12 , Y = �1 are usually dismissed beause of ompliatedrepresentations.Absene of FCNCAs mentioned in setion 2.1.1, avor hanging neutral urrents (FCNC) arehighly suppressed (see (2.2)). The absene of FCNC strongly restrits possibleSM extensions. A Higgs mass of order 1 TeV would suÆiently suppress tree-level FCNCmediated by Higgs exhange. A more elegant possibility is restritedto models with more than one Higgs doublet, and is based on a theorem statingthat tree-level FCNC are absent if fermions of a given eletri harge onlyouples to one Higgs doublet. The last possibility is favored over an unnaturallyhigh Higgs boson mass [2℄.The oupling of the Higgs bosons to fermions in a two-doublet model gen-erally proeed through one of two senarios: The �rst possibility is that onedoublet ouples to up-type fermions and the other doublet ouples to down-type fermions. MSSM requires this struture beause the two Higgs doubletshave opposite hyperharge, and the Y = �1 doublet only ouples to down-type fermions while the Y = 1 doublet only ouples to up-type fermions. Thishoie is also required if both up- and down-type fermions are to be massive ina supersymmetri theory.Another two-doublet model avoiding FCNC is a model in whih one doubletouples to both type of fermions, while the other doublet ouples to none of thefermions. This kind of a two-doublet model is not useful if the doublets haveopposite hyperharge.To sum up: A two-doublet model is favored over a high Higgs boson mass,and MSSM requires the two doublets to ouple to up- and down-type fermionsseparated.



18 CHAPTER 2. THE THEORYUnitarity ConditionThe unitarity ondition is not only useful as a MSSM onstraint: In the Fermitheory of �-deay the four fermions involved are assumed to have a pointlikeinteration spei�ed by the Fermi onstant GF . This assumption is orret atlow energies, but at high energies the sattering amplitudeM is highly divergentand thus violates the unitarity onditionjM(s)j � 1 ; (2.36)where s represents the available energy. The introdution of a heavy inter-mediating partile, the W� boson, prevents the divergene, and the unitarityondition is satis�ed. A sattering amplitude greater than one impliates aprobability greater than one, whih learly shows the importane of the unitar-ity ondition.Another example of the usefulness of the unitarity ondition provide an al-ternative argument for the SM Higgs: The unitarity ondition must be satis�edin VLVL ! VLVL and f+ �f+ ! VLVL amplitudes by any eletroweak break-ing model. (VL is a left-handed W� or Z0 and f+ is a fermion with positiveheliity.) If a gauge theory is to be renormalizable, non-trivial anellationsamong Feynman diagrams of a given proess are required. As an example, thesattering amplitude of the tree level W+W� ! W+W� interation is givenby MWWWW = �g2 s4m2W + O(1) : (2.37)The divergene of (2.37) is ured by introduing a diagram involving the ex-hange of a (neutral) spin-0 partile, i.e. by introduing a new interation ofthe vetor �eld W with a salar �eld. The new partile is the SM Higgs boson�0, and the tree-level relation g�0WW = gmW , where g is the gauge oupling,guarantees anellation of the growing energy terms. The Feynman diagram ofthe W+W� ! W+W� interation is shown in Fig. 2.3. The Higgs partile isoften explained as the origin of massive fermions and bosons, but the unitarityondition alone provides an evidene for a new salar partile if the SM is tobe renormalizable at a ertain energy level.The MSSM two-doublet model do not depend on a single salar boson toure these unitarity problems alone. It suÆes to obey the following sum rulesfor the salar boson V V and f �f ouplingsXi g2h0iV V = g2�0V V ; (2.38)Xi gh0i V V gh0i f �f = g�0V V g�0f �f : (2.39)These sum rules only apply if the Higgs �elds are made of doublets and singlets.If all these onstraints, the �-parameter, the absene of FCNC and theunitarity ondition are to be satis�ed, the MSSM Higgs theory must be a two-doublet theory.



2.2. SUPERSYMMETRY 19�0W+W� W+W�igmWg�� igmWg��Figure 2.3: The lowest order Feynman diagram for W+W� ! W+W� involv-ing a neutral, salar partile; the Standard Model Higgs �0.2.2.4 The MSSM Higgs ModelIn setion 2.1.5 the spontaneous symmetry breaking of a one-doublet Higgsmodel is disussed. The spontaneous breaking of a two-doublet model followsthe same struture as in the one-doublet ase, although the Higgs potential ismore omplex, and the Higgs spetrum is riher: The two-doublet model haseight degrees of freedom, in ontrast to the four degrees of freedom in the one-doublet ase. It is important to point out that the two doublet model is notpartiular for SUSY models. Two-doublet models may exist within the SM aswell, but MSSM requires a two-doublet, as disussed in Se. 2.2.3Two omplex jY j = 1, SU(2)L doublet salar �elds are given by�1 = � �+1�01 � ; �2 = � �+2�02 � : (2.40)A gauge invariant Higgs potential that avoids FCNC4 has the formV (�1; �2) = �1(�y1�1 � v21)2 + �2(�y2�2 � v22)2+ �3 h(�y1�1 � v21)(�y2�2 � v22)i2+ �4 h(�y1�1)(�y2�2)� (�y1�2)(�y2�1)i+ �5 hRe (�y1�2)� v1v2 os �i2+ �6 hIm (�y1�2)� v1v2 sin �i2 : (2.41)The vauum expetation values that minimize this potential for arbitrary realand positive parameters �i, i = 1; :::; 6, areh�1i0 = � 0v1 � ; h�2i0 = � 0v2ei� � : (2.42)If sin � 6= 0, it leads to large CP violations in ontradition with measurements,and the phase fator � is therefore set to zero. Thus, the Higgs setor in MSSMis CP invariant even though the MSSM as a whole is not CP invariant. Thereis no argument for why the CP violation should our in the Higgs setor.4FCNC are avoided by making the Higgs potential respet the disrete symmetry�1 $ ��1.



20 CHAPTER 2. THE THEORYHiggs SpetrumA spontaneous breaking of the symmetry has ourred, and the Higgs spetrumis obtained by expanding the Higgs �elds around their vauum. Three Gold-stone bosons are identi�ed by their derivative ouplings to the three W� �eldsappearing in the ovariant derivative (2.14). The resulting gauge boson massesare given bym2Z = (v21 + v22) g22 os �W ; m = 0; m2W = (v21 + v22)g22 : (2.43)If (2.43) is ompared to (2.24) and (2.25) it follows that the quadratiallysummed v1 and v2 must be equal to the square of the SM vauum expeta-tion value v. A key parameter in MSSM is de�ned as the ratio between the twovauum expetation values: tan � � v2=v1 : (2.44)The three Goldstone bosons must be removed if the physial Higgs statesare to be determined. The Higgs states are orthogonal to the Goldstone bosons.In the harged setor the physial states are given byH� = ���1 sin � + ��2 os � : (2.45)Beause of the assumed CP -invariane the imaginary and real parts of theneutral salar �elds deouple. The neutral Goldstone orthogonal Higgs statebelongs to the imaginary (CP -odd) setor and is given byA0 = p2(�Im�01 sin � + Im�02 os �) : (2.46)In the real (CP -even) setor the mass matrixM that mix the two neutral higgsbosons is given byM = � 4v21(�1 + �3) + v22�5 (4�3 + �5)v1v2(4�3 + �5)v1v2 4v22(�1 + �3) + v21�5 � ; (2.47)and the mass eigenstates areH0 = p2 �(Re�01 � v1) os�+ (Re�02 � v2) sin�� ;h0 = p2 �(�Re�01 � v1) sin�+ (Re�02 � v2) os�� : (2.48)The masses of the Higgs bosons are given bym2H� = �4(v21 + v22) ;m2A0 = �6(v21 + v22) ; (2.49)m2h0;H0 = 12 �M11 +M22 �q(M11 �M22)2 + 4M212� :At tree-level the Higgs masses simplify tom2H� = m2A0 +m2W� ;m2h0;H0 = 12 �m2A0 +m2Z0 �q(m2A0 +m2Z0)2 � 4m2Z0m2A0 os2 2�� :(2.50)



2.2. SUPERSYMMETRY 21The mixing angle � that diagonalizes the mass matrix M an in the tree-levelase be expressed asos2(� � �) = m2h0(m2Z �m2h0)(m2H0 �m2h0)(m2H0 +m2h0 �m2Z) : (2.51)The mass of the lightest MSSM neutral Higgs partile h0 is bound to besmaller than the Z0 mass at tree-level, but radiative orretions raise the uppermass limit of h0 to about 150 Gev [9℄.To summarize, the following Higgs spetrum has been obtained:� One neutral CP -odd salar A0, often alled a pseudosalar.� Two neutral CP -even salars H0 and h0.� Two harged salars H�.The initial eight degrees of freedom (six � parameters and two vauum ex-petation values) have been turned into �ve Higgs boson mass parametersmH� ; mA0 ; mH0 ; mh0 and tan�, while the remaining three have been ab-sorbed in order to give mass to the three gauge bosons Z0; W+; W�. Thetwo-doublet model has six free parameters: Four Higgs masses, tan� and themixing angle �. At tree-level the Higgs spetrum is determined by the weakgauge boson masses, the CP -odd Higgs boson mass,mA0 , and tan �. The otherparameters of the model only enter through radiative orretions to the Higgsmasses.2.2.5 Higgs ouplingsThe Higgs ouplings ontrol prodution and deay of the Higgs bosons. TheJPC quantum numbers for the Higgs bosons determine whih proesses areallowed and whih are not. If fermions are ignored, every boson of the MSSMtheory is assigned a unique JPC quantum number. If fermions are inluded Pand C are no longer separately onserved, although CP still remains a goodquantum number.The JPC quantum numbers of A0, Z0 and W� is 0+�, 1�� and 1�, re-spetively, and explain why there are no tree-level A0W+W� and A0Z0Z0ouplings. Another argument is that in a CP onserving theory5 the spon-taneous symmetry breaking mehanism does not generate a oupling for theCP -odd A0. The oupling only our at the one-loop level through fermionloops. Beause of this, there an be no A0 bremsstrahlung emission of Z0 orW� at tree-level.The oupling of the Z0 to a pair of idential Higgs bosons, Z0h0h0 orZ0A0A0, is forbidden by Bose symmetry. In the ase of a nonidential Higgspair, the oupling is only present if the two Higgses have opposite CP quantumnumbers, i.e. pair prodution.5Reall that the � fator in (2.41) were set to zero to avoid large CP violations



22 CHAPTER 2. THE THEORYW�W+e�e+ �e h0; H0��e Z0Z0e�e+ e� h0; H0e+
Figure 2.4: Fusion Feynman diagrams of Higgs prodution in the MSSM model.Left diagram is W+W�-fusion, and right diagram is Z0Z0-fusion.The ouplings of H0 and h0 to W+W� and Z0Z0 are suppressed omparedto the SM Higgs ouplings aording to the following sum rule derived from themore general rule (2.38) g2h0V V + g2H0V V = g2�0V V : (2.52)The SM and MSSM Higgs oupling relations expressed in terms of the angles� and � are given by gh0V Vg�0V V = sin(� � �)gH0V Vg�0V V = os(� � �) ; (2.53)whih satisfy (2.52). The Feynman diagrams of W+W� and Z0Z0 fusion pro-esses are given in Fig. 2.4.The remaining interations for Higgs prodution near the Z0 resonane are:� The Bjorken proess Z0� ! Z0h0 or Z0� ! Z0H0.� Neutral pair prodution Z0� ! h0A0 or Z0� ! H0A0.� Charged pair prodution Z0� ! H+H�.The orresponding Feynman diagrams are given in Fig. 2.5.The Higgs ouplings gZhZ and gZhA are omplementary funtions of themixing angle � and tan�:gZhZ / sin(� � �) ; gZhA / os(� � �) : (2.54)Chapter 4 will give more details on h0A0 and h0Z0 interations.
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Figure 2.5: Feynman diagrams of Higgs prodution in the MSSM model. Thetop diagram is Higgs bremsstrahlung, the middle diagram is neutral Higgs pair-prodution, and the bottom diagram is harged Higgs pair-prodution.



Chapter 3The DetetorCERN is a laboratory dediated to the experimental and theoretial study ofpartile physis. The name CERN is an aronym for Centre Europ�een pour laReherhe Nul�eaire.CERN is loated at the border between Frane and Switzerland with theJura mountains to the west and Geneva to the east. CERN was establishedin 1953 to make new disoveries both in experimental and theoretial partilephysis, in addition to help foster European ooperation after the war. Atpresent CERN has twenty member ountries. One of the most reent suessesof CERN ame in 1983 when Carlo Rubbia and Simon van der Meer wereawarded the Nobel Prize in physis for leading the UA1 experiment whihmade the �rst disovery of the Z0 and W� partiles.LEP is an aronym for Large Eletron Positron ollider, and it is the biggestof the aelerators at CERN. The LEP ollider is situated inside a irulartunnel 50 to 100 m below ground surfae. The tunnel is 3.5 m in diameter witha irumferene of 26.7 km, and is one of the biggest aelerators yet built. Theplanning of the ollider and the subsequent detetors started in 1976, and theonstrution work began in 1982. The �rst ollisions were performed August13, 1989 at a enter-of-mass energy of 87 Gev, and the LEP aelerator hasbeen running with great suess up to now, reahing an energy of 208.8 GeV.The ability to probe the onstituents of matter at a small sale and to produeheavy partiles are losely related to the available aelerator energy via thefamous Einstein equation E = m2.LEP aelerates ounter-rotating beams of bunhes of e+ and e� until themaximum energy is reahed. The beams are then brought into head-on ollisionsat four interation points in the enter of the four LEP detetors. The e+ ande� annihilate to produe a on- or o�-shell Z0, depending on the energy of theolliding beams. The Z0 bosons deay with an average lifetime of (2:65�0:01)�10�25 s [2℄, and the outmoving deay produts are studied.Year 2000 is the last year of data-taking with the LEP ollider, and thedismantling of LEP is planned to start in the autumn 2000. LEP will then bereplaed by the LHC (Large Hadron Collider) aelerator whih is planned tostart running at a enter-of-mass energy of 14 TeV in 2005.The main ontribution of the LEP ollider has been preision measurements
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Figure 3.1: The DELPHI detetor with all its subdetetors.of the Z0 and W� masses, and other tests of the SM, both in the eletroweakand QCD setors. The partile physis groups of the Oslo and Bergen univer-sities made large ontributions to the projet measuring the number of fermionfamilies using the now replaed SAT-detetor of the DELPHI experiment.Information on the DELPHI detetor presented in this hapter is olletedfrom DELPHI www-sites [10℄.3.1 DELPHIDELPHI is an aronym for DEtetor with Lepton, Photon and Hadron Iden-ti�ation. DELPHI is one of the four detetors at LEP, the others are L3,OPAL and ALEPH. Fig. 3.1 gives a layout of the DELPHI detetor and all itssubdetetors.The main part of the detetor, the entral ylindrial setion, is often re-ferred to as the barrel. The barrel are losed with to endaps, referred to asthe forward setion. These endaps an be removed during maintenane andservie. The overall length and diameter of the detetor are over 10 m, and thetotal weight is 3500 tons.A huge superonduting solenoid, the magenta ylinder in Fig. 3.1, produesa magneti �eld of 1.23 Tesla that bends the trajetory of the harged partiles.The radius of the trajetory is proportional to the momentum of the partile.The detetor is made up of minor subdetetors speialized to extrat asmuh information as possible about the partile properties and trajetories in



26 CHAPTER 3. THE DETECTORthe detetor. The detetor has a layer struture of subdetetors similar to thelayers of an onion. The subdetetors are lassi�ed aording to what kind ofinformation they provide:� Traking DetetorsThese detetors are plaed lose to the interation point, and measuresthe partile path.{ Vertex Detetor (VD) Plaed losest to the interation point. Itis a silion detetor, and the barrel part is omposed of three layers ofsilion strip plaquettes loated at 66 mm, 92 mm, and 106 mm fromthe interation point. The VD provides preise traking informationin order to detet very short lived partiles, and overs a polar angleof about 20 degrees. The traks are extrapolated bakwards to theinteration point.{ Inner Detetor (ID) Loated between the vertex detetor and thetime projetion hamber. Provides intermediate positions of highpreision in addition to trigger information. It onsists of the JEThamber and the Trigger Layers (TL). A JET hamber is a driftham-ber divided into setors �lled with sense wires that measures thedrifttime. The trigger layers onsist of ylindrial layers of strawtubes. Angular overage down to 15 degrees. The resolution of thewires in the JET hamber is 90 �m, and after alibration the trakextrapolation (TE) resolution is 40 �m in r� and about 1.2 mradin �. The r� measurement is used in the TL to provide an r� TEresolution of 150 �m.{ Time Projetion Chamber (TPC) The prinipal traking de-vie of DELPHI. It also assists in identifying harged partiles bymeasuring dE=dX (energy loss per unit length). Some trigger infor-mation are also given. It is a 2 x 1.3 m ylinder situated betweenthe radii 0.29 m and 1.22 m. A harged partile passing through theTPC ionizes the gas, and an eletri �eld auses the eletrons of theionized gas to drift toward one of the proportional hambers inside.The eletri �eld originates from a plate separating the two drift vol-umes. The TPC provides information on the partile trajetory atradii from 40 to 110 m between polar angles from 39 to 141 degrees.Preision of r� is 250 �m per point, and the z preision is 900 �mper point.{ Outer Detetor (OD) A narrow ylinder plaed outside the BarrelRing Imaging Cherenkov detetor (Barrel RICH). It is made of �velayers of drift tubes loated between the radii 197 and 206 m. Theative length orresponds to polar angles from 42 to 138 degrees.It provides �nal preise measurements of the momenta of harged



3.1. DELPHI 27partiles after the Barrel RICH. Preision of r� is 100 �m per trak,and the z preision is 4.4 m.{ Forward Chamber A (FCA) Covering polar angles from 11 to 32and 148 to 169 degrees. It is situated 160 m from the interationpoint and overs the ends of the TPC.{ Forward Chamber B (FCB) It is a drift hamber onsisting oftwo independent modules at eah endap at an average distane of275 m from the interation point. The sensitive area orrespondsto polar angles from 11 to 36 and 148 to 169 degrees. Eah hit ismeasured twie, �rst with an aurany of 2ns, and seond with anaurany of 8 ns.{ Very Forward Traker (VFT) Loated on both sides of the vertexdetetor. It overs polar angles from 19 to 25 and 155 to 170 degrees.The VFT is the forward part of the Silion Traker (Vertex Detetor).{ Muon Chambers (MUC) The DELPHI detetor ontains threemuon hambers: Barrel Muon Chambers (MUB), Forward MuonChambers (MUF) and Surrounding Muon Chambers (SMC). Theyare loated furthest away from the interation point beause muonsare the only harged partiles that traverse the lead and iron of bothalorimeters essentially una�eted: Most muons of momenta above2 GeV are expeted to reah the muon hambers, whereas the otherharged partiles are stopped at an earlier point in their trajetory.The muon identi�ation is ahieved by omparing extrapolations ofreonstruted traks, provided by subdetetors loser to the intera-tion point, and hits in the Barrel and Forward muon drift hambers.The SMC was installed in 1994 to �ll the gap between the MUB andthe MUF. Design auray for the MUB is 1 mm in r� and 10 mm inz, and the auray when spae points are assoiated to extrapolatedtraks is 2 mm in r� and 80 mm in z. The MUF auray on the xand y oordinates is about 5 mm. The muon hambers are the outergreen layers in Fig. 3.1.Having passed the traking detetors, the partile has now traversed 5 mof the detetor.� Eletromagneti Calorimeters and Sintillator CountersEletron and photon identi�ation are provided primarily by the ele-tromagneti alorimetry system. The system is omposed of a barrelalorimeter (HPC), a forward alorimeter (FEMC), and two very forwardalorimeters; the Small angle TIle Calorimeter (STIC), and the Very SmallAngle Tagger (VSAT). The latter two are mainly used for luminosity mea-surements. The STIC replaed the Small Angle Tagger (SAT) in 1994.



28 CHAPTER 3. THE DETECTOR{ High-density Projetion Chamber (HPC) The barrel eletro-magneti alorimeter. Installed as a ylindrial layer outside the OD.It is mounted on the inside of the solenoid, and onsists of 144 in-dependent modules, arranged in 6 rings of 24 modules eah. Eahmodule is a trapezoidal box �lled with 41 layers of lead separated bygas gaps. An eletromagneti partile produe a shower in the leadand ionizes the gas. The eletrons drift to one end of the box wherethey are olleted by a proportional hamber, as in the TPC. TheHPC is a ylinder of 2 x 254 m situated between the radii 208 and260 m. The polar angle overage is 43 to 137 degrees. Granularityis 1 degree in �, 4 mm in z and 9 samples in r. The HPC in Fig. 3.1is the green ylinder inside the superonduting oil.{ Forward EletroMagneti Calorimeter (FEMC) Eletromag-neti alorimeter in the forward region of the detetor. It onsistsof two disks with diameter of 5 m, and is made of lead-glass. Thefront faes are plaed at a distane of 284 m from the interationpoint, overing polar angles from 8 to 35 and 145 to 172 degrees. Forneutral showers of energy above 2 GeV the average preision on thereonstruted hit position in x and y, projeted to jzj = 284 m, isabout 0.5 m. Fig. 3.1 shows the FEMC as the green dis outsidethe forward HACL.{ Sintillators In order to ahieve maximal overage for high energyphotons under all emission angles with minimal leakage, a so-alledhermetiity ounter, sintillators have been installed between thebarrel and endap, and in the HPC. In addition, the Time Of Flight(TOF) is situated in the barrel, and the HOrizontal Flight (HOF)tagger in the forward setion. The sintillators are also used as fasttriggers. The eÆieny of the HOF is about 80 %, the rate is 0.1-0.4Hz, and the response-time is less than 50 ns.� Hadron Calorimeter (HACL)Measures the kineti energy of neutral and harged strong interatingpartiles (hadrons). Situated between the superonduting oil and thetwo outermost muon hambers in the barrel, and between the forwardEM alorimeter and the outermost muon hamber in the forward setion.Both the barrel and forward alorimeter ontain a muon hamber. Thehadron alorimeters are indiated by red in Fig. 3.1. It is a sampling gasdetetor inorporated in the magnet yoke onsisting mainly of iron. Thebarrel part overs polar angles from 42.6 to 137.4 degrees, and the twoendaps from 11.2 to 48.5 and 131.5 to 168.8 degrees.� Charged Hadron Identi�ationPartile identi�ation of strongly interating partiles. In DELPHI it
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Figure 3.2: Figure showing the struture of the RICH detetors of DELPHI.relies on the dE=dX measurement of the TPC, and on the veloity mea-surement of the RICH detetors. The RICH tehnique is based on thedetetion of Cherenkov light emitted by the moving partile. The DEL-PHI RICH ontains two radiators: A liquid radiator operating in themomentum range from 0.7 to 9 GeV, and a gas radiator used from 2.5 to25 GeV. Full solid angular overage is provided by a Forward RICH anda Barrel RICH, both indiated by yellow in Fig. 3.1. Fig. 3.2 shows thestruture of the RICH detetors of DELPHI. The radius of the ring givesthe veloity of the moving partile. The photon detetor is a gas drifthamber with multi wire proportional hambers (MWPC) to detet thedrift eletrons.{ Barrel RICH Loated between the TPC and the OD. It is a 350m long ylinder with inner radius 123 m and outer radius 197 m.It overs polar angles between 40 and 140 degrees.{ Forward RICH Covers polar angles between 15 and 35 degrees. Itis about 1 m thik, and is loated 1.7 m away from the interationpoint. The most important di�erene between the Barrel and For-ward RICH is the presene of the magneti �eld of 1.23 Tesla in theForward RICH.� Luminosity MeasurementThe luminosity at e+e� detetors is measured by ounting the numberof events with a lear experimental signature. Events with high statistisand a ross setion that an be theoretially alulated to high preisionare used. The proess hosen is Bhabha sattering (e�e+ ! e�e+) atsmall angles, whih proeeds almost entirely through the exhange of aphoton in the t-hannel. In DELPHI the absolute luminosity is measuredusing the Small angle TIle Calorimeter (STIC) and the Very Small AngleTagger (VSAT).{ Small Angle Tile Calorimeter (STIC) It is a sampling lead-



30 CHAPTER 3. THE DETECTORsintillator alorimeter formed by two ylindrial detetors plaedon either side of the DELPHI interation region at a distane of 220m, and overs polar angles between 29 and 185 mrad (from 6.5 to42 m in radius). The lead-sintillator alorimeter are made up of47 lead-sintillator layers, eah with 1600 holes to let the wavelengthshifter �bers go through. The energy resolution at 45 GeV is 3 %,and the spatial resolution of the alorimeter alone is 1.5 degrees in �and 300 �m to 1 mm in radius. The resolution of the silion is 400�m in radius, and the expeted systemati error on luminosities is0.2 %.{ Very Small Angle Tagger (VSAT) Consists of 4 alorimetermodules, eah made of 11 silion diodes separated by tungsten alloyabsorber. Three silion strip planes, plaed at 5, 7 and 9 radiationlengths into the modules, are used for (x; y) shower position measure-ments. A lead blok of 10 radiation lengths are plaed at the bakof eah module to derease the number of parasite events (photonsor o�-momentum leptons) from the interation point. The VSATdetets eletrons and positrons oming from Bhabha sattering, andphotons between 5 and 7 mrad. The energy resolution at 45 GeVis 5 %, at 95 Gev around 4 %. The resolution of the silion stripsis about 170 �m of the x and y oordinates. Expeted systematierror is 1 %. The energy resolution at 45 GeV is 5 %, and at 95 GeVaround 4 %. The resolution of the silion strips is about 170 �m.



Chapter 4The h0A0 AnalysisThe Higgs analysis presented is performed on the Z0!h0A0! b�bb�b hannel ofthe MSSM Higgs setor. The Feynman diagram of the h0A0 hannel is givenin Fig. 4.1.Z0!h0A0 dominates over Z0!h0Z0 at high tan�, and h0A0 ! b�bb�b is thedominant deay hannel. A full san of the (mA; tan�) plane is not performed,only �vemA and two tan� values have been used in the limit alulations. Thislimited san is performed beause the objetive of this analysis is to omparelikelihood methods using di�erent binning proedures and disriminating vari-ables, rather than determine an exluded region of the (mA; tan�) plane. Thelikelihood methods are presented in Chapter 7 and Chapter 8.The deay modes of the h0A0 hannel are presented in Se. 4.2, the relevantbakground proesses in Se. 4.3, and the signals in Se. 4.4.4.1 Higgs ProdutionAt LEP2 the neutral MSSM Higgs bosons h0 and A0 are produed mainlythrough the following two proesses:Higgs� strahlungAssoiated pair prodution : e+e� ! h0Z0: e+e� ! h0A0 (4.1)The Feynman diagrams of these proesses are given in Fig. 2.5. The fusionproesses (Fig. 2.4) play a minor role at the kinematial limit of Higgs-strahlungprodution of h0. A0 is only produed through pair prodution (to leadingorder).The ross setions of the h0Z0 and h0A0 proesses in (4.1), expressed interms of the ross setion �SM for Higgs-strahlung in the SM (Fig. 2.1), aregiven by �(e+e� ! h0Z0) = sin2(� � �)�SM (4.2)�(e+e� ! h0A0) = os2(� � �)���SM ; (4.3)where �� is the momentum fator of the two partile phase spae. The rosssetions for Higgs-strahlung, h0Z0, and pair prodution, h0A0, for tan�=2.0



32 CHAPTER 4. THE H0A0 ANALYSISZ0� h0A0e+
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Figure 4.1: Feynman diagram of the MSSM proess e+e� ! Z0� ! h0A0 !b�bb�b.and tan�=20.0, are given in Fig. 4.2 [11℄, illustrating that pair produtiondominates over Higgs-strahlung at high tan�.4.2 Deay ModesThe CP -even salar Higgs boson h0 deays almost exlusively into a fermion-antifermion pair if tan � > 1 and mh < 100 GeV, whih is the ase for all thesignal hypotheses of this analysis. Fermion deays are also the dominant deaymode of the CP -odd pseudosalar Higgs boson A0. The partial deay widths� of all the neutral Higgs bosons � into fermions f in the limit m2� � m2f aregiven by [9℄ �(�! f �f ) = NGFm2f4p2� g2�ffm� �1 + 173 �s� � ; (4.4)where GF (the Fermi onstant) is the weak oupling onstant, g�ff are theHiggs-fermion ouplings, and �s is the QCD running oupling onstant.Fig. 4.3 [11℄ shows the branhing ratios of h0 and A0 into SM partiles, andit is evident that the dominant deay mode at both tan� = 2 and tan� = 20is b�b.4.3 BakgroundThe three most important bakground proesses to a Higgs searh in the h0A0hannel are: Z0�!W+W�! q�qq�q, Z0 ! q�q and Z0Z0 ! q�qq�q(q�ql�l). Thedominating proess is the Z0 proess, followed by the W+W� proess, and asmall ontribution from the Z0Z0 proess. Fig. 4.5 [12℄ shows the bakgroundlevel vs. the eÆieny for the di�erent Monte Carlo generated bakgrounds,together with the data of the 189 GeV run.



4.4. SIGNAL 33EventsChannel after ut � [pb℄ EÆieny [%℄ Eventsq�q() 2040 99.0 (13:9 � 0:31) � 10�2 13:4 � 0:83q�qq�q 1144 17.733 (18:3 � 0:54) � 10�2 9:45 � 0:35l�lq�q; l = �; � 146 0.3688 (69:4 � 5:7) � 10�2 0:417 � 0:036Bakground 3330 | | 23:2 � 0:90Data 33 | | 33Signal, tan� = 270 1404 0.08329 70:2 � 1:0 9:24 � 0:16mA 75 3735 0.06482 72:0 � 0:62 7:37 � 0:098[GeV℄ 80 3753 0.04890 75:2 � 0:61 5:81 � 0:07585 3900 0.03549 75:0 � 0:60 4:21 � 0:05490 2083 0.02457 74:4 � 0:82 2:89 � 0:043Signal, tan� = 2070 1508 0.15892 75:4 � 0:96 18:9 � 0:31mA 75 3779 0.11352 75:6 � 0:60 13:6 � 0:17[GeV℄ 80 3808 0.07287 76:2 � 0:60 8:77 � 0:1185 3551 0.03844 74:0 � 0:63 4:50 � 0:5990 2094 0.01270 69:8 � 0:84 1:40 � 0:22Table 4.1: The �nal ut number of events, ross-setions, eÆienies and ex-peted number of events for the di�erent Monte Carlo generated bakgroundsand signals, together with the 189 GeV data.4.4 SignalThe h0A0 searh presented is restrited to limit alulations of only ten pointsin the (mA; tan�) plane: Five mA values (70, 75, 80, 85, 90 GeV) at twotan� values (2, 20). The small number of (mA; tan�) points is allowed beausethe objetive of this searh is to ompare likelihood methods using di�erentbinning algorithms and disriminating variables, rather than exlude a regionof the (mA; tan�) plane. No interpolation between the Monte Carlo generatedsignal distributions is performed (see Se. 6.3 and Fig. 6.2).The signal, bakground and 189 GeV data distributions are provided byJ�rgen Hansen, using the DELPHI TEAM C standard trak [13, 14℄ and 4jetseletion [15, 14℄. The �nal ut is set using a neural network-like variable(presented in ref. [14℄), and the ut orresponds to 33 observed andidates.Figures 4.6, 4.7, 4.8, 4.9 and 4.10 shows the the mA = 80 GeV, tan� = 20 sig-nal, together with the di�erent Monte Carlo bakgrounds and the observedandidates at 189 GeV.Table 4.1 gives the number of events after the �nal ut, ross setions,eÆienies, and expeted number of events of the Monte Carlo generated bak-grounds and signals, together with the 189 GeV data. The quoted unertaintiesinlude a ommon 1 % relative error on both signals and bakgrounds, to a-ount for unertainties in enter-of-mass energy, luminosity, and ross setion,



34 CHAPTER 4. THE H0A0 ANALYSISin addition to a systemati error on the di�erene between di�erent generatorsof the various bakground hannels and the modeling of the suessive uts, esti-mated to be 5.7 % for the PYTHIA bakground, and 2 % for the EXCALIBURbakgrounds [14, 16℄.
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Figure 4.5: Figure showing the bakground level vs. the eÆieny for thedi�erent Monte Carlo generated bakground samples, together with the data ofthe 189 GeV run [12℄.
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Chapter 5Jet Clustering andKinematial FitsThe single �nal-state partiles of a high energy interation event have to begrouped together in lusters in order to reonstrut the jet topology of the event,and alulate the jet momentum and energy. The jet lustering of the signals,bakgrounds and data andidates used in the analysis of the likelihood methodspresented in Chapter 7 and Chapter 8, is the standard DELPHI Durham [17℄algorithm programmed by J�rgen Hansen. The presentation of the Durham jetlustering is based on the PYTHIA 5.7 manual by T. Sj�ostrand [18℄.To orret the event data for detetor ineÆienies, a kinematial �t on thesingle partile traks of the jets is performed. The e�et is sharper mass dist-ributions, as is seen in Fig. 5.1. Se. 5.2 disuss kinematial �ts in more detail.The disussion on kinematial �ts are inuened by the book \ Statistis for Nu-lear and Partile Physiists" by Louis Lyons [19℄, and private ommuniationswith J�rgen Hansen.5.1 Jet ClusteringThe single hadroni traks of an event have to be ombined into lusters oftraks in order to alulate the momentum and energy of the jets.To determine the individual jet axes in events of more than three jets, atehnique known as luster �nding is developed: Eah �nal-state partile isinitially onsidered to be a luster. The two nearest lusters are found usingsome distane measure. If the distane is smaller than a ut-o� value, thelusters are joined to form a new luster. This routine is repeated until thedistane between any two lusters are above the ut-o� value. The ut-o� valueontrols the �nal jet piture, and it is possible to have the luster algorithm�nd a predetermined number of jets, whih is the ase for the 4 jet lusteringof h0A0 ! b�bb�b events.A jet is de�ned as a olletion of partiles whih have a limited transversemomentum with respet to a ommon jet axis, and hene also with respetto eah other [18℄. The distane measure used should only depend on thetransverse momentum, and the distane measure of the Durham algorithm is



44 CHAPTER 5. JET CLUSTERING AND KINEMATICAL FITSwritten as [18℄ ~yij = 2min(E2i ; E2j )(1� os �ij)E2m ; (5.1)where Ei and Ej are the energy of the two lusters, �ij is the relative anglebetween the lusters, and Em is the enter-of-mass energy of the interation.The physial interpretation of the ~yij distane measure is the transverse mo-mentum of the softer partile with respet to the diretion of the harder one.In ontrast, the LUCLUS routine [18℄ uses a distane measure with the physialinterpretation as the transverse momentum of either partile with respet tothe ommon diretion given by the momentum vetor sum.Initially, eah partile is onsidered to be a luster, and the two lusterswith smallest relative distane ~yij are found and joined to one if ~yij < ~yjoin,with ~yjoin some predetermined distane. The momentum of the new lusteris the vetor sum of the momenta of the joined lusters. This proedure isrepeated until the distane between any two lusters are greater than ~yjoin. Ifthe number of �nal lusters do not math a predetermined number of jets, thevalue of ~yjoin is modi�ed, and the lustering algorithm repeated until the �nalnumber of lusters math the predetermined jet number.The main di�erene between the Durham algorithm and the LUCLUS routine,is that Durham does not allow reassignments. Reassignment is performed inthe LUCLUS routine after eah joining beause the partiles of a new luster maybe loser to another luster.5.2 4C FitA kinematial �t is performed to make the measured quantities of an observedinteration satisfy a set of kinematial onstraints. This is done by onsideringall on�gurations of the four-momentum vetors of the outgoing partiles thatsatis�es these onstraints. From this in�nity of four-momentum vetor sets, theset that has the least �2 value are used.A set of n measurements xm1 ; xm2 ; :::; xmn with errors �1; �2; :::; �n are pro-vided by the detetor. These measurements are subjeted to a number of on-straints, Cj(x1; x2; :::; xn), j = 1; :::; n, satis�ed by the numbers �x1; �x2; :::; �xn.The quadrati sum S2 is de�ned asS2 = nXi=1 �xmi � �xi�i �2 ; (5.2)whih gives a measurement of how muh the xi set of measurements have tobe moved in order to �t the �xi set of values.1 Further, �2 is de�ned as the1The S2 de�nition (5.2) orresponds to the �2 de�nition [20℄�2 = nXi=1 �xi � �� �2 ;provided the measured values xmi are all olleted from a normal distribution N(�i= �xi; �2i ),



5.2. 4C FIT 45minimum of S2 when varying �xi�2 = min(S2) : (5.3)The problem now is to �nd the set �x1; �x2; :::; �xn, among the in�nite number ofsets, that minimize S2.In the ase of a h0A0 ! b�bb�b interation the measured values are the mo-mentum and energy of the four jets: (pix; piy; piz; Ei), i = 1; :::; 4.5.2.1 The ConstraintsThe four onstraints of a 4C �t are the onstraints leading to onservation ofmomentum and energy and, in the ase of a olliding beam experiment, theonstraints are given as:� C1 =Ptraks px = 0� C2 =Ptraks py = 0� C3 =Ptraks pz = 0� C4 =PtraksE = ECM = psThese onstraints are not hypothesis dependent; they are well founded physiallaws. In ontrast, a 5C �t imposes a �fth onstraint: The masses of the twopairs of jets, resulting from a pairing of the four lustered jets two by two, areequal. This onstraint is hypothesis dependent, and a 5C �t is rarely used inthe h0A0 ! b�bb�b hannel.After the kinematial �t is performed, the problem of whih two jets belongto whih two initial heavy objets must be addressed. If a 4C �t is used, thepairing of least mass di�erene is onsidered to be the best pairing. If a 5C�t is used, the pairing of least �2 is onsidered to be the best pairing. Theh0A0 events used in the analysis presented in this thesis are subjeted to a4C �t, using the PUFITC pakage programmed by N. J. Kjaer of CERN andM. Mulders of NIKHEF/DELPHI. The three possible pairings are lassi�edaording to their jet mass di�erene. Chapter 8 provides a more elaboratedisussion on the pairing problem.Fig. 5.1 shows the invariant mass of h0A0 ! b�bb�b events before and aftera 4C �t performed by PUFITC [12℄. The e�et of the �t is a sharper massdistribution.where �i is the mean. However, there is of ourse no reason to expet the xmi to be normaldistributed with �i = �xi prior to the kinematial �t. Hene, the de�nition (5.2) is referred toas a quadrati sum, S2, not as �2.



46 CHAPTER 5. JET CLUSTERING AND KINEMATICAL FITS
0

50

100

150

200

250

300

350

400

450

40 60 80 100 120 140 160 180 200

ID
Entries
Mean
RMS

           1001
           3822

  126.6
  23.13

0

50

100

150

200

250

300

350

400

450

40 60 80 100 120 140 160 180 200

ID
Entries
Mean
RMS

           1001
           3808

  151.2
  18.36

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80

ID
Entries
Mean
RMS

           1002
           3822

  11.50
  10.19

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80

ID
Entries
Mean
RMS

           1002
           3808

  11.19
  10.75

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

ID
Entries
Mean
RMS

           1000
           3822

  57.54
  12.40

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120

ID
Entries
Mean
RMS

           1000
           3808

  70.02
  11.24

0

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120 140

ID
Entries
Mean
RMS

           1000
           3822

  69.04
  12.91

0

50

100

150

200

250

300

350

400

450

20 40 60 80 100 120 140

ID
Entries
Mean
RMS

           1000
           3808

  81.19
  10.01

Figure 5.1: Plots of mass estimators of the h0A0 ! b�bb�b hannel before andafter a 4C �t performed by the PUFITC pakage [12℄. The plots to the left arethe distributions of the mass estimator before the 4C �t, and the plots to theright are the distributions of the mass estimators after the 4C �t. As is evidentfrom these plots, the 4C �t sharpens the mass distributions by reduing theRMS. The signal sample used is mA = 80 GeV, tan� = 20 (mh = 79:53 GeV).



Chapter 6The ALRMC ProgramThe ALRMC program [21℄ o�ers an optimal method for setting exlusion limitson the Higgs mass for multihannel searhes using a likelihood ratio tehnique.The program is used for alulating on�dene levels based on signal and bak-ground distributions prepared by the likelihood methods presented in Chapter 7and Chapter 8. The limits are presented in Table 10.1.A brief summary of hypothesis testing in general, together with the ALRMCspei�s, are presented in Se. 6.1. Se. 6.2 presents the inputs of ALRMC,and Se. 6.3 explains the ustomizations performed to make ALRMC �t therequirements of the analysis.6.1 Statistis TheoryThe disussion presented in this setion is inspired by the book \Probabilityand Statistis in Partile Physis" by Frodesen, Skjeggestad and T�fte [20℄, andthe Delphi-note \Optimal Statistial Analysis of Searh Results based on theLikelihood Ratio and its Appliation to the Searh for the MSM Higgs Bosonat ps = 161 and 172 GeV" by Alex L. Read [21℄.6.1.1 Hypothesis TestingThe true value of a parameter � is wanted. A number of n random sam-ples, or observables, x1; x2; :::; xn are olleted from a population desribedby a probability density funtion F (xj�) whih depends on �. A test-statistiX(x1; x2; :::; xn), whih does not depend on any unknown parameters, is on-struted from the n samples. It is essential that X has some orrespondeneto �; X is an estimator of �. A null hypothesis is formulated stating a one- ortwo-sided limit on the true value of �. A on�dene level is interpreted as theprobability of �nding the true value of � in the region stated in the null hypoth-esis. The on�dene level is the integral of the probability distribution funtionof the test-statisti, P (X), between the limits stated in the null hypothesis.A on�dene limit is the value of a population parameter (suh as a partilemass or prodution rate) whih is exluded at a spei� on�dene level[21℄. Aon�dene level expresses the on�dene assoiated with a hypothesis.



48 CHAPTER 6. THE ALRMC PROGRAMConstruting a searh analysis follows three general steps: De�ne the ob-servables, de�ne a test-statisti, and de�ne rules for exlusion and disovery.The rules lead to ranges of values of the test-statisti, and these ranges are ob-tained by alulating the integration limits of the probability density funtionintegral that gives the spei�ed on�dene level. Typial observables may bethe number of andidates satisfying a set of riteria, the reonstruted invariantmass of the andidates, b-quark tagging probabilities, or a disriminant variableonstruted from a neural network. The test-statisti is onstruted to rank theexperiments from the least to most signal-like, and the ALRMC program utilizethe likelihood ratio test-statisti for parameter estimation.Two kinds of probability density funtions enter a searh: The signal dist-ribution of the mass hypothesis, and the bakground distribution of the knownbakground. A number of andidates, satisfying ertain riteria, are identi�edfrom the reonstruted data provided by the detetor. To orret the andidatesfor bakgrounds, the bakground rates are subtrated from the andidates. Inase of small or absent signal rates, the result of this proedure may lead tounphysial rates. The way to deal with this is to normalize the on�denelevel observed for the signal+bakground together hypothesis, CLs+b, to theon�dene level observed for the bakground only hypothesis CLb;CLs � CLs+bCLb : (6.1)The test-statisti X depends on the observables and the population param-eters of the known bakground distribution and the signal hypothesis distribu-tion, and it is onstruted to inrease monotonially for inreasingly signal-likeexperiments. Hene, the on�dene in the signal+bakground hypothesis isgiven as the probability that the test-statisti is less than or equal to the ob-served experimental value, Xobs:CLs+b = Ps+b(X � Xobs) ; (6.2)with Ps+b(X � Xobs) = Z Xobs0 dPs+bdX dX ; (6.3)and where dPs+b=dX is the probability distribution funtion of the test-statistiX for the signal+bakground hypothesis. The on�dene in the bakgroundonly hypothesis is similarly given asCLb = Pb(X � Xobs) ; (6.4)with Pb(X � Xobs) = Z Xobs0 dPbdX dX ; (6.5)and where dPb=dX is the probability distribution funtion of the test-statistiX for the bakground only hypothesis.The signal hypothesis will be onsidered exluded at the on�dene levelCL when CLs � 1� CL : (6.6)



6.1. STATISTICS THEORY 496.1.2 Maximum Likelihood MethodIf a population has a probability distribution given by F (xj�), the likelihood ofthe observations x1; x2; :::; xn for a spei� � is given byL(x1; x2; :::; xnj�) = nYi=1F (xij�) ; (6.7)and it expresses the joint onditional probability for obtaining the measure-ments, given �. The likelihood-ratio � is generally given as� � L(!̂)L(
̂) ; (6.8)where 
̂ is the parameter spae of �, and !̂ is a subspae of 
̂, hene 0 < � < 1.F (xj�) is now onsidered a funtion of � = f�1; �2; :::; �kg 2 
̂. If the null hy-pothesis is true, the parameters belong to the subgroup !̂.In searh for new partiles the approximate likelihood ratioQ is given by [21℄Q = L(s + b)L(b) ; (6.9)i.e. the ratio of produts of probability densities for the signal+bakgroundhypothesis, to the produts of probability densities for the bakground only(signal-free) hypothesis. The likelihood ratio, as a onsequene of the Neyman-Pearson theorem [22, 21℄, maximizes the probability of rejeting a false hypoth-esis at a given on�dene level, and onversely minimizes the probability ofmaking a false disovery at a given disovery on�dene level.When searhing for small signals in the presene of small bakgrounds inseveral distint hannels, and where more than just the number of andidateswill enter the likelihood ratio, it is in general not possible to obtain analytiexpressions for the likelihood ratio probability distribution funtions (p.d.f).The p.d.f's may instead be obtained by Monte Carlo generations of experimentsaording to the relevant hypothesis, and on�dene levels, omputed as thefration of Monte Carlo experiments satisfying Q � Qobs [21℄ (see (6.2) and(6.4)).Fig. 6.1 shows �ve di�erent mass hypothesis distributions, normalized toone, together with the observed andidates, and gives a simple illustration ofhow the maximum likelihood method works in a searh where the disriminatingvariable is the reonstruted mass of the andidate. Five Monte Carlo generatedsignal distributions are given for mA values ranging from 70 to 90 GeV in stepsof 5 GeV in the tan� = 20:0 setor at ps = 189. The vertial bars on thetop of the plot are the experimentally measured values, i.e. the reonstrutedinvariant mass of eah observed andidate. As is seen in the plot, the meanof the signal distributions moves towards higher masses, and the width of thedistributions inreases as mA inreases. The likelihood is in this simple asegiven as L = nYi=1 Smi(mi) ; (6.10)
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6.2. THE INPUTS 51with known absolute signal and bakground rates, an be written as [21℄:Q(mH) = QNhani=1 e�(si+bi)(si+bi)nini!QNhani=1 e�bibniini! Qnij=1 siSi(xij)+biBi(xij)si+biQnij=1Bi(xij) ; (6.11)where ni is the number of observed andidates in eah hannel, xij is the valueof the disriminating variable measured for eah of the andidates, si and bi arethe integrated signal and bakground rates per hannel, and Si(xij) and Bi(xij)are the probability distribution funtions of the disriminating variable for thesignal and bakground, respetively.6.2 The InputsThe user de�ned inputs required by ALRMC are probability distributions forthe signal hypotheses and the known bakground, the disriminating variablevalues of the observed andidates, and the eÆienies for eah hannel. Prede-�ned inputs are tables of ross-setions and branhing ratios used in the limitalulations.The bakground distribution together with the signal distributions for allhannels and mass hypotheses to be used in the ALRMC alulation, are pro-vided by a �le named distributions.dat, reated from PAW-histograms ofthe distributions. It is of utmost importane to use same upper and lower edgesfor all the histograms of distributions.dat.ALRMC only handles one or two disriminating variables. The values of thedisriminating variable(s) for eah observed andidate is given as DATA state-ments in the subroutine d xx hannels of d higgs.f, where xx is the name ofthe searh hannel1. d higgs.f is a olletion of Fortran subroutines that on-trol whih hannels and eÆienies are used in the limit alulations, read theorret �les, interpolate2 the signal distributions, and return the SM expetedsignal, SM ross-setions and SM branhing frations.The eÆienies3 are not given as the eÆienies obtained at eah simulated(mA; tan�) point. Instead, a �t of the eÆieny vs. mass is given as FortranReal Funtions. The eÆieny-�ts used in the limit alulations presented inthis thesis are produed using the program fiteff.kuma[23℄ whih takes ntu-ples of eÆieny and mass as inputs. The eÆieny Real Funtions to be usedin the alulations are onatenated into effiieny.f.The prede�ned tables of ross-setions and branhing frations are madeusing the HZHA generator, and the tables are found in ref. [11℄.The README �leof ref. [11℄ ontains more details on the HZHA generations.1xx is either ha, hz or hinv2The interpolation proedure is not used in the analysis presented3EÆieny used in this ontext means the experimentally obtained eÆieny of eah han-nel



52 CHAPTER 6. THE ALRMC PROGRAM6.3 ALRMC CustomizationIn a full limit alulation several hannels at di�erent enter-of-mass energiesare used. But the likelihood methods presented in this thesis are limited to onesingle hannel at one single enter-of-mass energy: h0A0 ! b�bb�b at 189 Gev.The other hannels are inhibited in the subroutine fill array of mssm.f bysetting the boolean array QCHAN(I), where I is the hannel number, false forall hannels exept for the h0A0 hannel.The Higgs mass hypothesis is haraterized by three parameters in the h0A0(or h0Z0) hannel: The ratio tan� between the two vauum expetation valuesin the MSSM Higgs model, the mass mA of the neutral CP -odd salar, andthe mixing parameter � that diagonalizes the mass matrix. Setion 2.2.4 givesmore details on the parameters and mass spetrum of the MSSM Higgs model.The h0A0 analysis presented is on�ned to alulate limits for only tenpoints in the (mA; tan�) plane, beause the objetive of the analysis is to testdi�erent binning proedures and disriminating variables. Files of the generalform ems mixing.dat [11℄ are tables of ross setions and branhing frationsalulated for givenmA, tan� andmh values. The enter-of-mass energy is givenby ems, and mixing equals no, max or typ orresponding to the mixing appliedin the HZHA generations. In order to ustomize ALRMC to only alulatelimits for ertain (mA,tan�) points, ems mixing.dat is modi�ed to ontainonly the mA and tan� values given by the signal hypotheses.Further, the subroutine exl fast of mssm.f is modi�ed to only read themA and tan� values listed in the modi�ed ems mixing.dat.ALRMC ontains an interpolation routine whih interpolates between twoMonte Carlo generated signal distributions in order to alulate limits for in-termediate mh values. However, the distributions produed by the likelihoodmethods presented in Chapter 7 and 8, are too ompliated for the ALRMC in-terpolation proedure. The e�et of the ALRMC interpolation routine is shownin Fig. 6.2 whih is plot of the expeted CLs alulated with and without theinterpolation proedure. From this plot it is evident that the intermediate CLs(indiated by +), based on interpolated signal distributions, are not orret.Hene, the interpolation routine is skipped, using a GOTO statement in subrou-tine d sigdis interpol of mssm.f.Finally the title-ard mssm.tit must be set up orretly. The LUMINOSITYag is set to the lowest mA and tan� value, and the OBSERVED ag is set to avalue that spei�es whih alulations ALRMC should perform.
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Chapter 73D Likelihood MethodsIn a searh for a partiular signal in a number of observed andidates, olletedfrom a distribution of both bakground and signal, the signal is distinguishedfrom the bakground using a variable with di�erent distributions for signal andbakground. Suh a variable is alled a disriminating variable. The betterthe disriminating variable distinguishes the signal from bakground, the lowersignal on�dene levels (CLs) are alulated, in the absene of a true signal,and the exluded region inreases.If three disriminating variables provide more information about the signalthan two disriminating variables, it is likely to expet an improvement of theexlusion limits, in the absene of a true signal, if the three variables are used.This is the reasoning behind the development of the three dimensional (3D)likelihood methods.ALRMC is implemented to handle a maximum of two disriminating varia-bles. The 3D likelihood methods use three disriminating variables despite theALRMC limit of two variables. This is possible beause the three disriminatingvariable distributions are mapped into a one dimensional (1D) disriminatingvariable spae. The mapping algorithm is presented in Se. 7.5.The three disriminating variable distributions are binned before the onedimensional disriminating variable is onstruted. Fixed binning is the basibinning proedure, and variable binning is designed to enhane the resolutionof the distributions, ompared to the �xed binning proedure, by applying theavailable bins where the distributions hange rapidly. The binning proeduresare presented in Se. 7.2 and Se. 7.3, respetively.There is a danger of overtraining the alulated on�dene levels of thesignal and bakground distributions if the bins are too small. Overtraining isfurther disussed in Se. 7.4.The observed andidates are given a treatment slightly di�erent from thetreatment of the signal and bakground distributions. The andidate binningand mapping are presented in Se. 7.6.Finally the PAW maros alling the binning and mapping routines, andinitializing the appropriate 3D and 1D vetors of the 3D likelihood methods arepresented in Se. 7.7.The term '3D likelihood method' is in this thesis used to denote a method



7.1. THREE DISCRIMINATING VARIABLE DISTRIBUTIONS 55that takes a total of three disriminating variables as input, and gives one �naldisriminating variable, to be used with ALRMC, as output.7.1 Three Disriminating Variable DistributionsTwo sets of three disriminating variables are used as input to the 3D likelihoodmethods. The �rst set onsists of the invariant massesmh andmA of the neutralMSSM Higgs salars h0 and A0 (see Se. 2.2.4) of the h0A0 ! b�bb�b hannel,and a disriminating variable whih is the result of an analysis resembling aneural network analysis1 presented in ref. [14℄. Beause the third disriminatingvariable resembles a neural network (NN) variable, it is for simpliity referredto as the NN variable in the following. Fig. 7.1 gives histograms of Monte Carlogenerated mh, mA, and NN distributions for the mA = 80 GeV, tan� = 20:0signal hypothesis, one of a total of ten signal hypotheses used with the 3Dlikelihood methods.The seond set of disriminating variables is only used with the �xed binning3D likelihood method. This set onsists of the sum of the invariant masses of the�rst set,M = mh+mA, the di�erene of the masses, �m = mA�mh, and thesame NN variable as in the �rst set. The implementation of the �xed binningmethod that uses the mh; mA set is idential to the implementation of the �xedbinning method that uses the M;�m set. Only the mh; mA implementationis treated in detail in this hapter. Chapter 8 presents a 5D extension of the�xed binning 3D method, and the M;�m set is disussed in more detail inChapter 8.The three distributions of Fig. 7.1 are ombined to form the 3D disrimi-nating variable signal distribution of Fig. 7.2: The x-axis is the distribution ofmA, the y-axis is the distribution ofmh, and the z-axis is the distribution of theNN variable. The 3D bakground distribution is also shown in Fig. 7.2. Thenext step is to onstrut a 3D vetor ontaining the 3D distribution by binningthe distribution. The 3D vetor is further treated in PAW using algorithms toprodue a �nal 1D vetor ontaining the disriminating variable distributionto be used as input to ALRMC. It is essential that exatly the same binningproedure is applied to all signal, bakground and andidate distributions usedin the limit alulations.7.2 Fixed BinningThe binning is performed by separating the 3D spae of the 3D distribution intobloks, or bins, of a given size ontaining a small part of the whole distribution.An event of the distribution is a unique (mA; mh; NN) point in the 3D spaespanned by the three variables, and a bin is a 3D sub-spae that ontains thenumber of events on�ned between the bin walls. A Fortran seletion routinealloates eah event to its orresponding bin. The routine loops over all the1The analysis ontain many features of a neural network, but the analysis is stritly speak-ing not a neural network. The variable is nonetheless referred to as a neural network variablefor simpliity.
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Figure 7.1: Monte Carlo generated distributions for the mA = 80 GeV, tan� =20:0 signal hypothesis in the h0A0 ! b�bb�b hannel at 189 Gev. The top plots arethe invariant mass distributions of mh and mA, respetively, and the bottomplot is the distribution of the neural network-like variable presented in ref. [14℄.
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Figure 7.2: The three disriminating variable distributions ofmA, mh, and NNplotted as 3D distributions. The top plot is the bakground 3D distribution,and the bottom plot is the mA = 80 GeV, tan� = 20:0 signal 3D distribution.The xy-plane is spanned by the two invariant masses, and the z-axis is thedistribution of the neural network-like variable presented in ref. [14℄.



58 CHAPTER 7. 3D LIKELIHOOD METHODSevents of the distribution, and three bin index numbers, I� , are alulated foreah disriminating variable � usingI� = �(j)� �min�� + 1 ; (7.1)where � is mh, mA, or NN , j is the event number, �min is the minimum valueof the � distribution, and �� is the binwidth of the bins of the � distribution.The ontent of the bin is stored in a 3D vetor of index (Imh ; ImA ; INN), and aontrol routine gives an error message if an event is not plaed in any bin. Theproedure given here is referred to as the �xed binning proedure.7.2.1 ResolutionThe total number of bins, N3D, used in a 3D binning proedure, i.e. the size ofthe 3D vetor, is given by N3D = NmANmhNNN ; (7.2)and the number of bins N� used to bin eah variable � is given byN� = �max � �min�� ; (7.3)where �max and �min are the maximum and minimum value of the � distribution,respetively. The only way to improve the resolution of a given distribution of�xed bins is to redue ��. Hene, in the ase of �xed binning, the size ofthe distribution vetor is very sensitive to the resolution. In an attempt toinrease the resolution, but not the size of the vetor, a proedure referred to asvariable binning is developed. It is also interesting to vary the binning withoutinreasing the total size of the vetor beause ALRMC sets an upper limit onthe number of bins the vetor might ontain2.7.3 Variable BinningAs is seen in Fig. 7.2 the 3D distribution of the signal is onentrated to thefurthest orner of the box, leaving a lot of empty spae in the box. Thus, when�xed binning is applied to the distribution, a few bins of the 3D distributionontain large samples of the distribution while a lot of the bins are almostempty. The information on the distribution inside the bin is lost after thebinning has been performed. Hene, the larger portion of a distribution a singlebin ontains, the more information is lost, and the e�et is a lower resolution ofthe distribution. The resolution therefore strongly depends on the size of thebins. If the resolution is to be enhaned without hanging the total number ofbins, the use of the bins must be optimized by applying the available bins tothe parts of the distribution where the important information is. Thus, better2The ALRMC maximum number of bin limit is not �nal, and may be hanged in theALRMC setup. However, a higher limit will result in using more CPU time and hene slowthe alulations down.



7.3. VARIABLE BINNING 59resolution is ahieved by making the size of the bin depend on the numberof events inside the bin. This proedure is ommonly known as a Fuzzy Boxproedure. In the variable binning proedure presented here, the size of thebin is made to depend on the position of the bin rather than number of events,thus trying to simplify the implementation of the variable binning proedure.Beause the number of events inside the bin depends on the position of thebin, the binsize of the variable binning proedure only indiretly depend on thenumber of events. Hene, variable binning is only an approximate Fuzzy Boxproedure. The di�erent binwidth regions are determined by inspetion of thedistributions.The �rst step of variable binning is to bin the whole distribution usingthe binwidths required for the sensitive region of the signal or bakgrounddistribution. The result is a large vetor with many still empty bins, but thenumber of events in the �lled bins is lower than in the �xed binning ase beauseseveral bins have now been used to bin a part of the distribution that one singlebin overed earlier.The next step is to redue the size of the vetor by ombining the bins thatdo not ontain any important information about the distribution; a rebinningof the vetor must be performed. The rebinning is done in a separate Fortranroutine that takes the large vetor ontaining the distribution in small, �xedbins as input, and gives a rebinned vetor with a redued number of entriesas output, ontaining the distribution in bins of a size that depends on theposition of the bin. The rebinning proedure adds the ontents of the bins thatare to be ombined, and stores the sum in the orret bin of the output vetor.The bins that are not to be ombined, i.e. the bins that ontain importantdistribution information, are just transferred to the orret bin of the outputvetor with their original bin ontent. A ontrol routine is alled after therebinning is performed to hek if the total number of events of the distributionhas hanged during rebinning. Fig. 7.3 gives the bins in the �rst and last stepof the variable binning proedure to the left and right, respetively.Two variable binning proedures are implemented. The �rst proedure ap-plies variable binning to mh and mA, while the bins of the NN variable isunhanged. This proedure only takes the sensitive regions of the signal distri-butions into aount. Se. 7.3.1 provides more details.The seond proedure applies variable binning to all three variables. Thisproedure takes the sensitive regions of both the signal and bakground distri-butions into aount. Se. 7.3.2 provides more details.7.3.1 Rebinning of mh and mAIn the ase of the mh and mA distributions, the region where the smallest binsare used is the region of about two standard deviations entered around themean, as seen in Fig. 7.3. The signal distribution of the NN variable in Fig. 7.1is lose to at, i.e. no region of divergent event density exists, and �ne binningis not needed to inrease the resolution of the signal NN distribution.The same binning proedure and resolution must be applied to all the dist-ributions that enter the searh. Hene, the appropriate region for �ne binning
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7.6. THE CANDIDATES 63if the andidate number, identifying the andidates of the resulting large bin, isto be orret. Two 3D vetors of equal size are needed in order to keep reordof whih bin ontains whih andidate(s): A denotes a 3D vetor that ontaina number whih represent the andidate(s) of the bin, while B denotes a 3Dvetor whih is a ounter of how many andidates belong to the bin.One bin may ontain more than one andidate, and a simple algorithm thatadds a new andidate to a bin without erasing the old andidate is given byAxyz = BxyzXi=1 Ci102(i�1) ; (7.5)where Axyz is a number representing the andidates in bin (Ix; Iy; Iz), Bxyz isthe total number of andidates in the same bin, and Ci 2 [1; 33℄ is the andidatenumber of the i'th andidate of the bin.3 If the andidates numbered 3, 12, 27all end up in the bin of index (1,1,2), the ontent of A112 is 271203, and theontent of B112 is 3.The andidate bins have to be rebinned in the same way as the distributionbins. The rebinning of the andidates is however more ompliated than therebinning of the distributions, beause the ontents of both A and B must berebinned simultaneously. There is also an upper limit on how many andidatesthe A vetor an keep trak of. If more than four andidates end up in thesame bin, the overow andidate(s) is plaed in an overow A+ vetor. Thelimit on four andidates is purely tehnial. A PAW vetor an only ontaininteger numbers less than 108, and Axyz > 108 if Bxyz > 4 and C > 1.The ontents of the bins of the rebinned A vetor, A0, are alulated usingA0xyz = nXi=1 Axiyizi102(Bxiyizi�1) ; (7.6)where A0xyz is a number representing the andidates in bin (I 0x; I 0y; I 0z), n is thenumber of small bins ontained in the large bin,Axiyizi is the number represent-ing the andidate(s) of the i'th small bin, Bxiyizi is the number of andidatesin the i'th small bin, and A0xyz is the number representing the andidate(s) ofthe n small bins.The last step of the andidate preparation is to map the rebinned andidatebins from 3D spae to 1D spae while keeping trak of whih andidate ends upin whih 1D bin. The mapping proedure is implemented in a separate routine.A andidate number C is read from A0 usingC = A0xyz102B0xyz ; (7.7)where B0xyz is the number of andidates in A0xyz . Beause C in delared to bean integer in the Fortran routine, the result of (7.7) is the integer part of theexpression. The ontents of A0xyz after andidate C is read is the modulo of3The analysis presented use the data of the 189 GeV run, and a total of 33 observedandidates are identi�ed in the 189 GeV data (see Table 4.1).



64 CHAPTER 7. 3D LIKELIHOOD METHODSA0xyz and 102B0xyz . Thus, if A112 ontain 271203, the value of C is 27, and thenew value of A112 is 1203. The value of B0xyz is redued by one eah time aandidate number C is read, and (7.7) is repeatedly used until B0xyz = 0.The index numbers I of the 1D bins that ontain all 33 andidates arealulated using (7.4) with the bin index numbers (I 0x; I 0y; I 0z) of A0xyz as input.The resulting andidate list, ontaining the 33 index numbers of the andidates,is given as DATA-statements in subroutine d ha hannels of h higgs.f.7.7 The 3D Input MarosAll the di�erent algorithms and Fortran routines desribed in this hapter arealled from three di�erent PAW maros. Fig. 7.8 gives the struture of thethree PAW maros as one single ow hart. Eah of the PAW maros are usedwith the signals, bakgrounds, and andidates presented in Chapter 4.Fig. 7.9 gives outputs of the 3D likelihood methods presented in the aseof one signal hypothesis and the bakground hypothesis. The plots in the leftolumn are bakground 1D distributions, and the plots in the right olumn aresignal 1D distributions. As seen in the plots, the resolution of the bakgrounddistribution is best when all three variables are binned with di�erent binsizes,but the signal distribution is best when only the mass variables are binned withdi�erent binsizes. The resolution of both the bakground and signal distributionis low in the ase of �xed binning of all variables. However, what really mattersis whih �nal disriminating variable provides the most di�erent signal andbakground distribution.Chapter 10 presents the limits alulated using the 3D methods, andSe. 10.2.1 presents the onlusions on the 3D methods presented in this hap-ter.
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Figure 7.9: Plots of the �nal 1D disriminating variable distribution. Theplots in the left olumn are bakground distributions, and the plots in theright olumn are signal distributions. The top row plots show distributions inthe �xed binning ase, the middle row plots show distributions in the ase ofvariable binning of the masses, and the bottom row plots show distributions inthe ase of di�erent binsizes in all three variables.



Chapter 85D Likelihood MethodsThe jet lustering of the deay produts of a h0A0 ! b�bb�b event results in afour-jet event where eah jet originates from one of the b-quarks. The problemof whih two jets originate from h0, and whih two jets originate from A0 is theproblem of pairing the jets.The mass of h0 and A0 are alulated as the invariant mass of the sum of thefour-momenta of two of the four jets (see (8.1). The three possible ombinationsof grouping four jets into two groups of two jets eah, are ordered aordingto a ertain riterion. The riterion used for the 5D likelihood methods is thedi�erene in mass, �m, between the two groups of paired jets, i.e. �m =mA �mh. Calulation and seletion of the two best pairing h0 and A0 massesare further disussed in Se. 8.1. However, the best pairing of the jets, aordingto the riterion, is not always the orret pairing of the jets. It is therefore ofinterest to look at a pairing extension of the 3D likelihood method of Chapter 7whih only inluded the best pairing.The most intuitive approah to suh an extension is to use the two invariantmass distributions (mh and mA, or M and �m) of the seond and third bestpairing in addition to the three disriminating variable distributions used by the3D likelihood method. The result is a 7D disriminating variable distribution.The binning and mapping of a 7D distribution is very ompliated, and inaddition the size of the 7D distribution rapidly inreases beyond the limitsimposed by ALRMC: If four bins are used to bin eah of the seven distributions,the total number of bins is 47 = 16384. Therefore, the extension of the 3Dlikelihood method is limited to inlude only the seond best pairing, and a 5Ddisriminating variable distribution is onstruted. The size of a 5D distributionwith four bins in eah variable is 45 = 1024.Se. 8.2 present two sets of �ve disriminating variables used by the 5Dlikelihood methods. The two sets are two-pairing extensions of the two one-pairing sets used with the 3D likelihood methods. The binning and mappingof the distributions and the andidates are disussed in Se. 8.3 and Se. 8.4,respetively.The PAW maros of the two 5D methods, eah using one of the two sets ofdisriminating variables, are briey disussed in Se. 8.5The term `5D likelihood method' is in this thesis used to denote a method



70 CHAPTER 8. 5D LIKELIHOOD METHODSthat takes a total of �ve disriminating variable distributions as input, and givesone �nal disriminating variable, to be used with ALRMC, as output.8.1 Calulation of Two Best PairingsEah event of the distributions used with the 5D likelihood methods are iden-ti�ed by the following variables: The two invariant masses mh1 and mA1 of thebest pairing, the NN variable, the weight of the event, and the four-momentump�� of eah of the four jets, where � = 1; :::; 4 is the jet number. The invariantmass m�� of the �� pair is alulated usingm2�� = g��(p�� + p��)(p�� + p��) ; (8.1)where � and � are the numbers of the two ombined jets, � 6= �, and m�� =m��. If tan� > 1, the lightest mass of am�� andmÆ pair, with � 6= � 6=  6= Æ,is mh, while the other mass is mA.The three m��; mÆ pairs are ordered aording to the di�erene �m be-tween the masses of eah pair. The pair with the lowest �m is the best pair,and the pair with the seond lowest �m is the seond best pair. The massesmh1 andmA1 are provided by the ntuple, together with the four-momenta, priorto the alulations. These masses are used to make a onsisteny hek of thealulated best pairing masses. An error message is given if mh1 and mA1 donot math the alulated best pairing masses.One ntuple is �lled with the masses of the best pairing, and another ntupleis �lled with the masses of the seond best pairing. The mass alulations andthe �lling of the new ntuples are performed by a Fortran routine that is alledfor eah of the ten signal distributions, the bakground distribution, and theobserved andidates.8.2 The Disriminating VariablesTwo di�erent sets of disriminating variables are used in the 5D likelihoodmethod. The �rst set is a 5D extension of the �rst set of the 3D disriminatingvariables of Chapter 7: The two invariant masses mh1 and mA1 of the bestpairing, the two invariant masses mh2 and mA2 of the seond best pairing, andthe NN variable.The seond set of disriminating variables is the �rst set replaed by thesum M = mA +mh, and the di�erene �m = mA �mh. The variables of theseond set are: M1 and �m1 of the best pairing, M2 and �m2 of the seondbest pairing, and the NN variable.Fig. 8.1 shows distributions of the masses of both sets of disriminatingvariables for one partiular signal hypothesis. The plots learly show that themasses of the seond best pair are less peaked than the masses of the best pair,and no variable binning of the distributions is performed. The reason is thatno region of the seond best pair distribution is suÆiently peaked.Where the �rst bin of a distribution S�(�) starts and the last bin ends, isdetermined by �min and �max. Beause exatly the same binning is applied
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72 CHAPTER 8. 5D LIKELIHOOD METHODSto all the distributions, �min and �max are alulated by looping over all thedistributions that enter the searh. The routine that alulates the masses ofthe di�erent pairings also provides the �min and �max values used in the binningof the distributions.The treatment of the two di�erent sets of disriminating variables is identi-al, and only the M;�m variable set is disussed in this hapter.8.3 Binning and Mapping of the DistributionsThe binning of the 5D disriminating variable distribution an not proeed byalloating eah (M1;�m1;M2;�m2; NN) event to its orresponding bin in 5Dspae diretly, as is the ase with the 3D distribution, beause PAW only sup-ports vetors of maximum three dimensions. Hene, the 5D distribution mustsomehow be separated into less dimensioned distributions that is multiplied toonstrut an approximate 5D distribution. The distribution funtion S of the�ve disriminating variables is approximated asS(M1;�m1;M2;�m2; NN) � S1(M1;�m1)S2(M2;�m2)SNN(NN) ; (8.2)whih does not inlude orrelations between masses of di�erent pairings, norbetween the masses and the NN variable. If all orrelations are to be in-luded, eah event of the disriminating variable distribution must be treatedas single (M1;�m1;M2;�m2; NN) points and not as three separate (M1;�m1),(M2;�m2), and (NN) points.The 5Dmethod ould more orretly be referred to as a 2D+2D+1Dmethodbeause the 5D distribution of the �ve disriminating variables is redued totwo 2D and one 1D distribution. The term '5D' is instead used as a shorthandnotation.The 2D mass distributions Sp;1(Mp;�mp), where p = 1 or 2, are binnedusing a binning proedure similar to the �xed binning proedure desribed inSe. 7.2. The only di�erene is that this is a 2D binning instead of a 3D binning.Two bin index numbers IMp and I�mp are alulated using (7.1) twie for eahSp;1(Mp;�mp) distribution.The 2D bins of the two mass distributions are mapped from 2D spae to 1Dspae using a 2D version of (7.4):I = (I�mp � 1)NMp + IMp ; (8.3)where I is the index of the 1D vetor, and NMp is the total number of bins ofthe SMp(Mp) distribution.The distribution SNN(NN) is binned using (7.1) one to alulate the 1Dbin index number INN . No mapping is required.All three 1D distributions are normalized to one, and a simple Fortranroutine alulates the 2D distribution of the four mass variables as the produtof S1D1 (M1;�m1) and S1D2 (M2;�m2). The resulting 2D distribution of the fourmasses is mapped from 2D to 1D spae using (8.3). A 2D distribution of all�ve variables is alulated as the produt of the 1D distributions of the four



8.4. BINNING AND MAPPING OF THE CANDIDATES 73masses and SNN(NN). The �nal 1D version of the disriminating variable isalulated using (8.3) one again.Fig. 8.2 gives the signal distributions S1(M1;�m1)S2(M2;�m2)SNN(NN)and S3(mh1; mA1)S4(mh2; mA2)SNN(NN) to the top and bottom right, respe-tively, as well as the bakground distributions B1(M1;�m1)B2(M2;�m2)BNN(NN) and B3(mh1; mA1)B4(mh2; mA2)BNN(NN) to the top and bottomleft, respetively. From these plots it looks as the peaks of the S1(M1;�m1)S2(M2;�m2)SNN(NN) distribution is wider than the peaks of the S3(mh1; mA1)S4(mh2; mA2)SNN(NN) distribution, whih might indiate a better resolutionin the former distribution. This is also the ase for the two bakground distribu-tions. The explanation might be that the events of theM1;�m1;M2;�m2; NNset are more evenly distributed among the �xed bins than the events of themh1; mA1; mh2; mA2; NN set, and thus a better resolution is obtained for theS1(M1;�m1)S2(M2;�m2)SNN(NN) andB1(M1;�m1)B2(M2;�m2)BNN(NN)distribution.8.4 Binning and Mapping of the CandidatesThe binning and mapping of the �ve disriminating variable distributions givenfor eah signal or bakground hypothesis, is performed in order to produe thenumber of events inside eah bin of the �nal 1D distribution. In ontrast, thebinning and mapping of the �ve disriminating values given for eah observedandidate, is performed to produe the index number of the bin of the �nal1D distribution that ontains the �ve values given for the andidate; i.e. eahandidate must be given a map of where to go in the 1D distribution. Noinformation about the distribution of andidates is needed.Before the address of a andidate bin of the �nal 1D distribution is alu-lated, �ve bin index numbers, orresponding to eah of the initial �ve distribu-tions, are alulated using (7.1) �ve times. The resulting bin index numbers,IM1 , I�m1 , IM2 , I�m2 , and INN are redued to a single 1D bin index number Iby applying (8.3) four times.Fig. 8.3 gives a visualization of how the bin index number in the 1D spaeof the �nal distribution is alulated based on the bin index numbers of the�ve disriminating variable distributions. The 2D mapping algorithm (8.3) isapplied at eah vertex of Fig. 8.3.8.5 The 5D Input MarosTwo di�erent PAW maros prepare the 5D inputs: One maro handles theS1(M1;�m1)S2(M2;�m2)SNN(NN) distribution, while the other maro han-dles the S3(mh1; mA1)S4(mh2; mA2)SNN(NN) distribution. The strutures ofthe maros are idential. The only di�erenes between the two maros are theinput distributions, and hene the �min and �max values. Fig. 8.4 shows theow hart of the maros.
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8.5. THE 5D INPUT MACROS 75
IM1 PPPPPPPPHHHHHHHHI�m1�������� ZZZZZZIM2 PPPPPPPP��������I�m2��������INN ���������������������� IFigure 8.3: Redution of bin index numbers in the 5D method. IM1 , I�m1 , IM2 ,I�m2 , and INN are the bin index numbers of eah of the �ve disriminatingvariables, and I is the bin index number of the �nal 1D distribution of thedisriminating variables.



76 CHAPTER 8. 5D LIKELIHOOD METHODSCalulate ntuplesof 2 best pairingsInit vetorsBin S1(M1;�m1)and S2(M2;�m2)Map 2D ! 1DNormalizeS1D1 (M1;�m1)�S1D2 (M2;�m2)Map 2D ! 1D����1

����1Bin SNN(NN)S1Dp (Mp;�mp)�SNN(NN)Map 2D ! 1DWrite to �le
Figure 8.4: Flow hart of the PAW maros preparing the S1(M1;�m1)S2(M2;�m2)SNN(NN) inputs. The struture of the S3(mh1; mA1)S4(mh2; mA2)SNN(NN) maro is idential.



Chapter 9The TestsA total of six likelihood methods are presented in Chapter 7 and Chapter 8:Four 3D methods, and two 5D methods. The 3D methods di�er in the hoieof binning proedures: Fixed binning of all three distributions, variable binningof two distributions and �xed binning of the third, or variable binning of allthree distributions. Only a �xed binning 5D method is implemented.The �xed binning 3D and 5D methods both use two sets of disriminat-ing variables: The 3D method uses the distribution S1;NN(�m1;M1; NN) andS3;NN(mh1; mA1; NN), and the 5D methods use the produts of distributionsS1(�m1;M1)S2(�m2;M2)SNN(NN) and S3(mh1; mA1)S4(mh2; mA2)SNN(NN).The only di�erene between the two sets is the hoie of mass estimators,M;�m or mh; mA.Two new likelihood methods are presented in this hapter: A 2D methodand a 2D+1D method. The 2D method uses the distribution SM1;NN(M1; NN)as the disriminating variable, and the 2D+1D method uses the produt of dist-ributions S1(M1;�m1)SNN(NN) as the disriminating variable. The 2D+1Dmethod is a simpli�ation of the �xed binning 3D method, and the 2D methodis again a simpli�ation of the 2D+1D method.The 2D and 2D+1D methods are used to investigate features of the 3D and5D method that a diret omparison do not reveal. The 2D method is omparedto the 3D method to investigate the e�et of a third disriminating variable,and the 2D+1D method is ompared to the 5D method to investigate the e�etsof using two pairings instead of one pairing. Beause the 3D method use thedistribution S1;NN(�m1;M1; NN) and the 2D+1D method use the produt ofdistributions S1(�m1;M1)SNN(NN), a omparison of the two methods revealsthe e�ets of the orrelation between the NN variable and the mass variables.The 5D method1 does not take these orrelations into aount either, and henethe 5D method is ompared to the 2D+1D method instead of the 3D methodto investigate the e�ets of the seond best pairing mass variables. The 2D+1Dmethod is presented in Se. 9.1, and the 2D method is presented in Se. 9.2.All the tests are performed by omparing expeted mh limits alulatedusing the distributions prepared by the di�erent likelihood methods. Beause1The 5D method is atually a 2D+2D+1D method beause it uses the produtS1(�m1;M1)S2(�m2;M2)SNN (NN) as disriminating variable.



78 CHAPTER 9. THE TESTSthere is a danger of overtraining the on�dene levels if the binwidths get toosmall an overtraining test, as explained in Se. 7.4, is performed for the �xedbinning methods. The variable binning methods are not subjeted to an over-training test due to omplexity: If an overtraining test is to be performed, themethod under investigation must be exeuted repeatedly with inreasing num-ber of bins if the three CLs(��) funtions, where �� is the width of the bin, areto be obtained. The alulation of CLs(��) is onsiderably more ompliatedwith variable binning than with �xed binning. Overtraining tests are disussedin further detail in Se. 9.3.The �nal tests of the total of nine ombinations of methods and disrimi-nating variables should answer three questions :� What type of binning provides the optimal limit?� What kind of mass estimator(s) provides the optimal limit?� What number of jet pairings provides the optimal limit?The tests foused on these questions are presented in Se. 9.4, and the onlu-sions of the tests are presented in Chapter 10.9.1 A 2D+1D Likelihood MethodThe �xed binning 3D method, using a 3D distribution of (M1;�m1; NN) eventsas the disriminating variable distribution, is transformed into a �xed binning2D+1D method by separating the 3D distribution into a 2D distribution of(M1;�m1) events and a 1D distribution of (NN) events.The binning of the 2D and the 1D distribution are performed using (7.1),just as in the 3D ase. The 2D vetor ontaining the two mass distributionsis mapped into 1D spae using (8.3). The resulting 1D vetor is normalized toone before it is multiplied with the 1D vetor ontaining the normalized NNdistribution to give the produt S1(M1;�m1)SNN(NN) stored in a 2D vetor.The 2D bin index numbers of the 2D vetor are mapped into the 1D spae of the�nal variable using (8.3) one again for eah 2D bin. Beause the S1(M1;�m1)and SNN(NN) distributions are multiplied, the orrelation between the NNvariable and the mass variables is not taken into aount.The andidates are mapped into the �nal 1D variable spae by applying(8.3) in the same manner as for the distributions. The only di�erene is thatthe �nal 1D bin do not ontain the number of andidates, as is the ase forthe distributions, but instead a number that identi�es whih andidates areon�ned to the bin.9.2 A 2D Likelihood MethodThe 2D likelihood method is a simpli�ation of the 2D+1D likelihood method:The S1(M1;�m1)SNN(NN) distribution produt of the 2D+1D method arereplaed by a SM1;NN(M1; NN) distribution whih is binned using (7.1) twiefor eah (M1; NN) event, and mapped using (8.3) for eah 2D bin.



9.3. OVERTRAINING TESTS 79To map the andidates it suÆes to apply (8.3) one for eah andidate.9.3 Overtraining TestsAs explained in Se. 7.4 an overtraining test gives the limit on how small thebins used in the binning of a distribution an get before an overtraining ofthe alulated on�dene levels our. In other words the plot of the threeCLs(��) funtions at di�erent numbers of MC events expresses the potentialof the method: How low signal on�dene levels (and aordingly high mhlimits) the method is able to produe before overtraining e�ets inuene thelimits.Overtraining tests are performed for the 5D method, the �xed binning 3Dmethod, the 2D+1D method, and the 2D method. The tests monitor the de-velopment of the CLs as a funtion of dereasing ��, and �� is determined bythe width of the distribution and the number of bins in the following manner:�� = �max � �minN� ; (9.1)where �max and �min are the maximum and minimum value of �, respetively,and N� is the number of bins in the � distribution.To give the mass variables equal weight the number of bins is seleted tokeep the binwidth of all the mass distributions equal. The width of the mhand mA distribution are the same, hene Nmh = NmA . However, the di�erenebetween the widths of the M and �m distributions is approximately 30 GeV,as is seen in Fig. 8.1, hene NM > N�m.The overtraining plots of the di�erent methods, with uts on the binwidths,are given in Chapter 10. The CLs at the �� ut is the minimum CLs (maximummh) not inuened by overtraining e�ets.9.4 The Final TestsA plot of expeted signal on�dene level versus mh hypothesis, CLs(mh), isthe �nal test of the likelihood methods. A signi�ane level of 95 % is required,and a ut is set at CLs=0.05 (see (6.6)). The mh limit orresponding to theut is the upper limit of the mass region where the existene of the h0 salar.Three series of tests are performed in order to answer the questions regardingtype of binning, type of mass estimator, and number of pairings:Type of Binning The three 3D methods presented in Chapter 7, all usingS3;NN(mh1; mA1; NN) as the disriminating variable distribution, are om-pared to onlude on whih of the methods provides the most e�etivebinning. No overtraining test of the three methods are performed beausethe implementation of suh a test using variable binning methods is veryomplex. The results of the binning tests are presented in Se. 10.2.1.Type of Mass Estimator To investigate the use of mass estimators in de-tail, three mass estimator tests are performed: Firstly the �xed bin-ning 3D method using S3;NN(mh1; mA1; NN) as disriminating variable



80 CHAPTER 9. THE TESTSis ompared to the 2D method using SM1;NN(M1; NN) as disriminatingvariable. Seondly the 3D method using S3;NN(mh1; mA1; NN) is againompared to the 3D method using S1;NN(M1;�m1; NN) as the disrim-inating variable. The third omparison is performed between the 5Dmethod using S3(mh1; mA1)S4(mh2; mA2)SNN(NN) and the 5D methodusing S1(M1;�m1)S2(M2;�m2)SNN(NN) as the disriminating variable.All three omparisons are performed in order to determine if the M;�mset or the mh; mA set of disriminating variables is the best. All methodsare �xed binning methods. Overtraining tests is used to set a limit on thebinwidths. The results of the overtraining tests are presented in Se. 10.1,and the results of the mass estimator tests are presented in Se. 10.2.2.Number of Pairings Two tests are performed: The 5D method using theprodut S1(M1;�m1)S2(M2;�m2)SNN(NN) as disriminating variable isompared to the 2D+1Dmethod using the produt S1(M1;�m1)SNN(NN)as disriminating variable, to onlude on the e�ets of using mass estima-tors of the two best pairings as disriminating variables. The 5D methoddoes not take the orrelations between the masses of di�erent pairings norbetween the mass variables and the NN variable into aount. A ompar-ison of the �xed binning 3D method using S1;NN(M1;�m1; NN) and the2D+1D method using S1(M1;�m1)SNN(NN) as disriminating variableis performed to investigate the importane of the NN orrelations. Theorrelations between the mass estimators of di�erent pairings are not in-vestigated any further, but there is no reason why suh orrelations shouldnot be present.



Chapter 10ConlusionsSignal and bakground distributions are reated using the likelihood methodspresented in Chapter 7, Chapter 8 and Chapter 9. Signal on�dene levels(CLs) based on these distributions are alulated, using the ALRMC imple-mentation of a maximum likelihood ratio test, and the mh limit at a 95 %on�dene level (CL) is stated (CLs = 0:05).The onlusions are based on expeted CLs instead of observed CLs beausethe observed CLs are sensitive to the observed andidates of the searh, i.e. theposition of a andidate in the �nal distribution might have a major e�et onthe limits. Suh an e�et is not present if the expeted CLs are used.10.1 The Overtraining PlotsFig. 10.1 shows overtraining plots for the 2D, 2D+1D, 3D and 5D methods,all with �xed binning. The 3D and 5D methods are used with both sets ofdisriminating variables, M;�m and mh; mA.The vertial line in the plots of Fig. 10.1 is the ut on the binwidth that setsan upper limit on number of bins allowed in the distributions. The tik markson the CLs(��) funtion of all Monte Carlo (MC) events (the green line) is theCLs omputed for a given number of bins for the mA = 80 GeV, tan� = 20signal hypothesis. The binwidth �� is the average binwidth of the bins used.No ut is applied to the 5D method in neither set of disriminating variablesbeause the ALRMC limit on maximum number of allowed bins in the �nal 1Ddistribution is reahed before the overtraining ours.10.2 The Final TestsExpeted CLs are alulated at the binsize ut provided by the overtrainingplots in Fig.10.1. The nine di�erent ombinations of methods, binning, and dis-riminating variables are summarized in Table 10.1 together with the mh limitsat tan� = 20 and tan� = 2. The nine ombinations are further ompared twoby two, and onlusions drawn on whih method o�ers the best limit regardingtype of binning, type of mass estimators, and number of pairings. All limitspresented orrespond to a 95 % CL.
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10.2. THE FINAL TESTS 83mh [GeV℄Method Binning Disriminating variables tg� = 20 tg� = 22D Fixed SM1;NN(M1; NN) 80.85 57.592D+1D Fixed S1(M1;�m1)SNN(NN) 80.25 57.43S3;NN(mh1; mA1; NN) 81.10 57.57Fixed S1;NN(M1;�m1; NN) 81.23 57.853D S3;NN(mh1; mA1; NN) 81:57y 58:37yFix/Var S3;NN(mh1; mA1; NN) 81:85y 58:70yVariable S3;NN(mh1; mA1; NN) 81:73y 58:40y5D Fixed S3(mh1; mA1)S4(mh2; mA2)SNN(NN) 80.37 57.37S1(M1;�m1)S2(M2;�m2)SNN(NN) 80.46 57.54y Not subjeted to overtraining test, and not omparable to the other limitsTable 10.1: Summary table of themh limits of all nine ombinations of method,binning proedure and disriminating variables.10.2.1 BinningFig. 10.2 shows two plots of CLs(mh) funtions at tan� = 20:� Fixed binning of mh1; mA1; NN versus �xed binning of NN and variablebinning of mh1; mA1.� Fixed binning of NN and variable binning of mh1; mA1 versus variablebinning of mh1; mA1; NN .Fig. 10.3 shows the same plots of CLs(mh) funtions at tan� = 2, and Table 10.2gives the measured di�erenes of the mh limits.The onlusion drawn is that the method using both variable and �xed binsimproves the �xed binning only method limit by 0.28 GeV (0.33 GeV), andthe variable binning only method limit by 0.12 GeV (0.30 GeV) at tan� = 20(tan� = 2). Hene, the method using both variable and �xed bins o�ers themost optimal binning of the S3;NN(mh1; mA1; NN) distribution.Sine the limits of these three methods have not been subjeted to an over-training test, the limits are not omparable to the other limits.10.2.2 Mass EstimatorFig. 10.4 shows three plots of CLs(mh) funtions at tan� = 20:� SM1;NN(M1; NN) versus S3;NN(mh1; mA1; NN).� S3;NN(mh1; mA1; NN) versus S1;NN(M1;�m1; NN).� S3(mh1; mA1)S4(mh2; mA2)SNN(NN) versusS1(M1;�m1)S2(M2;�m2)SNN(NN).



84 CHAPTER 10. CONCLUSIONSFig. 10.5 shows the same plots of CLs(mh) funtions at tan� = 2. The di�erenebetween the limits of these plots are given in Table 10.3.Two onlusions are drawn from these tests: Firstly the M;�m set of dis-riminating variables improves the limit obtained using the mh; mA sets by0.13 GeV (0.28 GeV) in the 3D ase, and by 0.11 GeV (0.17 GeV) in the 5Dase at tan� = 20 (tan� = 2). This is probably due to the fat that the eventsof the M;�m distributions are less lustered than the events of the mh; mAdistribution, hene the M;�m set is more onvenient to use with �xed bins.The seond onlusion is that S1;NN(M1;�m1; NN) improves the limit ob-tained using SM1;NN(M1; NN) by 0.38 GeV (0.30 GeV), and in additionS3;NN(mh1; mA1; NN) also improves the limit obtained using SM1;NN(M1; NN)by 0.25 GeV (0.02 GeV) at tan� = 20 (tan� = 2). Hene, a 3D disriminatingvariable gives a better limit than a 2D disriminating variable. The improve-ment is however not impressive, and it is neessary to ask if not alternativeextensions of a 2D likelihood method ould result in larger improvements.10.2.3 PairingFig. 10.6 shows two plots of CLs(mh) funtions at tan� = 20:� S1(M1;�m1)S2(M2;�m2)SNN(NN) versus S1(M1;�m1)SNN(NN).� S1(M1;�m1)SNN(NN) versus S1;NN(M1;�m1; NN).Fig. 10.7 shows the same plots of CLs(mh) funtions at tan� = 2. The di�erenebetween the mh limits of the tests are given in Table 10.4.Two onlusions are drawn from the tests: Firstly the two pairing vari-able S1(M1;�m1)S2(M2;�m2)SNN(NN) improves the limit obtained usingthe S1(M1;�m1)SNN(NN) variable by 0.21 GeV (0.11 GeV) at tan� = 20(tan� = 2). Hene, the two best pairing variable gives a slightly better mhlimit than the best pairing variable. The e�et is not so lear at tan� = 2.However the most interesting setor for the h0A0 hannel is the tan� = 20 se-tor beause the h0Z0 ross setion is muh greater than the h0A0 ross setionat tan� = 2 (see Fig.4.2).The seond onlusion is that the S1;NN(M1;�m1; NN) variable improvesthe limit obtained using the S1(M1;�m1)SNN(NN) variable by 0.98 Gev attan� = 20 and 0.36 Gev at tan� = 2. Hene, the NN orrelation is very signif-iant to the mh limit, and is at least some of the explanation to why the 3Dmethod produe a better limit than the 5D method (see Table 10.1). This isone of the most important results obtained. If the S1(M1;�m1)S2(M2;�m2)SNN(NN) variable is replaed by S(M1;�m1;M2;�m2; NN) themh limit prob-ably inreases beyond the limit omputed using S1;NN(M1;�m1; NN).10.3 Final ConlusionOnly minor improvements are obtained by extending the likelihood methodfrom two disriminating variables to three and �ve disriminating variables,and the extension of the methods were probably not worth the e�ort.



10.3. FINAL CONCLUSION 85The most important results seen are the the positive e�et of using variablebins instead of �xed bins when the distributions are binned (see Fig. 10.2, 10.3and Tab. 10.2), and espeially the lear positive e�et of inluding orrelationsbetween the disriminating variables (see Fig. 10.6, 10.7 and Tab. 10.4).�mh[GeV℄Test tg� = 20 tg� = 2mh(Sfix=var3;NN )�mh(Sfix3;NN) 0.28 0.33mh(Sfix=var3;NN )�mh(Svar3;NN) 0.12 0.30Table 10.2: Di�erene in mh limit between the three 3D methods usingS3;NN(mh1; mA1; NN) as disriminating variable. �mh[GeV℄Test tg� = 20 tg� = 2mh(S3;NN)�mh(SM1;NN) 0.25 0.02mh(S1;NN)�mh(S3;NN) 0.13 0.28mh(S1; S2; SNN)�mh(S3; S4; SNN) 0.11 0.17Table 10.3: Di�erene in mh limits between the 3D, 2D and 5D methods usingthe M;�m and mh; mA sets of disriminating variables.�mh[GeV℄Test tg� = 20 tg� = 2mh(S1; S2; SNN)�mh(S1; SNN) 0.21 0.11mh(SM1;NN)�mh(S1; SNN) 0.98 0.36Table 10.4: Di�erene in mh limits between the 5D, 3D and 2D+1D methodusing the M;�m sets of disriminating variables.



86 CHAPTER 10. CONCLUSIONS
0.02

0.03

0.04

0.05

0.06

0.07

0.08
0.09
0.1

0.2

0.3

79 80 81 82 83 84 85 0.02

0.03

0.04

0.05

0.06

0.07

0.08
0.09
0.1

0.2

0.3

79 80 81 82 83 84 85Figure 10.2: Comparisons of the two variable binning 3D methods and the �xedbinning 3D method for the tan� = 20 signal hypotheses. From these plots itis onluded that the variable/�xed binning 3D method improves the limitsobtained using the other 3D methods.
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