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Abstract

This thesis presents multidimensional likelihood methods for calculating con-
fidences and exclusion limits on the C'P-even, neutral Higgs scalar h° of the
MSSM Higgs sector using the h°A° — bbbb channel at 189 GeV. The limits are
calculated using the ALRMC implementation of a maximum likelihood ratio
test.

The likelihood methods prepare signal, background, and observed candidate
distributions using various binning algorithms and different discriminating va-
riables. A total of six methods are presented, using mass estimators of the
best and second best jet pairings as discriminating variables, in addition to a
variable obtained from a neural network-like analysis. The three dimensional
and two dimensional methods use mass estimators of the best pairing, while a
five dimensional method uses mass estimators of the two best pairings.

The my, limit for all methods at a 95 % confidence level are compared, and
conclusions drawn on which methods are preferred.
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Chapter 1

Introduction

Particle physics is the science of the fundamental particles that constitute mat-
ter, and the interactions these particles participate in. The theory known as the
Standard Model (SM) summarizes the present knowledge in particle physics.
Several extensions of the SM exist, but no experiment has yet rendered the SM
inadequate.

1.1 Fundamental Particles

The SM classifies the fundamental particles in two main groups: Fermions and
bosons. Fermions are matter constituents, while bosons act as force carriers
between the fermions.

Fermions are further grouped into leptons and quarks, and they exist in three
different generations, or families. The three lepton families are the electron (e),
the muon (), the tau (7), and their neutrino partners (v, v,, v;). The quarks
come in six flavors: up (u), down (d), charm (c), strange (s), top (t) and bottom
(b); two flavors in each family. Each fermion also has an antiparticle partner of
the same mass but with opposite charge. In addition to the six flavors, quarks
exist in three different color states. Thus, matter consists of 6 leptons and 18
quarks, while antimatter consists of 6 antileptons and 18 antiquarks. Figure 1.1
gives a list of the fermion properties.

The force carriers, or mediators, of the fundamental forces are known as
gauge bosons. The strong force is mediated by eight gluons (g), the electro-
magnetic force by the photon (v), and the weak force is mediated by W+, W~
and Z° bosons. Gluons couple to quarks, photons couple to electric charge, and
W+, W~ and Z° couple to left-handed quarks and leptons. Left-handed means
that the particle spin direction is opposite to its momentum. Figure 1.2 gives
a list of the boson properties.

1.2 Fundamental Forces

Four fundamental forces exist in nature: The strong force, the weak force,
the electromagnetic force, and the gravitational force. The strong force keeps
the quarks inside the nucleus, and the strength of the force increases as the
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FERMIONS [y
Leptons spin = 1/2 Quarks spin=1/2

S Approx. e
Mass Electric Electric
Flavor GeV/c? | charge Flavor Ge% charge

e < 0.005 | 2/3
€ electron | 0.000511 0.01 -1/3
V“I,“;",'Ii‘i.m <0.0003 15 2/3
JL muon 0.106 S strange 0.2 -1/3

170 2/3

top
(initial evidence)

T tau 1.7771 4.7 -1/3

1/t <0.03

T neutrino

Figure 1.1: Fermion properties in the Standard Model [1].

quarks separate. It is in fact impossible to separate a quark-antiquark pair,
because the energy needed is infinite. An example of this is seen in ete™
annihilations at high energies, performed at several accelerators around the
world including LEP (discussed in Chapter 3), in which a quark-antiquark (¢q)
pair is produced. The high energy of the collision forces the ¢g pair to separate,
but because quarks do not exist as single particles, the quarks instead appear
as jets of hadrons. A hadron is a particle interacting via the strong force.
The jet momentum along the original quark direction is large compared to the
transverse jet momentum, and the jets are collimated around the ¢ and ¢ axes.
The transverse momentum is used as a measure to determine which jet a track
belongs to. Chapter 5 presents the clustering of the individual tracks into jets
in more detail, in addition to a discussion on kinematical fits.

The weak and the electromagnetic force are different manifestations of a
single force named the electroweak force. The weak force makes the stars shine,
and is responsible for natural radioactivity, for example §-decay of a neutron
in a nucleus. The electromagnetic force keeps the electrons in orbit around
the nucleus and thus holds the atoms together. It also makes the atoms group
together to form molecules and solid objects. Without the electromagnetic force
all matter would exist as ionized plasma.

The gravitational force is responsible for the motions of the solar system
and the universe. It is the weakest of all the fundamental forces, and when
dealing with elementary particles, it can be neglected.!

The SM describes strong interactions (QCD), electromagnetic interactions
(QED), and weak interactions. The gravitational force is not included in the
SM, but extensions of the SM try to explain all four fundamental forces within
one single theory. Glashow, Weinberg and Salam concluded that the weak and
electromagnetic force can be described as one single electroweak force. Future
extensions of the SM, Grand Unification Theories (GUT), may show that all
the forces are in fact only different manifestations of a single force.

'The Planck mass (~ 10'® GeV) is the mass scale at which the gravitational coupling
approaches unity, and at this mass scale the gravitational force may no longer be neglected.
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Figure 1.2: Gauge boson properties in the Standard Model [1].

1.3 Standard Model Problems

It is widely believed that the SM is not a final answer in particle physics.
One of the most important arguments for a more fundamental theory is the
great number of independent parameters needed as input to the SM: Eighteen
parameters must be given by experiment (even more if the neutrinos are not
massless) for which no SM explanations exist.

The missing understanding of the hierarchy of mass scales needed to explain
the fundamental interactions, commonly known as the hierarchy problem, is
another serious problem. Thus, physicists need to understand nature at a deeper
level in order to give answers to these fundamental questions.

Among the extensions of the SM, supersymmetric (SUSY) extensions are
particularly interesting because SUSY evades the hierarchy problem. The Min-
imal Supersymmetric extension of the Standard Model (MSSM) more than
doubles the number of particles in the SM, because each SM particle adopts a
SUSY partner.

1.4 The Higgs Mechanism

In order to explain how the fundamental particles acquire mass, the theory of
the Higgs mechanism has been developed. This theory suggests that a certain
symmetry of nature is broken through spontaneous symmetry breaking and,
as a consequence of that, a Higgs particle is produced. In the SM only one
Higgs particle exists, but the MSSM contains five Higgs particles. The Higgs
particles are not easy to discover experimentally because they couple to fermions
proportional to the mass of the fermion, and the most available fermions at
particle accelerators are the light ones. Thus, the chance of discovering a Higgs
particle is proportional to the amount of energy put into the accelerator. There
has not yet been any experimental data supporting the existence of the Higgs
particle. Therefore extensive Higgs searches are being carried out at particle
physics laboratories and universities all over the world in order to discover the
Higgs particle and measure its mass, or come up with an alternative theory.
Chapter 2 contains the theory of the SM, MSSM and Higgs mechanism.



4 CHAPTER 1. INTRODUCTION

1.5 The Analysis

This thesis presents the analysis performed to test different likelihood methods
by comparing the obtained mass limits of the neutral MSSM Higgs scalar A°.
The search channel is the %A% — bbbb channel at 189 Gev. The backgrounds,
signals and data candidates of the search are presented in Chapter 4.

The statistical treatment of the data, using a maximum likelihood test, are
carried out by the ALRMC package which calculates confidence levels for the
different signal hypotheses. Chapter 6 gives a brief discussion on the statistics
of hypothesis testing in general, together with the specifics of ALRMC.

Chapters 7 and 8 present the different likelihood methods and algorithms
developed to treat the signal, background and candidate distributions prior to
ALRMC calculations.

The candidates used are the 189 GeV data collected by the DELPHI detector
at CERN. The DELPHI detector and its subdetectors are outlined in Chapter 3.

Finally, the tests performed on the different likelihood methods are ex-
plained in Chapter 9, and the conclusions presented in Chapter 10.

Natural units (he = 1) are used throughout this thesis except where explic-
itly specified.



Chapter 2

The Theory

This chapter presents the Standard Model (SM), the Minimal Supersymmetric
extension of the Standard Model (MSSM), the Higgs mechanism, and the Higgs
spectrum of both the SM and the MSSM.

The SM Higgs theory is a one-doublet model which describes only one Higgs
particle, ¢°. The SM theory and the SM Higgs mechanism are presented in
Sec. 2.1. More complicated Higgs structures produce a larger number of Higgs
particles, and thus additional possibilities for discovery. The simplest extensions
of the one-doublet Higgs are models with two-doublets. No experiment has
vet found evidence which favors the one-doublet model over more complicated
structures [2]. Among the two-doublet models, the supersymmetric (SUSY)
extension is particularly interesting because it solves some of the SM problems.
The MSSM Higgs model produce two charged Higgs bosons, H*, and three
neutral Higgs bosons, Y, H?, and A°. The motivations of SUSY and MSSM,
together with the MSSM Higgs mechanism, are presented in Sec. 2.2.2.

The presentation of the SM theory and the SM Higgs sector are strongly in-
spired by the books “Dynamics of the Standard Model” by Donoghue, Golowich
and Holstein [3], and “Quarks & Leptons” by Halzen and Martin [4]. The dis-
cussion on SUSY and the MSSM motivations are mainly influenced by the
article “A ‘theory of everything’?” by G.G.Ross [5], and the thesis “Search
for Non-Minimal Higgs Bosons in Z° Decays with the L3 Detector at LEP” by
André Sopczak [2]. The presentation of the MSSM Higgs sector is inspired by
”The Higgs Hunter’s Guide”, by John F. Gunion, Howard E. Haber, Gordon
Kane and Sally Dawson [6].

2.1 The Standard Model

The SM is a gauge theory, and within a gauge theory only two kinds of par-
ticles exist: Those who carry charge, and thus gives rise to currents, and
those who mediate interactions between the currents by coupling directly to
the charge. Fermions carry charge and produce currents, gauge bosons couples
to the currents. If a gauge boson itself carries charge, the boson undergoes
self-interactions. Charges and currents are treated in Sec. 2.1.3.

Quarks and leptons are both members of the fermion group. All leptons,
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apart from the neutrinos, carry electric charge, while quarks in addition carry
color charge. Neutrinos only participate in weak interactions, while the other
leptons also experience electromagnetic interactions. Quarks participate in
weak, electromagnetic and strong interactions.

Abelian' gauge bosons couple to currents with coupling constants deter-
mined by the charge of the particle producing the current (the coupling of the
photon to the electron is —e). Since the non-Abelian gauge bosons are both
charge carriers and mediators they undergo self-interactions that give rise to
loop corrections complicating the renormalization of the theory.

A theory that is invariant under certain gauge transformations is said to be
gauge invariant. Gauge transformations are classified as group transformations,
and the SM is constructed to be gauge invariant under the SU(3) @ SU(2);, ®
U(1)y gauge group transformation. The SU(3) invariance is an exact symme-
try and causes gluons to be massless, while the spontaneous breaking of the
SU(2)® U(1)y invariance, through the Higgs mechanism, causes the W* and
the Z° to be massive. How this comes about is discussed in Sec 2.1.5.

2.1.1 Fermions

Quarks and leptons are inputs to the SM in the sense that the model does not
explain the variety and number of quarks and leptons, nor their properties.
That is for experiments to decide.

Quarks and leptons exhibit certain empirical conservation laws that is not
vet observed broken: Firstly each of the leptons belonging to a certain family
has its own lepton number of value 1, which is conserved within the fermion
family in every known interaction. Secondly quark flavor is conserved in all
known strong interactions, but not in weak interactions.

Mixing occur between quarks, but not between leptons. The quark charged
weak currents are responsible for the mixing. The quark states participating in
transitions of the charged weak current are linear combinations of quark mass
eigenstates. The quark-mixing matrix V contains the information about the
linear combinations, and is named the Cabbibo matrix in the two quark family
case, and the Cabbibo-Kobayashi-Maskawa matrix in the three family case after
their inventors. The elements of the matrix are not predicted by theory, but
have to be inferred from experiments.

In the three family case the matrix is a 3 X 3 matrix

Vud Vus Vub
VCI(M = Vcd Vcs Vcb y (2 1)
Vie Vis Vi

where the subscripts indicate which quarks participate in the transitions. Be-
cause the Vogas matrix contains a complex phase factor, the SM is not C'P
invariant, which is confirmed by experiments.

! Abelian groups is groups with a commutative group multiplication, in contrast to non-
Abelian groups.
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The diagonal elements of the Vogasr matrix are all very close to one. This
reflects the experimental fact that transitions between quarks belonging to the
same family are dominant.

The Vo a matrix is unitary and, since quarks come in doublets, the elec-
troweak theory fit experimental results showing that flavor changing neutral
currents (FCNC) are highly suppressed. For example, the rate of neutral- to
charged-current rates in kaon decay is [7]

Kt — 7tvw
- 0
K+ — 7%ty

<107% . (2.2)

2.1.2 Gauge Bosons

The SM describes strong interactions, electromagnetic interactions and weak
interactions. The strong interactions are described by the SU(3) group, and
the electromagnetic and weak interactions are described by the SU(2),@ U(1)y
group as electroweak interactions.

The SU(3) group is represented by eight generators. If the theory describ-
ing strong interactions is to be SU(3) gauge invariant, eight gauge fields must
be introduced, each field associated with a gauge boson. Thus, the eight gauge
bosons are a consequence of the imposed SU(3) gauge invariance, and the num-
ber of bosons corresponds to the number of generators of the group. The eight
gauge bosons of the strong interaction are the massless, color charged gluons.
Gluons are massless because the SU(3) gauge invariance is an exact invariance.

Weak interactions are mediated by three massive gauge bosons, while elec-
tromagnetic interactions are mediated by one massless gauge boson. Weinberg
and Salam showed that weak and electromagnetic interactions both arise from
the electroweak force. The imposed SU(2)r,® U(1)y gauge invariance is not an
exact invariance, because three of the gauge bosons are massive, and is bro-
ken via the Higgs mechanism to produce four gauge fields Wﬁ,Wi,WS and
B,,. Two charged fields are defined as linear combinations of the Wﬁ and Wi
fields, and the charged fields correspond to two massive, charged gauge bosons,
W+t and W—. Two neutral fields, corresponding to a massive Z° and a mass-
less photon, are constructed by rotating the ij and B, fields by an angle 8y
(see (2.26)). The electroweak theory contains three massive bosons because
the SU(2)y, group is represented by three generators, and one massless boson
because the U(1l)y group is represented by one single generator. The Higgs
mechanism uses spontaneous symmetry breaking to produce massive bosons
within a gauge invariant theory.

Local gauge invariance, spontaneous symmetry breaking, and transforma-
tions will be further discussed in sections 2.1.4 and 2.1.5.

2.1.3 Charges, Currents and Groups

Three different kinds of charge appear in the SM: color charge, weak isospin
and weak hypercharge.
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Color Charge

Each quark exists in one of three color states, red (R), blue (B) and green
(G). These three color charges represent the fundamental representation of the
SU(3) symmetry group. The generators of this group are a set of eight 3 x 3
matrices denoted A;, 2 = 1, ..., 8, where the color states R,G,B are the base states
of the group.

Weak Isospin

The three weak currents Jf“i = 1,2,3, one neutral and two charged, form an
isospin triplet of weak currents whose corresponding charge operator is denoted
T',i=1,2,3. These three operators generate an SU(2)y, algebra

[T, T7] = i T . (2.3)

The term ’isospin’ is introduced because the isospin operators obey the same
algebra as regular spin operators. The subscript L on SU(2) is a reminder of
the fact that weak currents only couple to left-handed fermions.

The symmetry of SU(2), is broken by the observed weak neutral current
because the neutral current has a right-handed component. However, the elec-
tromagnetic current comes to rescue because it is a neutral current with both
right- and left-handed components. Neither the weak neutral current nor the
electromagnetic current respects the SU(2); symmetry alone, but two orthog-
onal combinations of the two currents diagonalize the mass matrix. One com-
bination, Ji’, completes the weak current isospin triplet, while the other are the

weak hypercharge current, JZ.

Weak Hypercharge
Weak hypercharge Y is defined by

Q=T+ . (2.4)

with T representing the isospin charge operator of Jﬁ, and ) being the electric
charge operator of the electromagnetic current. The hypercharge operator Y
generates a symmetry group U(1)y, and the electromagnetic interactions have
been incorporated in the electroweak theory. By enlarging the symmetry group
to SU(2)r@ U(1)y the electromagnetic and the weak interactions have been
unified, but each group still has its own coupling strength. Because the gauge
bosons of the weak interactions are massive, the SU(2)r® U(1)y gauge group is
spontaneously broken, induced by the Higgs mechanism, and an exact U(1).,
gauge symmetry is left giving the photon zero mass.

The different groups presented in this section play a very important role in
the SM. If, in the case of the SU(3) group, the free Lagrangian of the quark
color fields is constructed to be invariant under a SU(3) transformation, the
field theory of strong interactions (QCD) follows as a consequence. This kind
of invariance is called gauge invariance.
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2.1.4 Gauge Invariance

The SM is a quantum field theory. A quantum field theory is constructed by first
quantizing the classical Lagrangian in order to produce fields that create and
annihilate particles. The fields themselves are also described by Lagrangians,
and the field equations are obtained by substituting the Lagrangian of each field
into the Euler-Lagrange equation.

If a field ¥(z,) is given and a spacetime transformation z, — z, + a,
leaves the physics of the field unchanged, the field is said to be invariant under
spacetime transformations; the field ¥ (z,) has a spacetime symmetry.

Other symmetries exist apart from the spacetime symmetry, and Noether’s
Theorem states that for any invariance? there exists a classical, time-independent
charge () associated with a conserved current, d,.J* = 0.

Spacetime symmetry is an external symmetry and leads to the conservation
of energy and momentum. Internal symmetries are more interesting, and in
particular phase transformations written as

V() = () (2.5)

where « is a real constant. Since « is independent of z,, (2.5) is called a global

phase transformation. Phase transformations of the kind U(a) = €' forms a
unitary Abelian group; the U(1) group.
A generalization of (2.5) gives the transformation

() = e (e,) (2.6)

where «(2*) now depends on time and space coordinates. The transformation
(2.6) is known as a local gauge transformation; it is possible to define a(az*)
locally in space and time, not just globally as in (2.5).

U(1) Gauge Invariance

As an example, the Lagrangian of the Dirac field equation is given by
L = 0,6 — M0 2.7

If (2.7) is supposed to be U(1) gauge invariant, a covariant derivative
D,=0,—1ieA, (2.8)

must be constructed to replace d,. A, is the gauge field, and if (2.7) is to be
gauge invariant it must transform as

1
A=A+ -0, (2.9)
e
where « is the same « as in (2.5). The gauge field A, is a consequence of the

imposed gauge invariance on (2.7), and A, gives rise to a gauge boson, the
photon. Thus, by demanding gauge invariance of the Dirac Lagrangian (2.7),

2 . . . .
Invariance of the action under a continuous transformation.
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plus adding a term corresponding to the kinetic energy of the photon field®, the
QED Lagrangian follows:

_ _ 1
Lorp = Y(iy"d, — m)Y + epy" A b — ZFM’FW' (2.10)

A mass term like %mQAMA“ is prohibited in (2.10) by gauge invariance, and the
photon is massless. If massive bosons are to derive from a gauge theory, the
Higgs mechanism is needed.

SU(3) Gauge Invariance

If the SU(3) gauge group of phase transformations is imposed on the quark
color fields, the Lagrangian of QCD is derived. The derivation is a bit more
complicated than in the QED case because SU(3) is a non-Abelian group.
Gauge invariance of the quark color field leads to eight vector gluon fields G,
a=1,...,8, that correspond to eight massless gluons interacting with quarks and
gluons as discussed in Sec. 2.1.3. The final gauge invariant QCD Lagrangian,
for the simplified case of one quark flavor, is given by

1 a v
- ZGWGZ‘ , (2.11)
where ¢ is the quark color field, T,, a = 1, ..., 8, are the eight generators of the
SU(3) group, and g3 is the coupling constant of SU(3).

L=q(iv"0, —m)q — g3(¢7"T.q) G,

2.1.5 The Higgs Mechanism

Because gauge invariance prohibits mass terms of the gauge fields in the La-
grangian, alternative techniques must be used if a gauge theory of massive
fermions and bosons is to be constructed. The Higgs mechanism produces
massive fermions and gauge bosons by spontaneously breaking a local gauge
symmetry, and introduces a new massive particle; the Higgs particle. Thus, ob-
servation of the Higgs particle is a very good signature of the Higgs mechanism.
This section presents a more elaborate discussion on the Higgs mechanism and
try to explain how elementary particles acquire mass.

The Higgs mechanism has not yet been confirmed by experimental data.
Future experiments may reveal that the Higgs theory is not the correct one
after all, but the general opinion among particle physicists is that there must
be something left to discover beyond the SM. Whatever that may be, it could
provide answers to the problems presently encountered in the SM.

On Symmetries

A given symmetry of the Lagrangian can behave in a number of different ways.

e The symmetry remains exact. U(1) symmetry of QED and SU(3) sym-
metry of QCD are examples, and the reason why photons and gluons are
massless.

#Because the kinetic energy term must be gauge invariant, it can only involve the invariant
field strenght tensor I, = 0, A, — L A,
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e The apparent symmetry may have an anomaly, and is not a true symme-
try.

e The symmetry may be explicitly broken by terms in the Lagrangian which
are not invariant under the symmetry. Isospin symmetry, broken by elec-
tromagnetism, and light-quark (up and down) mass difference, are exam-
ples.

e The symmetry may be hidden, meaning that it is an invariance of the
Lagrangian but not of the ground state. This may come about if one or
more scalar fields acquire vacuum expectation values, and thus symmetry
is spontaneously broken.

If a theory of massive fermions and gauge bosons is to be renormalizable, spon-
taneous symmetry breaking is required.

Spontaneous Symmetry Breaking

The SU(2) gauge invariant Lagrangian density, containing the Higgs-gauge bo-
son coupling, is given by

Lrg = (D"¢)"Dyo - V(9) , (2.12)

where ¢ is an SU(2) doublet of complex scalar fields

n .
o= (% )=V (21 219
the covariant derivative ensuring SU(2) invariance is
D=0, + ig%w;j : (2.14)
and the potential
V(6) = —126to + Ao6)? | (2.15)
with p? > 0 and A > 0. The global SU(2) phase transformation is given by
¢ — eaTal2 (2.16)

Three gaugefields are represented in (2.14) by Wi (z*) with a = 1,2,3, and
7o denote the three generators of the group. The number of generators and the
number of fields are always the same in a gauge theory. If (2.14) is compared
to (2.8) it is easy to see that the U(1) group has only one generator, while the
SU(2) group has three generators.

The minima of (2.15) is given by

ov

ot 2 Ty
55 = 81w +20619) =0 (2.17)
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and the non-trivial solution of these minima is
2

(8t d)o = % , (2.18)

with
v=q/E (2.19)

The original symmetry is now broken in the ground state by expanding ¢
about a particular minimum

pr=ga=0s=0, ¢5=0", (2.20)

giving the vacuum expectation value

(D)o = ( v/(i/i ) : (2.21)

The expansion looks like

P(at) = \/2( o g(w) ) , (2.22)

where h(z*) is the expanded Higgs field around the vacuum expectation value v.
The four degrees of freedom of the Higgs doublet are transformed into massive
W+ and Z° bosons, and a neutral, physical Higgs field. The Higgs boson mass
is given as the curvature of the Higgs field at the minimum of the potential

(2.15) [2]

ov?

8T¢|¢:U = 202\ . (223)

ml =
The mass of the Higgs boson is not predicted by the theory, since the Higgs
self-coupling A is a free parameter.

Gauge Boson Masses

To get the masses of the gauge bosons, substitute (2.21) and a definition of the
charged Higgs fields into the Lagrangian (2.12). It leads to a mass term for the
charged gauge bosons

v
mw =59 (2.24)
where ¢ is the coupling constant of SU(2)r,. A mixing occur in the neutral gauge
bosons, but the fields 7, and A, diagonalize the mass matrix, as discussed in

Sec. 2.1.3 and Sec. 2.1.2, and lead to

my = E\/gQ + g% and m, =0 , (2.25)

2
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where ¢’ is the coupling constant of U(1)y. The ratio between the two coupling
constants defines the mixing angle 8y, tanfy = ¢/¢’. The Higgs mechanism
thus leads to the important mass relation

m
"W = cosby . (2.26)
my
Any extension of the one-doublet Higgs model must keep this fundamental
relation in agreement with experiment, and a p-parameter is defined by

mw

= 2.27
P my cos Oy ( )

The experimental world average is [2]
p=0.995+0.013 , (2.28)

and thus in perfect agreement with the model.

Fermion Masses

The complete Higgs Lagrangian Lz also contains a Higgs-fermion coupling term
Lrr

Ly =Luc+Lur , (2.29)

but for simplicity, only the Higgs-electron Lagrangian is given here

— ¢+ - — 0* Ve
Lre=—ge [(Vee)L< &0 )eR—I—eR(qb o) ( - ) ] . (2.30)
L

Analogous terms exist for the other fermions. If the expanded Higgs field vac-

uum expectation value (2.21) is substituted into (2.30), the electron mass is

obtained. The masses of the other fermions follow equivalently, and are given

by

= 2.31

my = ng ) ( 3 )

with ¢, being the Higgs-fermion coupling constant. Thus, even if v is known, the

masses of the fermions still remain unpredicted. Equation (2.31) also imply that

the Higgs boson tend to decay into the most massive kinematically accessible

fermion pair, and thus makes Higgs observations depend on the accelerator-
energy.

2.1.6 Higgs Production

_|_

The main SM Higgs production mechanism in eTe™ collisions at LEEP2 energies

is

Higgs-strahlung : ete™ — ¢°2°. (2.32)
The fusion process

WHW~ fusion : ete” — rv.¢° (2.33)

has a considerably smaller cross section at LEP2 energies. The Feynman dia-
grams for the processes (2.32) and (2.33) are given in Fig. 2.1.
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Figure 2.1: Fusion Feynman diagrams of Higgs production in the Standard
Model. The left diagram is the Higgs-strahlung, and right diagram is the
W+W~-fusion

2.2 Supersymmetry

The SM is in perfect agreement with all existing data. Why is it then necessary
to construct theories that go beyond the SM? Even if the SM explains all particle
physics observations, many questions still remain unanswered if physicists are
to understand nature at a deeper level. Such a theory is often referred to as a
theory of everything’.

One of the problems suggesting that the SM is not final is the large num-
ber of unpredicted parameters in the model which have to be determined by
experiment. These parameters include the three gauge couplings of the three
gauge groups (SU(3), SU(2)r, and U(1)y), the six quark and the three lep-
ton masses (as seen in Eq.(2.31)), the three relative mixing angles between the
quark families which specify how the W= boson couples to quarks, the phase
which determines the magnitude of C'P violation, the mass of the W% boson,
and finally the mass of the Higgs scalar [5]. A total of eighteen parameters.
A fundamental theory has to explain the origin of these parameters from first
principles.

A second problem is the origin of the structure assumed when constructing
the SM: Why do fermions only interact with the weak current in a left-handed
manner? Why are the charges of the quarks quantized in fractions one-third the
charges of the leptons? Why are there three families of fermions, each having
the same coupling to the gauge bosons but greatly different mass?

Further, the strengths of the interactions in the SM, the coupling constants,
are not related by the model and the SM does not explain why they should
be so different when measured. The Higgs mechanism spontaneously breaks
the weak gauge symmetry and thus gives mass to the weak gauge bosons. But
no reason is given for why the weak gauge bosons are massive, and not the
electromagnetic nor strong gauge bosons.

Another flaw of the SM is that it only describes three of the four fundamental
forces. Gravity is not included in the SM. A theory of everything would have to
describe gravitational interactions as a quantum theory. At present the most
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Figure 2.2: Some quadratically divergent Higgs self-energies.

promising candidate of such a theory is the String Theory, which will not be
reviewed here.

However, the perhaps strongest argument for an extension of the SM is
the hierarchy problem: What generates the hierarchy of mass scales needed to
describe the fundamental interactions?

2.2.1 The Hierarchy Problem

The hierarchy of masses goes as follows: The Planck mass mpjgner, governing
the gravitational coupling, is approximately 10'° GeV. The W boson mass
myw, governing the weak coupling, is some 17 orders of magnitude smaller than
MPlanck, approximately 102 GeV. The fermion masses range from %10_3 GeV
for the electron to %102 GeV for the top quark, while the neutrinos are close to
being massless. The central question is what causes such a mass hierarchy? To
complicate the problem even further, radiative corrections to the electroweak
breaking scale estimated in the SM seem to drive the breaking scale up to the
Planck scale.

The hierarchy problem is connected to the point-like nature of elementary
particles. Virtual processes, in which a particle splits into more than one el-
ementary state, lead to large radiative corrections to the particle mass. A
one-loop electromagnetic correction to the electron mass, m., is quite modest.
A cutofl A, is imposed on the momentum flowing through the loop, and even if
A. is the entire mass of the observable universe the correction only amounts to
me =~ 1.7m. o [3]. The radiative correction to the Higgs mass does not behave
quite as nice. The first diagram in Fig. 2.2 shows a Higgs loop with quadratic
self-coupling. The shift of the Higgs mass is given by [3]

32

—— . 2.34

qu = m%[,o +
If Ajr is as large as the Planck mass, the parameter m?%, , must be negative and
fine-tuned up to 30 decimal places, which is highly unn&i‘cural7 if a renormalized
mass governed by the electroweak breaking scale is to be obtained. Because of
this unnatural tuning, the hierarchy problem is sometimes also referred to as
the naturalness problem.
Even if these radiative processes are classically forbidden, they can proceed
provided, in accordance with the uncertainty principle, the virtual states only
exist for a short period of time. These radiative corrections push the mass of
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the Higgs towards the Planck mass, which in turn leads to W* and Z° masses
of the same order as the Higgs. Suggestions have therefore been made that the
Higgs is not an elementary particle, but is composite and has structure on a
certain mass scale, making virtual processes impossible above this mass scale.
Thus, radiative corrections do not blow up the Higgs mass. Technicolour is one
of these composite theories in which the Higgs boson is a fermion-antifermion
state with a new class of fermions called techniquarks.

But what if all the SM states, including the Higgs, really are elementary?
How do we then evade the hierarchy problem? How do we avoid radiative cor-
rections driving the Higgs mass to the Planck scale? If there exists a symmetry
in nature under which, if the symmetry is exact, the electroweak group is unbro-
ken, then the radiative corrections are absent. The W* and Z° masses would
be naturally small if the breaking of the symmetry is small. Only one symmetry
consistent with relativity can play this role: Supersymmetry (SUSY).

2.2.2 MSSM

The Minimal Supersymmetric extension of the Standard Model (MSSM) is the
top candidate of a non-composite theory without the hierarchy or naturalness
problem. In MSSM, every elementary particle adopts a partner with a half
integer spin difference compared to the SM particles. Thus, every SM fermion
state is related to a SUSY boson state, and every SM boson state is related to
a SUSY fermion state. In contrast, the local gauge symmetry of the SM only
relates states of the same spin.

The partners of spin—% quarks and leptons are spin-0 squarks and sleptons,
respectively. The gluon, W%, Z°, and photon gauge bosons, adopt spin—% part-
ners named gluino, Wino, Zino and photino, respectively. These new states are
considerably heavier than the SM states, and thus explains why no direct evi-
dence of the existence of the SUSY particles has yet been found in experiments.
The fact that the SUSY particles are heavier than their SM partners imply that
SUSY must be broken. Hence, SUSY is not an exact symmetry.

SUSY particles contribute as virtual states to radiative corrections of the
masses, even though they are too heavy to be observed on-shell. The crucial
difference now is that the radiative corrections of the new states is of the same
magnitude as the radiative corrections of the SM states but with opposite signs.
If SUSY were an exact symmetry, there would be no corrections to the Higgs
mass. But because SUSY is broken on a scale mgysy, the new SUSY states
acquire masses of order O(mgysy). Cancellation is spoilt. However, no need
for panic. If the resultant contribution of order O(mgysy) is not too large
(i.e. <O(1TeV)), it is consistent with the observed electroweak breaking. The
hierarchy problem is solved. But the price paid is more than twice as many
states as in the SM, and no explanations of the MSSM multiplet structure and
couplings are provided.

Another important aspect of SUSY is encountered in connection with GUTs
(Grand Unified Theories). If the three gauge couplings of the SM are to be
unified as one single coupling constant, SUSY is needed. Without SUSY, the
three couplings never meet at the same point [8].
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2.2.3 Constraints

Extensions of the SM Higgs sector must satisfy three general constraints arising
from the p-parameter measurements, absence of flavor changing neutral cur-
rents, and unitary requirements [2]. The two first are experimental constraints,
while the last is a theoretical constraint.

p-parameter

Extensions of the Higgs sector must not spoil the successful predictions of the
W= and Z° mass relation, that is to deviate from p = 1 (see (2.27)). If measure-
ments indicate p # 1, new physics beyond the SM are required. It is therefore
of great importance to determine p as accurately as possible. Higgs models
consisting of any number of singlets and doublets satisfy p = 1. Other ways of
satisfying the p measurements are restricted to models satisfying [6]

T +1)?-3Y*=1, (2.35)

with 7" and Y representing the total SU(2)y, isospin and hypercharge, respec-
tively. The two-doublet model with 7= L and Y = %1 satisfy (2.35). Possi-
bilities beyond T = %, Y = 41 are usually dismissed because of complicated
representations.

Absence of FCNC

As mentioned in section 2.1.1, flavor changing neutral currents (FCNC) are
highly suppressed (see (2.2)). The absence of FCNC strongly restricts possible
SM extensions. A Higgs mass of order 1 TeV would sufficiently suppress tree-
level FCNC mediated by Higgs exchange. A more elegant possibility is restricted
to models with more than one Higgs doublet, and is based on a theorem stating
that tree-level FCNC are absent if fermions of a given electric charge only
couples to one Higgs doublet. The last possibility is favored over an unnaturally
high Higgs boson mass [2].

The coupling of the Higgs bosons to fermions in a two-doublet model gen-
erally proceed through one of two scenarios: The first possibility is that one
doublet couples to up-type fermions and the other doublet couples to down-
type fermions. MSSM requires this structure because the two Higgs doublets
have opposite hypercharge, and the ¥ = —1 doublet only couples to down-
type fermions while the Y = 1 doublet only couples to up-type fermions. This
choice is also required if both up- and down-type fermions are to be massive in
a supersymmetric theory.

Another two-doublet model avoiding FCNC is a model in which one doublet
couples to both type of fermions, while the other doublet couples to none of the
fermions. This kind of a two-doublet model is not useful if the doublets have
opposite hypercharge.

To sum up: A two-doublet model is favored over a high Higgs boson mass,
and MSSM requires the two doublets to couple to up- and down-type fermions
separated.
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Unitarity Condition

The unitarity condition is not only useful as a MSSM constraint: In the Fermi
theory of f-decay the four fermions involved are assumed to have a pointlike
interaction specified by the Fermi constant Gp. This assumption is correct at
low energies, but at high energies the scattering amplitude M is highly divergent
and thus violates the unitarity condition

(M(s)| <1, (2.36)

where s represents the available energy. The introduction of a heavy inter-
mediating particle, the W* boson, prevents the divergence, and the unitarity
condition is satisfied. A scattering amplitude greater than one implicates a
probability greater than one, which clearly shows the importance of the unitar-
ity condition.

Another example of the usefulness of the unitarity condition provide an al-
ternative argument for the SM Higgs: The unitarity condition must be satisfied
in Vi,Vr, — Vi Vy and f_|_f_|_ — Vi, Vi, amplitudes by any electroweak break-
ing model. (V7 is a left-handed W or Z% and f, is a fermion with positive
helicity.) If a gauge theory is to be renormalizable, non-trivial cancellations
among Feynman diagrams of a given process are required. As an example, the
scattering amplitude of the tree level WYW ™= — WTW™ interaction is given
by

s
2
dmgy,

Mwwww = —92 + O(l) . (2.37)

The divergence of (2.37) is cured by introducing a diagram involving the ex-
change of a (neutral) spin-0 particle, i.e. by introducing a new interaction of
the vector field W with a scalar field. The new particle is the SM Higgs boson
¢, and the tree-level relation geoww = gmw, where g is the gauge coupling,
guarantees cancellation of the growing energy terms. The Feynman diagram of
the WTW~ — WTW~ interaction is shown in Fig. 2.3. The Higgs particle is
often explained as the origin of massive fermions and bosons, but the unitarity
condition alone provides an evidence for a new scalar particle if the SM is to
be renormalizable at a certain energy level.

The MSSM two-doublet model do not depend on a single scalar boson to
cure these unitarity problems alone. It suffices to obey the following sum rules
for the scalar boson V'V and ff couplings

Zgzgvv = ngsOVVv (2.38)
i
Zgh?VVgh?ff = Ypovvheosr - (2.39)
i

These sum rules only apply if the Higgs fields are made of doublets and singlets.

If all these constraints, the p-parameter, the absence of FCNC and the
unitarity condition are to be satisfied, the MSSM Higgs theory must be a two-
doublet theory.
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Figure 2.3: The lowest order Feynman diagram for WTW~ — WTW ™ involv-
ing a neutral, scalar particle; the Standard Model Higgs ¢°.

2.2.4 The MSSM Higgs Model

In section 2.1.5 the spontaneous symmetry breaking of a one-doublet Higgs
model is discussed. The spontaneous breaking of a two-doublet model follows
the same structure as in the one-doublet case, although the Higgs potential is
more complex, and the Higgs spectrum is richer: The two-doublet model has
eight degrees of freedom, in contrast to the four degrees of freedom in the one-
doublet case. It is important to point out that the two doublet model is not
particular for SUSY models. Two-doublet models may exist within the SM as
well, but MSSM requires a two-doublet, as discussed in Sec. 2.2.3
Two complex |Y| =1, SU(2)r, doublet scalar fields are given by

+ +
o= () =) .

A gauge invariant Higgs potential that avoids FCNC* has the form
V(e o) = M(olor — v])? + Xa(é)or — v})?
25 [(8l61 — D)6} — )]
+ 0 [(@fon) (elen) — (elea) (slon)]

- 2
+ A5 _Re ((/51[(;52) — U1 Vg COS E}

- 2
+ X6 |Im ((/51[(/52) — v1vg sin E} . (2.41)
The vacuum expectation values that minimize this potential for arbitrary real
and positive parameters A;, 7 = 1, ..., 6, are

@no=( 0 )+ toaa={ % ). (2.42)

If sin & # 0, it leads to large C'P violations in contradiction with measurements,
and the phase factor £ is therefore set to zero. Thus, the Higgs sector in MSSM
is C'P invariant even though the MSSM as a whole is not C'P invariant. There
is no argument for why the C'P violation should occur in the Higgs sector.

*FCNC are avoided by making the Higgs potential respect the discrete symmetry
P14 —1.
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Higgs Spectrum

A spontaneous breaking of the symmetry has occurred, and the Higgs spectrum
is obtained by expanding the Higgs fields around their vacuum. Three Gold-
stone bosons are identified by their derivative couplings to the three W, fields
appearing in the covariant derivative (2.14). The resulting gauge boson masses
are given by

2 2

g g
my = (U%+U§)m7 m, =0, mjy = (vf—l—v%)? : (2.43)
If (2.43) is compared to (2.24) and (2.25) it follows that the quadratically
summed vy and vy must be equal to the square of the SM vacuum expecta-
tion value v. A key parameter in MSSM is defined as the ratio between the two

vacuum expectation values:
tan § = vg/v1 . (2.44)

The three Goldstone bosons must be removed if the physical Higgs states
are to be determined. The Higgs states are orthogonal to the Goldstone bosons.
In the charged sector the physical states are given by

H* = —(bli sinﬁ—l—qﬁ%t cos (. (2.45)

Because of the assumed C P-invariance the imaginary and real parts of the
neutral scalar fields decouple. The neutral Goldstone orthogonal Higgs state
belongs to the imaginary (C'P-odd) sector and is given by

AY = /2(~Tm¢? sin 3 4 Im¢Y cos 3) . (2.46)

In the real (C'P-even) sector the mass matrix M that mix the two neutral higgs
bosons is given by

2 2
M= ( 41}1((41131135))2522 v 411%(?;\13:_ ;35))?:1;%5 ) L (247)
and the mass eigenstates are
H° = V2 [(Reg) — v1) cosa + (Reg) — vz)sin a]
hY = V2 [(—Red] — vi)sina + (Redy — v3) cosa] . (2.48)

The masses of the Higgs bosons are given by

mie = Ag(of +03),
mio = Xe(vi 4 v3), (2.49)

1
Mo o = 3 [Mu + Moz £ \/(-Mn - Ma2)? + 4-/\/@2] :

At tree-level the Higgs masses simplify to

2 2 2
Mg = Mo + M+,

1
— [mio +m%e + \/(mio + m%y)? — dmem?, cos? Qﬂ] (2.50)

2
Mipo gjo =
RV H 9
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The mixing angle o that diagonalizes the mass matrix M can in the tree-level
case be expressed as

2 2 2
5 Mo (m% — th)
cos*(f — ) = . 2.51
( ) (m%lo — mzo)(quo + mzo — mQZ) ( )

The mass of the lightest MSSM neutral Higgs particle h° is bound to be
smaller than the ZY mass at tree-level, but radiative corrections raise the upper
mass limit of h° to about 150 Gev [9].

To summarize, the following Higgs spectrum has been obtained:

e One neutral C'P-odd scalar A°, often called a pseudoscalar.
e Two neutral C'P-even scalars H° and A°.
e Two charged scalars H*.

The initial eight degrees of freedom (six A parameters and two vacuum ex-
pectation values) have been turned into five Higgs boson mass parameters
myg+, Myo, Mmgo, myo and tanB, while the remaining three have been ab-
sorbed in order to give mass to the three gauge bosons Z° W+, W=, The
two-doublet model has six free parameters: Four Higgs masses, tang and the
mixing angle «. At tree-level the Higgs spectrum is determined by the weak
gauge boson masses, the C'P-odd Higgs boson mass, m 40, and tan 5. The other
parameters of the model only enter through radiative corrections to the Higgs
masses.

2.2.5 Higgs couplings

The Higgs couplings control production and decay of the Higgs bosons. The
JPC quantum numbers for the Higgs bosons determine which processes are
allowed and which are not. If fermions are ignored, every boson of the MSSM
theory is assigned a unique J©¢ quantum number. If fermions are included P
and C' are no longer separately conserved, although C'P still remains a good
quantum number.

The JP¢ quantum numbers of A%, 7% and W#* is 07—, 17~ and 17, re-
spectively, and explain why there are no tree-level A°W*W~ and A°Z°Z°
couplings. Another argument is that in a C'P conserving theory® the spon-
taneous symmetry breaking mechanism does not generate a coupling for the
C'P-odd A°. The coupling only occur at the one-loop level through fermion
loops. Because of this, there can be no A% bremsstrahlung emission of Z° or
W+ at tree-level.

The coupling of the Z° to a pair of identical Higgs bosons, Z°h°h° or
ZPAY AV, is forbidden by Bose symmetry. In the case of a nonidentical Higgs
pair, the coupling is only present if the two Higgses have opposite C'P quantum
numbers, i.e. pair production.

°Recall that the ¢ factor in (2.41) were set to zero to avoid large C'P violations
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Figure 2.4: Fusion Feynman diagrams of Higgs production in the MSSM model.
Left diagram is W W ~-fusion, and right diagram is Z°Z%fusion.

The couplings of H® and h® to WHTW ~ and Z°Z9 are suppressed compared
to the SM Higgs couplings according to the following sum rule derived from the
more general rule (2.38)

2 2 2
Jpovv T 9govv = Jpovy - (2.52)

The SM and MSSM Higgs coupling relations expressed in terms of the angles
o« and § are given by

IREVV — sin(8 - )

9povv

THVY  — cos(f— a) | (2.53)
9eovv

which satisfy (2.52). The Feynman diagrams of W+W= and Z°Z° fusion pro-
cesses are given in Fig. 2.4.
The remaining interactions for Higgs production near the Z° resonance are:

e The Bjorken process Z%* — Z°h° or 7% — Z°HPO.
e Neutral pair production Z% — R°A% or 7% — HY A",
e Charged pair production Z°* — HTH~.

The corresponding Feynman diagrams are given in Fig. 2.5.
The Higgs couplings g7z and gzpa are complementary functions of the
mixing angle « and tang:

9znz ocsin(B— ), gzpa occos(f - a) . (2.54)

Chapter 4 will give more details on h°A° and h°Z° interactions.
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Figure 2.5: Feynman diagrams of Higgs production in the MSSM model. The
top diagram is Higgs bremsstrahlung, the middle diagram is neutral Higgs pair-
production, and the bottom diagram is charged Higgs pair-production.



Chapter 3

The Detector

CERN is a laboratory dedicated to the experimental and theoretical study of
particle physics. The name CERN is an acronym for Centre Européen pour la
Recherche Nucléaire.

CERN is located at the border between France and Switzerland with the
Jura mountains to the west and Geneva to the east. CERN was established
in 1953 to make new discoveries both in experimental and theoretical particle
physics, in addition to help foster European cooperation after the war. At
present CERN has twenty member countries. One of the most recent successes
of CERN came in 1983 when Carlo Rubbia and Simon van der Meer were
awarded the Nobel Prize in physics for leading the UA1 experiment which
made the first discovery of the Z° and W* particles.

LEP is an acronym for Large Electron Positron collider, and it is the biggest
of the accelerators at CERN. The LEP collider is situated inside a circular
tunnel 50 to 100 m below ground surface. The tunnel is 3.5 m in diameter with
a circumference of 26.7 km, and is one of the biggest accelerators yet built. The
planning of the collider and the subsequent detectors started in 1976, and the
construction work began in 1982. The first collisions were performed August
13, 1989 at a center-of-mass energy of 87 Gev, and the LEP accelerator has
been running with great success up to now, reaching an energy of 208.8 GeV.
The ability to probe the constituents of matter at a small scale and to produce
heavy particles are closely related to the available accelerator energy via the
famous Einstein equation E = mc?.

LEP accelerates counter-rotating beams of bunches of et and e~ until the
maximum energy is reached. The beams are then brought into head-on collisions
at four interaction points in the center of the four LEP detectors. The et and
e~ annihilate to produce a on- or off-shell Z°, depending on the energy of the
colliding beams. The Z° bosons decay with an average lifetime of (2.65+0.01) x
10725 s [2], and the outmoving decay products are studied.

Year 2000 is the last year of data-taking with the LEP collider, and the
dismantling of LEP is planned to start in the autumn 2000. LEP will then be
replaced by the LHC (Large Hadron Collider) accelerator which is planned to
start running at a center-of-mass energy of 14 TeV in 2005.

The main contribution of the LEP collider has been precision measurements
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Figure 3.1: The DELPHI detector with all its subdetectors.

of the ZY and W* masses, and other tests of the SM, both in the electroweak
and QCD sectors. The particle physics groups of the Oslo and Bergen univer-
sities made large contributions to the project measuring the number of fermion
families using the now replaced SAT-detector of the DELPHI experiment.

Information on the DELPHI detector presented in this chapter is collected
from DELPHI www-sites [10].

3.1 DELPHI

DELPHI is an acronym for DEtector with Lepton, Photon and Hadron Iden-
tification. DELPHI is one of the four detectors at LEP, the others are L3,
OPAL and ALEPH. Fig. 3.1 gives a layout of the DELPHI detector and all its
subdetectors.

The main part of the detector, the central cylindrical section, is often re-
ferred to as the barrel. The barrel are closed with to endcaps, referred to as
the forward section. These endcaps can be removed during maintenance and
service. The overall length and diameter of the detector are over 10 m, and the
total weight is 3500 tons.

A huge superconducting solenoid, the magenta cylinder in Fig. 3.1, produces
a magnetic field of 1.23 Tesla that bends the trajectory of the charged particles.
The radius of the trajectory is proportional to the momentum of the particle.

The detector is made up of minor subdetectors specialized to extract as
much information as possible about the particle properties and trajectories in
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the detector. The detector has a layer structure of subdetectors similar to the
layers of an onion. The subdetectors are classified according to what kind of
information they provide:

e Tracking Detectors
These detectors are placed close to the interaction point, and measures
the particle path.

— Vertex Detector (VD) Placed closest to the interaction point. It
is a silicon detector, and the barrel part is composed of three layers of
silicon strip plaquettes located at 66 mm, 92 mm, and 106 mm from
the interaction point. The VD provides precise tracking information
in order to detect very short lived particles, and covers a polar angle
of about 20 degrees. The tracks are extrapolated backwards to the
interaction point.

— Inner Detector (ID) Located between the vertex detector and the
time projection chamber. Provides intermediate positions of high
precision in addition to trigger information. It consists of the JET
chamber and the Trigger Layers (TL). A JET chamber is a driftcham-
ber divided into sectors filled with sense wires that measures the
drifttime. The trigger layers consist of cylindrical layers of straw
tubes. Angular coverage down to 15 degrees. The resolution of the
wires in the JET chamber is 90 pm, and after calibration the track
extrapolation (TE) resolution is 40 pm in r¢ and about 1.2 mrad
in ¢. The r¢ measurement is used in the TL to provide an r¢ TE
resolution of 150 pm.

— Time Projection Chamber (TPC) The principal tracking de-
vice of DELPHI. It also assists in identifying charged particles by
measuring dF/dX (energy loss per unit length). Some trigger infor-
mation are also given. It is a 2 x 1.3 m cylinder situated between
the radii 0.29 m and 1.22 m. A charged particle passing through the
TPC ionizes the gas, and an electric field causes the electrons of the
ionized gas to drift toward one of the proportional chambers inside.
The electric field originates from a plate separating the two drift vol-
umes. The TPC provides information on the particle trajectory at
radii from 40 to 110 cm between polar angles from 39 to 141 degrees.
Precision of r¢ is 250 pm per point, and the z precision is 900 pm
per point.

— Outer Detector (OD) A narrow cylinder placed outside the Barrel
Ring Imaging Cherenkov detector (Barrel RICH). It is made of five
layers of drift tubes located between the radii 197 and 206 cm. The
active length corresponds to polar angles from 42 to 138 degrees.
It provides final precise measurements of the momenta of charged
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particles after the Barrel RICH. Precision of r¢ is 100 pm per track,
and the z precision is 4.4 cm.

— Forward Chamber A (FCA) Covering polar angles from 11 to 32
and 148 to 169 degrees. It is situated 160 cm from the interaction
point and covers the ends of the TPC.

— Forward Chamber B (FCB) It is a drift chamber consisting of
two independent modules at each endcap at an average distance of
275 c¢m from the interaction point. The sensitive area corresponds
to polar angles from 11 to 36 and 148 to 169 degrees. Each hit is
measured twice, first with an accurancy of 2ns, and second with an
accurancy of 8 ns.

— Very Forward Tracker (VFT) Located on both sides of the vertex
detector. It covers polar angles from 19 to 25 and 155 to 170 degrees.
The VFT is the forward part of the Silicon Tracker (Vertex Detector).

— Muon Chambers (MUC) The DELPHI detector contains three
muon chambers: Barrel Muon Chambers (MUB), Forward Muon
Chambers (MUF) and Surrounding Muon Chambers (SMC). They
are located furthest away from the interaction point because muons
are the only charged particles that traverse the lead and iron of both
calorimeters essentially unaffected: Most muons of momenta above
2 GeV are expected to reach the muon chambers, whereas the other
charged particles are stopped at an earlier point in their trajectory.
The muon identification is achieved by comparing extrapolations of
reconstructed tracks, provided by subdetectors closer to the interac-
tion point, and hits in the Barrel and Forward muon drift chambers.
The SMC was installed in 1994 to fill the gap between the MUB and
the MUF. Design accuracy for the MUB is 1 mm in r¢ and 10 mm in
z, and the accuracy when space points are associated to extrapolated
tracks is 2 mm in r¢ and 80 mm in z. The MUF accuracy on the z
and y coordinates is about 5 mm. The muon chambers are the outer
green layers in Fig. 3.1.

Having passed the tracking detectors, the particle has now traversed 5 m
of the detector.

e Electromagnetic Calorimeters and Scintillator Counters
Electron and photon identification are provided primarily by the elec-
tromagnetic calorimetry system. The system is composed of a barrel
calorimeter (HPC), a forward calorimeter (FEMC), and two very forward
calorimeters; the Small angle Tlle Calorimeter (STIC), and the Very Small
Angle Tagger (VSAT). The latter two are mainly used for luminosity mea-
surements. The STIC replaced the Small Angle Tagger (SAT) in 1994.
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— High-density Projection Chamber (HPC) The barrel electro-
magnetic calorimeter. Installed as a cylindrical layer outside the OD.
It is mounted on the inside of the solenoid, and consists of 144 in-
dependent modules, arranged in 6 rings of 24 modules each. Each
module is a trapezoidal box filled with 41 layers of lead separated by
gas gaps. An electromagnetic particle produce a shower in the lead
and ionizes the gas. The electrons drift to one end of the box where
they are collected by a proportional chamber, as in the TPC. The
HPC is a cylinder of 2 x 254 cm situated between the radii 208 and
260 cm. The polar angle coverage is 43 to 137 degrees. Granularity
is 1 degree in ¢, 4 mm in z and 9 samples in r. The HPC in Fig. 3.1
is the green cylinder inside the superconducting coil.

— Forward ElectroMagnetic Calorimeter (FEMC) Electromag-
netic calorimeter in the forward region of the detector. It consists
of two disks with diameter of 5 m, and is made of lead-glass. The
front faces are placed at a distance of 284 c¢m from the interaction
point, covering polar angles from 8 to 35 and 145 to 172 degrees. For
neutral showers of energy above 2 GeV the average precision on the
reconstructed hit position in 2 and y, projected to |z| = 284 cm, is
about 0.5 ecm. Fig. 3.1 shows the FEMC as the green disc outside
the forward HACL.

— Scintillators In order to achieve maximal coverage for high energy
photons under all emission angles with minimal leakage, a so-called
hermeticity counter, scintillators have been installed between the
barrel and endcap, and in the HPC. In addition, the Time Of Flight
(TOF) is situated in the barrel, and the HOrizontal Flight (HOF)
tagger in the forward section. The scintillators are also used as fast
triggers. The efficiency of the HOF is about 80 %, the rate is 0.1-0.4
Hz, and the response-time is less than 50 ns.

e Hadron Calorimeter (HACL)

Measures the kinetic energy of neutral and charged strong interacting
particles (hadrons). Situated between the superconducting coil and the
two outermost muon chambers in the barrel, and between the forward
EM calorimeter and the outermost muon chamber in the forward section.
Both the barrel and forward calorimeter contain a muon chamber. The
hadron calorimeters are indicated by red in Fig. 3.1. It is a sampling gas
detector incorporated in the magnet yoke consisting mainly of iron. The
barrel part covers polar angles from 42.6 to 137.4 degrees, and the two
endcaps from 11.2 to 48.5 and 131.5 to 168.8 degrees.

Charged Hadron Identification
Particle identification of strongly interacting particles. In DELPHI it
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Figure 3.2: Figure showing the structure of the RICH detectors of DELPHI.

relies on the dF /dX measurement of the TPC, and on the velocity mea-
surement of the RICH detectors. The RICH technique is based on the
detection of Cherenkov light emitted by the moving particle. The DEL-
PHI RICH contains two radiators: A liquid radiator operating in the
momentum range from 0.7 to 9 GeV, and a gas radiator used from 2.5 to
25 GeV. Full solid angular coverage is provided by a Forward RICH and
a Barrel RICH, both indicated by yellow in Fig. 3.1. Fig. 3.2 shows the
structure of the RICH detectors of DELPHI. The radius of the ring gives
the velocity of the moving particle. The photon detector is a gas drift
chamber with multi wire proportional chambers (MWPC) to detect the
drift electrons.

— Barrel RICH Located between the TPC and the OD. It is a 350
cm long cylinder with inner radius 123 ¢cm and outer radius 197 cm.
It covers polar angles between 40 and 140 degrees.

— Forward RICH Covers polar angles between 15 and 35 degrees. It
is about 1 m thick, and is located 1.7 m away from the interaction
point. The most important difference between the Barrel and For-
ward RICH is the presence of the magnetic field of 1.23 Tesla in the
Forward RICH.

e Luminosity Measurement

The luminosity at ete™ detectors is measured by counting the number
of events with a clear experimental signature. Events with high statistics
and a cross section that can be theoretically calculated to high precision
are used. The process chosen is Bhabha scattering (e"et — e"et) at
small angles, which proceeds almost entirely through the exchange of a
photon in the t-channel. In DELPHI the absolute luminosity is measured
using the Small angle Tlle Calorimeter (STIC) and the Very Small Angle
Tagger (VSAT).

— Small Angle Tile Calorimeter (STIC) It is a sampling lead-



30

CHAPTER 3. THE DETECTOR

scintillator calorimeter formed by two cylindrical detectors placed
on either side of the DELPHI interaction region at a distance of 220
cm, and covers polar angles between 29 and 185 mrad (from 6.5 to
42 cm in radius). The lead-scintillator calorimeter are made up of
47 lead-scintillator layers, each with 1600 holes to let the wavelength
shifter fibers go through. The energy resolution at 45 GeV is 3 %),
and the spatial resolution of the calorimeter alone is 1.5 degrees in ¢
and 300 ym to 1 mm in radius. The resolution of the silicon is 400
pm in radius, and the expected systematic error on luminosities is

0.2 %.

Very Small Angle Tagger (VSAT) Consists of 4 calorimeter
modules, each made of 11 silicon diodes separated by tungsten alloy
absorber. Three silicon strip planes, placed at 5, 7 and 9 radiation
lengths into the modules, are used for (z,y) shower position measure-
ments. A lead block of 10 radiation lengths are placed at the back
of each module to decrease the number of parasite events (photons
or off-momentum leptons) from the interaction point. The VSAT
detects electrons and positrons coming from Bhabha scattering, and
photons between 5 and 7 mrad. The energy resolution at 45 GeV
is 5 %, at 95 Gev around 4 %. The resolution of the silicon strips
is about 170 pum of the z and y coordinates. Expected systematic
error is 1 %. The energy resolution at 45 GeV is 5 %, and at 95 GeV
around 4 %. The resolution of the silicon strips is about 170 gm.
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The h®AY Analysis

The Higgs analysis presented is performed on the Z°— h%A°— bbb b channel of
the MSSM Higgs sector. The Feynman diagram of the h°A° channel is given
in Fig. 4.1.

79— hOAY dominates over 70— h0ZY at high tan3, and h°A° — bbbb is the
dominant decay channel. A full scan of the (m4, tan ) plane is not performed,
only five m 4 and two tan [ values have been used in the limit calculations. This
limited scan is performed because the objective of this analysis is to compare
likelihood methods using different binning procedures and discriminating vari-
ables, rather than determine an excluded region of the (m4,tan ) plane. The
likelihood methods are presented in Chapter 7 and Chapter 8.

The decay modes of the hY A% channel are presented in Sec. 4.2, the relevant
background processes in Sec. 4.3, and the signals in Sec. 4.4.

4.1 Higgs Production

At LEP2 the neutral MSSM Higgs bosons A" and A° are produced mainly
through the following two processes:

Higgs — strahlung cetem — 020

Associated pair production : efe™ — RYA° (4.1)

The Feynman diagrams of these processes are given in Fig. 2.5. The fusion
processes (Fig. 2.4) play a minor role at the kinematical limit of Higgs-strahlung
production of hY. AY is only produced through pair production (to leading
order).

The cross sections of the A°Z° and h°A° processes in (4.1), expressed in
terms of the cross section ogys for Higgs-strahlung in the SM (Fig. 2.1), are
given by

olete™ = 1°2% = sin*(3 — a)osu (4.2)
olete™ = h°A% = cos?(B— a)dasn, (4.3)

where X is the momentum factor of the two particle phase space. The cross
sections for Higgs-strahlung, h°Z°, and pair production, h°A°, for tan3=2.0
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et

Figure 4.1: Feynman diagram of the MSSM process ete™ — 79 — 10AY —
bbbb.

and tanf3=20.0, are given in Fig. 4.2 [11], illustrating that pair production
dominates over Higgs-strahlung at high tang.

4.2 Decay Modes

The C'P-even scalar Higgs boson kY decays almost exclusively into a fermion-
antifermion pair if tan 5 > 1 and my < 100 GeV, which is the case for all the
signal hypotheses of this analysis. Fermion decays are also the dominant decay
mode of the C'P-odd pseudoscalar Higgs boson A°. The partial decay widths
[ of all the neutral Higgs bosons ® into fermions f in the limit m3 > m?f are
given by [9]

17%] | (4.4

L@~ ff)=N. GFZ?[ 2 [1+
— = c—— m -
1 Qﬂ_g@ff i) 3

where G'F (the Fermi constant) is the weak coupling constant, ggss are the
Higgs-fermion couplings, and «, is the QCD running coupling constant.

Fig. 4.3 [11] shows the branching ratios of h° and A° into SM particles, and
it is evident that the dominant decay mode at both tan 3 = 2 and tan g = 20
is bb.

4.3 Background

The three most important background processes to a Higgs search in the h°A°
channel are: 7% — W+W~ — qqqq, 7%y — qqv and Z°Z° — qqqq(qqll). The
dominating process is the Z°y process, followed by the W W~ process, and a
small contribution from the Z°Z° process. Fig. 4.5 [12] shows the background
level vs. the efficiency for the different Monte Carlo generated backgrounds,

together with the data of the 189 GeV run.
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Events
Channel | after cut | o[pb] Efficiency [%] Events
qq(7) 2040 99.0 (13.9 £ 0.31)- 1072 | 13.4 & 0.83
q4qq 1144 17.733 | (18.3 £ 0.54)- 1072 | 9.45 &+ 0.35
lqq, | = p, T 146 0.3688 | (69.4 £ 5.7)-1072 | 0.417 £ 0.036
Background 3330 — — 23.2 £ 0.90
| Data 33 | — ] — 33 |
Signal, tan § = 2

70 1404 0.08329 70.2 + 1.0 9.24 4+ 0.16

ma 75 3735 0.06482 72.0 + 0.62 7.37 £ 0.098
[GeV] | 80 3753 0.04890 75.2 + 0.61 5.81 + 0.075
85 3900 0.03549 75.0 + 0.60 4.21 + 0.054

90 2083 0.02457 74.4 4+ 0.82 2.89 £+ 0.043

Signal, tan 5 = 20

70 1508 0.15892 75.4 + 0.96 18.9 + 0.31

ma 75 3779 0.11352 75.6 + 0.60 13.6 £ 0.17
[GeV] | 80 3808 0.07287 76.2 + 0.60 8.77 + 0.11
85 3551 0.03844 74.0 + 0.63 4.50 + 0.59

90 2094 0.01270 69.8 + 0.84 1.40 + 0.22

Table 4.1: The final cut number of events, cross-sections, efficiencies and ex-

pected number of events for the different Monte Carlo generated backgrounds
and signals, together with the 189 GeV data.

4.4 Signal

The h®A° search presented is restricted to limit calculations of only ten points
in the (my,tan3) plane: Five my values (70, 75, 80, 85, 90 GeV) at two
tanf values (2, 20). The small number of (m4, tan 3) points is allowed because
the objective of this search is to compare likelihood methods using different
binning algorithms and discriminating variables, rather than exclude a region
of the (m4, tan ) plane. No interpolation between the Monte Carlo generated
signal distributions is performed (see Sec. 6.3 and Fig. 6.2).

The signal, background and 189 GeV data distributions are provided by
Jorgen Hansen, using the DELPHI TEAM C standard track [13, 14] and 4jet
selection [15, 14]. The final cut is set using a neural network-like variable
(presented in ref. [14]), and the cut corresponds to 33 observed candidates.
Figures 4.6, 4.7, 4.8, 4.9 and 4.10 shows the the m4 = 80 GeV, tan § = 20 sig-
nal, together with the different Monte Carlo backgrounds and the observed
candidates at 189 GeV.

Table 4.1 gives the number of events after the final cut, cross sections,
efficiencies, and expected number of events of the Monte Carlo generated back-
grounds and signals, together with the 189 GeV data. The quoted uncertainties
include a common 1 % relative error on both signals and backgrounds, to ac-
count for uncertainties in center-of-mass energy, luminosity, and cross section,
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in addition to a systematic error on the difference between different generators
of the various background channels and the modeling of the successive cuts, esti-
mated to be 5.7 % for the PYTHIA background, and 2 % for the EXCALIBUR
backgrounds [14, 16].
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Figure 4.2: Cross sections of MSSM Higgs-strahlung, h°Z°, and pair produc-
tion, h°A°, for tan3 = 2.0 and tans = 20.0 [11].
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Figure 4.4: Feynman diagrams of the three most important background pro-
cesses to a search in the h%A° channel: Z% — WYW~ — qqqq, 2%y — qqv

and Z°7Z° — qqqq(qqll).
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Figure 4.5: Figure showing the background level vs. the efficiency for the
different Monte Carlo generated background samples, together with the data of
the 189 GeV run [12].
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Figure 4.7: Figure showing the heaviest of the paired jet masses, m 4. The signal
sample used is the Monte Carlo generated signal for my4 = 80 GeV, tan 5 = 20.
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Figure 4.9: Figure showing the difference of the paired jet masses
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Chapter 5

Jet Clustering and
Kinematical Fits

The single final-state particles of a high energy interaction event have to be
grouped together in clusters in order to reconstruct the jet topology of the event,
and calculate the jet momentum and energy. The jet clustering of the signals,
backgrounds and data candidates used in the analysis of the likelihood methods
presented in Chapter 7 and Chapter 8, is the standard DELPHI Durham [17]
algorithm programmed by Jorgen Hansen. The presentation of the Durham jet
clustering is based on the PYTHIA 5.7 manual by T. Sjéstrand [18].

To correct the event data for detector inefficiencies, a kinematical fit on the
single particle tracks of the jets is performed. The effect is sharper mass dist-
ributions, as is seen in Fig. 5.1. Sec. 5.2 discuss kinematical fits in more detail.
The discussion on kinematical fits are influenced by the book * Statistics for Nu-
clear and Particle Physicists” by Louis Lyons [19], and private communications
with Jgrgen Hansen.

5.1 Jet Clustering

The single hadronic tracks of an event have to be combined into clusters of
tracks in order to calculate the momentum and energy of the jets.

To determine the individual jet axes in events of more than three jets, a
technique known as cluster finding is developed: Each final-state particle is
initially considered to be a cluster. The two nearest clusters are found using
some distance measure. If the distance is smaller than a cut-off value, the
clusters are joined to form a new cluster. This routine is repeated until the
distance between any two clusters are above the cut-off value. The cut-off value
controls the final jet picture, and it is possible to have the cluster algorithm
find a predetermined number of jets, which is the case for the 4 jet clustering
of h?A® — bbbb events.

A jet is defined as a collection of particles which have a limited transverse
momentum with respect to a common jet axis, and hence also with respect
to each other [18]. The distance measure used should only depend on the
transverse momentum, and the distance measure of the Durham algorithm is
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written as [18]

2min(E7, E?)(1 - cosb;)
B 7

Yij = (5.1)
where F); and E; are the energy of the two clusters, 6;; is the relative angle
between the clusters, and F.,, is the center-of-mass energy of the interaction.
The physical interpretation of the y;; distance measure is the transverse mo-
mentum of the softer particle with respect to the direction of the harder one.
In contrast, the LUCLUS routine [18] uses a distance measure with the physical
interpretation as the transverse momentum of either particle with respect to
the common direction given by the momentum vector sum.

Initially, each particle is considered to be a cluster, and the two clusters
with smallest relative distance g;; are found and joined to one if ;; < Fjoin,
with 7;.:, some predetermined distance. The momentum of the new cluster
is the vector sum of the momenta of the joined clusters. This procedure is
repeated until the distance between any two clusters are greater than y;.:,. If
the number of final clusters do not match a predetermined number of jets, the
value of 7;., is modified, and the clustering algorithm repeated until the final
number of clusters match the predetermined jet number.

The main difference between the Durham algorithm and the LUCLUS routine,
is that Durham does not allow reassignments. Reassignment is performed in
the LUCLUS routine after each joining because the particles of a new cluster may
be closer to another cluster.

5.2 4C Fit

A kinematical fit is performed to make the measured quantities of an observed
interaction satisfy a set of kinematical constraints. This is done by considering
all configurations of the four-momentum vectors of the outgoing particles that
satisfies these constraints. From this infinity of four-momentum vector sets, the
set that has the least y? value are used.

A set of n measurements z*, 27, ...,z

™ with errors oy, 09, ...,0, are pro-

vided by the detector. These measurements are subjected to a number of con-
straints, C(zq, 22, ..., 2,), j = 1, ..., n,, satisfied by the numbers 27, 73, ..., 7.
The quadratic sum S? is defined as

which gives a measurement of how much the z; set of measurements have to
be moved in order to fit the &; set of values.! Further, y? is defined as the

'The &2 definition (5.2) corresponds to the x? definition [20]

N~ (i e
oSy

1=

provided the measured values z]" are all collected from a normal distribution N(u;=g;, 0,2),
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minimum of 8 when varying z;
\? = min(8?) . (5.3)

The problem now is to find the set zy, @5, ..., 2, among the infinite number of
sets, that minimize S2.

In the case of a h®AY — bbbb interaction the measured values are the mo-
mentum and energy of the four jets: (p;,p;,pi, EY,i=1,..,4.

5.2.1 The Constraints

The four constraints of a 4C fit are the constraints leading to conservation of
momentum and energy and, in the case of a colliding beam experiment, the
constraints are given as:

i Cl = Ztracks Dz = 0
i CQ = Ztracks Py = 0
i 03 = Ztracks Pz = 0

o (4= Ztracks E=Ecn = \/g

These constraints are not hypothesis dependent; they are well founded physical
laws. In contrast, a 5C fit imposes a fifth constraint: The masses of the two
pairs of jets, resulting from a pairing of the four clustered jets two by two, are
equal. This constraint is hypothesis dependent, and a 5C fit is rarely used in
the h9A° — bbbb channel.

After the kinematical fit is performed, the problem of which two jets belong
to which two initial heavy objects must be addressed. If a 4C fit is used, the
pairing of least mass difference is considered to be the best pairing. If a 5C
fit is used, the pairing of least y? is considered to be the best pairing. The
hP A events used in the analysis presented in this thesis are subjected to a
4C fit, using the PUFITC package programmed by N. J. Kjaer of CERN and
M. Mulders of NIKHEF/DELPHI. The three possible pairings are classified
according to their jet mass difference. Chapter 8 provides a more elaborate
discussion on the pairing problem.

Fig. 5.1 shows the invariant mass of h°A° — bbbb events before and after
a 4C fit performed by PUFITC [12]. The effect of the fit is a sharper mass
distribution.

where p; is the mean. However, there is of course no reason to expect the z!" to be normal
distributed with p; = @; prior to the kinematical fit. Hence, the definition (5.2) is referred to
as a quadratic sum, 82, not as x°.
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Figure 5.1: Plots of mass estimators of the h’A° — bbbb channel before and
after a 4C fit performed by the PUFITC package [12]. The plots to the left are
the distributions of the mass estimator before the 4C fit, and the plots to the
right are the distributions of the mass estimators after the 4C fit. As is evident
from these plots, the 4C fit sharpens the mass distributions by reducing the
RMS. The signal sample used is m4 = 80 GeV, tan 3 = 20 (m;, = 79.53 GeV).



Chapter 6

The ALRMC Program

The ALRMC program [21] offers an optimal method for setting exclusion limits
on the Higgs mass for multichannel searches using a likelihood ratio technique.
The program is used for calculating confidence levels based on signal and back-
ground distributions prepared by the likelihood methods presented in Chapter 7
and Chapter 8. The limits are presented in Table 10.1.

A brief summary of hypothesis testing in general, together with the ALRMC
specifics, are presented in Sec. 6.1. Sec. 6.2 presents the inputs of ALRMC,
and Sec. 6.3 explains the customizations performed to make ALRMC fit the
requirements of the analysis.

6.1 Statistics Theory

The discussion presented in this section is inspired by the book “Probability
and Statistics in Particle Physics” by Frodesen, Skjeggestad and Tgfte [20], and
the Delphi-note “Optimal Statistical Analysis of Search Results based on the
Likelihood Ratio and its Application to the Search for the MSM Higgs Boson
at /s = 161 and 172 GeV” by Alex L. Read [21].

6.1.1 Hypothesis Testing

The true value of a parameter # is wanted. A number of n random sam-
ples, or observables, x1,xs,...,2, are collected from a population described
by a probability density function F'(z]f) which depends on 6. A test-statistic
X (z1,22,...,2,), which does not depend on any unknown parameters, is con-
structed from the n samples. It is essential that X has some correspondence
to 8; X is an estimator of 8. A null hypothesis is formulated stating a one- or
two-sided limit on the true value of 8. A confidence level is interpreted as the
probability of finding the true value of # in the region stated in the null hypoth-
esis. The confidence level is the integral of the probability distribution function
of the test-statistic, P(X), between the limits stated in the null hypothesis.
A confidence limit is the value of a population parameter (such as a particle
mass or production rate) which is excluded at a specific confidence level[21]. A
confidence level expresses the confidence associated with a hypothesis.
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Constructing a search analysis follows three general steps: Define the ob-
servables, define a test-statistic, and define rules for exclusion and discovery.
The rules lead to ranges of values of the test-statistic, and these ranges are ob-
tained by calculating the integration limits of the probability density function
integral that gives the specified confidence level. Typical observables may be
the number of candidates satisfying a set of criteria, the reconstructed invariant
mass of the candidates, b-quark tagging probabilities, or a discriminant variable
constructed from a neural network. The test-statistic is constructed to rank the
experiments from the least to most signal-like, and the ALRMC program utilize
the likelihood ratio test-statistic for parameter estimation.

Two kinds of probability density functions enter a search: The signal dist-
ribution of the mass hypothesis, and the background distribution of the known
background. A number of candidates, satisfying certain criteria, are identified
from the reconstructed data provided by the detector. To correct the candidates
for backgrounds, the background rates are subtracted from the candidates. In
case of small or absent signal rates, the result of this procedure may lead to
unphysical rates. The way to deal with this is to normalize the confidence
level observed for the signal+background together hypothesis, C'Ls14, to the
confidence level observed for the background only hypothesis C'Ly;

C1Ls—|—b
CL, =

The test-statistic X depends on the observables and the population param-
eters of the known background distribution and the signal hypothesis distribu-
tion, and it is constructed to increase monotonically for increasingly signal-like
experiments. Hence, the confidence in the signal4background hypothesis is
given as the probability that the test-statistic is less than or equal to the ob-
served experimental value, X s:

CLs= (6.1)

C1Ls—|—b — Ps—l—b (X < Xobs) ’ (62)
with
Xobs dP b
&ngxwz/ ax, (6.3)
0 dX

and where dP;y;/dX is the probability distribution function of the test-statistic
X for the signal+background hypothesis. The confidence in the background
only hypothesis is similarly given as

CLy = Py(X < Xops) | (6.4)
with
KXopes de
mxg&%:/ Chax 6.5
X< xa= [ (6.5

and where dP,/dX is the probability distribution function of the test-statistic
X for the background only hypothesis.
The signal hypothesis will be considered excluded at the confidence level

C'L when
CL,<1-CL. (6.6)
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6.1.2 Maximum Likelihood Method
If a population has a probability distribution given by F'(2|0), the likelihood of

the observations zy, xo, ..., x, for a specific 8 is given by
L(a1, 03,0 ,08) = [[ Plail6) | (6.7)
=1

and it expresses the joint conditional probability for obtaining the measure-
ments, given #. The likelihood-ratio X is generally given as
L
A= (Lf) ; (6.8)
L(Q)

where Q is the parameter space of #, and @ is a subspace of Q, hence 0 < A < 1.
F(z|0) is now considered a function of 8 = {6y, 6,,...,0;} € Q. If the null hy-
pothesis is true, the parameters belong to the subgroup &.

In search for new particles the approximate likelihood ratio () is given by [21]

@=tttD (6:9)

(0)

i.e. the ratio of products of probability densities for the signal+background
hypothesis, to the products of probability densities for the background only
(signal-free) hypothesis. The likelihood ratio, as a consequence of the Neyman-
Pearson theorem [22, 21], maximizes the probability of rejecting a false hypoth-
esis at a given confidence level, and conversely minimizes the probability of
making a false discovery at a given discovery confidence level.

When searching for small signals in the presence of small backgrounds in
several distinct channels, and where more than just the number of candidates
will enter the likelihood ratio, it is in general not possible to obtain analytic
expressions for the likelihood ratio probability distribution functions (p.d.f).
The p.d.f’s may instead be obtained by Monte Carlo generations of experiments
according to the relevant hypothesis, and confidence levels, computed as the
fraction of Monte Carlo experiments satisfying @ < Qs [21] (see (6.2) and
(6.4)).

Fig. 6.1 shows five different mass hypothesis distributions, normalized to
one, together with the observed candidates, and gives a simple illustration of
how the maximum likelihood method works in a search where the discriminating
variable is the reconstructed mass of the candidate. Five Monte Carlo generated
signal distributions are given for m 4 values ranging from 70 to 90 GeV in steps
of 5 GeV in the tanf = 20.0 sector at /s = 189. The vertical bars on the
top of the plot are the experimentally measured values, i.e. the reconstructed
invariant mass of each observed candidate. As is seen in the plot, the mean
of the signal distributions moves towards higher masses, and the width of the
distributions increases as my increases. The likelihood is in this simple case
given as

L=T]Sm(mi), (6.10)
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Figure 6.1: Five signal hypothesises with increasing mass in the tan3 = 20 sec-
tor together with the observed candidates of the 189 GeV data. The candidates
are indicated by a vertical bar at the top of the plot.

where n is the number of observed candidates, S, (m;) is the signal distribution
for a given mass hypothesis evaluated for the ¢’th candidate, and m; is the
discriminating variable value of the ¢’th observed candidate. This likelihood
is calculated for all the signal distributions, and the signal distribution that
maximizes the likelihood L is the most likely m 4 hypothesis.

In contrast to the single m; used here, the methods of Chapter 7 use three
discriminating variables, and the methods of Chapter 8 use five discriminating
variables to separate signal from background.

Generic Likelihood Ratio

The likelihood ratio () for experiments with N.j,, independent search channels,
with measurements of a single discriminating variable z for each candidate, and
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with known absolute signal and background rates, can be written as [21]:

i=1 Py} 71=1 s;+b;
m = : n, ng . ’ 611
@) [ Yeran bt [T55, Bi(xij) .

; ng!

T Nepan e (it (si4bi)™ I1: 5i8i(#1;)+bi Bi(wi;)

=1

where n; is the number of observed candidates in each channel, z;; is the value
of the discriminating variable measured for each of the candidates, s; and b; are
the integrated signal and background rates per channel, and S;(z;;) and B;(z;;)
are the probability distribution functions of the discriminating variable for the
signal and background, respectively.

6.2 The Inputs

The user defined inputs required by ALRMC are probability distributions for
the signal hypotheses and the known background, the discriminating variable
values of the observed candidates, and the efficiencies for each channel. Prede-
fined inputs are tables of cross-sections and branching ratios used in the limit
calculations.

The background distribution together with the signal distributions for all
channels and mass hypotheses to be used in the ALRMC calculation, are pro-
vided by a file named distributions.dat, created from PAW-histograms of
the distributions. It is of utmost importance to use same upper and lower edges
for all the histograms of distributions.dat.

ALRMC only handles one or two discriminating variables. The values of the
discriminating variable(s) for each observed candidate is given as DATA state-
ments in the subroutine d_xx_channels of d_higgs.f, where xx is the name of
the search channel'. d_higgs.f is a collection of Fortran subroutines that con-
trol which channels and efficiencies are used in the limit calculations, read the
correct files, interpolate? the signal distributions, and return the SM expected

signal, SM cross-sections and SM branching fractions.

The efficiencies®

are not given as the efficiencies obtained at each simulated
(ma4,tan 3) point. Instead, a fit of the efficiency vs. mass is given as Fortran
Real Functions. The efficiency-fits used in the limit calculations presented in
this thesis are produced using the program fiteff.kumac|[23] which takes ntu-
ples of efficiency and mass as inputs. The efficiency Real Functions to be used

in the calculations are concatenated into efficiency.f.

The predefined tables of cross-sections and branching fractions are made
using the HZHA generator, and the tables are found in ref. [11]. The README file
of ref. [11] contains more details on the HZHA generations.

'xx is either ha, hz or hinv

2The interpolation procedure is not used in the analysis presented

*Efficiency used in this context means the experimentally obtained efficiency of each chan-
nel
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6.3 ALRMC Customization

In a full limit calculation several channels at different center-of-mass energies
are used. But the likelihood methods presented in this thesis are limited to one
single channel at one single center-of-mass energy: h%A" — bbbb at 189 Gev.
The other channels are inhibited in the subroutine £ill array of mssm.f by
setting the boolean array QCHAN(I), where I is the channel number, false for
all channels except for the hY A" channel.

The Higgs mass hypothesis is characterized by three parameters in the h°A°
(or h°Z°) channel: The ratio tan3 between the two vacuum expectation values
in the MSSM Higgs model, the mass m4 of the neutral C'P-odd scalar, and
the mixing parameter « that diagonalizes the mass matrix. Section 2.2.4 gives
more details on the parameters and mass spectrum of the MSSM Higgs model.

The h°AY analysis presented is confined to calculate limits for only ten
points in the (m4,tan 3) plane, because the objective of the analysis is to test
different binning procedures and discriminating variables. Files of the general
form ecms mixing.dat [11] are tables of cross sections and branching fractions
calculated for given my4, tan/ and my, values. The center-of-mass energy is given
by ecms, and mixing equals no, max or typ corresponding to the mixing applied
in the HZHA generations. In order to customize ALRMC to only calculate
limits for certain (ma4,tan ) points, ecms mixing.dat is modified to contain
only the my4 and tang values given by the signal hypotheses.

Further, the subroutine excl fast of mssm.f is modified to only read the
m4 and tang values listed in the modified ecms mixing.dat.

ALRMC contains an interpolation routine which interpolates between two
Monte Carlo generated signal distributions in order to calculate limits for in-
termediate my, values. However, the distributions produced by the likelihood
methods presented in Chapter 7 and 8, are too complicated for the ALRMC in-
terpolation procedure. The effect of the ALRMC interpolation routine is shown
in Fig. 6.2 which is plot of the expected C'L; calculated with and without the
interpolation procedure. From this plot it is evident that the intermediate C'L;
(indicated by +), based on interpolated signal distributions, are not correct.
Hence, the interpolation routine is skipped, using a GOTO statement in subrou-
tine d_sigdis_interpol of mssm.f.

Finally the title-card mssm.tit must be set up correctly. The LUMINOSITY
flag is set to the lowest m 4 and tan/ value, and the OBSERVED flag is set to a
value that specifies which calculations ALRMC should perform.
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Figure 6.2: Plot of the expected C'L; calculated with and without the interpo-
lation routine. The likelihood method used to calculate the C'L; of this plot is
the variable/fixed binning procedure presented in Chapter 7.



Chapter 7

3D Likelihood Methods

In a search for a particular signal in a number of observed candidates, collected
from a distribution of both background and signal, the signal is distinguished
from the background using a variable with different distributions for signal and
background. Such a variable is called a discriminating variable. The better
the discriminating variable distinguishes the signal from background, the lower
signal confidence levels (C'L,) are calculated, in the absence of a true signal,
and the excluded region increases.

If three discriminating variables provide more information about the signal
than two discriminating variables, it is likely to expect an improvement of the
exclusion limits, in the absence of a true signal, if the three variables are used.
This is the reasoning behind the development of the three dimensional (3D)
likelihood methods.

ALRMC is implemented to handle a maximum of two discriminating varia-
bles. The 3D likelihood methods use three discriminating variables despite the
ALRMC limit of two variables. This is possible because the three discriminating
variable distributions are mapped into a one dimensional (1D) discriminating
variable space. The mapping algorithm is presented in Sec. 7.5.

The three discriminating variable distributions are binned before the one
dimensional discriminating variable is constructed. Fized binning is the basic
binning procedure, and wvariable binning is designed to enhance the resolution
of the distributions, compared to the fixed binning procedure, by applying the
available bins where the distributions change rapidly. The binning procedures
are presented in Sec. 7.2 and Sec. 7.3, respectively.

There is a danger of overtraining the calculated confidence levels of the
signal and background distributions if the bins are too small. Overtraining is
further discussed in Sec. 7.4.

The observed candidates are given a treatment slightly different from the
treatment of the signal and background distributions. The candidate binning
and mapping are presented in Sec. 7.6.

Finally the PAW macros calling the binning and mapping routines, and
initializing the appropriate 3D and 1D vectors of the 3D likelihood methods are
presented in Sec. 7.7.

The term 3D likelihood method’ is in this thesis used to denote a method
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that takes a total of three discriminating variables as input, and gives one final
discriminating variable, to be used with ALRMC, as output.

7.1 Three Discriminating Variable Distributions

Two sets of three discriminating variables are used as input to the 3D likelihood
methods. The first set consists of the invariant masses mj, and m 4 of the neutral
MSSM Higgs scalars h® and A° (see Sec. 2.2.4) of the h°A% — bbbb channel,
and a discriminating variable which is the result of an analysis resembling a
neural network analysis! presented in ref. [14]. Because the third discriminating
variable resembles a neural network (NN) variable, it is for simplicity referred
to as the NN variable in the following. Fig. 7.1 gives histograms of Monte Carlo
generated my, my4, and NN distributions for the m4 = 80 GeV, tan 3 = 20.0
signal hypothesis, one of a total of ten signal hypotheses used with the 3D
likelihood methods.

The second set of discriminating variables is only used with the fixed binning
3D likelihood method. This set consists of the sum of the invariant masses of the
first set, M = my, + my, the difference of the masses, Am = my4 — my, and the
same NN variable as in the first set. The implementation of the fixed binning
method that uses the mj, m4 set is identical to the implementation of the fixed
binning method that uses the M, Am set. Only the mj, m4 implementation
is treated in detail in this chapter. Chapter 8 presents a 5D extension of the
fixed binning 3D method, and the M, Am set is discussed in more detail in
Chapter 8.

The three distributions of Fig. 7.1 are combined to form the 3D discrimi-
nating variable signal distribution of Fig. 7.2: The x-axis is the distribution of
my, the y-axis is the distribution of my, and the z-axis is the distribution of the
NN variable. The 3D background distribution is also shown in Fig. 7.2. The
next step is to construct a 3D vector containing the 3D distribution by binning
the distribution. The 3D vector is further treated in PAW using algorithms to
produce a final 1D vector containing the discriminating variable distribution
to be used as input to ALRMC. It is essential that exactly the same binning
procedure is applied to all signal, background and candidate distributions used
in the limit calculations.

7.2 Fixed Binning

The binning is performed by separating the 3D space of the 3D distribution into
blocks, or bins, of a given size containing a small part of the whole distribution.
An event of the distribution is a unique (m4, mp, NN) point in the 3D space
spanned by the three variables, and a bin is a 3D sub-space that contains the
number of events confined between the bin walls. A Fortran selection routine
allocates each event to its corresponding bin. The routine loops over all the

'The analysis contain many features of a neural network, but the analysis is strictly speak-
ing not a neural network. The variable is nonetheless referred to as a neural network variable
for simplicity.
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Figure 7.1: Monte Carlo generated distributions for the my4 = 80 GeV, tan § =
20.0 signal hypothesis in the h° A® — bbbb channel at 189 Gev. The top plots are
the invariant mass distributions of my; and m 4, respectively, and the bottom
plot is the distribution of the neural network-like variable presented in ref. [14].
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and the bottom plot is the my4 = 80 GeV, tan 5 = 20.0 signal 3D distribution.
The zy-plane is spanned by the two invariant masses, and the z-axis is the
distribution of the neural network-like variable presented in ref. [14].
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events of the distribution, and three bin index numbers, Iy, are calculated for
each discriminating variable 6 using

0(7 _Omin
fp= ) = Onin (7.1)

where 6 is my, m4, or NN, j is the event number, 8,,;, is the minimum value
of the 6 distribution, and Ay is the binwidth of the bins of the 8 distribution.
The content of the bin is stored in a 3D vector of index (I, , I ,, Inn), and a
control routine gives an error message if an event is not placed in any bin. The
procedure given here is referred to as the fized binning procedure.

7.2.1 Resolution

The total number of bins, N3p, used in a 3D binning procedure, i.e. the size of
the 3D vector, is given by

Nsp = Ny  Niw, Naw (7.2)

and the number of bins Ny used to bin each variable 8 is given by

Ng = 70maxA€0mm ; (7.3)
where 8, and 8,,;, are the maximum and minimum value of the 8 distribution,
respectively. The only way to improve the resolution of a given distribution of
fixed bins is to reduce Ag. Hence, in the case of fixed binning, the size of
the distribution vector is very sensitive to the resolution. In an attempt to
increase the resolution, but not the size of the vector, a procedure referred to as
variable binning is developed. It is also interesting to vary the binning without
increasing the total size of the vector because ALRMC sets an upper limit on
the number of bins the vector might contain?.

7.3 Variable Binning

As is seen in Fig. 7.2 the 3D distribution of the signal is concentrated to the
furthest corner of the box, leaving a lot of empty space in the box. Thus, when
fixed binning is applied to the distribution, a few bins of the 3D distribution
contain large samples of the distribution while a lot of the bins are almost
empty. The information on the distribution inside the bin is lost after the
binning has been performed. Hence, the larger portion of a distribution a single
bin contains, the more information is lost, and the effect is a lower resolution of
the distribution. The resolution therefore strongly depends on the size of the
bins. If the resolution is to be enhanced without changing the total number of
bins, the use of the bins must be optimized by applying the available bins to
the parts of the distribution where the important information is. Thus, better

2The ALRMC maximum number of bin limit is not final, and may be changed in the
ALRMC setup. However, a higher limit will result in using more CPU time and hence slow
the calculations down.
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resolution is achieved by making the size of the bin depend on the number
of events inside the bin. This procedure is commonly known as a Fuzzy Box
procedure. In the variable binning procedure presented here, the size of the
bin is made to depend on the position of the bin rather than number of events,
thus trying to simplify the implementation of the variable binning procedure.
Because the number of events inside the bin depends on the position of the
bin, the binsize of the variable binning procedure only indirectly depend on the
number of events. Hence, variable binning is only an approximate Fuzzy Box
procedure. The different binwidth regions are determined by inspection of the
distributions.

The first step of variable binning is to bin the whole distribution using
the binwidths required for the sensitive region of the signal or background
distribution. The result is a large vector with many still empty bins, but the
number of events in the filled bins is lower than in the fixed binning case because
several bins have now been used to bin a part of the distribution that one single
bin covered earlier.

The next step is to reduce the size of the vector by combining the bins that
do not contain any important information about the distribution; a rebinning
of the vector must be performed. The rebinning is done in a separate Fortran
routine that takes the large vector containing the distribution in small, fixed
bins as input, and gives a rebinned vector with a reduced number of entries
as output, containing the distribution in bins of a size that depends on the
position of the bin. The rebinning procedure adds the contents of the bins that
are to be combined, and stores the sum in the correct bin of the output vector.
The bins that are not to be combined, i.e. the bins that contain important
distribution information, are just transferred to the correct bin of the output
vector with their original bin content. A control routine is called after the
rebinning is performed to check if the total number of events of the distribution
has changed during rebinning. Fig. 7.3 gives the bins in the first and last step
of the variable binning procedure to the left and right, respectively.

Two variable binning procedures are implemented. The first procedure ap-
plies variable binning to myp and my4, while the bins of the NN variable is
unchanged. This procedure only takes the sensitive regions of the signal distri-
butions into account. Sec. 7.3.1 provides more details.

The second procedure applies variable binning to all three variables. This
procedure takes the sensitive regions of both the signal and background distri-
butions into account. Sec. 7.3.2 provides more details.

7.3.1 Rebinning of my and my

In the case of the my, and m4 distributions, the region where the smallest bins
are used is the region of about two standard deviations centered around the
mean, as seen in Fig. 7.3. The signal distribution of the NN variable in Fig. 7.1
is close to flat, i.e. no region of divergent event density exists, and fine binning
is not needed to increase the resolution of the signal NNV distribution.

The same binning procedure and resolution must be applied to all the dist-
ributions that enter the search. Hence, the appropriate region for fine binning
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Figure 7.3: Plot of the m;, distribution where the bins are indicated by dotted
lines. The plot to the left shows the bins in the first step of the variable binning
procedure, and the plot to the right shows the bins after the rebinning procedure
has been applied.

is the region that covers the peak of all the distributions that are to be re-
binned. Fig. 7.6 and 7.7 show scatter plots of the my distribution versus the
m 4 distribution for the ten signal hypotheses, and the background distribution,
presented in Chapter 4. As seen in these plots, the region of fine binning always
covers the most event dense, or peaked, area of the plot.

7.3.2 Rebinning of my, ma and NN

Fig. 7.4 shows the background NN distribution, and the distribution is not flat,
as for the signal NN distribution, but monotonically decreasing. Thus, a higher
resolution of the NN variable is of interest for only one distribution; the back-
ground distribution of the NN variable. A better resolution of the background
distribution, might as well result in a lower C'L, as a better resolution of the
signal distributions.

7.4 Overtraining

The smaller the bins are, the more information is transferred from the original
distribution to the binned distribution. Because the calculated limit depends
on the resolution of the input distribution, it follows that the limit is a function
of the size of the bins. There is, however, a statistical limit on how small
the bins might be, depending on the number of Monte Carlo (MC) generated
events. If the bins are too small, an overtraining of the calculated limits occur.
The result is a limit not based on the observed data, and a falsely excluded
mass region. However, a plot of the confidence level as a function of binwidth,

C'Ls(Ag), exposes the overtraining region. Three functions are needed in order
to make such a plot: C'Lg of the first half MC events, C'L; of the second half
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Figure 7.4: The NN variable distributions for the background hypothesis in the
h9A® — bbbb channel at 189 Gev. The bins are indicated by dotted lines

MC events, and C'Lg of all MC events. A plot of three C'L; functions is given
in Fig. 7.5 for the fixed binning 3D likelihood method. The area to the left of
the vertical line in Fig. 7.5 is the region where there is an overtraining of the
limits, because in this area the C'L; of all MC events (green line) is no longer
the mean value of the C'L; of the first (red line) and second half (blue line) MC
events. Overtraining plots of all the presented likelihood methods are given in
Fig. 10.1.

7.5 Mapping from 3D Space to 1D Space

Because ALRMC does not handle three discriminating variables, the three va-
riables are reduced to one variable by mapping a bin in 3D space to the corre-
sponding bin in 1D space. The mapping is performed by a Fortran subroutine
named dim3tool.f that takes the 3D vector of 3D bins as input, and assigns
a 1D bin to each of the 3D bins. The subroutine loops over all the 1D bins of
the 1D vector, and the index number I of the 1D bin that the content of the
3D bin of index (I, , In ,, InN) is transferred to is given by

I'=(,— 1Ny, +Unn— 1Ny, Noy + L) s (7.4)

where N,,, and N, , are the total number of bins of the m,, and m4 distribu-
tions, respectively.

7.6 The Candidates

The observations of a search experiment are often referred to as candidates,
and the candidates are identified by their position in the generated discriminat-
ing variable distributions. The likelihood L of the observed candidates is the
product of the discriminating variable distribution evaluated at each candidate,
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Figure 7.5: Plot of confidence level as a function of binwidth. This kind of plot
is used to determine the optimal binwidth that does not lead to any overtraining
of the obtained results.

see (6.10). Fig. 6.1 shows different signal distributions for one single discrimi-
nating variable, together with the observed candidates. If three discriminating
variables are used in the limit calculations, three values must be given for each
candidate, corresponding to the position of the candidate in each of the three
distributions.

No information is stored during the binning processes described in Sec. 7.2
or Sec. 7.3 about in which 3D bin the single events of the 3D distribution ends
up. A bin of a signal or background distribution contains the sum of events
inside the bin. In contrast, a bin of a candidate contains a number that identify
which candidate(s) belongs to the bin.

7.6.1 Fixed Binning

Only the bins containing candidates have to be mapped into 1D space, and the
binning and mapping of the candidates are performed by one single routine.
Which bin the candidate belongs to in 3D space is calculated using (7.1) for
each of the three variables, and the 3D bin is mapped into 1D space using
(7.4). The three variables given for each candidate is reduced to a single integer
number that is the position of the candidate in the 1D space of the final 1D
discriminating variable.

7.6.2 Variable Binning

If variable binning is applied to the distributions, the binning and mapping
of the candidates are more complicated than in the fixed binning case. When
several small bins are combined into one single large bin by the rebinning routine
of Sec. 7.3, it is necessary to know which small bins contain which candidates,
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if the candidate number, identifying the candidates of the resulting large bin, is
to be correct. Two 3D vectors of equal size are needed in order to keep record
of which bin contains which candidate(s): A denotes a 3D vector that contain
a number which represent the candidate(s) of the bin, while B denotes a 3D
vector which is a counter of how many candidates belong to the bin.

One bin may contain more than one candidate, and a simple algorithm that
adds a new candidate to a bin without erasing the old candidate is given by

B.ryz
Agye = Y Ci10%07Y (7.5)
=1

where A, is a number representing the candidates in bin (I, I, I.), By, is
the total number of candidates in the same bin, and C; € [1,33]is the candidate
number of the i’th candidate of the bin.? If the candidates numbered 3, 12, 27
all end up in the bin of index (1,1,2), the content of A1z is 271203, and the
content of Byqs is 3.

The candidate bins have to be rebinned in the same way as the distribution
bins. The rebinning of the candidates is however more complicated than the
rebinning of the distributions, because the contents of both A and B must be
rebinned simultaneously. There is also an upper limit on how many candidates
the A vector can keep track of. If more than four candidates end up in the
same bin, the overflow candidate(s) is placed in an overflow A, vector. The
limit on four candidates is purely technical. A PAW vector can only contain
integer numbers less than 10%, and Apy. > 108 if B,y >4 and C' > 1.

The contents of the bins of the rebinned A vector, A’, are calculated using

Al =3 A 107 Byl (7.6)
=1

where A/, . is a number representing the candidates in bin (I, I}, I7), n is the
number of small bins contained in the large bin, A i i is the number represent-
ing the candidate(s) of the ¢’th small bin, B, is the number of candidates
in the 7’th small bin, and A, is the number representing the candidate(s) of
the n small bins.

The last step of the candidate preparation is to map the rebinned candidate
bins from 3D space to 1D space while keeping track of which candidate ends up
in which 1D bin. The mapping procedure is implemented in a separate routine.
A candidate number (' is read from A’ using

A'/l’ zZ
C= 102‘3y'myz : (7.7)

where B/, _ is the number of candidates in A/, .. Because C' in declared to be

an integer in the Fortran routine, the result of (7.7) is the integer part of the

expression. The contents of Al _ after candidate C' is read is the modulo of

®The analysis presented use the data of the 189 GeV run, and a total of 33 observed
candidates are identified in the 189 GeV data (see Table 4.1).
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A, and 102B%y-. Thus, if A1 contain 271203, the value of C' is 27, and the
new value of Aq1o is 1203. The value of Bg,yz is reduced by one each time a
candidate number C'is read, and (7.7) is repeatedly used until B},,. = 0.

The index numbers I of the 1D bins that contain all 33 candidates are
calculated using (7.4) with the bin index numbers (17, I}, I’) of Al _ as input.
The resulting candidate list, containing the 33 index numbers of the candidates,

is given as DATA-statements in subroutine d_ha_channels of h-higgs.f.

7.7 The 3D Input Macros

All the different algorithms and Fortran routines described in this chapter are
called from three different PAW macros. Fig. 7.8 gives the structure of the
three PAW macros as one single flow chart. Each of the PAW macros are used
with the signals, backgrounds, and candidates presented in Chapter 4.

Fig. 7.9 gives outputs of the 3D likelihood methods presented in the case
of one signal hypothesis and the background hypothesis. The plots in the left
column are background 1D distributions, and the plots in the right column are
signal 1D distributions. As seen in the plots, the resolution of the background
distribution is best when all three variables are binned with different binsizes,
but the signal distribution is best when only the mass variables are binned with
different binsizes. The resolution of both the background and signal distribution
is low in the case of fixed binning of all variables. However, what really matters
is which final discriminating variable provides the most different signal and
background distribution.

Chapter 10 presents the limits calculated using the 3D methods, and
Sec. 10.2.1 presents the conclusions on the 3D methods presented in this chap-
ter.
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Figure 7.6: Scatter plots of mj, and m 4 distributions of the background hypoth-
esis and the five signal hypotheses m4 = 70, 75, 80, 85, 90 GeV at tan = 2 in
the RV A% — bbbb channel at 189 GeV . The dotted lines indicate the bins used
in the variable binning of the distributions.
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esis and the five signal hypotheses m4 = 70, 75, 80, 85, 90 GeV at tan 5 = 20

in the h°A° — bbbb channel at 189 GeV . The dotted lines indicate the bins
used in the variable binning of the distributions.
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Figure 7.9: Plots of the final 1D discriminating variable distribution.
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the fixed binning case, the middle row plots show distributions in the case of

variable binning of the masses, and the bottom row plots show distributions in
the case of different binsizes in all three variables.



Chapter 8

5D Likelihood Methods

The jet clustering of the decay products of a h°A° — bbbb event results in a
four-jet event where each jet originates from one of the b-quarks. The problem
of which two jets originate from h°, and which two jets originate from A° is the
problem of pairing the jets.

The mass of A and A° are calculated as the invariant mass of the sum of the
four-momenta of two of the four jets (see (8.1). The three possible combinations
of grouping four jets into two groups of two jets each, are ordered according
to a certain criterion. The criterion used for the 5D likelihood methods is the
difference in mass, Am, between the two groups of paired jets, i.e. Am =
my — my,. Calculation and selection of the two best pairing h° and A° masses
are further discussed in Sec. 8.1. However, the best pairing of the jets, according
to the criterion, is not always the correct pairing of the jets. It is therefore of
interest to look at a pairing extension of the 3D likelihood method of Chapter 7
which only included the best pairing.

The most intuitive approach to such an extension is to use the two invariant
mass distributions (my, and ma, or M and Am) of the second and third best
pairing in addition to the three discriminating variable distributions used by the
3D likelihood method. The result is a 7D discriminating variable distribution.
The binning and mapping of a 7D distribution is very complicated, and in
addition the size of the 7D distribution rapidly increases beyond the limits
imposed by ALRMC: If four bins are used to bin each of the seven distributions,
the total number of bins is 47 = 16384. Therefore, the extension of the 3D
likelihood method is limited to include only the second best pairing, and a 5D
discriminating variable distribution is constructed. The size of a 5D distribution
with four bins in each variable is 4° = 1024.

Sec. 8.2 present two sets of five discriminating variables used by the 5D
likelihood methods. The two sets are two-pairing extensions of the two one-
pairing sets used with the 3D likelihood methods. The binning and mapping
of the distributions and the candidates are discussed in Sec. 8.3 and Sec. 8.4,
respectively.

The PAW macros of the two 5D methods, each using one of the two sets of
discriminating variables, are briefly discussed in Sec. 8.5

The term ‘5D likelihood method’ is in this thesis used to denote a method
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that takes a total of five discriminating variable distributions as input, and gives
one final discriminating variable, to be used with ALRMC, as output.

8.1 Calculation of Two Best Pairings

Each event of the distributions used with the 5D likelihood methods are iden-
tified by the following variables: The two invariant masses mp; and m4; of the
best pairing, the NN variable, the weight of the event, and the four-momentum
ph of each of the four jets, where aw = 1,...,4 is the jet number. The invariant
mass mqg of the a8 pair is calculated using

M5 = G (D5 + P5) (04 + ) (8.1)

where o and 8 are the numbers of the two combined jets, a # 3, and ma,5 =
mgae. If tanB > 1, the lightest mass of a m,3 and m.s pair, with a # 3 # v # 4,
is my,, while the other mass is m 4.

The three m,g, ms pairs are ordered according to the difference Am be-
tween the masses of each pair. The pair with the lowest Am is the best pair,
and the pair with the second lowest Am is the second best pair. The masses
mpy and m4; are provided by the ntuple, together with the four-momenta, prior
to the calculations. These masses are used to make a consistency check of the
calculated best pairing masses. An error message is given if mjp; and m 4y do
not match the calculated best pairing masses.

One ntuple is filled with the masses of the best pairing, and another ntuple
is filled with the masses of the second best pairing. The mass calculations and
the filling of the new ntuples are performed by a Fortran routine that is called
for each of the ten signal distributions, the background distribution, and the
observed candidates.

8.2 The Discriminating Variables

Two different sets of discriminating variables are used in the 5D likelihood
method. The first set is a 5D extension of the first set of the 3D discriminating
variables of Chapter 7: The two invariant masses mp; and my4; of the best
pairing, the two invariant masses mpo and m 4o of the second best pairing, and
the NN variable.

The second set of discriminating variables is the first set replaced by the
sum M = m4 + my, and the difference Am = my4 — my. The variables of the
second set are: My and Amy of the best pairing, My and Amsy of the second
best pairing, and the NN variable.

Fig. 8.1 shows distributions of the masses of both sets of discriminating
variables for one particular signal hypothesis. The plots clearly show that the
masses of the second best pair are less peaked than the masses of the best pair,
and no variable binning of the distributions is performed. The reason is that
no region of the second best pair distribution is sufficiently peaked.

Where the first bin of a distribution Sg(#) starts and the last bin ends, is
determined by 6,,;, and 6,,,,. Because exactly the same binning is applied
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Figure 8.1: Plots of the mass discriminating distributions of the two best pair-

ings used by the 5D likelihood methods.

The top left plot shows myp; and

mpo, and the top right plot shows m 4y and m 5. The bottom left plot shows
My = mp1 + may and My = mype + mye, and the bottom right plot shows
Amy = ma1 —mp and Amg = my9 — myo. All four distributions are from the
signal hypothesis m4 = 80 GeV, tan § = 20, which corresponds to my = 79.53

GeV.
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to all the distributions, 6,,;, and 8,,., are calculated by looping over all the
distributions that enter the search. The routine that calculates the masses of
the different pairings also provides the 8,,;, and 8,,,, values used in the binning
of the distributions.

The treatment of the two different sets of discriminating variables is identi-
cal, and only the M, Am variable set is discussed in this chapter.

8.3 Binning and Mapping of the Distributions

The binning of the 5D discriminating variable distribution can not proceed by
allocating each (My, Amy, My, Amg, NN') event to its corresponding bin in 5D
space directly, as is the case with the 3D distribution, because PAW only sup-
ports vectors of maximum three dimensions. Hence, the 5D distribution must
somehow be separated into less dimensioned distributions that is multiplied to
construct an approximate 5D distribution. The distribution function S of the
five discriminating variables is approximated as

S(Mh Aml, M27 Am27 NN) ~ Sl (Mh Aml) 52(M27 Amz) SNN(NN) s (82)

which does not include correlations between masses of different pairings, nor
between the masses and the NN variable. If all correlations are to be in-
cluded, each event of the discriminating variable distribution must be treated
as single (My, Amq, My, Amg, NN) points and not as three separate (M, Amy),
(M3, Amy), and (NN) points.

The 5D method could more correctly be referred to as a 2D+2D+1D method
because the 5D distribution of the five discriminating variables is reduced to
two 2D and one 1D distribution. The term ’5D’ is instead used as a shorthand
notation.

The 2D mass distributions S, 1 (M,, Am,), where p = 1 or 2, are binned
using a binning procedure similar to the fixed binning procedure described in
Sec. 7.2. The only difference is that this is a 2D binning instead of a 3D binning.
Two bin index numbers Iy, and Ia.,, are calculated using (7.1) twice for each
Sp1(M,, Am,,) distribution.

The 2D bins of the two mass distributions are mapped from 2D space to 1D
space using a 2D version of (7.4):

I = (IAmp — 1)NMP + IMp , (8.3)

where [ is the index of the 1D vector, and Ny, is the total number of bins of
the Sag,(M,) distribution.

The distribution Sy (NN) is binned using (7.1) once to calculate the 1D
bin index number Iny. No mapping is required.

All three 1D distributions are normalized to one, and a simple Fortran
routine calculates the 2D distribution of the four mass variables as the product
of S{P(My, Amy) and S3P (My, Amy). The resulting 2D distribution of the four
masses is mapped from 2D to 1D space using (8.3). A 2D distribution of all
five variables is calculated as the product of the 1D distributions of the four
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masses and Syy(NN). The final 1D version of the discriminating variable is
calculated using (8.3) once again.

Fig. 8.2 gives the signal distributions Sy (M7, Amy)Sa(Ma, Amz) Sy (NN)
and Ss(mp1, mar)Sa(mpuz, maz)Snn(NN) to the top and bottom right, respec-
tively, as well as the background distributions Bi(M;, Amy)Bay(Mz, Ams)
Bnn(NN) and Bs(mp1, mai)Ba(mpz, maz) Byy(NN) to the top and bottom
left, respectively. From these plots it looks as the peaks of the Sy(My, Amy)
Sa(Mjy, Amg)Snny (NN) distribution is wider than the peaks of the Ss(mp1, ma1)
Sa(mnz, maz) Sy (NN) distribution, which might indicate a better resolution
in the former distribution. This is also the case for the two background distribu-
tions. The explanation might be that the events of the My, Amy, My, Amo, NN
set are more evenly distributed among the fixed bins than the events of the
Mp1, MAr, Mp2, M2, NN set, and thus a better resolution is obtained for the
Sl (Mh Aml)SQ(M27 Amz)SNN(NN) and B1 (Mh Aml)BQ(M27 Amg)BNN(NN)

distribution.

8.4 Binning and Mapping of the Candidates

The binning and mapping of the five discriminating variable distributions given
for each signal or background hypothesis, is performed in order to produce the
number of events inside each bin of the final 1D distribution. In contrast, the
binning and mapping of the five discriminating values given for each observed
candidate, is performed to produce the index number of the bin of the final
1D distribution that contains the five values given for the candidate; i.e. each
candidate must be given a map of where to go in the 1D distribution. No
information about the distribution of candidates is needed.

Before the address of a candidate bin of the final 1D distribution is calcu-
lated, five bin index numbers, corresponding to each of the initial five distribu-
tions, are calculated using (7.1) five times. The resulting bin index numbers,
Ing, Iamys Iag,s Lam,, and Inn are reduced to a single 1D bin index number 7
by applying (8.3) four times.

Fig. 8.3 gives a visualization of how the bin index number in the 1D space
of the final distribution is calculated based on the bin index numbers of the
five discriminating variable distributions. The 2D mapping algorithm (8.3) is
applied at each vertex of Fig. 8.3.

8.5 The 5D Input Macros

Two different PAW macros prepare the 5D inputs: One macro handles the
S1(My, Amq)Sz2(Mz, Amg)Snn (NN) distribution, while the other macro han-
dles the Ss(mp1, mar)Sa(mpz, maz)Snn(NN) distribution. The structures of
the macros are identical. The only differences between the two macros are the
input distributions, and hence the 8,,;, and 6,,,, values. Fig. 8.4 shows the
flow chart of the macros.
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Figure 8.2: Plots of the final discriminating variable distribution of the 51D meth-
ods for the background distribution to the left, and the m4 = 80, tan 5 = 20
signal distribution to the right. The top plots are the background and signal
distributions of the first set of discriminating variables, My, Amy, My, Amg,
and NN. The bottom plots are the background and signal distributions of the
second set of discriminating variables mp1, ma1, mp2, Mmaz, and NN.
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Figure 8.3: Reduction of bin index numbers in the 5D method. Ips, Iam, s In,,
IAm,, and Iny are the bin index numbers of each of the five discriminating
variables, and [ is the bin index number of the final 1D distribution of the
discriminating variables.
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Figure 8.4: Flow chart of the PAW macros preparing the S;(Mp, Amy)
Sa(Maz, Amg)Syy(NN) inputs. The structure of the Ss(mpi,mar)
Sa(mnz, maz)Syn (NN) macro is identical.



Chapter 9

The Tests

A total of six likelihood methods are presented in Chapter 7 and Chapter 8:
Four 3D methods, and two 5D methods. The 3D methods differ in the choice
of binning procedures: Fixed binning of all three distributions, variable binning
of two distributions and fixed binning of the third, or variable binning of all
three distributions. Only a fixed binning 5D method is implemented.

The fixed binning 3D and 5D methods both use two sets of discriminat-
ing variables: The 3D method uses the distribution Sy yy(Amy, My, NN) and
Ss NN (mp1, mar, NN), and the 5D methods use the products of distributions
Sl (Aml, MI)SQ(Am27 MQ)SNN(NN) and Sg(mhh mAl)S4(mh27 mAQ)SNN(NN)
The only difference between the two sets is the choice of mass estimators,
M, Am or mp, ma.

Two new likelihood methods are presented in this chapter: A 2D method
and a 2D41D method. The 2D method uses the distribution Sps, nn (M, NN)
as the discriminating variable, and the 2D41D method uses the product of dist-
ributions S1(My, Amy)Snn(NN) as the discriminating variable. The 2D+1D
method is a simplification of the fixed binning 3D method, and the 2D method
is again a simplification of the 2D+1D method.

The 2D and 2D+1D methods are used to investigate features of the 3D and
5D method that a direct comparison do not reveal. The 2D method is compared
to the 3D method to investigate the effect of a third discriminating variable,
and the 2D+1D method is compared to the 5D method to investigate the effects
of using two pairings instead of one pairing. Because the 3D method use the
distribution Sy nn(Amy, My, NN) and the 2D+1D method use the product of
distributions Sy(Amq, M1)Syn(NN), a comparison of the two methods reveals
the effects of the correlation between the NN variable and the mass variables.
The 5D method! does not take these correlations into account either, and hence
the 5D method is compared to the 2D+1D method instead of the 3D method
to investigate the effects of the second best pairing mass variables. The 2D+1D
method is presented in Sec. 9.1, and the 2D method is presented in Sec. 9.2.

All the tests are performed by comparing expected my limits calculated
using the distributions prepared by the different likelihood methods. Because

'The 5D method is actually a 2D+42D4+1D method because it uses the product
S1(Amy, My)S2(Amga, M3)Snn (NN) as discriminating variable.
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there is a danger of overtraining the confidence levels if the binwidths get too
small an overtraining test, as explained in Sec. 7.4, is performed for the fixed
binning methods. The variable binning methods are not subjected to an over-
training test due to complexity: If an overtraining test is to be performed, the
method under investigation must be executed repeatedly with increasing num-
ber of bins if the three C'L (Ag) functions, where Ay is the width of the bin, are
to be obtained. The calculation of C'Ls(Ay) is considerably more complicated
with variable binning than with fixed binning. Overtraining tests are discussed
in further detail in Sec. 9.3.

The final tests of the total of nine combinations of methods and discrimi-
nating variables should answer three questions :

e What type of binning provides the optimal limit?
e What kind of mass estimator(s) provides the optimal limit?
e What number of jet pairings provides the optimal limit?

The tests focused on these questions are presented in Sec. 9.4, and the conclu-
sions of the tests are presented in Chapter 10.

9.1 A 2D+1D Likelihood Method

The fixed binning 3D method, using a 3D distribution of (M;, Am, NN) events
as the discriminating variable distribution, is transformed into a fixed binning
2D+1D method by separating the 3D distribution into a 2D distribution of
(M7, Amq) events and a 1D distribution of (NN) events.

The binning of the 2D and the 1D distribution are performed using (7.1),
just as in the 3D case. The 2D vector containing the two mass distributions
is mapped into 1D space using (8.3). The resulting 1D vector is normalized to
one before it is multiplied with the 1D vector containing the normalized NN
distribution to give the product Sy (M, Amq)Syn(NN) stored in a 2D vector.
The 2D bin index numbers of the 2D vector are mapped into the 1D space of the
final variable using (8.3) once again for each 2D bin. Because the S;(M;, Amy)
and Syn(NN) distributions are multiplied, the correlation between the NN
variable and the mass variables is not taken into account.

The candidates are mapped into the final 1D variable space by applying
(8.3) in the same manner as for the distributions. The only difference is that
the final 1D bin do not contain the number of candidates, as is the case for
the distributions, but instead a number that identifies which candidates are
confined to the bin.

9.2 A 2D Likelihood Method

The 2D likelihood method is a simplification of the 2D+1D likelihood method:
The S1(My, Amq)Syy(NN) distribution product of the 2D+1D method are
replaced by a Sy, nnv(My, NN) distribution which is binned using (7.1) twice
for each (M;, NN) event, and mapped using (8.3) for each 2D bin.
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To map the candidates it suffices to apply (8.3) once for each candidate.

9.3 Overtraining Tests

As explained in Sec. 7.4 an overtraining test gives the limit on how small the
bins used in the binning of a distribution can get before an overtraining of
the calculated confidence levels occur. In other words the plot of the three
C'Ls(Ag) functions at different numbers of MC events expresses the potential
of the method: How low signal confidence levels (and accordingly high my,
limits) the method is able to produce before overtraining effects influence the
limits.

Overtraining tests are performed for the 5D method, the fixed binning 3D
method, the 2D+1D method, and the 2D method. The tests monitor the de-
velopment of the C'L; as a function of decreasing Ay, and Ay is determined by
the width of the distribution and the number of bins in the following manner:

Ag = 70maxN€0mm ) (9.1)
where 6,,,, and 8,,;, are the maximum and minimum value of 8, respectively,
and Ny is the number of bins in the 8 distribution.

To give the mass variables equal weight the number of bins is selected to
keep the binwidth of all the mass distributions equal. The width of the my
and m 4 distribution are the same, hence N,,,, = N, ,. However, the difference
between the widths of the M and Am distributions is approximately 30 GeV,
as is seen in Fig. 8.1, hence Nas > Nay,.

The overtraining plots of the different methods, with cuts on the binwidths,
are given in Chapter 10. The C'L; at the Ay cut is the minimum C'L, (maximum
my,) not influenced by overtraining effects.

9.4 The Final Tests

A plot of expected signal confidence level versus my, hypothesis, C'L(my), is
the final test of the likelihood methods. A significance level of 95 % is required,
and a cut is set at C'L;=0.05 (see (6.6)). The my, limit corresponding to the
cut is the upper limit of the mass region where the existence of the h° scalar.

Three series of tests are performed in order to answer the questions regarding
type of binning, type of mass estimator, and number of pairings:

Type of Binning The three 3D methods presented in Chapter 7, all using
Ss NN (mp1, mar, NN) as the discriminating variable distribution, are com-
pared to conclude on which of the methods provides the most effective
binning. No overtraining test of the three methods are performed because
the implementation of such a test using variable binning methods is very
complex. The results of the binning tests are presented in Sec. 10.2.1.

Type of Mass Estimator To investigate the use of mass estimators in de-
tail, three mass estimator tests are performed: Firstly the fixed bin-
ning 3D method using Ss yn(mp1, mar, NN) as discriminating variable
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is compared to the 2D method using Syr, nnv(Mi, NN) as discriminating
variable. Secondly the 3D method using S5 yn(mp1, mar, NN) is again
compared to the 3D method using Sy nv(Mi, Amy, NN) as the discrim-
inating variable. The third comparison is performed between the 5D
method using Ss(mp1, ma1)Sa(mpz, maz)Snn (VN) and the 5D method
using Sy (Mi, Amq)Sa(My, Amy) Sy (NN) as the discriminating variable.
All three comparisons are performed in order to determine if the M, Am
set or the my, my4 set of discriminating variables is the best. All methods
are fixed binning methods. Overtraining tests is used to set a limit on the
binwidths. The results of the overtraining tests are presented in Sec. 10.1,
and the results of the mass estimator tests are presented in Sec. 10.2.2.

Number of Pairings Two tests are performed: The 5D method using the

product Sy (M, Amq)S2(Mz, Amz) Sy (INN) as discriminating variable is
compared to the 2D41D method using the product Sy (M, Amq)Syn(NN)
as discriminating variable, to conclude on the effects of using mass estima-
tors of the two best pairings as discriminating variables. The 5D method
does not take the correlations between the masses of different pairings nor
between the mass variables and the NN variable into account. A compar-
ison of the fixed binning 3D method using Sy nn(Mi, Amq, NN) and the
2D+1D method using Sy (M, Amq)Sny(NN) as discriminating variable
is performed to investigate the importance of the NN correlations. The
correlations between the mass estimators of different pairings are not in-
vestigated any further, but there is no reason why such correlations should
not be present.
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Conclusions

Signal and background distributions are created using the likelihood methods
presented in Chapter 7, Chapter 8 and Chapter 9. Signal confidence levels
(C'Ls) based on these distributions are calculated, using the ALRMC imple-
mentation of a maximum likelihood ratio test, and the my limit at a 95 %
confidence level (C'L) is stated (C'Ly = 0.05).

The conclusions are based on expected C' L, instead of observed C'L because
the observed C'Lg are sensitive to the observed candidates of the search, i.e. the
position of a candidate in the final distribution might have a major effect on
the limits. Such an effect is not present if the expected C'L; are used.

10.1 The Overtraining Plots

Fig. 10.1 shows overtraining plots for the 2D, 2D+1D, 3D and 5D methods,
all with fixed binning. The 3D and 5D methods are used with both sets of
discriminating variables, M, Am and mp, m 4.

The vertical line in the plots of Fig. 10.1 is the cut on the binwidth that sets
an upper limit on number of bins allowed in the distributions. The tick marks
on the C'Ls(Ay) function of all Monte Carlo (MC) events (the green line) is the
C'Ls computed for a given number of bins for the m 4 = 80 GeV, tans = 20
signal hypothesis. The binwidth Ay is the average binwidth of the bins used.

No cut is applied to the 5D method in neither set of discriminating variables
because the ALRMC limit on maximum number of allowed bins in the final 1D
distribution is reached before the overtraining occurs.

10.2 The Final Tests

Expected C'L; are calculated at the binsize cut provided by the overtraining
plots in Fig.10.1. The nine different combinations of methods, binning, and dis-
criminating variables are summarized in Table 10.1 together with the my limits
at tanf = 20 and tanf8 = 2. The nine combinations are further compared two
by two, and conclusions drawn on which method offers the best limit regarding
type of binning, type of mass estimators, and number of pairings. All limits
presented correspond to a 95 % C'L.
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Figure 10.1: Overtraining plots for all fixed binning methods. The C'L; of all
MC events (green line) is situated in the middle between the C'L, of the first
and second half MC events if no overtraining is present. The vertical line in
the plot is a cut on the binsize.
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my, [GeV]
Method | Binning Discriminating variables tgs = 20| tgs =2
2D Fixed Sw, NN (My, NN) 80.85 | 57.59
2D+1D Fixed S1(My, Amq)Snn (NN) 80.25 | 57.43
Ss NN (M1, mar, NN) 81.10 | 57.57
Fixed S1.NN(My, Amy, NN) 81.23 | 57.85
3D Ss N (mn1, mar, NN) 81.57T | 58.377
Fix/Var | S3 nv(mp1, mai, NN) 81.85T | 58.707
Variable | S3 nn(mp1, mar, NN) 81.73T | 58.407
5D Fixed Sg(mhh mAl)S4(mh27 mAQ)SNN(NN) 80.37 57.37
Sl(MhAml)SQ(M27Am2)SNN(NN) 80.46 57.54

t Not subjected to overtraining test, and not comparable to the other limits

Table 10.1: Summary table of the my limits of all nine combinations of method,
binning procedure and discriminating variables.

10.2.1 Binning

Fig. 10.2 shows two plots of C'Ls(my) functions at tanfg = 20:

e Fixed binning of mp1, may, NN versus fixed binning of NN and variable
binning of mp1, may.

e Fixed binning of NN and variable binning of my1, may versus variable
binning of mp1, may, NN.

Fig. 10.3 shows the same plots of C'L(my,) functions at tan = 2, and Table 10.2
gives the measured differences of the my limits.

The conclusion drawn is that the method using both variable and fixed bins
improves the fixed binning only method limit by 0.28 GeV (0.33 GeV), and
the variable binning only method limit by 0.12 GeV (0.30 GeV) at tang = 20
(tang = 2). Hence, the method using both variable and fixed bins offers the
most optimal binning of the S5 yn(mp1, mar, NN) distribution.

Since the limits of these three methods have not been subjected to an over-
training test, the limits are not comparable to the other limits.

10.2.2 Mass Estimator

Fig. 10.4 shows three plots of C'Lg(my,) functions at tans = 20:
o Sar, NN (My, NN) versus Ss yv(mp1, mar, NN).
o S3 v (mp1, mar, NN) versus Sy nn(Mi, Amq, NN).

o Ssz(mp1, ma1)Sa(muz, maz)Syn(NN) versus
Sl (Mh Aml)Sg (]\427 Amz)SNN(NN)
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Fig. 10.5 shows the same plots of C'L,(my,) functions at tanf = 2. The difference
between the limits of these plots are given in Table 10.3.

Two conclusions are drawn from these tests: Firstly the M, Am set of dis-
criminating variables improves the limit obtained using the myp, my4 sets by
0.13 GeV (0.28 GeV) in the 3D case, and by 0.11 GeV (0.17 GeV) in the 5D
case at tanf = 20 (tanf = 2). This is probably due to the fact that the events
of the M, Am distributions are less clustered than the events of the my, m4
distribution, hence the M, Am set is more convenient to use with fixed bins.

The second conclusion is that Sy yy(Mq, Amy, NN) improves the limit ob-
tained using S, nnv(Mi, NN) by 0.38 GeV (0.30 GeV), and in addition
Ss NN (mp1, mar, NN) also improves the limit obtained using Sys, nnv (M, NN)
by 0.25 GeV (0.02 GeV) at tanf = 20 (tanf = 2). Hence, a 3D discriminating
variable gives a better limit than a 2D discriminating variable. The improve-
ment is however not impressive, and it is necessary to ask if not alternative
extensions of a 2D likelihood method could result in larger improvements.

10.2.3 Pairing
Fig. 10.6 shows two plots of C'L(my) functions at tanfg = 20:

o S1(My, Amy)S2( Mz, Amg)Syn (NN) versus S1(Mq, Amy) Sy (NN).
o S1(Mi, Amq)Snn(NN) versus Sy yv(Mq, Amy, NN).

Fig. 10.7 shows the same plots of C'L,(my,) functions at tanf = 2. The difference
between the mj limits of the tests are given in Table 10.4.

Two conclusions are drawn from the tests: Firstly the two pairing vari-
able S1(My, Amy)Sa(Mz, Amg)Snyy(NN) improves the limit obtained using
the Sy(My, Amq)Snnv(NN) variable by 0.21 GeV (0.11 GeV) at tanf = 20
(tang = 2). Hence, the two best pairing variable gives a slightly better my,
limit than the best pairing variable. The effect is not so clear at tang = 2.
However the most interesting sector for the h°A° channel is the tan3 = 20 sec-
tor because the h%ZY cross section is much greater than the A% A% cross section
at tanf = 2 (see Fig.4.2).

The second conclusion is that the Sy ynv(M;, Amy, NN) variable improves
the limit obtained using the S;(My, Amq)Snn(NN) variable by 0.98 Gev at
tanf = 20 and 0.36 Gev at tang3 = 2. Hence, the NN correlation is very signif-
icant to the my limit, and is at least some of the explanation to why the 3D
method produce a better limit than the 5D method (see Table 10.1). This is
one of the most important results obtained. If the Sy (My, Amy)Sy(Ms, Ams)
Snn (NN) variable is replaced by S(My, Amy, My, Amg, NN) the my, limit prob-
ably increases beyond the limit computed using Sy nv(Mq, Amy, NN).

10.3 Final Conclusion

Only minor improvements are obtained by extending the likelihood method
from two discriminating variables to three and five discriminating variables,
and the extension of the methods were probably not worth the effort.
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The most important results seen are the the positive effect of using variable
bins instead of fixed bins when the distributions are binned (see Fig. 10.2, 10.3
and Tab. 10.2), and especially the clear positive effect of including correlations
between the discriminating variables (see Fig. 10.6, 10.7 and Tab. 10.4).

Amp[GeV]

Test tgl = 20| tgl =2
mi(SAN ") = ma(STay) [ 028 | 0.33
mi(SINT) — mi(S5%) | 012 | 0.30

Table 10.2: Difference in my limit between the three 3D methods using
Ss NN (mp1, mar, NN) as discriminating variable.

Amyp[GeV]

Test tgh = 20| tgh =2
mp,(S3,nn) — mp (Swv, NN) 0.25 0.02
mpy(S1.NN) — ma (S5, nN) 0.13 |0.28
mh(Sl,SQ,SNN) — mh(53754,SNN) 0.11 0.17

Table 10.3: Difference in my, limits between the 3D, 2D and 5D methods using
the M, Am and my, m4 sets of discriminating variables.

Amyp[GeV]

Test tgl = 20| tgl =2
mh(Sl,SQ,SNN) — mh(ShSNN) 0.21 0.11
mp (Sa NN) — ma(St, San) 0.98 0.36

Table 10.4: Difference in my limits between the 5D, 3D and 2D+1D method

using the M, Am sets of discriminating variab

les.
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Figure 10.2: Comparisons of the two variable binning 3D methods and the fixed
binning 3D method for the tans = 20 signal hypotheses. From these plots it
is concluded that the variable/fixed binning 3D method improves the limits
obtained using the other 3D methods.
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Figure 10.3: Comparisons of the two variable binning 3D methods and the fixed
binning 3D method for the tang = 2 signal hypotheses. These plots support
the conclusion from the tan3 = 20 plots: The variable/fixed binning 3D method
improves the limits obtained using the other 3D methods. The difference be-
tween the variable/fixed method is slightly larger in the tan3 = 2 case than in
the tang = 20 case.
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Figure 10.4: Comparisons of the 2D, 3D and 5D method in the tans = 20
sector using the M, Am and my, m4 sets of discriminating variables. The first
conclusion is that the M, Am set is preferred when fixed binning is applied.
The second conclusion is that the 3D method is preferred to both the 2D and
5D method.
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Figure 10.5: Comparisons of the 2D, 3D and 5D method in the tang = 2 sector
using the M, Am and my, m4 sets of discriminating variables. The same con-
clusions is drawn as in the tang = 20 case: The M, Am set is preferred when
fixed binning is applied, and the 3D method is preferred to both the 2D and
5D method. The limits provided by the my, m4 sets are lower in the tang = 2
case, but the limits provided by the M, Am sets are better in the tang = 2 case.
The result is that the difference between the limits of Sy vy (M7, Amy, NN) and
Su, NN (My, NN) is almost the same in both tanf sectors.
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Figure 10.6: Plot of the 2D+1D versus the 5D method, both using the M, Am
set of discriminating variables, for the tang = 20 signal hypotheses. The plot
shows that the two pairing method gives the best my limit. The plot to the
right shows the 3D versus the 2D+1D method and is performed to determine the
significance of the correlation between the NN variable and the mass variables
for the tanfg = 20 signal hypotheses. The plot shows that the limit is reduced
by nearly 1 GeV if the NN correlations are not included in the discriminating
variable.
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Figure 10.7: Plot of the 2D+1D versus the 5D method to the left, both using
the M, Am set of discriminating variables, for the tans = 2 signal hypotheses.
The plot shows that the two pairing method gives a better my, limit than the one
pairing method. The plot to the right shows the 3D versus the 2D+1D method
and is performed to determine the significance of the correlation between the
NN variable and the mass variables for the tanf = 2 signal hypotheses. The
plot shows that the limit is reduced by about 0.4 GeV if the NN correlations
are not accounted for. In contrast, the reduction in the tang = 20 my limit is
nearly 1 GeV.
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