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Abstract

In this thesis a description of a semi analytic method of confidence limit
calculations in searches with several distinct channels is given. A compar-
ison between different implementations show that, in a search with many
channels, a histogram type implementation is both faster and more accu-
rate than a list, or vector, type implementation, when compared to a Monte
Carlo routine. However, in the 1998 DELPHI search for the neutral Higgs
boson, both the list type and the histogram type implementations yields
within 50 MeV the same limit on the Higgs boson mass as the Monte Carlo
routine, which gives a lower limit of 85.7 GeV at a 95 % confidence limit.
In searches with few channels the list type implementation is as fast and
accurate as the histogram type.

In a search for W decaying into a chargino-neutralino pair, which is an
example of a search with few channels, data collected at DELPHI during the
V/$=183 GeV run of 1997 and the /s=172 GeV of 1996 have been analyzed.
The branching ratio was calculated to be BR(IWE — {£x?) <1.34% at 95
% confidence limit.
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Chapter 1

Introduction

In the fifties, common belief was that the proton, the neutron and the elec-
tron were the elementary particles, i.e. that out of these three particles all
other particles was built. However, during this period a bunch of new parti-
cles was discovered, which culliminated with the quark theory of Zweig and
Gell-Mann. The fundamental particles are now believed to be the fermions,
which are the matter particles, and the bosons, which acts as force carriers
between the fermions, see Fig. 1.1.

ELEMENTAI
PARTICLES

Figure 1.1: The different particles of the Standard Model. The fermions,
i.e. matter particles, are divided into three different generations, or families,
and interacts by exchange of the bosons.

The Standard Model is briefly described in Chapter 2. Although the
Standard Model is the most successful theory in the history of physics, at
least when it comes to experimental predictability, it has some serious the-
oretical shortcomings. The masses of the different fundamental particles



and several mixing angles are arbitrary parameters, which adds up to over
20. This high number of free parameters is not popular with physicists. As
an attempt to theoretically fix the masses, the Higgs mechanism is intro-
duced. If this is the way nature works, a new particle, the Higgs boson,
is also introduced with the Higgs mechanism. So far this particle has not
been detected experimentally. A theoretical flaw of the Standard Model is
that self-interactions of the Higgs boson gives it a mass of infinity, which is
not good. Enter supersymmetry. In supersymmetric theories, all particles
have supersymmetric partners, where the spin is shifted by one-half. This
means that the self-interactions of the Higgs boson consists of equal parts of
fermionic and bosonic self interactions. These terms enter the calculations
with opposite signs, giving the Higgs boson a physical mass. Unfortunately,
this symmetry of particles and supersymmetric partners cannot be an exact
symmetry, since no experiment has ever detected a supersymmetric particle.

In order to test these theories, large experiments around the world have
been made. Typical particle physics experiments collides different particles
with high energy in some manner. Most standard experiments are either
linear or circular accelerators. The linear accelerator accelerates particles
in a straight vacuum tube, and collides the particles with a fixed target.
The circular accelerates particles of one kind in one direction in a circular
vacuum tube, and particles of another type in the opposite direction, and
collides these beams of particles at certain places around the tube where
detectors are placed. Due to Einstein’s relation of mass and energy, F =
mc?, the large energy of the particles being collided is transformed into
heavier and hopefully new particles. In Chapter 3 the detector responsible
for the data discussed in this thesis, the DELPHI detector, which is one of
the experiments at CERNs Large Electron Positron collider, is described.

When the data has been collected, one has, in one way or another to
compare the experimental data with the theoretical model being tested,
in order to see if something new has been observed. This can be done
by calculating which Standard Model processes one would expect in the
experiment, and then see how the data compare to this expected background.
This statistical treatment of data will be discussed in Chapter 4.

Searches for the two scenarios described above, the Standard Model and
the Minimal Supersymmetric extension of the Standard Model, and the
statistical treatment of the data produced by two searches are described in
Chapters 5 and 7. An essential part of the discussion is my semianalytical
confidence limit calculator SA_COUNTING, which has taken lots of blood,
sweat and tears to understand and implement. This interpretation of the
statistical method described in Chapter 3 has been compared to two other
interpretations of the same method and a Monte Carlo method in Chapter
4.

SUSYPAR, see Appendix B, which also has been implemented at the cost
of some sleepless nights, has been used to perform the parameter exclusion



in a special parameter space in the Minimal Supersymmetric extension of
the Standard Model. Although MSSM is not plagued by the large numbers
of free parameters as the Standard Model is, there are still a few mass
parameters and mixing angles left to experiment to be determined. Since
there is no experimental evidence of sypersymmetry so far, only some sort

of exclusion is possible.



Chapter 2

Particle Physics Theory

2.1 The Standard Model

The interactions between the known elementary particles, the fermions, mat-
ter particles, and the bosons, force carriers, are described in the Standard
Model of particle physics (SM). The interactions can be divided into three
different types of forces: the strong, the electromagnetic and the weak forces.
In some theories, Grand Unified Theories (GUT), these three forces are
united at a very large scale, 10'¢ GeV, see Fig. 2.1. However, at present
energies these forces remain separate.

The inspiration of this section is mostly found in “Dynamics of the Stan-
dard Model” [1]. The different interactions are described by Lagrangians
with local gauge invariance.

2.1.1 The interactions
Quantum Electrodynamics (QED)

In QED the electromagnetic interactions between fermions and photons are
described. This is the part of the Standard Model that has been verified
most thoroughly by experiments.

Under a local U(1) QED gauge transformation, 1 — ¢**(®)¢, the La-
grangian

£ = iy B, — miv (2.1)

is not invariant. Under this gauge transformation, the adjoint wave equa-
tion transforms as 1 — e ")), When inserting the transformed wave
equations into the Lagrangian, it takes this form:

L= ie—ia(w)ﬁvuaueia(x)lb _ e—ia(w)eia(w)mﬁlb (22)

The first term is not invariant, since @Lem(“’)zb = em(x)amb—l—iem(“’)lbaua(x) #*
em(x)amb. By exchanging 0, with a “covariant derivative” operator D,
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Figure 2.1: The development of the coupling constant, and where they will
be united according to Grand Unified Theories.

which transforms as D, — em(l’)Dmb, invariance of the Lagrangian can be
ensured. One possible covariant derivative is:

D,=0,—1ieA,
A= Aut 20,0 (2.3)

With this operator, the Lagrangian takes the form

Lopp = Wy*Dyd — myy

Lop = ﬁ(i’y“@u —m)y+ 6127“14#1& — %FWF*“’. (2.4)
The last term includes the invariant field strength tensor F},, to ensure in-
variance of the kinematic term. Since there is no —m?A,A* term in the QED
Lagrangian, the QED gauge particle, which is the photon A, is massless.
Quantum Chromodynamics (QCD)

The QCD Lagrangian, describing the interactions between massive quarks
and massless gluons, is more complex than its QED partner, since the glu-
ons carry color charge. There are eight different gluons, each carrying one
of three colors, and can thus interact with each other. The QED Lagrangian
just needs to take one type of photon, which is charge neutral into consid-
eration (color charge has nothing to do with electrical charge though).

Weak interactions. The Weinberg-Salam model.

Most hadrons experience the weak force and can decay through weak in-
teractions, but since QED and QCD decays are much faster than the weak



decays, they tend to dominate. Particles which decay through strong inter-
actions have a lifetime in the order 10722 seconds, particles which decays
through electromagnetic interactions have lifetimes in the order of 10716 sec-
onds and particles decaying through weak interactions have lifetimes in the
order of 1078 seconds. Some processes that are forbidden in electromagnetic
or strong interactions, such as decays of the # meson, may decay through the
weak force. Often weak processes include the creation of neutrinos, which
interacts only through the weak forces, but this is not a requirement.

The main quantum numbers in the weak theory are the weak hyper-
charge, Y,,, and the weak isospin, T; defined by the linear relation () = T3—|—%
where () is the electrical charge.

The gauge fields that couples to the weak quantum numbers are the
Wﬁ, with ¢+ = 1,2,3, which couples to the weak isospin and B, to the
weak hypercharge. These fields give rise to the pure-gauge part of the weak
Lagrangian

1 vV 1 v
L:Gauge = _ZEM Fp,y - ZBM Buln (25)

with F7,, and By, as the SU(2), and U(1)y field strength. The L subscript
of SU(2)r, is a reminder that since the neutrinos are (nearly) massless, they
only have left handed components. The SU(2)y, covariant derivative,

. . T
D, = ((@ + r‘;—leBM) + 292§WM> (2.6)

where ¢; and gy are, respectively, the U(1)y and SU(2); gauge coupling
constants, ensures invariance of the Lagrangian, but with this pair of La-
grangian and covariant derivative the fermions and gauge bosons are mass-
less particles. The massless gauge bosons born when the gauge symmetry
is broken are named Goldstone bosons. By introducing a complex doublet,

the Higgs field
¢+
¢ = ( O (2.7)

the full weak Lagrangian with masses for the physical particles can be found
by adding the Lagrangians for the Higgs-fermion and Higgs-boson couplings
to the pure-gauge Lagrangian. The Higgs-fermion Lagrangian, Lgy, and
Higgs-boson Lagrangian, L, are given by

Lrs = —fuqr®ur — f4G.®dp — fi®er + h.c. (2.8)
Ly = (D"®)*D,® — (—p ®1d + \(@10)?%) (2.9)

where ® is the charge conjugate of the Higgs field, ® = ir,®*, f; are con-
stants which must be determined by experiment and D, is the appropriate



covariant derivative,
. . Tz
D, = ((@ + 192—13“) + 292§WM> , (2.10)

where 7 are the Pauli matrices. The Higgs-fermion Lagrangian shown here
includes only the first generation of fermions for simplicity.

The masses of the different particles are found by performing a sponta-
neous symmetry breaking of the Higgs self interactions,

ov. 0

ov . _ 9 ([ 2gt t3)2) — B2 2y _
5 8¢(uq><1>+A(<1><1>)) B(—p2 + AD?) = 0. (2.11)

Perturbations around the non-trivial minimum of the Higgs potential breaks

the symmetry of the Lagrangian spontaneously. By inserting the vacuum
state describing this system,

(@) = ( U/S@ ) : (2.12)

where v = \/u2/X\ = 1/4/v/2G has been found by experiments to be 246

GeV, into the Higgs Lagrangian, the mass terms are found,

'Cmass = _%(fuﬂu+fddd+feé€)+ (%)2WJWE ( )
2 _ 3 2.13
2 g 9192 w
foiea (2, ) ()
s ( . “) ( —9192 gf B,

giving the fermions and bosons masses. The Higgs mass, which can be
2

found to be m%, = 2 |p_, = Av? \/5, remains unknown, since of the free

H 2P

parameters g and A only their ratio v is known. The first term of Eq. 2.13

gives the fermion masses:
mi = = fi (2.14)

The second term of Eq. 2.13 gives the masses of the charged gauge bosons,
mw = 5¢2. Introduction of spontaneous symmetry breaking mix the neutral
fields, seen in the mass third term of the Lagrangian. Defining the weak
mixing angle as the ratio of the gauge couplings

g1

tan fyy = =, (2.15)
92
one can define the basis
A, = cos OWWS — sin 6w B, (2.16)
Z, =sin OWWS + cosbw B,,. (2.17)



particle spin sparticle spin
quark q 1/2 squark irr 0
charged lepton ) 1/2 charged slepton f 0
neutrino v 1/2 sneutrino l~L7R 0

gluon g 1 gluino g 1/2

photon v 1 photino o 1/2

Zo 1 zino Z  1/2

W 1 wino W*  1/2

neutral Higgses h,H, A 0 neutral Higgsinos f{ﬂz 1/2

charged Higgses H* 0  charged Higgsinos H* 1/2

graviton G 2 gravitino G 3/2

Table 2.1: The SM particle and their MSSM sparticle partners

which diagonalize the third term of Eq. 2.13, which is the neutral gauge
mass matrix. The physical particles corresponding to the neutral fields A,
and 7, are the massless photon and the massive Z° boson. Their masses

are m, = 0 and My = \/g? + g%. The ratio of the charged and the neutral

gauge particles are fixed by the weak mixing angle
M

M—V; = cos . (2.18)

2.2 Going beyond the Standard Model

Most of the contents in this section is inspired by the SUSYGEN [4] manual
and “The Higgs Hunter’s Guide” [2].

A major problem arises when generating masses with the Higgs mecha-
nism in the Standard Model. When trying to find the Higgs mass at higher
order, loop diagrams like the one found in Fig. 2.2 adds up to give a Higgs
mass of infinity. This is known as the hierarchy problem. To avoid this prob-

Figure 2.2: One-loop contribution to the Higgs mass. It is loop diagrams
such as this that give rise to the hierarchy problem.

lem, supersymmetric theories (SUSY) introduce supersymmetric partners,



see Table 2.1, to all elementary particles. The fermions gets bosonic su-
perpartners and the bosons gets fermionic spartners. These sparticles have
their spin shifted by one-half compared to their SM partners. Adding the
loop diagrams when calculating the Higgs mass, the fermion loop diagrams
cancel the boson loop diagrams, and the Higgs mass does not diverge to-
wards infinity. However, this particle-sparticle symmetry somehow has to
be broken, since a perfect symmetry gives sparticles with masses equal to
their SM partners. No experiment has ever detected a supersymmetric par-
ticle, which means that the sparticles are either so heavy that they cannot
be seen with the energies currently available at particle accelerators, or that
the supersymmetric theories have no foundation in the real, physical world.

Two mechanisms describing this SUSY breaking are the gauge mediated
supersymmetry breaking mechanism (GMSB) and the gravity mediated su-
persymmetry breaking mechanism. The gravity mediated mechanism, which
is a supergravity inspired model, assumes that the gaugino (the gauginos are
the winos and bino) mass, the scalar masses and the trillinear couplings are
equal at the grand unified theory (GUT) scale. In this model, SUSY is bro-
ken at a very high scale, a “hidden sector” close to the GUT scale, and com-
municated to the visible sector through gravitational interactions. GMSB
breaks SUSY at only a few hundred TeV scale, with the gauge bosons as
the messengers. In the gravity mediated SUSY breaking model the lightest
supersymmetric particle (LSP) is the neutralino if the symmetry between
the bosons and leptons, often called R-parity which is defined as

Rp — (_1)3B-I—L-|—2j7 (2'19)

is conserved. The neutralinos are the physical particles resulting the from
mixing of the neutral higgsinos and the neutral gauginos. Assuming con-
servation of R-parity, the LSP is stable, but with a behavior similar to
the neutrino: it will escape through the detectors undetected. This means a
large amount of missing energy in the detector. There is no reason for SUSY
particles not to show R-parity violating properties, but the R-parity break-
ing cannot be such that the proton decays, considering the proton lifetime:
Tproton > 1.6 X 10%° years [5].

GMSB models have the gravitino as the LSP and either a neutralino or
a sfermion as the next lightest sparticle (NLSP). The decay channels are
then either Y = g4+ v or f =G+ f.



2.2.1 The two-doublet Higgs Model

The simplest expansion of the Standard Model is to introduce another Higgs
doublet. The potential

Vb1, 02) = M(dldr —v2)2 + Ao (ol — v2)?
HAsl(@]d1 — v7) + (6] — v3)]?
+Aa[(8161) (8502) — (6]0) (D11)
+As[Re (6l 6) — v103 cos €]
e[ T (6] d2) — vivasin 2, (2.20)

for two scalar doublets ¢; and ¢, spontaneously breaks SU(2)r x U(1)y
down to U(1)gp. If all the real parameters \; are positive, the vacuum
expectation values (VEV’s) of the Higgs doublets are:

< Py >= (1?1 >,<¢2 >:<v22i5 ), (2.21)

and the ratio of the vacuum expectation values is tan g = Z—f If As = Xq
the phase £ can be rotated away, and Eq. 2.20 becomes C P-invariant. By
performing a spontaneous symmetry breaking, the different physical (and
unphysical) particles and their masses are found. The two-doublet Higgs
model gives five real, i.e. true, physical particles, and three imaginary par-
ticles, i.e. particles that does not exist anywhere but in the equation. The
real particles are the two charged Higgs bosons, H* = —¢* sin 3+ ¢F cos 3,
with masses m]i_l = Ay(vi+v3), one neutral CP-odd scalar, the Ag with mass
ma, = A¢(vi + v3), which appears when the imaginary and the real part of
the neutral scalar field are split, and finally two CP-even neutral Higgses,

which mix through the mixing matrix
M= ( 43 (A + A3) + vids (4X3 4 As)viv2 )
(4X5 4+ As5)v102 42 (Ag + A3) +vids )7
giving the neutral Higgses their physical mass eigenstates
H® = V2[(Red) — v1) cosa+ (Re(d) — vg) sin ] (2.23)
R = V2[—(Re¢?d — v1)sin o+ (Re (49 — vg) cos ], (2.24)

where o is a mixing angle given by the different matrix elements of the
mixing matrix 2.22. The masses of the neutral Higgs bosons are given by

(2.22)

1
m%lo7h0 = 5 |:M11—|-M22:|: \/(MH —M22)2+4M%2 (2.25)

The imaginary particles are two charged and one neutral massless Goldstone
bosons. The charged Goldstone bosons, G = ¢* cos 3 + ¢t sin 3, are the
orthogonal partners to the charged Higgs bosons, and the neutral Goldstone
boson is the CP-odd partner to the Ag. The Goldstone bosons are removed
when the Higgs bosons become real.

10



2.2.2 The Minimal Supersymmetric Standard Model

In the Minimal Supersymmetric extension of the Standard Model (MSSM),
with a scalar, two-doublet Higgs field,

0 +
we()me (%)

the superpotential Eq. 2.20, including soft supersymmetry breaking terms
(MSSM does not fix the SUSY breaking mechanism, both GMSB and gravity
mediated SUSY breaking models are allowed), takes this form

Vo= (mi+ |pPHPH] + (m+ | pl?) HY Hy + m3y (e HH] + he)
; ; j* 2 Tk I
+5(93 +9i) |HHY — Hy"Hy| + 593 Hi Hi |°
(2.27)

where the parameters my, mo and myo have dimension of mass and p is a
SUSY-conserving Higgs mass parameter. MSSM does not, as opposed to
other non-minimal models, contain a singlet field N, which breaks SUSY.

The minimization constraints guaranteeing non-zero values for the Higgs
vacuum expectation value vy and vy gives constraints on the A; appearing
in the general two-doublet Higgs field potential 2.20 and the parameters
in the MSSM potential 2.27. Tree-level masses for the different particles
found in the general two-doublet model can now be found (demanding that
my+ > myy and no N field):

my, = Mz —miy
1
mlzquyho = 3 [miu +m + \/(m?40 + my)? — 4mjm?  cos? Qﬁ} . (2.28)

Note that none of the five real particles described here, the H*, the HY,
the A and the A° are supersymmetric particles, but appears as a result of
expanding the Higgs field from a one-doublet to a two-doublet model. This
means that the five particles have supersymmetric partners, see Table 2.1.
These sparticles are weak eigenstates, and thus mix to give the physical
mass eigenstates. Mixing between the charged Higgsinos and the charged
winos gives the charginos and mixing between the neutral Higgsinos and the
neutral wino and bino gives the neutralinos.

2.2.3 Where to look for Supersymmetric particles

Experimentally, the neutralinos and charginos might be the supersymmetric
particles that are the most easy to detect, owing to their supposed clean
experimental signature [6].

11



Mixing of the charged gauginos and higgsinos

In a SU(2) x U (1) model of broken supersymmetry, the gaugino and higgsino
mass term in the Lagrangian are given by [6] p.210:

% U1W+I~{2+ + UQW_ffl_ + M2W+W_ — ,uffl_f{; + h.c. (2.29)
where W* are the winos, fffz are the charged higgsinos, see Table 2.1, vy
and vy are the Higgs VEV’s, u is a Hlggs mixing term and M; is a gaugino
mass term. Defining zb]‘" and ¥ as

oF = (W HY), &7 = (=W HY) (2.30)
with j = 1,2, the mass terms of the Lagrangian, Eq. 2.29, can be written as
1 0 X7 Pt
— (et
Lo () (5 ) ene e

The matrix X is defined as
M mwv?2cos 3
X = . 2.32
( myyv/2sin 3 1 ) (2:32)
The chargino mass eigenstates, y* and x~, can then be found by
Xt = Vil xi = Uy (2.33)
where the U and V' matrices are chosen such that they diagonalize the matrix
X:
U*XV~t = Mp, (2.34)
Mp being a diagonal matrix with non-negative entries. Since these are all

2 X 2 matrices, analytical expressions are possible when diagonalizing the
matrix X. By defining the matrices OL

_ cos ¢4  Sin ¢y

Ox = ( —sin ¢4 cos s ) N (2.35)
where the angles ¢4 are defined as
pcos B+ Mysin 3

tan2¢_ = 2v2 2.36
an2¢ V2my My — p? + 2myy cos 23 ( )
psin 8 4+ Ms cos 3
tan2¢, = 2v2 2.37
an 20 = 2V 2myy My — p? — 2myy cos 23’ (2:37)

one can find the matrices U and V', assuming that M, and u are real:

O_|_7 det X Z 0
o30_, det X <0
The explicit chargino mass terms can be found analytically when using the
matrices U and V to diagonalize the matrix X, and are

My - = 5 {M3 40’ +2miy
:l:\/(MQ — 12)? 4+ 4mi; cos 28 + 4m3, (M2 + 12 + 2Mopsin 26)}

U=0_, V:{ (2.38)

(2.39)

12



Mixing of the neutral gauginos and higgsinos

The mass eigenstates of the neutralinos are more complicated to calculate
than the mass eigenstates of the charginos, since the neutralino mixing ma-
trix include four charge neutral particles, not counting the neutral particle
appearing if the scalar field NV is included, and not just two charged particles
as in the chargino case. In the basis
Qbo = (B7W37I~{?7HS) (240)

the neutral fields mass terms are [6] p.215

%WS(U{H10~— U2g20) _N%i!ZIB(Ule{? jvgfj[g) (241)

+3MoW3W3 + IMGWAW2 + nHYHS + h.c.

The prediction that the gaugino masses unite at the GUT scale have been
used in the calculations of Eq. 2.41. The gaugino masses M; and M; are
then related by

591
M1 = ——2M2 ~ 05M2 (242)
395
Using Eq. 2.40, the mass terms of Eq. 2.41 can be written
1
—§(¢O)TY¢O + h.c. (2.43)

where the matrix Y is defined as

Mo 0 —m z sin G sin Gy m g cos 3 sin Oy
0 My m z sin 3 cos Oy —m z cos 3 cos Oy
Y = o . (2.44)
—myzsin@sinfy  myzsinfFcosfy 0 —
m g cos 3 sin Gy m g sin 3 sin Oy — 0

where My and My are the gaugino masses, p is the Higgs mixing term and
the off-diagonal terms describe the coupling of the higgsinos to the gauginos.
vy and vy are the ratio of the vacuum expectation values of the two Higgses.
In the expression above, W3 and B are the convention, but Z° and % could
equally well have been used. The neutralino mass eigenstates are found by

defining
Xe = Ngdlj=1,... 4 (2.45)
where N is a unitary matrix that diagonalize the mass matrix Y
N*YN~' = Np (2.46)

in the same manner as the matrices U and V diagonalize the charged gaugino
mass matrix.

However, this mass matrix is so complicated to diagonalize that an ana-
lytical expression is not possible to obtain, and numerical methods have to
be used.

13



Parameter determination

Since supersymmetric theories have the gaugino masses and the mixing an-
gles tan # and « as unknown parameters, they have to be decided by exper-
iment. This means that in a search for supersymmetric particles, one has to
look for different decay channels, since it is unknown which particle that is

the LSP.

Decays of W bosons into neutralinos and charginos

Ref. [7] discuss the possibility of eTe™ — WTIW ™ collisions with one W de-
caying into a lepton-neutrino pair or a quark-antiquark pair, i.e. into Stan-
dard Model particles, and the other W decaying into a chargino-neutralino
pair, W+ — )2;")2? with the chargino decaying subsequently into a charged
lepton and a selectron pair, )Zf — yl*. The problem with this decay chan-
nel is that the sneutrino, being either the LSP or decaying into a neutrino
and the lightest neutralino, is invisible in the detector and the energy of the
leptons are so low that they will escape through the detector undetected. A
“blind spot” results from this problem, making the detection or exclusion
of supersymmetric particles difficult. Due to this blind spot, the charginos
might be as light as 45 GeV [8] without being detected. In [9] and Chapter 7
a procedure to solve this problem is described.

With the assumption that the wino and bino masses unite at the GUT
scale, see Eq. 2.42, the partial width of W bosons decaying into any chargino-
neutralino pair is given by [7]:

Grpm2 L2
LV =) = F6\/Vg7rw
2.47
{12 = wF = = (52 =5 )(@QF; + Q) (2:47)
+125:K;QrLijQ Rij }
where ¢ = 1, 2 denotes the two different charginos, j = 1,...,4 denotes the

four different neutralinos, x; is the ratio between the mass of the chargino in
question and the W mass, «; is the ratio between the mass of the neutralino
and the W mass. A;;, a two-body phase space factor, is defined as \;; =
(1 — ki — w%)* — 4k?k?, G is the Fermi coupling constant and Qp; and
(QRi; are the couplings of the W to the charginos and neutralinos, defined
as the matrix elements

1
Quij = ZppVii— _\/§Nj4vi2 (2.48)
1
= 2Vl — —=1V;3U52. .
Qrij = ZjpUa NjsUsa (2.49)

V2

U and V are the matrices that diagonalize the charged gaugino mass matrix,
recall Eq. 2.38, and N is the mixing matrix in the neutralino sector, i.e. the
matrix that diagonalizes the neutral gaugino mass matrix, recall Eq. 2.46.
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Chapter 3

The DELPHI experiment

The European center for Particle physics, CERN, consists of several particle
accelerators, see Fig. 3.1. When particles are going to be accelerated into
the Large Electron and Positron collider LEP, they are first accelerated in
the smaller rings PS, the Proton Synchrotron, and SPS, the Super Proton
Synchrotron, before they have enough momentum to be injected into the
large LEP collider.

3.1 The LEP accelerator

The largest accelerator at CERN, the Large Electron and Positron (LEP)
collider, accelerates electrons and positrons in opposite directions inside a
vacuum tube. This pipe is placed in a tunnel 100 meters below the earth’s
surface.

Large detectors are placed at four of the beam crossings around the LEP
ring, the DELPHI, ALEPH, .3 and OPAL detectors, see Fig. 3.1. Since each
of the detectors are designed differently from the others, they all have their
special strengths when it comes to e.g. particle detection.

LEP1 started running in 1990, and was upgraded to LEP200 in 1996.
The total integrated luminosity per year and the center-of-mass energies for
the different stages of the two phases are listed in Table 3.1.

LEP1 LEP200
1990 | 1991 | 1992 | 1993 | 1994 | 1995 1996 1997 | 1998
JL£| 76 | 17.3 | 28.6 | 40 | 64.4 | 46.1 10/10 64 158
NG 130/136 161/172 | 183 | 189

Table 3.1: The total integrated luminosity pr. year in pb~! and center-of-
mass-energies in GeV for the two phases of LEP.
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3.2 The DELPHI experiment

The DEctector with Lepton, Photon and Hadron Identification (DELPHI)
is actually a collection of many smaller detectors, each with its special pur-
pose. An overview of the detector is shown in Figure 3.2. The detector

consists of a barrel part and two endcap regions which covers most of the
solid angle. The different subdetectors can be classified according to their
general purpose, and are [10] and [11]:

e Charged Particle Tracking detectors:

The Vertex Detector (VD)

is the detector nearest the collision point. Its task is to detect
very short-lived particles.

The Inner Detector (I1D)

gives intermediate precision positions and trigger information.
The Time Projection Chamber (TPC)

is the principal tracking device in the DELPHI detector, detecting
particles that ionize the gas in the chamber. It also provides
identification of charged particles by dE/dX measurements.
The Outer Detector (OD)

consists of five layers of drift tubes, and gives a final precise posi-
tion and direction measurement after the RICH (described later).
The Forward Chamber A (FCA)

provides tracking and triggering in the forward direction, and
covers polar angles from 11° to 32° and 148° to 169°. The FCA
is placed before the Forward RICH.

The Forward Chamber B (FCB)

is a drift chamber that provides precise tracking in the forward
direction. It is placed after the Forward RICH, and covers polar
angles between 11° to 36° and 144° to 169°.

The Very Forward Tracker (VEFT)

is located at both sides of the vertex detectors, and covers polar
angles from 10° to 25°.

The Muon Chambers (MUC)

are the Barrel Muon Chambers, the Forward Muon Chambers
and the Surround Muon Chambers, and provide identification
of muons. Since muons are the only charged particles that can
penetrate both the calorimeters, the MUC are placed farthest
away from the collision point.

e Electromagnetic calorimeters

mainly measures the energies of photons and electrons.
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— The High-Density Projection chamber (HPC)

is an electromagnetic calorimeter consisting of 41 layers of lead
separated by gas.

— The Forward ElectroMagnetic Calorimeter (FEMC)

consists of two discs (one on each end of the detector) 5 meters
in diameter. The discs are made of lead-glass blocks.

e Hadron calorimeter

— The Hadron Calorimeter (HAC)

Has as its main purpose measurements of the energy of charged
and neutral hadrons. The HAC is made up of a barrel part and
two endcap parts. The barrel part consists of 24 sections with 20
layers of wire chamber detectors. The wire chambers are filled
with an argon (10 %), CO; (60 %), i-butane (30 %) mixture, and
vary in length from 40 to 410 ecm. For each layer there are 5 cm
iron plates. The endcap parts are similar to the barrel part, but
consists of 19 layers of detectors. All together, the HAC consists
of ca. 19000 detectors.

e Charged hadron identification

is performed with two Ring Imaging Cherenkow Counters (RICH) de-
tectors, one in each endcap region, the Forward RICH, and one in
the barrel region, the Barrel RICH. These detectors are able to detect
particles exiting the detectors at all angles. The RICH contains two
different radiators with different refractive indices. The liquid radiator
is used for detection of protons, 7-mesons and kaons with momentum
between 0.7 to 9 GeV, and the gas radiator is used for detection of

particles with momentum between 2.5 and 25 GeV.

e Luminosity measurement

is done by counting the number of events of a high statistic process
with clear experimental fingerprints and a cross section that is theoreti-
cally well-known. At DELPHI the chosen process is Bhabha scattering
(eTe™ — ete™) at small angles.

— The Small angle TIle Calorimeter (STIC)

is a sampling lead-scintillator calorimeter, placed 2.2 meters on
each side of the collision center.

— The Very Small Angle Tagger (VSAT)
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is build up of 12 layers of a wolfram plate and silicon detector
sandwich. The detector is placed 7.7 meters from the collision
center, and measures particles leaving the detector in a very for-
ward direction, 6 to 8 mrad.

A superconducting solenoid, parallel to the beam pipe, makes a strong,
uniform magnetic field of 1.2 Tesla, bends the path of all charged particles
in the detector into helixes. This makes momentum measurements possible.
The solenoid is 7.4 meters long and has an inner radius of 2.6 meters. Liquid
helium cools the solenoid to 4.5 Kelvin, in order to make it superconducting.

The collection of these subdetectors makes DELPHI a detector with
emphasis on strong particle identification and precise vertex determination.
All together, the DELPHI detector is more than 10 meters long and has a
radius of more than 5 meters, and weighs over 3500 tons.
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Figure 3.1: The different accelerators and experiments at CERN.
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Figure 3.2: The DELPHI detector, with all its subdetectors. The figure
shows the detector when one of the endcaps is pulled away from the detector.

20



Chapter 4

Statistical treatment of
search experiments

Although the detectors and accelerators described in the Chapter 3 are the
main tools for making discoveries in particle physics, computer treatment of
the physics being tested is an important part of the search for new physics.
The lifetime of particles decaying through the strong or the electromagnetic
forces have lifetimes less than 10716 seconds, which is so short that the
detectors are not able to detect the particles before they decay into other
particles with longer lifetimes. It is these particles and their trajectories
and momenta that are detected. Since the Standard Model Higgs boson is
a neutral particle, it has to decay into charged particles before the detectors
can “see” the particle, as with any other neutral particle. A large part of
the computer analysis is the simulation of the detector, in order to find
out how particles inside the detector behaves. When one has determined
which processes are expected to happen in the detector, one can compare
the observed data to what is expected to have taken place in the detector.

However, this is not enough. The signal from the detector saying a
particle just hit some of the subdetectors might not be a true signal, but can
either be a result of other Standard Model processes looking like the signal
the physicists are looking for, it might be cosmic ray induced background
noise or it might be electronic noise in the detector, although this very rarely
is a problem.

4.1 Confidence limits and hypothesis testing of
search results

When some event have satisfied certain selection criteria of the search, one

has to decide whether the detector has actually seen a true signal or if some

other processes has produced a fake signal. This is done by a hypothesis
test, where the agreement between the observed data and the predicted
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probabilities, i.e. the signal which is found by e.g. Monte Carlo simulations,
is computed.

The normal procedure is to define the hypothesis saying the signal is
absent as the null hypothesis, and the alternate hypothesis as saying the
signal is a true one. Instead of just giving a yes-or-no answer when analyzing
the hypotheses, the strength of the discovery or exclusion of the hypothesis
is stated as a confidence level.

The probability density function (p.d.f.) is a function describing how the
probability of having an outcome X in an infinitesimal interval, [z, z + dz],
varies over the range of possible outcomes. Thus the probability density
function f(X) is defined as

P(X € [z,z + dz]) = f(z)dz. (4.1)

To be able to compare the observed data to the hypothesis, a test statis-
tic, which is a function of the observed data, is selected. The test statistic is
constructed in such a way that it will increase if the experiment gets more
like a true signal, and decrease if the experiment gets less like a true signal
and more background-like.

Unfortunately it is not possible to turn off the background in the de-
tector, but one will have to compare a hypothesis where both signal and
background noise are included to the background-only hypothesis. The
background-only hypothesis is a prediction of what is seen in the detectors
had there been only background events.

The confidence in the signal+background hypothesis is given by the prob-
ability of the test-statistic to be less than or equal to the observed value X

Cst = Ps—l—b (X < Xobs)7 (42)

where P,y is found by integrating the probability density function from 0
to the observed value, Py (X < Xops) = fOXobs Fsap(2)da.
Equally, the confidence level of the background only hypothesis is

CLy = Py(X < Xobs), (4.3)

where P, is found by integrating the probability density function for the back-
ground only hypothesis from zero to the observed value, P, = fOXObS fo(z)de,
just as in the signal+background case.

To give a picture of what would have been seen in the detector had there
been no background processes in the detector, the confidence of the sig-
nal+background hypothesis is normalized to the background only hypothesis
to form what is chosen to be defined as the confidence of the signal only
hypothesis.

Ls
CL, = CC L: iy (4.4)
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C'Ly is not a true confidence [12], but due to its similarity, one says that the
signal hypothesis is excluded at the confidence level CL. when

1-CL, <CL. (4.5)

4.2 The Likelihood Ratio Test Statistic

Given a hypothesis with a p.d.f f(z), the probability of having the first of
several outcomes in the interval [z1, 21 4+ dz1] is f(z1)dz1, the probability of
having the second outcome in the interval [22, 23 + dag] is f(z2)dz2, [13],
and so on. Assuming that all measurements are independent, i.e. there
is no correlation between the different values x;, the expression for all the
observed events is:

P(Vi: i € [vi, 20+ dvi]) = [ ] f(20)dai. (4.6)

=1

This expression motivates the making of the likelihood function !, also known
as the method of betting odds:

L=T]f(), (4.7)

which, in reality, is just the joint probability density function of all the
observed values. In a hypothesis test one can as a test-statistic use the ratio
of the likelihood functions of the two hypotheses, the likelihood ratio

Q= =LA (48
L(X;B)
where X is the space of possible outcomes, and A and B are parameters
of the hypotheses being tested. Since the likelihood ratio maximizes the
probability of excluding a false hypothesis [14], it is commonly used as a
test statistic.
An appropriate likelihood ratio for searches in particle physics is

(X;s+0)

L
0= L(X:b) (4.9)

where s and b are the integrated signal and background rates for the hypothe-
ses being tested. Since these parameters share the same space of outcomes,
X is dropped from the expression for simplicity.

'This also motivates the method of mazimum likelihood, where the parameters of the
hypothesis are found by differentiating the likelihood function with respect to its estima-
tors 8: £ = 0.

a6
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If the search includes some measurements on the experimental candi-
dates, e.g. the mass distribution of the observed candidates, the likelihood
function of the hypothesis has to include more information than just the
number of observed events. This information is given in the form of a dis-
criminating variable.

Since the Poisson distribution describes processes where the probability
of each event is small and constant, i.e. is independent with respect to time
and space, it is well suited in the search for new particles, which normally
have few, if any, observed events. In a search with N.,,, distinct search
channels, the likelihood ratio takes this form:

HNchan e (sitbi) (5, 4b) " Hn, 5:Si(@i;)+bi Bi(xis)

=1 ng! 7=1 s;+b;
= ’n. - e 4.10
C? A&han e—bibiz 41_ l3i $i‘ 9 ( )
|| _— 71=1 J
=1 g

with n; as the number of observed candidates in each channel, z;; is the
discriminating variable, in case more information than just the number of
observed events in each channel is known, and S;(z;;) and B;(z;;) are the
probability density functions of the discriminating variable for respectively
the signal hypothesis and the background hypothesis. This expression can
be simplified to

— g Stot ﬁn ln_[ (1 + ;) (4.11)

=1 j5=1

This likelihood ratio can, if the p.d.f.’s of the discriminating variable is equal
for signal and background, or if there haven’t been measured a p.d.f. of the
discriminating variable, be simplified even more:

_ pmstor ﬁn f‘[ (1 + 82) (4.12)

=1 j5=1
To obtain a linear expression, one can take the logarithm of Eq. 4.12:

chan

In(Q) = —st01 + Z NEWk, (4.13)
where the weight wy, is given by

wy = In (1 + ‘Z—) . (4.14)

This means that the likelihood ratio is more or less a method of counting
weighted events.

In this section, there have been made no difference between a posterior
and a prior probability, [14].
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When one has knowledge of the experiment before doing it, one has a
prior probabilities. An example of this would be tossing a coin: it can land
on either side, with equal probabilities, or it can land on the edge, which is
fairly improbable.

If, for some reason, the a prior probability can not be known in advance,
the a posterior probability is found by performing the experiment. The a
posterior probability includes experimental uncertainties, while the a prior
probability is known exactly. To decrease the experimental uncertainties of
the a posterior probabilities, the experiment has to be performed several
times (to obtain an uncertainty of zero, the experiment has to be performed
infinitely many times).

Strictly speaking, the term likelihood ratio described above applies only
to a posteriori probabilities, but has been used with a priori probabilities
for convenience.

4.3 When analytical solutions are not possible

In a multichannel search where the probability density function also includes
discriminating variable in addition to the number of observed events, finding
an analytic solution of the likelihood probability distribution function, as
described in the previous section, is technically impossible. If one tries to
solve Eq. 4.10 for a search with n channels and m possible outcomes for
each channel, one have to solve an expression of order O(n”) terms [15]. A
multichannel search might have as many as 5000 channels, when counting
the different mass bins in each search channel as a single channel. Restricting
the number of possible outcomes to zero, one or two candidates in any bin,
this gives an expression of 3°9% terms to solve. In the 1998 DELPHI Higgs
boson search, one will easily have to solve expressions with more than 10°°%°
term.

To solve this problem, the probability density functions have to be found
non-analytically. One possibility is Monte Carlo generation of the p.d.f. The
confidence limit is then the fraction of the Monte Carlo experiments with
Q) < Qops. Another is described in the following section.

4.3.1 Semianalytic computation of the p.d.f.

In this alternative method, the probability distribution function is found
by looking at the probability of different outcomes in the different channels
and then combining these probabilities. The meaning of “channel” is the
same as in the previous section, it can either be a search channel in a search
with number of observed events as the only information, or it can e.g. be
a mass bin in a search with mass information in addition to the number
of observed candidates. A schematic picture of how the p.d.f. is created is
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Figure 4.1: The calculation of the p.d.f. The figures (a) through (d) shows
the different combinations of respectively one, two, three and four candi-
dates. Figures (e) through (h) shows the cumulative result for respectively
one, one and two, one, two and three and finally one, two, three and four
candidates.

shown in Fig. 4.1. Each channel has its own likelihood ratio, and are sorted
with respect to this weight, as in Eq. 4.14.

The first step of calculating the p.d.f. is finding the different possible
combinations for one candidate, two candidates, three, four, etc. The axis of
Fig. 4.1 are the probability of having an event in the different channels along
the y-axis, and the weight of the channels, Eq. 4.14, along the x-axis. The
weights are given by the log likelihood, and are added instead of multiplied.
As an example in a very simple search with two channels, see Fig. 4.2, when
finding the different combinations for two candidates, the two candidates can
be found either both in the channel with the smallest weight, or they can be
found one in each channel (this contribution is multiplied with two since the
probability for one candidate in one channel and the other candidate in the
other channel is equal to the probability of having the candidates found in
the other channel) or they can both be found in the channel with the largest
weight. Each possible combination of candidates has one one weight, which
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Figure 4.2: The distribution of two candidates in a two-channel search;
the numbers shows the different candidates, and the boxes are the different

search channels. The higher a box, the larger the probability of having an
event in this channel. The total distribution for two candidates is the sum
of the different combinations.

is found by summing the weight of the channels where the candidates are,
and one probability, which is found by multiplying the probabilities of the
different channels.

The second step is to multiply each of these distribution with the corre-
sponding Poisson probability, e.g the different possible combinations for one
candidate are multiplied with the Poisson probability for one candidate, the
different combinations for two candidates are multiplied with the Poisson
probability for two candidates, and on.

The third step is to add the combinations, which now are multiplied with
the Poisson probability. The number of candidates combined decides how
accurate the distribution is. When to stop combining will then be a question
of how much time to compute is available and how precise the distribution
has to be.

The confidence limit is then found by integrating the computed distri-
bution from zero up to the point given by the observed events, which is
found by multiplying the number of observed events in each channel with
the weight of that channel, and then summing these weighted candidates:

Nchan
5
obs = In(1+ =)no 4.15
Que= X 1+ 3 (4.15)
with n9% as the number of observed events in channel number i.

3

A simple implementation utilizing this method is given in appendix A,
including subroutines to deal with the mass info from the DELPHI Higgs
boson search.

4.4 Discovery

If one is interested in whether or not a signal has been discovered,i.e. that
the observation cannot be explained by background processes, there are
much stricter demands on the signal than in the case of hypotheses exclu-
sion. A common way to define the discovery region [16] p. 17, is to demand
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Figure 4.3: One can claim discovery if the area of the background only

hypotheses, represented by the checked area, left of the observed event is

larger than 1 — 5.7 x 1077,

that the probability of the background creating the observation is less than

the probability of having a 5 standard deviations fluctuation in a Gaus-

sian distribution, i.e.

that the probability of background processes being

responsible for the observation is less than 5.7 x 1077.

The signal also needs to be found where it is expected to be found.
If it is not, one has found something that is not created by background

processes, but since the signal hypotheses does not predict the signal, it is

not a confirmation of the hypotheses.
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Chapter 5

The search for the Higgs
boson

In this chapter a short description of the 1998 DELPHI Higgs boson search
will be given. The full analysis is found in Ref. [17], and although [17]
describe both the search for SM and MSSM Higgs bosons, only the search
for SM Higgs boson will be described here.

The data were taken at an average center-of-mass energy of /s=183
GeV, with an integrated luminosity of 54.04+0.5 pb~!.

At LEP200 the main Higgs production channel is the ete™ — ZH chan-
nel, see Fig. 5.1 with HuTp~, Hete™ and the Hvi channel and channels
with jets and taus or purely hadronic channels as the main decay channels
of the Higgs and the Z. The analysis has been optimized for events where
the Higgs boson either decays into a 7F 7~ pair or into bb events, since at the
Higgs boson masses searched for bb dominates the background, which makes
b-tagging important. With a Higgs boson mass of 85 GeV, the branching
ratio for Higgs boson decaying into a bb pair is approximately 90%, and for
Higgs boson decaying into a 777~ pair the branching ratio is approximately

8% [18].

0
e’ H

e 7°

Figure 5.1: The dominant Higgs production channel at LEP200.
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5.1 Common features for all channels

In the analysis of [17], there is a set of selection criteria that are common for
all events, in addition to decay channel specific selection cuts. The common
features are listed below.

5.1.1 Particle selection

In all the decay channels, charged tracks are selected if they have a momen-
tum greater than 100 MeV and if they originate from the collision center (i.e.
within 10 cm from the interaction center along the beam pipe and within 4
cm in the transverse direction). Neutral particles are found either as energy
clusters in the calorimeters or as reconstructed vertices in the tracking vol-
ume. Neutral particles found in the calorimeter are selected if the energy is
greater than 200 MeV, and neutral particles found in the tracking volume
(i.e. hadronical energy clusters) are selected if the energy of the cluster is
greater than 500 MeV.

5.1.2 b-tagging

The b-tagging has been performed using a method which combine the dif-
ferences between events containing b-quarks and other events in one single
variable @, see Ref. [19].

The Jet lifetime probability P;" is the probability that the jet correspond
to the primary vertex. For a b-event, this probability is smaller that for
events with lighter quarks.

The distribution of the effective mass of the particles in the secondary
vertex M; is higher for b-events than for the other events.

The distribution of the rapidity of the tracks included in the secondary
vertex with respect to the jet R direction is normally lower for b-events
than for c-events, since B hadrons are heavier and has a higher multiplicity.

The distribution of the fraction of charged energy of the jet included in
the secondary vertex X is for b-events determined by a fragmentation func-
tion f(b — B). This fragmentation function is harder than the equivalent
function for c-events. This tag has the weakest tagging power of the vari-
ables, since the distributions for b-events almost overlaps the distributions
for events with other quark flavors.

Compared to other b-tagging method, where only the impact parame-
ters are taken into consideration, this method provides better rejection of
background.

5.1.3 Constrained fits

To extract the Higgs mass two kinds of constrained mass fits have been used:
4-C’ fit if only total energy and momentum conservation have been imposed,
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and ’5-C’ fit if the Z mass or the shape of the Z resonance is required as
well. In [17] this procedure was also often used to reduce background.

5.1.4 Analysis optimization

The efficiency of each channel has been set in such a way that the sensitivity
of the combination is maximized. The working point for each channel is given
by the point of the efficiency versus background plot giving the smallest
expected signal confidence. This procedure is performed one channel after
another, and finally a global optimization, where all channels are optimized
together, is performed.

The analysis of Ref. [17] has been divided by the different decay channels
of the Higgs boson and the Z boson.

5.2 Searches in events with jets and electrons or
muons

The HeTe™ and Hutp~ decay channels combined represent 6.7% of the
final HZ states.

Muon identification is mainly provided by an algorithm which relies on
the association of charged particle tracks to the signals in the barrel and
forward muon chambers.

Electron identification is provided by an algorithm that is tuned for
efficiency and not purity, since electrons in the HZ channel are expected to
be well isolated. Efficiency of this algorithm is 94%, but with a probability
of misidentificating a pion as an electron of 16%. This misidentification
probability can be lowered to 13% by accepting only tracks associated with
electromagnetic showers. This, however, reduces the efficiency to 83%.

In the electron channel events have to consist of five or more charged
particles, where two must have a momentum greater than 10 GeV, and the
total energy of the event must be more than 0.124/s.

Events in the muon channel have to have at least four charged particles,
and the total energy of the charged particles must be over 0.304/s. In addi-
tion, the total energy in the barrel electromagnetic calorimeter must be less

than 100 GeV.

5.3 Searches in events with jets and missing en-
ergy

This channel, where the missing energy is due to neutrinos escaping unde-
tected through the detectors, represents 20% of the final HZ states. The
experimental signature of this decay channel is a pair of acollinear jets, with
a recoiling mass close to the expected mass of Z — vv decays.
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In order for an event to be selected, it has to consist of at least nine
charged particles and the total energy of the charged particles has to be
larger than 0.14/s.

To quantify the differences between the Higgs signal and the background
processes, a multidimensional, iterative discriminant analysis was used.

5.4 Searches in events with jets and taus

The experimental fingerprint of this decay channel is two jets and two iso-
lated taus, and 8.5% of all final H 7 states end up in this channel. Preselected
hadronic events in this channel contain at least seven charged particles and,
either a total energy carried by the charged particles greater than 0.15./s,
or a total energy greater than 0.30y/s and forward and backward energies
greater than 0.034/s.

In this channel, either the H or the Z can decay into the 77~ pair. If
the Higgs decays into the 7’s, the mass of the 7 pair must be high, since
the search is for Higgs boson with high mass, and the mass of the jets to be
close to Z-mass. On the other hand, if the Z decays into the 7’s, the Higgs
decays mostly into b-events, and thus b-tagging is a powerful tool against
background in this decay channel.

5.5 Searches in events with purely hadronic jets

The preselection, which is equal for all four-jet events, attempts to reduce
the ¢g(v) background events while keeping most of the Higgs signal. An
event is selected if it contains at least 18 charged particles, a total energy
above 0.6,/s and a total neutral energy less than 0.5y/s. In order to exclude
events where an on-shell Z is produced with a photon, no photons with
energy above 30 GeV are allowed in the event.

After the preselection, a probabilistic analysis was used. To reduce the
main background processes, both b-tagging, topological and kinematical in-
formation was used.

5.6 Results of the analysis

As can be seen from Table 5.1, there was no evidence of Higgs bosons in
any of the search channels, which means that instead of claiming a discov-
ery, there has been set an exclusion limit on the Higgs mass. In [17] this
translates to a lower limit on the mass of the SM Higgs boson of 85.7 GeV
at 95 % CL. The observed C'L, and C'L; together with the expected C'L,
computed with SA_COUNTING, see Appendix A, is shown in Figure 5.2. In
Chapter 6, this analysis will be used to compare three different methods of
semianalytic confidence limit calculations.
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Figure 5.2: Figure (a) shows the observed confidence of the background
hypothesis, C'L;. The solid line of (b) is the observed confidence of the signal
hypothesis C'L%*, while the doted line shows the expected confidence.

Channel | Data | Total background | Total sim. signal
Hpmp~ 2 0.49£0.06£0.17 0.43
HeTe™ 1 0.6840.12+59% 0.26

Hvo 1 0.50£0.08+0.10 1.25
Hrtr~ 1 0.74£0.09+£0.08 0.25
Zrtr 0 0.34£0.07£0.04 0.12

Hqq 1 3.74£0.20+£0.18 5.18

Table 5.1: Data, expected background and simulated signals after all cuts
and selections for mpy=85 GeV and /s=183 GeV.
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Chapter 6

Comparison of three
different semianalytic
implementations

In this chapter a comparison of four different implementations calculating
confidence limits will be described. These implementations have been used
to analyze data from the 1998 DELPHI Higgs boson search, described in
Chapter 5.

6.1 Differences of the implementations

Three different implementations of the statistical method mentioned in Chap-
ter 4 have been developed: SA_COUNTING, see Appendix A, E_CLS [15] and
ALRMC_HIST [12]. Each of these implementations has its own set of strengths
and weaknesses. The Monte Carlo routine ALRMC has been used to compare
the semianalytic implementations.

ALRMC_ and SA_COUNTING combine all the different channels at once,
i.e. they start with the different outcomes for the probability of having
one candidate of all the channels, then find the different possible outcomes
for two combinations for all the channels, and so on until the distribution
has reached almost unity. E_CLS starts with the two channels having the
smallest signal-to-background ratio, and finds all the different possible com-
binations for these two channels for as many candidates as it takes to get
the accumulated distribution close to 1.0. ALRMC_HIST and SA_COUNTING
compute the distributions until the integrated background p.d.f. has reached
0.999999, while E_CLS has a default setting of 0.999. If one needs to compute
the p.d.f.’s more or less accurately, changing this number is easy. E_CLS just
needs a change of a configuration file, while ALRMC_HIST and SA_COUNTING
need a small change of the code and a recompiling.
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Figure 6.1: How ALRMC_HIST uses the different histograms to calculate the
p.d.f.’s. The histogram (a) (the histogram for one candidate) is folded with
the histogram (b) (the histogram for five candidates) to make the histogram
(d) (the histogram for six candidates). The two-dimensional histogram (c)
has the histogram for one candidate along the x-axis, and the histogram for
five candidates along the y-axis. Each box in the histogram represent the
combined probability for that combination. The contributions lying along
the light band, i.e. the contributions with equal In @), are added to get the
probability for having a combination with this weight. The In@Q for one
candidate is added to the In @ for five candidates to find the In @ for six
candidates.
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While E_CLS and SA_COUNTING simply check whether a new combina-
tion already exists, and if it does add the probability for the new combina-
tion to the probability for that specific weight, ALRMC_HIST makes a two-
dimensional histogram, see Fig. 6.1, with the histogram for one candidate
along one axis, and the histogram for the previous candidate along the other
axis. Then the contributions for different values of In () are found by adding
the different entries along the diagonal going from one axis to the other
with equal equal In¢). This two-dimensional histogram is then split along
the diagonal, and the contributions lying in the upper half of the diagonal
is ignored. This can be done since these contributions are so small they will
vanish compared to the other contributions. Estimation of the histogram
parameters is done with a few hundred Monte Carlo experiments.

SA_COUNTING estimates the size of the p.d.f. by finding the channel
with the largest In @), and then multiplying this weight with the number of
candidates it will take to have the acummulated Poisson distribution close
to unity. Contributions close to this number are ignored, as they will be
vanishingly small.

6.2 Comparison of execution speed

To investigate the speed and accuracy of the three different implementations,
several analyses of different parts of the mass spectrum in the Higgs search
have been made with all three implementations. To illustrate the speed
of different implementations, and of the semianalytic method in general,
they have been compared to a Monte Carlo routine, ALRMC(Monte Carlo),
which is part of the ALRMC package. The calculations were performed on a
2xPentiumll 400 MHz computer running the Linux operating system. The
Monte Carlo generations has been done with 100000 Monte Carlo experi-
ments. Table 6.1 shows CPU-time spent in different mass regions of the
Higgs search.

mass, step (GeV) | SA_COUNTING | E_CLS | ALRMC_HIST | ALRMC
55.0-95.0, 0.1 1385 1589 786 | 12475
55.0-65.0, 0.05 861 898 475 | 7126
85.0-95.0, 0.05 497 634 299 | 4843

Table 6.1: CPU consumption, in seconds, of the different implementa-
tions over different mass hypotheses in the DELPHI Higgs boson search
at /s=183 GeV.

Comparing the accuracy has been done by calculating the relative differ-

ences of the signal confidences, AC'L;/C Ly, of each of the implementations.
Figure 6.2 and 6.3 shows the relative differences.
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Figure 6.2: The top figure shows the observed C'L; computed by the Monte

Carlo routine ALRMC(Monte Carlo). The figures (a) through (c) shows the
relative differences of the observed C'Ly, i.e. ACO—LLQS, calculated by the Monte

Carlo routine to, respectively, SA_COUNTING, ALRMC_HIST and E_CLS.
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Figure 6.3: Relative difference between the observed CLg of the three differ-
ent implementations and ALRMC(Monte Carlo). Figure (a) through (c) shows
the relative difference between, respectively, SA_COUNTING, ALRMC_HIST and
E_CLS in a light Higgs mass-hypotheses region (55 GeV to 65 GeV), while
Figure (d) through (f) shows the relative differences in a heavy mass re-
gion of the Higgs boson search. Notice how the relative differences converge
towards zero as the masses increases.
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Notice that the relative differences of all the implementations converges
towards zero as the Higgs mass hypotheses increases. This is due to the
fact that the programs are tuned to give better results at the heavy Higgs
mass hypotheses, where the Higgs hypotheses gives fewer expected signals
than the lighter one. This makes the hypotheses of the heavy region both
easier and faster to handle than the hypotheses in the light region. In the
case of E_CLS and SA_COUNTING, the heavy Higgs hypotheses gives a shorter
list of expected signals and background than the light Higgs hypotheses, for
ALRMC_HIST the result is a histogram with fewer bins.

6.3 Binning in the different implementations

E_CLS has a binning that is part linear and part logarithmic. For proba-
bilities less than 1.0 % the binning is logarithmic, with the default setting
being 20 bins per decade. Probabilities larger than 0.01 have a binning that
is spaced 0.1 % apart.

SA_COUNTING has no predefined bins but makes the bins as the combi-
nations are calculated. This explains in part the disadvantage in speed com-
pared to ALRMC_HIST, see Table 6.1. For each new contribution, SA_ COUNTING
has to go through the list of previously calculated combination to see whether
or not a new bin has to be added to the list. Determination of the bin size
depends on the expected signals and backgrounds. If they have weights with
almost the same values, the bins are smaller than if the expected signals and
background have fairly different weights.

As default, ALRMC_HIST has 2000 bins, which is fewer than both E_CLS
and SA_COUNTING. This is a large part of the explanation of why ALRMC_HIST
is faster than E_CLS and SA_COUNTING.

However, both E_CLS and SA_COUNTING can be changed to have a less
fine binning, but the gain in speed will be at the cost of less accuracy.

6.4 Improving the list type implementations

To separate the different channels, SA_COUNTING multiplies each channels
In @ with a number. Since the channels tend to have fairly equal weights,
the default is 300. A number smaller than that gives SA_COUNTING problems
separating the channels, with the result that several channels might end up in
the This is a problem that is not dealt with in either of the implementations.

Increasing the number being multiplied to the channels has the effect
of increasing number of bins, with increased resolution as the result. As
mentioned in the previous section, when increasing the resolution, the CPU
consumption also increases, see Figure 6.4 and Table 6.4. When computing
the observed C'Ls with a fine binning, both accuracy and the consistency of
the accuracy increases, which can be seen when looking at Figure 6.4.
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Factor | CPU consumption (sec)
300 497

500 571

1000 840

1500 1106

2000 1634

2500 1862

Table 6.2: Time spent in CPU loops by SA_COUNTING for different values of
the number being multiplied to each channels weight.

ALRMC | ALRMC_HIST | E_CLS | SA_COUNTING
my (GeV | 85.70 85.70 85.65 85.75

Table 6.3: Upper limit of the Higgs mass at 95 % CL using the three different
implementations.

6.5 Computed limits

It is clear, when looking at the Figures 6.2 and 6.3 and Table 6.1 that
the histogram-type implementation of ALRMC_HIST is both faster and more
accurate than the list-type implementations of E_CLS and SA_COUNTING.
However, the relative differences between the list-type implementations and
the Monte Carlo routine for Higgs mass hypothesis around the upper limit
is close to zero and the excluding power of these implementations should
be close to ALRMC_HIST. When looking at Tab. 6.3, this is proven correct.
The different implementations have their upper limit of the Higgs mass at
95 % confidence within 50 MeV of the lower limit computed with the Monte
Carlo routine. By increasing the binning, SA_COUNTING is able to reproduce
the same upper limit as ALRMC.
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Figure 6.4: The relative difference between ALRMC and SA_COUNTING for
different values of the number multiplied to the weight of each channel, in
order to increase the resolution of the binning. Figure (a) through (f) shows
observed AC'L;/CLs when this number is, respectively, 300, which is the
default, 500, 1000, 1500, 2000 and 2500.
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Figure 6.5: Observed confidence limits of the Higgs boson mass calculated
with the different implementations, given the 1998 DELPHI data taken at
/s GeV.Figure (a) shows the results obtained with ALRMC, (b) SA_COUNTING,
(c) E_CLS and (d) ALRMC_HIST.
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Chapter 7

Search for supersymmetric

decay of the W

In [9], a procedure for searches for W* bosons decaying into the lightest
chargino-neutralino pair,

wWE - 19, (7.1)

in W pair production, where one of the W’s decays according to the reac-
tion 7.1 and the other to either ¢¢/ or {1, and a method to determine the
branching ratio BR(W — Yi1Y) is described.

Figure 7.1: The production channel of the lightest positively charged
chargino and neutralino.

In models having the sneutrino as the lightest supersymmetric particle
(LSP), the chargino of Eq. 7.1 will, if its mass is slightly above the LSP
mass, decay into a sneutrino and a charged lepton:

5= ol (7.2)

Only the positively charged reactions are shown, the charge conjugated re-
actions are left out for convenience; they are just as likely to happen. If
the SM decaying W decays hadronically, the detection of the sparticles is
almost impossible if the mass difference of the chargino and the sneutrino,
AM = M+ =My, are below a few GeV. The sneutrino-lepton pair of Eq. 7.2
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will be soft, and hidden inside the total event. On the other hand, if the SM
decaying W decays into a lepton-neutrino pair, the low event multiplicity
can make the detection of the supersymmetric particles possible. The exper-
imental signature can thus be said to be hard leptons plus missing energy.
In the analysis described in [9], the selection cuts have been split into two,
one for AM between 0 GeV and 0.5 GeV and one for < AM between 0.5
GeV and 2 GeV.

In the analysis described in [9], the confidence limit of the branching ratio
of the reaction described above has been calculated with the simple “PDG
method”, i.e. that all information has been put into one bin. The analysis
has been reproduced to see the advantages of using a more sophisticated
method of computing the confidence limits, such as SA_COUNTING, compared
to the simple method used in [9].

7.1 Event selection

During the 1997 runs at LEP, with center-of-mass energy /s ~ 183 GeV,
54 pb~! of data was collected at the DELPHI detector. 51.65 pb™! of this
collection has been declared suitable for data analysis (the rest have been
left out due to some problem or inefficiency in the detectors). Of the data
collected at the 172 GeV run in 1996, 9.98 pb~! is used.

The different event selections and cuts are described in detail in [9], pp.
2-10. Several Monte Carlo generators were used to create simulated events,
which in turn gave rise to the criteria used in selection of the experimental
events.

Shower selection

Some of the criteria deciding whether a charged track can be used or not,
given by the shower selection, are

e 5] > 200 MeV,

e Track length has to be over 20 cm, unless it’s a VD-only (see Fig. 3.2)
track. In that case it has to stay outside £3° of the 90°.

Rescaling of the track momentum is attempted if, for more than six charged
tracks, the track momentum is greater than 75 % of the beam momentum, or
in the case of zero to six charged events the track momentum is greater than
125 % of the beam momentum. Unassociated showers in the calorimeters
are accepted if their energy is above 0.5 GeV (or above 0.75 GeV if the
shower is in the HAC).

Tracks not meeting these requirements does not enter the calculations
for the overall event properties, but they are kept as locked tracks.
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Preselection

For tracks with more than six charged particles in the shower, they have to
have

e 40 < F ;s < 120 GeV,

o Iiruns > 20 GeV,

o Missing perans > 15 GeV,

e The demand on the polar angle of the thrust is ¥:1,,30° < ¥4, < 50°.
Tracks with a charged multiplicity between zero and six have to meet:

o Fyisite > 10 GeV,

e The energy fraction carried by the hardest particle must be more than
80 % of the visible energy. The energy fraction carried by the most
energetic jet has to be above 90 % of the visible energy,

o If the charged multiplicity is above one, then 30° < 93, < 150°.

If a track has passed the preselection, the following cuts are applied:

Selection of hadronic showers

In showers with more than six charged tracks, the tracks are accepted if
e the visible energy is above 90 GeV,
e invariant mass of all particles is between 55 GeV and 85 GeV,
e there are no identified electrons or muons with energy above 5 GeV,

e no isolated charged particle is detected with energy above 15 GeV.

Selection of leptonic showers

The selection of leptonic tracks are divided in one in the case of AM very

small, 0 GeV < AM < 0.5 GeV, and one in the case of AM small, 0.5 GeV
< AM < 2.0 GeV. If AM is very small, the selection cuts on leptonic tracks
are

e Number of charged particles has to be one, two or three,
e Visible energy less than 80 GeV,

e Energy of the hardest track for /s=183 GeV data between 24 GeV
and 74 GeV and for \/s=172 GeV data between 26 and 62 GeV,
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e No neutral shower with energy above 5 GeV is allowed,
e No locked tracks with energy above 3 GeV.

For small AM, the cuts are much the same, but the demand on the locked
tracks is that they cannot have energy above 5 GeV, and the charged mul-
tiplicity must be exactly two.

7.2 Predicted backgrounds and signals

The predicted signal efficiencies found by Monte Carlo simulations are listed
in Table 7.1 and the expected background rates are listed in Table 7.3
and 7.2.

[AM=0GeV |AM=10.5GeV | AM=2GeV |

HADRONIC CHANNEL (183 GeV)
\ 0.159
LEPTONIC CHANNEL (183 GeV)
selection A 0.131 0.121
selection B 0.104 0.110
HADRONIC CHANNEL (172 GeV)
0.166
LEPTONIC CHANNEL (172 GeV)
selection A 0.111 0.118
selection B 0.106 0.104

Table 7.1: Efficiencies for selecting #{* decaying from xT. The xT is a decay
product of the reaction WHW = — y;T¥1°%. Selection A and B refer to the
selections optimized to 0 < AM < 0.5 GeV and 0.5 GeV < AM < 2 GeV,
respectively.

Hadronic Leptonic Leptonic
selection selection selection
(0 < AM < 0.5) | (0.5 < AM < 2)
3 pred. bg. rates 8.89 5.02 2.57
Observed events 8 4 2

Table 7.2: The Standard Model predicted backgrounds and observed candi-
dates remaining after the cuts from the /s=183 GeV run at LEP200.

Of the backround processes, ete™ — Z%(ny) — 7t77(ny) and ete™ —
Ivl'vy are the main background processes in the leptonic sector with 0.5<
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Hadronic Leptonic Leptonic
selection selection selection
(0 < AM < 0.5) | (0.5 < AM < 2)
3} predicted background 1.85 0.93 0.37
Observed events 2 0 0

Table 7.3: The Standard Model predicted backgrounds and observed candi-
dates left after the cuts from the /s=172 GeV run at LEP200.

AM < 2 GeV, Bhabha and Compton scattering and eTe™ — [yl pro-
cesses dominate in the leptonic sector with 0 < AM < 0.5 GeV. In the
hadronic sector the processes eTe™ — rv.qql, eTe™ — lylivy, and ete™ —
Z%(n7y) — qq(ny) dominate the background.

7.3 Computing limits on the branching ratios
using SA_COUNTING

The expected signal and background rates found in Tables 7.1, 7.3 and 7.2
include, due to limited Monte Carlo statistics, uncertainties (these are shown
in [9]). Since SA_COUNTING (see Appendix A) does not handle uncertainties,
these errors have not been included in the calculations.

Table 7.1 shows the efficiencies of selecting eTe™ — WTIW ™~ events with
one W decaying supersymmetricly according to Eq. 7.1 and the other decay-
ing into Standard Model particles. However, when calculating the branching
ratio, it is the expected signal ratio that is used. This quantity can be found
by defining the fraction of W decaying into chargino-neutralino pairs as

@ =BRW* = ¥i)). (7.3)

This means that the fraction of processes decaying into standard model
particles only is (1—x). The branching ratio of W* W~ where one W decays
into SUSY particles and the other into SM particles thus has a fraction of
22(1 — x). The number of expected events N is then found by

N=2z(1-2) ) Liols, (7.4)
Ecms

where the sum is over the different center-of-mass energies, £; are the dif-
ferent luminosities, recall that the luminosity for the \/s=183 GeV run is
51.65 pb~! and 9,98 pb~! for the 172 GeV data. Ufh are the theoretical
cross-section of W’s decaying into a chargino-neutralino pair and ¢; are the
detector efficiencies. The measured cross-section only takes SM decays into
account, since there is no experimental evidence of the existence of SUSY
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particles. An expression for supersymmetric cross-section given the mea-
sured cross-section, is given by

h _ O.T)’LBG,S
—_— m- (7-5)

Using this expression for the cross-section, the number of expected events is

2z
N = Lo, 7.6
(1 _ $) EZ: o, € ( )

The branching ratio at a 95 % confidence limit is then found by calculat-
ing the confidence of the expected signal and background rates, using the
program SA_COUNTING, for different values of the fraction z.

AM=0 GeV | AM=0.5 Gev | AM=2 GeV
183 GeV 1.50 % 1.56 % 1.40 %
172 GeV | 6.08% 6.34 % 6.39 %
[Combined | 134% [ 099% [ 132% |

Table 7.4: The observed branching ratio at 95 % confidence, using
SA_COUNTING, for 172 and 183 GeV. The column ’Combined’ is the results
obtained when the data for the two different center-of-mass energies are
combined. The largest branching ratio in the ’combined’ column is taken to
be the branching ratio.

AM=0 GeV | AM=0.5 GeV | AM=2 GeV
183 GeV 2.16 % 224 % 2.05 %
172 GeV 8.32 % 7.65 % 771 %
[Combined [ 211% | 161% [ 194% |

Table 7.5: The expected branching ratio at 95 % confidence, using
SA_COUNTING, for 172 and 183 GeV.

Taking the worst, i.e. the largest, result in the column ’Combined’ in
Table 7.4 as the branching ratio, the observed branching ratio at 95 % CL
is found to be

BRops (W* = X7XY) < 1.34%. (7.7)

In the same manner, looking at Table 7.5 the expected branching ratio is
found to be

BReacpect(W:t — )Zit)z(f) < 2.11%. (78)
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Figure 7.2: The combined results for AM=0 GeV, which is the value of A
M that yields the largest branching ratios. The solid line is the observed
branching ratio, the dashed line is the expected ratio

The observed branching ratio is slightly smaller than the expected ratio,
which means that there are fewer background events than what had been
expected. With the definition of the hypothesis saying that there are no
supersymmetric decays of the W as the null hypothesis, one can say that
this hypothesis has been excluded stronger than what had been expected.

If these branching ratios had been computed using the simple PDG
method, instead of the method described in Chapter 6, the observed branch-
ing ratio would have been 1.54 % and the expected branching ratio would
have been 2.17 %.

The calculated observed branching rate of [9], is 1.56% which is in good
agreement with the result obtained using the PDG method (the analysis
of [9] does not include calculations of the expected branching ratio). Com-
paring the results obtained using SA_COUNTING with the results obtained
using the simple PDG method, it is clear that the semianalytic method is
the stronger of the two, although the difference is fairly small. Table 7.2
shows that in this search, the hadronic channel dominated the other chan-
nels. This makes the differences between the semianalytical and the PDG
method smaller. Had the observed candidates and expected signal and back-
ground rates been more evenly distributed among the channels, the differ-
ences between the two methods would have been increased.

In the calculations for the branching ratios, the assumption that BR()Zli —
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#1*) ~ 1 has been made.

7.4 MSSM parameter exclusion

Having found an upper limit on the observed branching ratio, one can use
Eq. 2.47,

1/2
Gpmiy A/

+ +,0y — TETW Ry
{2 — K} = K = (k7 = 83)°1(Q1; + QFij)
+126:5;Q1i;QRij )+

where the matrices () g;; and (J1;; are linear combinations of the diagonalized
gaugino mixing matrices, recall Eq. 2.49, and instead of summing over all
the different charginos and neutralinos, the equation is solved for the lightest
chargino-neutralino pair, which is equal to setting ¢ and j equal to one. The
regions in the parameter space of the higgsino and bino masses that are
excluded at the same confidence limit as the branching ratio, i.e. at 95 %
C'L, can then be found.

The partial width for W# decaying into a chargino-neutralino pair is
given by

FW* = XTW0) = BROW® = XFX1) - TOVE — anything),  (7.9)

and since both the total width of the W, T(W* — anything) and the
branching ratio, BR(W* — )N(icf(?) is known, the partial width is given.

The neutralino and chargino masses are found when the charged and
neutral gaugino mass-matrices, see Eq 2.32 and 2.44, are diagonalized, but
the masses of the gauginos and the higgsino are parameters not decided by
the theory. By varying the bino and the higgsino masses, expressions for
the chargino and neutralino masses can be found.

The Higgs mixing term tan 3 have been fixed, and M; and p have been
varied to find the regions of the (Mjz, i) parameter space that are allowed.
In Fig. 7.3 and Fig. 7.4 the regions with allowed higgsino and bino masses
are found for several values of tan 3.

Compared with the excluded regions of the (Mg, i) plane for different
values of tan 3 of Ref. [9], the improved branching ratio results in a slightly
increase of the excluded regions, see Figure 7.5.

The computations have been performed using SUSYPAR, see Appendix B.
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Chapter 8

Conclusions and outlook

8.1 Physics results

As is seen in Chapter 5 no trace of the existence of a Higgs boson is seen up
to a center-of-mass energy of 183 GeV. This corresponds to the exclusion at
a 95 % confidence level of a Higgs boson with mass less than 85.7 GeV.

In Chapter 6 it was shown that if the W boson decays into a pair of
supersymmetric particles, the branching ratio of this process is less than
0.0134.

o BR(WE — i) < 1.34% (95% CL)

With this branching ratio, one can exclude part of the SUSY parameter
space, in this case the chosen space was the mass of the higgsino and bino.

The essence of this is that at the energies these two searches have been
performed, there are no traces of new physics.

8.2 Technical results and outlook

Implementating and developing the semianalytic confidence limit calculator
SA_COUNTING, proved that when used in a search with many channels, as
the Higgs boson search, the list type implementations was both slower and
more unprecise than what had been hoped for.

Given more time, I would like to understand the handling of system-
atic uncertainties. In Ref. [20], Cousins and Highland describe a method
to incorporate statistical uncertainties in one-channel searches. This can
be generalized into searches with several distinct channels, see for example
Ref. [21].

I am pretty sure there must be a less CPU-consuming method of han-
dling the list, but this is evidently not as intuitive as the one implemented
in SA_COUNTING, and it would had been exciting to see if a smarter imple-
mentation could have been developed.
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I was also told near the end of my work with this thesis that another,
even faster method of computing the likelihood ratio probability density
functions has been developed which is based on Fourier transforming the
channels, and it would be interesting to understand this method.
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Appendix A

PROGRAM sa_counting_v2

..Program that calculates the probability distribution functions
.(p.d.f.) of hypothesis semianalytical, with the use of the likelihood
..ratio test-statistic

* X X ¥ *

IMPLICIT NONE

INTEGER nchan,no_bins
REAL sa_counting,ppois,t

COMMON/params/nchan,no_bins

EXTERNAL sa_counting

..reading the number of search channels and number of bins in the
..p.d.f-1ist from file param.h

* ¥ * x*

OPEN(10,name=’param.h’,status=’0ld’)
READ(10,100)nchan
READ(10,101)no_bins

100 FORMAT(I2)

101 FORMAT(I5)
CLOSE(10)

*....calling the main routine
CALL saco_v2
END

sk sk sk s o s ok sk sk sk s o s ok sk sk sk sk ok s stk sk ke s ki sk e s o ok ok stk o o ok ok sk ok
¥, This is just a trick to allow dynamic
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*..... memory allocation of the long arrays
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ke ke sk sk ke sk o sk ok sk sk sk sk e o ok ok

SUBROUTINE saco_v2
IMPLICIT NONE

*
*....variables
*
*....Number of channels and number of bins
*

INTEGER nchan,no_bins

COMMON/params/nchan,no_bins
*....counting variables

INTEGER i,j,k,1,m,n

INTEGER k_sb,m_sb

INTEGER next_length,nl_sb !the length of the p.d.f-arrays

INTEGER n_o(nchan)
*
*....Variables concerning the total integrated signal and background rates
*....and Poisson probabilities
*

REAL wt(nchan),b(nchan),s(nchan),pwtsb(nchan)

REAL pwtb(nchan),stot,btot,ptotb,ptotsb,wb,wsb

REAL itemplb,itemp2b

REAL itemplsb,itemp2sb
*
*....These variables concerns the arrays the p.d.f.’s are made from
*....one_b and one_sb are the arrays for the integrated b and (s+b)
*....rates, resp. next_b and next_sb is the arrays for the p.d.f.’s
*....for (n-1) candidates that has NOT been multiplied with the approprialte
*....Poisson-prob. result_b & result_sb are the arrays for the accumulated p.d.f’s
*

REAL one_b(2,nchan) ,next_b(2,no_bins),new_b(2,no_bins)
REAL result_b(2,no_bins),integr_b(no_bins)
REAL cl_b,cl_s

REAL one_sb(2,no_bins) ,next_sb(2,no_bins)

REAL new_sb(2,no_bins),result_sb(2,no_bins)
REAL integr_sb(no_bins),cl_sb
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*

*

* ¥ X *

REAL expt,wt_expt,gen_xisq

....the expected confidences

REAL interm_s(no_bins),cl_s_infty
REAL interm_sb(no_bins),cl_sb_infty

REAL ppois
EXTERNAL ppois

....HBOOK stuff

integer mwp,h
parameter (mwp=10000)
common/pawc/h (mwp)
real itempl,itemp2
real t

DO i=1,no_bins
next_b(1,1)=0.
new_b(1,1i)=0.
result_b(1,1)=0.

ENDDO

DO i=1,no_bins
next_sb(2,i)=0.
new_sb(2,1)=0.
result_sb(2,i)=0.

ENDDO

....Reading the integrated signal and background rates and number of
....observed candidates from file date.19

OPEN(10,name=’data.19’,status=’0ld’)

DO i=1,nchan
READ(10,*)s(i),b(i),n_o(i)

ENDDO
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100 FORMAT(F6.4,T9,F6.4,T17,I2)
CLOSE(10)

ptotb=0.
ptotsb=0.
btot=0.
stot=0.
expt=0.

.initial calculations. wt(i) = the weigth of channel #i
.expt = the observed value

* ¥ ¥ *

DO i=1,nchan
wt (1)=AL0G(1.+s(1)/b(i))
pwtb(i)=b(i)
pwtsb(i)=s(i)+b(1)
ptotb=ptotb+pwtb(i)
ptotsb=ptotsb+pwtsb(i)
stot=stot+s(i)
btot=btot+b(i)
expt=expt+n_o(i)*(1+INT(500*wt(i)))
wt_expt=wt_expt+(n_o(i)*wt(i))
ENDDO

DO i=1,nchan
pwtb(i)=pwtb(i) /ptotb
pwtsb(i)=pwtsb(i)/ptotsb

ENDDO

.Initializing the list of int. sign. and bg. rates

DO i=1,nchan
one_b(1,i)=1.+INT(500*wt(i))
one_b(2,1)=pwtb(i)
one_sb(1,1i)=1.+INT(500*wt(i))
one_sb(2,1i)=pwtsb(i)

ENDDO

..Chek to see if to channels end up in the same bin
.If this happens, no one knows exactly what will happen!
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*

*

*

* ¥

DO i=1,nchan
DO j=1,i-1
IF(one_b(1,i).EQ.one_b(1,j))THEN
PRINT *,’>>>>>>>?
PRINT *,’>>>>>>>TW0O CHANNELS IN SAME BIN’
PRINT *,’>>>>>>>SOMEWHAT UNRELIABLE RESULTS’
PRINT *,’>>>>>>>?
ENDIF
ENDDO
ENDDO

....Preparing the histograms for one candidate

wb=ppois(btot,1)
wsb=ppois(stot+btot,1)

DO i=1,nchan
next_b(1l,i)=one_b(1,1)
next_b(2,1)=one_b(2,1)
next_sb(1l,i)=one_sb(1,1i)
next_sb(2,i)=one_sb(2,1i)

ENDDO

....Making the one candidate-histograms

DO i=1,nchan
result_b(1l,i)=one_b(1,1i)
result_b(2,i)=one_b(2,1)*wb
result_sb(1l,i)=one_sb(1,1i)
result_sb(2,i)=one_sb(2,1i)*wsb

ENDDO

....Histogram for two candidates, background only

....This is the final two candidates histogram, multiplied with
....the Poissonprobability
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* ¥ X ¥ ¥

k=1
m=nchan+1
wb=ppois(btot,2)
DO i=1,nchan
DO j=1,nchan
itempib=one_b(1,i)+one_b(1,j)
itemp2b=one_b(2,1i)*one_b(2,j)
DO 1=1,m-1
IF(ABS(result_b(1,1)-itempib) .LT.1.5)THEN
result_b(2,1)=result_b(2,1)+itemp2b*wb
GOTO 197
ENDIF
ENDDO
result_b(l,m)=itemplb
result_b(2,m)=itemp2b*wb
m=m+1
197 CONTINUE
ENDDO
ENDDO

....This is just an ’intermediary’ working vector for two candidates
....(actually, it’s identical to the result-vector, but it isn’t
....multiplied with the Poissonprobability)

DO i=1,nchan
DO j=1,nchan
itempib=one_b(1,i)+one_b(1,j)
itemp2b=one_b(2,1i)*one_b(2,j)
DO 1=1,k-1
IF(ABS(next_b(1,1)-itempib).LT.1.5)THEN
next_b(2,1)=next_b(2,1)+itemp2b
GOTO 198
ENDIF
ENDDO
next_b(1,k)=itemplb
next_b(2,k)=itemp2b
k=k+1
198 CONTINUE
ENDDO
ENDDO
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....S5ame story as the background only-histogram

* ¥ X *

k_sb=1

m_sb=nchan+1

wsb=ppois(stot+btot,2)

DO i=1,nchan

DO j=1,nchan

itempisb=one_sb(1,i)+one_sb(1,j)
itemp2sb=one_sb(2,1i)*one_sb(2,j)
DO 1=1,m_sb-1

....Histograms for two candidates, this time for signal+background

IF(ABS(result_sb(1,1)-itemplsb) .LT.1.5)THEN
result_sb(2,1l)=result_sb(2,1l)+itemp2sb*wsb

GOTO 200
ENDIF

ENDDO
result_sb(1l,m_sb)=itemplsb
result_sb(2,m_sb)=itemp2sb*wsb
m_sb=m_sb+1

200 CONTINUE

ENDDO
ENDDO

DO i=1,nchan
DO j=1,nchan
itempisb=one_sb(1,i)+one_sb(1,j)
itemp2sb=one_sb(2,1i)*one_sb(2,j)
DO 1=1,k_sb-1
IF(ABS(next_sb(1,1)-itemplsb).LT.1.5)THEN
next_sb(2,1l)=next_sb(2,1)+itemp2shb
GOTO 201
3 ENDIF
ENDDO
next_sb(1l,k_sb)=itemplsb
next_sb(2,k_sb)=itemp2sb
k_sb=k_sb+1
201 CONTINUE
ENDDO
ENDDO

*....Folding for the rest of the candidates. Folding until the
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*....background prob. is nearly 1.0

399

ptotb=ppois(btot,0)+ppois(btot,1)+wb
n=2
next_length=k-1
nl_sb=k_sb-1
DO WHILE(ptotb.LT.0.999) !'0BS 0.999999
n=n+1
wb=ppois(btot,n)
wsb=ppois(stot+btot,n)
ptotb=ptotb+uwb
k=1
k_sb=1
DO i=1,nchan
DO j=1,next_length
itempib=one_b(1,i)+next_b(1,])
itemp2b=one_b(2,1i)*next_b(2,])
DO 1=1,k-1
IF(ABS(new_b(1,1)-itempib) .LT.1.5)THEN
new_b(2,1)=new_b(2,1)+itemp2b
GOTO 399
ENDIF
ENDDO
new_b(1,k)=itemplb
new_b(2,k)=itemp2b
k=k+1
CONTINUE
ENDDO
ENDDO
next_length=k-1
DO i=1,next_length
next_b(1l,i)=new_b(1,1)
next_b(2,1)=new_b(2,1)
ENDDO
DO i=1,nchan
DO j=1,nl_sb
itemplsb=one_sb(1,i)+next_sb(1,j)
itemp2sb=one_sb(2,i)*next_sb(2,j)
DO 1=1,k_sb-1
IF(ABS(new_sb(1,1)-itemplsb).LT.1.5)THEN
new_sb(2,1)=new_sb(2,1)+itemp2sb
GOTO 499
ENDIF
ENDDO
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new_sb(1,k_sb)=itemplsb
new_sb(2,k_sb)=itemp2sb
k_sb=k_sb+1
499 CONTINUE
ENDDO
ENDDO
nl_sb=k_sb-1
DO i=1,nl_sb
next_sb(1l,i)=new_sb(1,1i)
next_sb(2,i)=new_sb(2,1i)
ENDDO
DO i=1,next_length
itempib=next_b(1,i)
itemp2b=next_b(2,1i)
DO j=1,m-1
IF(ABS(result_b(1,j)-itempib) .LT.1.5)THEN
result_b(2,j)=result_b(2,j)+itemp2b*wb
GOTO 599
ENDIF
ENDDO
result_b(l,m)=itemplb
result_b(2,m)=itemp2b*wb
m=m+1
599 CONTINUE
ENDDO
DO i=1,nl_sb
itempisb=next_sb(1,1i)
itemp2sb=next_sb(2,1i)
DO j=1,m_sb-1
IF(ABS(result_sb(1,j)-itemplsb) .LT.1.5)THEN
result_sb(2,j)=result_sb(2,j)+itemp2sb*wsb
GOTO 699
ENDIF
ENDDO
result_sb(1l,m_sb)=itemplsb
result_sb(2,m_sb)=itemp2sb*wsb
m_sb=m_sb+1
699 CONTINUE
ENDDO
ENDDO

*....Inserting the zero candidates-histogram into the result-vector
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* ¥ * x*

..by hand

result_b(1,m)=0.
result_b(2,m)=EXP(-btot)
result_sb(1l,m_sb)=0.
result_sb(2,m_sb)=EXP(-stot-btot)

.sorting the result-vector (background only) with respect to

..the weigths

DO i=1,m
DO j=1,i-1
IF(result_b(1,j).GT.result_b(1,i).AND.result_b(2,1i)
&.NE.O.0)THEN
itempl=result_b(1,i)
itemp2=result_b(2,1i)
result_b(1l,i)=result_b(1,j)
result_b(2,i)=result_b(2,j)
result_b(1l,j)=itempl
result_b(2,j)=itemp2
ENDIF
ENDDO
ENDDO

..Sorting the result-vector (signal+background)

DO i=1,m_sb
DO j=1,i-1
IF(result_sb(1,j) .GT.result_sb(1,i) .AND.result_sb(2,1)
& .NE.0.0)THEN
itempl=result_sb(1,1i)
itemp2=result_sb(2,1i)
result_sb(1l,i)=result_sb(1,j)
result_sb(2,i)=result_sb(2,])
result_sb(1l,j)=itempl
result_sb(2,j)=itemp2
ENDIF
ENDDO
ENDDO

..Writing the y-coordinates of the p.d.f’s in ascending order
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* ¥ * x*

* ¥ X *

..to file p_pdf and sb_pdf

open(19,name=’b_pdf’,status=’unknown’)
open(20,name=’sb_pdf’,status=’unknown’)
do i=1,m

write(19,*)result_b(2,1i)
enddo

do i=1,m_sb
write(20,*)result_sb(2,1i)

enddo

close(19)

close(20)

..Preparing the integration of both the bg. only and the s+b
. .Vectors

DO i=1,no_bins
integr_b(i)=result_b(2,1i)
integr_sb(i)=result_sb(2,1)

ENDDO

.Integrating!

DO i=2,no_bins
integr_b(i)=integr_b(i)+integr_b(i-1)
integr_sb(i)=integr_sb(i)+integr_sb(i-1)

ENDDO

..Writing the integrated distributions to files
.int_sb and int_b

open(31,name=’int_sb’,status=’unknown’)
open(32,name=’int_b’,status=’unknown’)
do i=1,m

write(32,*)integr_b(i)
enddo
do i=1,m_sb

write(31,*)integr_sb(i)
enddo
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close(31)
close(32)

*....Calculating the confidence for bg. only

cl_b=0.

i=1

DO WHILE(expt.GE.result_b(1,i))
cl_b=integr_b(i)
i=i+1

ENDDO

*

....And signal+background....

cl_sb=0.

i=1

DO WHILE(expt.GE.result_sb(1,1))
cl_sb=integr_sb(i)
i=i+1

ENDDO

*

....Computing derived quantities....

*....the observed signal confidence
cl_s=cl_sb/cl_b
gen_xisq=(2*stot)-wt_expt

*

....Preparing calculations of expected CL_s and CL_sb

DO i=1,no_bins
interm_s(i)=integr_sb(i)/integr_b(i)
interm_sb(i)=result_b(2,i)*integr_sb(i)

ENDDO

DO i=1,no_bins
interm_s(i)=result_b(2,i)*interm_s(i)

ENDDO

DO i=2,no_bins
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interm_s(i)=interm_s(i)+interm_s(i-1)
interm_sb(i)=interm_sb(i)+interm_sb(i-1)
ENDDO

*,...<CL_s> and <CL_sb>!

cl_s_infty=interm_s(no_bins) !the expected signal
cl_sb_infty=interm_sb(no_bins)

PRINT 799
799 FORMAT (/3x,’CL_sb CL_b CL_s
& <CL_s> <CL_sb> <CL_b>’)

PRINT 899,cl_sb,cl_b,cl_s,acls,aclsb,acldb
899 FORMAT(E16.8,1X,E16.8,1X,E16.8,1X,E16.8,1X,E16.8,1X,E16.8)
PRINT x*,°’ ?

END
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Appendix B

program susypar

*....Program that computes the excluded M_2/mu plane in MSSM

* X X ¥ *

*

*

implicit none

double precision
double precision
double precision
double precision
double precision

....This is the varibl
....neutralino mixing
....see IC/HEP/97-5.

real fma(4,4),wr(
double precision
double precision
double precision

integer ierr

double precision

....Counting variables

integer 1i,j

....variables concerni

m2,mw,mz,ml,m0,k1,k2,beta,theta,pi
u(2,2),v(2,2)

sigma(2,2),detX,Ql,Qr
Gf,gl,g2,lambda,gamma,branching_ratio
m,m_prim,mu,w_width,m_rot

es concerning the diagonalization of the

matrix. Borrwed from SUSYGEN2.2,

4),dr(4,4) ,work(16) ,vtemp(4)
neut_mass(4) ,neut_phase(4)

vo(4,4) ,neut_mix(4,4) ,neut_dmatrix(4,4),al,a2

temp,templ,tl,t2,t3,t4

Ww,Ww_root,bv

ng HBOOK
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* ¥ * x*

*. .

logical hexist
external hexist

integer mwp,h
parameter (mwp=11200000)
common/pawc/h (mwp)

call hlimit(11200000)

. .Reading the value of tan(beta) from file betavalue

open(10,name=’betavalue’,status=’0ld’)
read(10,*)bv
close(10)

. .Reading the value of the branching ratio of
W7+ => X_07+ X_070 from file br_rate

open(11,name=’br_rate’,status=’0ld’)
read(11l,*)branching_ratio
close(11)

..Values of constants

pi=3.1415927

mw=80.41 'W-boson mass
mz=91.187 !Z-boson mass
beta=atan(bv) mixing angle between Higgses vac. exp.

theta=asin(sqrt(0.23124)) !Weak mixing angle
Gf=1.16639%e-5 !Fermi coupling constant

value

w_width=2.06*branching_ratio !'2.06 GeV is the (W -> anything) width

..Pauli matrix #3

sigma(1,1)=1
sigma(1,2)=0
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*

*

*

*

sigma(2,1)=0
sigma(2,2)=-1

....HBOOK histogram booking

CALL hbook2(123,’M_2/mu plane’,801,-200.,200.,401,0.,200.,0.)

....Neutralino Mixing Matrix N(ij)

vo(1,1)=cos(theta)
vo(1,2)=-sin(theta)
vo(1,3)=0.
vo(1,4)=0.

vo(2,1)=sin(theta)
vo(2,2)=cos(theta)
vo(2,3)=0.
vo(2,4)=0.

vo(3,1)=0.
vo(3,2)=0.
vo(3,3)=cos(beta)
vo(3,4)=sin(beta)
vo(4,1)=0.
vo(4,2)=0.

vo(4,3)=-sin(beta)
vo(4,4)=cos(beta)

....Varying some of the parameters in the MSSM theory: M_2 & mu

DO mu=-200.,200.,0.5

DO m=0.,200.,0.5

....The neutralino mixing matrix (this is copied from SUSYGEN) :
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*

* ¥ X *

m_prim=m*5./3.*sin(theta)**2/cos(theta)**2

....This is the neutralino mixing matrix

fma(l,1)=m_prim*cos(theta)**2+m*sin(theta)**2
fma(2,1)=(m-m_prim)*sin(theta)*cos(theta)
fma(3,1)=0.

fma(4,1)=0.
fma(1,2)=(m-m_prim)*sin(theta)*cos(theta)
fma(2,2)=m_prim*sin(theta)**2+m*cos (theta)**2
fma(3,2)=mw/cos(theta)

fma(4,2)=0.

fma(1,3)=0.

fma(2,3)=mw/cos(theta)
fma(3,3)=mu*x(2.*sin(beta)*cos(beta))
fma(4,3)=-mu*(cos(beta)**2-sin(beta) **2)
fma(1,4)=0.

fma(2,4)=0.
fma(3,4)=-mu*(cos(beta)**2-sin(beta) **2)
fma(4,4)=-mu*(2.*sin(beta)*cos(beta))

....Diagonalizing the mixing matrix in order to find
....the neutralino mass egienstates

call eisrsi(4,4,fma,wr,dr,ierr,work)
if(ierr.ne.0)then

stop
endif

do i=1,4
neut_mass(i)=dble(abs(wr(i)))
neut_phase(i)=dble(sign(1l.,wr(i)))
enddo

do i=1,4
do j=i+1,4
if (neut_mass(i).gt.neut_mass(j))then
call ucopy(dr(1,j),vtemp,4)
temp=abs (neut_mass(j))
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* ¥

* ¥ X X *

templ=neut_phase(j)
call ucopy(dr(1,i),dr(1,j),4)
neut_mass(j)=neut_mass(i)
neut_phase(j)=neut_phase(i)
call ucopy(vtemp,dr(1,i),4)
neut_mass(i)=temp
neut_phase(i)=templ
endif
enddo
enddo

do i=1,4
do j=1,4
neut_dmatrix(i,j)=dble(dr(i,j))
enddo
enddo

do i=1,4
do j=1,4
neut_mix(i,j)=vo(j,1)*neut_dmatrix(1l,i)+vo(j,2)*
&neut_dmatrix(2,i)+vo(j,3)*neut_dmatrix(3,i)+vo(j,4)*
&neut_dmatrix(4,i)
enddo
enddo

..End of SUSYGEN’s matrix-diagonalizing part

..These are the chargino mixing matrices
.(since the chargino mixing matrix is a 2x2 matrix,
..dagonalization has been done analytcal):

if(tan(beta).gt.1.)then

ti=1.

if ((m*cos(beta)+mu*sin(beta)).gt.0.)then
t2=1.

else
t2=-1.

endif

if ((m*sin(beta)+mu*cos(beta)).gt.0)then
t3=1.

else
t3=-1.
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endif
t4=1.
elseif (tan(beta).1lt.1.)then
if ((m*cos(beta)+mu*sin(beta)).gt.0.)then
ti=1.
else
ti=-1.
endif
t2=1.
t3=1.
if ((m*sin(beta)+mu*cos(beta)).gt.0)then
t4=1.
else
t4=-1.
endif
endif

..This is part of the chargino mixing matrix

w= (mk*2+muk* 2+ 2kmuwk*2) **x2—-4* (m*mu-mw**2*sin (2*beta) **2)

..S5ince w enters the matrix under a sqare root, negative values aren’t
..allowed!

if(w.1t.0.)then

w=0.

print *,’Just adjusted for negative roots!’
endif

..The different matrix elements of the chargino mixing matrix.
..These expressions are found analytical.

u(1,2)=t1/sqrt(2.)*sqrt (1+(m**2-mu**2-2*mw**2*cos (2*beta) )/
&sqrt(w))

u(2,1)=t1/sqrt(2.)*sqrt (1+(m**2-mu**2-2*mw**2*cos (2*beta) )/
&sqrt(w))

u(2,2)=t2/sqrt(2.)*sqrt (1- (m**2-mu**2-2*mw**2*cos (2*beta) ) /
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&sqrt(w))

u(1,1)=-t2/sqrt(2.) *sqrt (1- (m**2-mu**2-2*+mw**2*cos (2*beta))
&/sqrt(w))

v(2,1)=t3/sqrt(2.) *sqrt (1+ (m**2-mu**2+2*+mw**2*cos (2*beta) )/
&sqrt(w))

v(1,2)=-t3/5qrt(2.)*sqrt (1+(m**2-mu**2+2*xmw**2*cos (2*xbeta))
&/sqrt(w))

v(2,2)=t4/sqrt(2.) *sqrt (1- (m**2-mu**2+2*+mw**2*cos (2*¥beta))
&/sqrt(w))

v(1,1)=t4/sqrt(2.)*sqrt (1- (m**2-mu**2+2*+mw**2*cos (2*beta))
&/sqrt(w))

..The coupling of the chargino and the neutralino to the W:
Ql=(neut_mix(1,2)*v(1,1))-

&(1./sqrt(2.)*neut_mix(1,4)*v(1,2))
Qr=(neut_mix(1,2)*u(1,1))+

&(1./sqrt(2.)*neut_mix(1,3)*u(1,2))

..Calculating the chargino mass

m_rot=0.5* (m**2+mu**2+2*xmw**2-sqrt ( (m**2-mu**2) **2+
& Axmuxx4*x (cos(2%beta) ) **2+
& Axmukx 2% (M *2+4mu**2+2*mrxmu*sin (2*beta))))

m2=sqrt(m_rot) !the chargino mass
mi=neut_mass(1) !'the neutralino mass

..The ratio between the chargino/neutralino masses and the W mass

k1=m2/mw
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k2=m1/mw

..a few of the constants in the Kalinowsky-Zerwas equation

lambda=(1-(k1*%2)-(k2%*2) ) **2—

&(4* (k1**2)* (k2**2))
g1=((Gf)* (mw**3)*sqrt (lambda) )/ (6*sqrt(2.)*pi)
g2=(2-(k1**2) - (k2**2) - ((k1**2) - (k2**2) ) ¥*2)

..This is the Kalinowski-Zerwas equation as found in Phys.

gamma=gl* (g2* ((Ql**2)+(Qr**2) )+ (12xk1*k2*Q1*Qr) )

.Idiotic result-preventing check

if(m1+m2.1t.0.)then
print *,ml,m2,ml+m2
print *,’°7?’

endif

. .Histogramming the physical possible results:

Rep. 117 (1985):

if((m1+4m2) .1le.mw)then !'To check if ml+m2 mass less than W-mass.
'if not -> unphysical reaction!

..Excluded results are histogrammed

if (gamma.gt .w_width)then

call hfill(123,real(mu),real(m),real(gamma))

endif

76

. .Checking whether or not the W width computed in the Haber-Kane
.equation is less or greater than the experimental W width.

..These are all for the SUSY decay, with sneutrino og neutralino
..nearly mass degenerate:



endif
999 continue
ENDDO
ENDDO
call hrput(0,’susy.hst’,’n’)

END
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