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AbstratIn this thesis a desription of a semi analyti method of on�dene limitalulations in searhes with several distint hannels is given. A ompar-ison between di�erent implementations show that, in a searh with manyhannels, a histogram type implementation is both faster and more au-rate than a list, or vetor, type implementation, when ompared to a MonteCarlo routine. However, in the 1998 DELPHI searh for the neutral Higgsboson, both the list type and the histogram type implementations yieldswithin 50 MeV the same limit on the Higgs boson mass as the Monte Carloroutine, whih gives a lower limit of 85.7 GeV at a 95 % on�dene limit.In searhes with few hannels the list type implementation is as fast andaurate as the histogram type.In a searh for W deaying into a hargino-neutralino pair, whih is anexample of a searh with few hannels, data olleted at DELPHI during theps=183 GeV run of 1997 and the ps=172 GeV of 1996 have been analyzed.The branhing ratio was alulated to be BR(W� ! ~��1 ~�01) <1.34% at 95% on�dene limit.
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Chapter 1IntrodutionIn the �fties, ommon belief was that the proton, the neutron and the ele-tron were the elementary partiles, i.e. that out of these three partiles allother partiles was built. However, during this period a bunh of new parti-les was disovered, whih ulliminated with the quark theory of Zweig andGell-Mann. The fundamental partiles are now believed to be the fermions,whih are the matter partiles, and the bosons, whih ats as fore arriersbetween the fermions, see Fig. 1.1.
Figure 1.1: The di�erent partiles of the Standard Model. The fermions,i.e. matter partiles, are divided into three di�erent generations, or families,and interats by exhange of the bosons.The Standard Model is briey desribed in Chapter 2. Although theStandard Model is the most suessful theory in the history of physis, atleast when it omes to experimental preditability, it has some serious the-oretial shortomings. The masses of the di�erent fundamental partiles1



and several mixing angles are arbitrary parameters, whih adds up to over20. This high number of free parameters is not popular with physiists. Asan attempt to theoretially �x the masses, the Higgs mehanism is intro-dued. If this is the way nature works, a new partile, the Higgs boson,is also introdued with the Higgs mehanism. So far this partile has notbeen deteted experimentally. A theoretial aw of the Standard Model isthat self-interations of the Higgs boson gives it a mass of in�nity, whih isnot good. Enter supersymmetry. In supersymmetri theories, all partileshave supersymmetri partners, where the spin is shifted by one-half. Thismeans that the self-interations of the Higgs boson onsists of equal parts offermioni and bosoni self interations. These terms enter the alulationswith opposite signs, giving the Higgs boson a physial mass. Unfortunately,this symmetry of partiles and supersymmetri partners annot be an exatsymmetry, sine no experiment has ever deteted a supersymmetri partile.In order to test these theories, large experiments around the world havebeen made. Typial partile physis experiments ollides di�erent partileswith high energy in some manner. Most standard experiments are eitherlinear or irular aelerators. The linear aelerator aelerates partilesin a straight vauum tube, and ollides the partiles with a �xed target.The irular aelerates partiles of one kind in one diretion in a irularvauum tube, and partiles of another type in the opposite diretion, andollides these beams of partiles at ertain plaes around the tube wheredetetors are plaed. Due to Einstein's relation of mass and energy, E =m2, the large energy of the partiles being ollided is transformed intoheavier and hopefully new partiles. In Chapter 3 the detetor responsiblefor the data disussed in this thesis, the DELPHI detetor, whih is one ofthe experiments at CERNs Large Eletron Positron ollider, is desribed.When the data has been olleted, one has, in one way or another toompare the experimental data with the theoretial model being tested,in order to see if something new has been observed. This an be doneby alulating whih Standard Model proesses one would expet in theexperiment, and then see how the data ompare to this expeted bakground.This statistial treatment of data will be disussed in Chapter 4.Searhes for the two senarios desribed above, the Standard Model andthe Minimal Supersymmetri extension of the Standard Model, and thestatistial treatment of the data produed by two searhes are desribed inChapters 5 and 7. An essential part of the disussion is my semianalytialon�dene limit alulator SA�COUNTING, whih has taken lots of blood,sweat and tears to understand and implement. This interpretation of thestatistial method desribed in Chapter 3 has been ompared to two otherinterpretations of the same method and a Monte Carlo method in Chapter4. SUSYPAR, see Appendix B, whih also has been implemented at the ostof some sleepless nights, has been used to perform the parameter exlusion2



in a speial parameter spae in the Minimal Supersymmetri extension ofthe Standard Model. Although MSSM is not plagued by the large numbersof free parameters as the Standard Model is, there are still a few massparameters and mixing angles left to experiment to be determined. Sinethere is no experimental evidene of sypersymmetry so far, only some sortof exlusion is possible.
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Chapter 2Partile Physis Theory2.1 The Standard ModelThe interations between the known elementary partiles, the fermions, mat-ter partiles, and the bosons, fore arriers, are desribed in the StandardModel of partile physis (SM). The interations an be divided into threedi�erent types of fores: the strong, the eletromagneti and the weak fores.In some theories, Grand Uni�ed Theories (GUT), these three fores areunited at a very large sale, 1016 GeV, see Fig. 2.1. However, at presentenergies these fores remain separate.The inspiration of this setion is mostly found in \Dynamis of the Stan-dard Model" [1℄. The di�erent interations are desribed by Lagrangianswith loal gauge invariane.2.1.1 The interationsQuantum Eletrodynamis (QED)In QED the eletromagneti interations between fermions and photons aredesribed. This is the part of the Standard Model that has been veri�edmost thoroughly by experiments.Under a loal U(1) QED gauge transformation,  ! ei�(x) , the La-grangian L = i � ��� �m �  (2.1)is not invariant. Under this gauge transformation, the adjoint wave equa-tion transforms as  ! e�i�(x) � . When inserting the transformed waveequations into the Lagrangian, it takes this form:L = ie�i�(x) � ���ei�(x) � e�i�(x)ei�(x)m �  (2.2)The �rst term is not invariant, sine ��ei�(x) = ei�(x)�� +iei�(x) ���(x) 6=ei�(x)�� . By exhanging �� with a \ovariant derivative" operator D�,4



Figure 2.1: The development of the oupling onstant, and where they willbe united aording to Grand Uni�ed Theories.whih transforms as D� ! ei�(x)D� , invariane of the Lagrangian an beensured. One possible ovariant derivative is:D� � �� � ieA�A� ! A� + 1e���: (2.3)With this operator, the Lagrangian takes the formLQED = i � �D� �m �  LQED = � (i��� �m) + e � �A� � 14F��F�� : (2.4)The last term inludes the invariant �eld strength tensor F�� to ensure in-variane of the kinemati term. Sine there is no �m2A�A� term in the QEDLagrangian, the QED gauge partile, whih is the photon A�, is massless.Quantum Chromodynamis (QCD)The QCD Lagrangian, desribing the interations between massive quarksand massless gluons, is more omplex than its QED partner, sine the glu-ons arry olor harge. There are eight di�erent gluons, eah arrying oneof three olors, and an thus interat with eah other. The QED Lagrangianjust needs to take one type of photon, whih is harge neutral into onsid-eration (olor harge has nothing to do with eletrial harge though).Weak interations. The Weinberg-Salam model.Most hadrons experiene the weak fore and an deay through weak in-terations, but sine QED and QCD deays are muh faster than the weak5



deays, they tend to dominate. Partiles whih deay through strong inter-ations have a lifetime in the order 10�23 seonds, partiles whih deaysthrough eletromagneti interations have lifetimes in the order of 10�16 se-onds and partiles deaying through weak interations have lifetimes in theorder of 10�8 seonds. Some proesses that are forbidden in eletromagnetior strong interations, suh as deays of the � meson, may deay through theweak fore. Often weak proesses inlude the reation of neutrinos, whihinterats only through the weak fores, but this is not a requirement.The main quantum numbers in the weak theory are the weak hyper-harge, Yw , and the weak isospin, Ti de�ned by the linear relation Q = T3+ Y2where Q is the eletrial harge.The gauge �elds that ouples to the weak quantum numbers are the~W i�, with i = 1; 2; 3, whih ouples to the weak isospin and B� to theweak hyperharge. These �elds give rise to the pure-gauge part of the weakLagrangian LGauge = �14F��i F i�� � 14B��B�� ; (2.5)with F i�� and B�� as the SU(2)L and U(1)Y �eld strength. The L subsriptof SU(2)L is a reminder that sine the neutrinos are (nearly) massless, theyonly have left handed omponents. The SU(2)L ovariant derivative,D� = �(�� + ig12 YwB�) + ig2~�2 ~W�� (2.6)where g1 and g2 are, respetively, the U(1)Y and SU(2)L gauge ouplingonstants, ensures invariane of the Lagrangian, but with this pair of La-grangian and ovariant derivative the fermions and gauge bosons are mass-less partiles. The massless gauge bosons born when the gauge symmetryis broken are named Goldstone bosons. By introduing a omplex doublet,the Higgs �eld � = � �+�0 � ; (2.7)the full weak Lagrangian with masses for the physial partiles an be foundby adding the Lagrangians for the Higgs-fermion and Higgs-boson ouplingsto the pure-gauge Lagrangian. The Higgs-fermion Lagrangian, LHf , andHiggs-boson Lagrangian, LHb, are given byLHf = �fu�qL ~�uR � fd�qL�dR � fe�l�eR + h:: (2.8)LHb = (D��)�D��� (��2�y�+ �(�y�)2) (2.9)where ~� is the harge onjugate of the Higgs �eld, ~� = i�2��, fi are on-stants whih must be determined by experiment and D� is the appropriate6



ovariant derivative,D� = �(�� + ig12 B�) + ig2~�2 ~W�� ; (2.10)where ~� are the Pauli matries. The Higgs-fermion Lagrangian shown hereinludes only the �rst generation of fermions for simpliity.The masses of the di�erent partiles are found by performing a sponta-neous symmetry breaking of the Higgs self interations,�V�� = ��� ���2�y�+ �(�y�)2� = �(��2 + ��2) = 0: (2.11)Perturbations around the non-trivial minimum of the Higgs potential breaksthe symmetry of the Lagrangian spontaneously. By inserting the vauumstate desribing this system,h�i0 = � 0v=p2 � ; (2.12)where v � p�2=� = 1=pp2G has been found by experiments to be 246GeV, into the Higgs Lagrangian, the mass terms are found,Lmass = � vp2(fu�uu+ fd �dd+ fe�ee) + �vg22 �2W+� W��+v28 (W 3�B�)� g22 �g1g2�g1g2 g21 �� W 3�B� � (2.13)giving the fermions and bosons masses. The Higgs mass, whih an befound to be m2H = �V 2�2� j�=v = �v2=p2, remains unknown, sine of the freeparameters � and � only their ratio v is known. The �rst term of Eq. 2.13gives the fermion masses: mi = v2fi; (2.14)The seond term of Eq. 2.13 gives the masses of the harged gauge bosons,mW = v2g2. Introdution of spontaneous symmetry breaking mix the neutral�elds, seen in the mass third term of the Lagrangian. De�ning the weakmixing angle as the ratio of the gauge ouplingstan �W � g1g2 ; (2.15)one an de�ne the basisA� = os �WW 3� � sin �WB� (2.16)Z� = sin �WW 3� + os �WB�: (2.17)7



partile spin spartile spinquark q 1/2 squark ~qL;R 0harged lepton l 1/2 harged slepton ~f 0neutrino � 1/2 sneutrino ~lL;R 0gluon g 1 gluino ~g 1/2photon  1 photino ~ 1/2Z0 1 zino ~Z 1/2W� 1 wino ~W� 1/2neutral Higgses h;H;A 0 neutral Higgsinos ~H01;2 1/2harged Higgses H� 0 harged Higgsinos ~H� 1/2graviton G 2 gravitino ~G 3/2Table 2.1: The SM partile and their MSSM spartile partnerswhih diagonalize the third term of Eq. 2.13, whih is the neutral gaugemass matrix. The physial partiles orresponding to the neutral �elds A�and Z� are the massless photon and the massive Z0 boson. Their massesare m = 0 and MZ =pg21 + g22. The ratio of the harged and the neutralgauge partiles are �xed by the weak mixing angleMWMZ = os �W : (2.18)2.2 Going beyond the Standard ModelMost of the ontents in this setion is inspired by the SUSYGEN [4℄ manualand \The Higgs Hunter's Guide" [2℄.A major problem arises when generating masses with the Higgs meha-nism in the Standard Model. When trying to �nd the Higgs mass at higherorder, loop diagrams like the one found in Fig. 2.2 adds up to give a Higgsmass of in�nity. This is known as the hierarhy problem. To avoid this prob-Figure 2.2: One-loop ontribution to the Higgs mass. It is loop diagramssuh as this that give rise to the hierarhy problem.lem, supersymmetri theories (SUSY) introdue supersymmetri partners,8



see Table 2.1, to all elementary partiles. The fermions gets bosoni su-perpartners and the bosons gets fermioni spartners. These spartiles havetheir spin shifted by one-half ompared to their SM partners. Adding theloop diagrams when alulating the Higgs mass, the fermion loop diagramsanel the boson loop diagrams, and the Higgs mass does not diverge to-wards in�nity. However, this partile-spartile symmetry somehow has tobe broken, sine a perfet symmetry gives spartiles with masses equal totheir SM partners. No experiment has ever deteted a supersymmetri par-tile, whih means that the spartiles are either so heavy that they annotbe seen with the energies urrently available at partile aelerators, or thatthe supersymmetri theories have no foundation in the real, physial world.Two mehanisms desribing this SUSY breaking are the gauge mediatedsupersymmetry breaking mehanism (GMSB) and the gravity mediated su-persymmetry breaking mehanism. The gravity mediated mehanism, whihis a supergravity inspired model, assumes that the gaugino (the gauginos arethe winos and bino) mass, the salar masses and the trillinear ouplings areequal at the grand uni�ed theory (GUT) sale. In this model, SUSY is bro-ken at a very high sale, a \hidden setor" lose to the GUT sale, and om-muniated to the visible setor through gravitational interations. GMSBbreaks SUSY at only a few hundred TeV sale, with the gauge bosons asthe messengers. In the gravity mediated SUSY breaking model the lightestsupersymmetri partile (LSP) is the neutralino if the symmetry betweenthe bosons and leptons, often alled R-parity whih is de�ned asRp = (�1)3B+L+2j; (2.19)is onserved. The neutralinos are the physial partiles resulting the frommixing of the neutral higgsinos and the neutral gauginos. Assuming on-servation of R-parity, the LSP is stable, but with a behavior similar tothe neutrino: it will esape through the detetors undeteted. This means alarge amount of missing energy in the detetor. There is no reason for SUSYpartiles not to show R-parity violating properties, but the R-parity break-ing annot be suh that the proton deays, onsidering the proton lifetime:�proton > 1:6� 1025 years [5℄.GMSB models have the gravitino as the LSP and either a neutralino ora sfermion as the next lightest spartile (NLSP). The deay hannels arethen either ~�0 ! ~g +  or ~f ! ~g + f .9



2.2.1 The two-doublet Higgs ModelThe simplest expansion of the Standard Model is to introdue another Higgsdoublet. The potentialV (�1; �2) = �1(�y1�1 � v21)2 + �2(�y2�2 � v22)2+�3[(�y1�1 � v21) + (�y2 � v22)℄2+�4[(�y1�1)(�y2�2)� (�y1�2)(�y2�1)+�5[Re(�y1�2)� v1v2 os �℄2+�6[Im(�y1�2)� v1v2 sin �℄2; (2.20)for two salar doublets �1 and �2 spontaneously breaks SU(2)L � U(1)Ydown to U(1)EM . If all the real parameters �i are positive, the vauumexpetation values (VEV's) of the Higgs doublets are:< �1 >= � 0v1 � ; < �2 >= � 0v2ei� � ; (2.21)and the ratio of the vauum expetation values is tan� = v2v1 . If �5 = �6the phase � an be rotated away, and Eq. 2.20 beomes CP -invariant. Byperforming a spontaneous symmetry breaking, the di�erent physial (andunphysial) partiles and their masses are found. The two-doublet Higgsmodel gives �ve real, i.e. true, physial partiles, and three imaginary par-tiles, i.e. partiles that does not exist anywhere but in the equation. Thereal partiles are the two harged Higgs bosons, H� = ��� sin �+�� os�,with massesm�H = �4(v21+v22), one neutral CP-odd salar, the A0 with massmA0 = �6(v21 + v22), whih appears when the imaginary and the real part ofthe neutral salar �eld are split, and �nally two CP-even neutral Higgses,whih mix through the mixing matrixM = � 4v21(�1 + �3) + v21�5 (4�3 + �5)v1v2(4�3+ �5)v1v2 4v22(�2 + �3) + v21�5 � ; (2.22)giving the neutral Higgses their physial mass eigenstatesH0 = p2[(Re�01 � v1) os�+ (Re(�02 � v2) sin�℄ (2.23)h0 = p2[�(Re�01 � v1) sin�+ (Re(�02 � v2) os�℄; (2.24)where � is a mixing angle given by the di�erent matrix elements of themixing matrix 2.22. The masses of the neutral Higgs bosons are given bym2H0;h0 = 12 �M11 +M22 �q(M11 �M22)2 + 4M212� (2.25)The imaginary partiles are two harged and one neutral massless Goldstonebosons. The harged Goldstone bosons, G� = �� os � + �� sin �, are theorthogonal partners to the harged Higgs bosons, and the neutral Goldstoneboson is the CP-odd partner to the A0. The Goldstone bosons are removedwhen the Higgs bosons beome real.10



2.2.2 The Minimal Supersymmetri Standard ModelIn the Minimal Supersymmetri extension of the Standard Model (MSSM),with a salar, two-doublet Higgs �eld,H1 = � �01���1 � ; H2 = � �+2��02 � ; (2.26)the superpotential Eq. 2.20, inluding soft supersymmetry breaking terms(MSSM does not �x the SUSY breaking mehanism, both GMSB and gravitymediated SUSY breaking models are allowed), takes this formV = (m21+ j� j2)H i�1 H i1 + (m22+ j� j2)H i�2 H i2 +m212(�ijH i1Hj2 + h:)+18(g22 + g21) hH i�1 H i1 �Hj�2 Hj2i2 + 12g22jH i�1 H i1 j2 (2.27)where the parameters m1, m2 and m12 have dimension of mass and � is aSUSY-onserving Higgs mass parameter. MSSM does not, as opposed toother non-minimal models, ontain a singlet �eld N , whih breaks SUSY.The minimization onstraints guaranteeing non-zero values for the Higgsvauum expetation value v1 and v2 gives onstraints on the �i appearingin the general two-doublet Higgs �eld potential 2.20 and the parametersin the MSSM potential 2.27. Tree-level masses for the di�erent partilesfound in the general two-doublet model an now be found (demanding thatmH� > mW and no N �eld):m2A0 = m2H� �m2Wm2H0 ;h0 = 12 hm2A0 +m2Z �q(m2A0 +m2Z )2 � 4m2Zm2A0 os2 2�i : (2.28)Note that none of the �ve real partiles desribed here, the H�, the H0,the h0 and the A0, are supersymmetri partiles, but appears as a result ofexpanding the Higgs �eld from a one-doublet to a two-doublet model. Thismeans that the �ve partiles have supersymmetri partners, see Table 2.1.These spartiles are weak eigenstates, and thus mix to give the physialmass eigenstates. Mixing between the harged Higgsinos and the hargedwinos gives the harginos and mixing between the neutral Higgsinos and theneutral wino and bino gives the neutralinos.2.2.3 Where to look for Supersymmetri partilesExperimentally, the neutralinos and harginos might be the supersymmetripartiles that are the most easy to detet, owing to their supposed leanexperimental signature [6℄. 11



Mixing of the harged gauginos and higgsinosIn a SU(2)�U(1)model of broken supersymmetry, the gaugino and higgsinomass term in the Lagrangian are given by [6℄ p.210:igp2 hv1 ~W+ ~H+2 + v2 ~W� ~H�1 i+M2 ~W+ ~W� � � ~H�1 ~H+2 + h:: (2.29)where ~W� are the winos, ~H�1;2 are the harged higgsinos, see Table 2.1, v1and v2 are the Higgs VEV's, � is a HIggs mixing term and M2 is a gauginomass term. De�ning  +j and  �j as +j = (�i ~W+ ~H+2 );  �j = (�i ~W� ~H�1 ) (2.30)with j = 1; 2, the mass terms of the Lagrangian, Eq. 2.29, an be written as�12( +  �)� 0 XTX 0 ��  + � �+ h:: (2.31)The matrix X is de�ned asX = � M mWp2 os �mWp2 sin � � � : (2.32)The hargino mass eigenstates, �+ and ��, an then be found by�+i = Vij +j ; ��i = Uij �j (2.33)where the U and V matries are hosen suh that they diagonalize the matrixX : U�XV �1 =MD; (2.34)MD being a diagonal matrix with non-negative entries. Sine these are all2 � 2 matries, analytial expressions are possible when diagonalizing thematrix X . By de�ning the matries O�O� = � os�� sin ��� sin �� os�� � :; (2.35)where the angles �� are de�ned astan 2�� = 2p2mW � os� +M2 sin �M2 � �2 + 2mW os 2� (2.36)tan 2�+ = 2p2mW � sin � +M2 os�M2 � �2 � 2mW os 2� ; (2.37)one an �nd the matries U and V , assuming that M2 and � are real:U = O�; V = � O+; det X � 0�3O�; det X < 0 (2.38)The expliit hargino mass terms an be found analytially when using thematries U and V to diagonalize the matrix X , and areM2~�+;~�� = 12 �M22 + �2 + 2m2W�p(M2 � �2)2 + 4m4W os 2� + 4m2W (M22 + �2 + 2M2� sin 2�)o (2.39)12



Mixing of the neutral gauginos and higgsinosThe mass eigenstates of the neutralinos are more ompliated to alulatethan the mass eigenstates of the harginos, sine the neutralino mixing ma-trix inlude four harge neutral partiles, not ounting the neutral partileappearing if the salar �eld N is inluded, and not just two harged partilesas in the hargino ase. In the basis 0 = ( ~B; ~W 3; ~H01 ; ~H02) (2.40)the neutral �elds mass terms are [6℄ p.21512 ~W 3(v1 ~H01 � v2 ~H02)� 12ig1 ~B(v1 ~H01 � v2 ~H02)+12M2 ~W 3 ~W 3 + 12M1 ~W 3 ~W 3 + � ~H01 ~H02 + h:: (2.41)The predition that the gaugino masses unite at the GUT sale have beenused in the alulations of Eq. 2.41. The gaugino masses M1 and M2 arethen related by M1 = 53 g21g22M2 ' 0:5M2: (2.42)Using Eq. 2.40, the mass terms of Eq. 2.41 an be written�12( 0)TY  0 + h:: (2.43)where the matrix Y is de�ned asY = 0BB� M2 0 �mZ sin� sin �W mZ os� sin �W0 M1 mZ sin� os �W �mZ os� os �W�mZ sin� sin �W mZ sin� os �W 0 ��mZ os� sin �W mZ sin� sin �W �� 0 1CCA (2.44)where M1 and M2 are the gaugino masses, � is the Higgs mixing term andthe o�-diagonal terms desribe the oupling of the higgsinos to the gauginos.v1 and v2 are the ratio of the vauum expetation values of the two Higgses.In the expression above, ~W 3 and ~B are the onvention, but ~Z0 and ~ ouldequally well have been used. The neutralino mass eigenstates are found byde�ning ~�0i = Nij 0j ; j = 1; : : : ; 4 (2.45)where N is a unitary matrix that diagonalize the mass matrix YN�Y N�1 = ND (2.46)in the same manner as the matries U and V diagonalize the harged gauginomass matrix.However, this mass matrix is so ompliated to diagonalize that an ana-lytial expression is not possible to obtain, and numerial methods have tobe used. 13



Parameter determinationSine supersymmetri theories have the gaugino masses and the mixing an-gles tan� and � as unknown parameters, they have to be deided by exper-iment. This means that in a searh for supersymmetri partiles, one has tolook for di�erent deay hannels, sine it is unknown whih partile that isthe LSP.Deays of W bosons into neutralinos and harginosRef. [7℄ disuss the possibility of e+e� !W+W� ollisions with one W de-aying into a lepton-neutrino pair or a quark-antiquark pair, i.e. into Stan-dard Model partiles, and the other W deaying into a hargino-neutralinopair, W� ! ~�+i ~�0j with the hargino deaying subsequently into a hargedlepton and a seletron pair, ~��i ! ~�ll�. The problem with this deay han-nel is that the sneutrino, being either the LSP or deaying into a neutrinoand the lightest neutralino, is invisible in the detetor and the energy of theleptons are so low that they will esape through the detetor undeteted. A\blind spot" results from this problem, making the detetion or exlusionof supersymmetri partiles diÆult. Due to this blind spot, the harginosmight be as light as 45 GeV [8℄ without being deteted. In [9℄ and Chapter 7a proedure to solve this problem is desribed.With the assumption that the wino and bino masses unite at the GUTsale, see Eq. 2.42, the partial width ofW bosons deaying into any hargino-neutralino pair is given by [7℄:�(W+ ! �+i �0j ) = GFm2W�1=2ij6p2��f[2� �2i � �2j � (�2i � �2j )2℄(Q2Lij + Q2Rij)+12�i�jQLijQRijg (2.47)where i = 1; 2 denotes the two di�erent harginos, j = 1; : : : ; 4 denotes thefour di�erent neutralinos, �i is the ratio between the mass of the hargino inquestion and the W mass, �j is the ratio between the mass of the neutralinoand the W mass. �ij , a two-body phase spae fator, is de�ned as �ij =(1 � �2i � �2j )2 � 4�2i �2j , GF is the Fermi oupling onstant and QLij andQRij are the ouplings of the W to the harginos and neutralinos, de�nedas the matrix elementsQLij = Zj2Vi1 � 1p2Nj4Vi2 (2.48)QRij = Zj2Ui1 � 1p2Nj3Ui2: (2.49)U and V are the matries that diagonalize the harged gaugino mass matrix,reall Eq. 2.38, and N is the mixing matrix in the neutralino setor, i.e. thematrix that diagonalizes the neutral gaugino mass matrix, reall Eq. 2.46.14



Chapter 3The DELPHI experimentThe European enter for Partile physis, CERN, onsists of several partileaelerators, see Fig. 3.1. When partiles are going to be aelerated intothe Large Eletron and Positron ollider LEP, they are �rst aelerated inthe smaller rings PS, the Proton Synhrotron, and SPS, the Super ProtonSynhrotron, before they have enough momentum to be injeted into thelarge LEP ollider.3.1 The LEP aeleratorThe largest aelerator at CERN, the Large Eletron and Positron (LEP)ollider, aelerates eletrons and positrons in opposite diretions inside avauum tube. This pipe is plaed in a tunnel 100 meters below the earth'ssurfae.Large detetors are plaed at four of the beam rossings around the LEPring, the DELPHI, ALEPH, L3 and OPAL detetors, see Fig. 3.1. Sine eahof the detetors are designed di�erently from the others, they all have theirspeial strengths when it omes to e.g. partile detetion.LEP1 started running in 1990, and was upgraded to LEP200 in 1996.The total integrated luminosity per year and the enter-of-mass energies forthe di�erent stages of the two phases are listed in Table 3.1.LEP1 LEP2001990 1991 1992 1993 1994 1995 1996 1997 1998R L 7.6 17.3 28.6 40 64.4 46.1 10/10 64 158ps 130/136 161/172 183 189Table 3.1: The total integrated luminosity pr. year in pb�1 and enter-of-mass-energies in GeV for the two phases of LEP.15



3.2 The DELPHI experimentThe DEtetor with Lepton, Photon and Hadron Identi�ation (DELPHI)is atually a olletion of many smaller detetors, eah with its speial pur-pose. An overview of the detetor is shown in Figure 3.2. The detetoronsists of a barrel part and two endap regions whih overs most of thesolid angle. The di�erent subdetetors an be lassi�ed aording to theirgeneral purpose, and are [10℄ and [11℄:� Charged Partile Traking detetors:{ The Vertex Detetor (VD)is the detetor nearest the ollision point. Its task is to detetvery short-lived partiles.{ The Inner Detetor (ID)gives intermediate preision positions and trigger information.{ The Time Projetion Chamber (TPC)is the prinipal traking devie in the DELPHI detetor, detetingpartiles that ionize the gas in the hamber. It also providesidenti�ation of harged partiles by dE/dX measurements.{ The Outer Detetor (OD)onsists of �ve layers of drift tubes, and gives a �nal preise posi-tion and diretion measurement after the RICH (desribed later).{ The Forward Chamber A (FCA)provides traking and triggering in the forward diretion, andovers polar angles from 11o to 32o and 148o to 169o. The FCAis plaed before the Forward RICH.{ The Forward Chamber B (FCB)is a drift hamber that provides preise traking in the forwarddiretion. It is plaed after the Forward RICH, and overs polarangles between 110 to 36o and 144o to 169o.{ The Very Forward Traker (VFT)is loated at both sides of the vertex detetors, and overs polarangles from 10o to 25o.{ The Muon Chambers (MUC)are the Barrel Muon Chambers, the Forward Muon Chambersand the Surround Muon Chambers, and provide identi�ationof muons. Sine muons are the only harged partiles that anpenetrate both the alorimeters, the MUC are plaed farthestaway from the ollision point.� Eletromagneti alorimetersmainly measures the energies of photons and eletrons.16



{ The High-Density Projetion hamber (HPC)is an eletromagneti alorimeter onsisting of 41 layers of leadseparated by gas.{ The Forward EletroMagneti Calorimeter (FEMC)onsists of two diss (one on eah end of the detetor) 5 metersin diameter. The diss are made of lead-glass bloks.� Hadron alorimeter{ The Hadron Calorimeter (HAC)Has as its main purpose measurements of the energy of hargedand neutral hadrons. The HAC is made up of a barrel part andtwo endap parts. The barrel part onsists of 24 setions with 20layers of wire hamber detetors. The wire hambers are �lledwith an argon (10 %), CO2 (60 %), i-butane (30 %) mixture, andvary in length from 40 to 410 m. For eah layer there are 5 miron plates. The endap parts are similar to the barrel part, butonsists of 19 layers of detetors. All together, the HAC onsistsof a. 19000 detetors.� Charged hadron identi�ationis performed with two Ring Imaging Cherenkow Counters (RICH) de-tetors, one in eah endap region, the Forward RICH, and one inthe barrel region, the Barrel RICH. These detetors are able to detetpartiles exiting the detetors at all angles. The RICH ontains twodi�erent radiators with di�erent refrative indies. The liquid radiatoris used for detetion of protons, �-mesons and kaons with momentumbetween 0.7 to 9 GeV, and the gas radiator is used for detetion ofpartiles with momentum between 2.5 and 25 GeV.� Luminosity measurementis done by ounting the number of events of a high statisti proesswith lear experimental �ngerprints and a ross setion that is theoreti-ally well-known. At DELPHI the hosen proess is Bhabha sattering(e+e� ! e+e�) at small angles.{ The Small angle TIle Calorimeter (STIC)is a sampling lead-sintillator alorimeter, plaed 2.2 meters oneah side of the ollision enter.{ The Very Small Angle Tagger (VSAT)17



is build up of 12 layers of a wolfram plate and silion detetorsandwih. The detetor is plaed 7.7 meters from the ollisionenter, and measures partiles leaving the detetor in a very for-ward diretion, 6 to 8 mrad.A superonduting solenoid, parallel to the beam pipe, makes a strong,uniform magneti �eld of 1.2 Tesla, bends the path of all harged partilesin the detetor into helixes. This makes momentum measurements possible.The solenoid is 7.4 meters long and has an inner radius of 2.6 meters. Liquidhelium ools the solenoid to 4.5 Kelvin, in order to make it superonduting.The olletion of these subdetetors makes DELPHI a detetor withemphasis on strong partile identi�ation and preise vertex determination.All together, the DELPHI detetor is more than 10 meters long and has aradius of more than 5 meters, and weighs over 3500 tons.
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Figure 3.1: The di�erent aelerators and experiments at CERN.
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Figure 3.2: The DELPHI detetor, with all its subdetetors. The �gureshows the detetor when one of the endaps is pulled away from the detetor.
20



Chapter 4Statistial treatment ofsearh experimentsAlthough the detetors and aelerators desribed in the Chapter 3 are themain tools for making disoveries in partile physis, omputer treatment ofthe physis being tested is an important part of the searh for new physis.The lifetime of partiles deaying through the strong or the eletromagnetifores have lifetimes less than 10�16 seonds, whih is so short that thedetetors are not able to detet the partiles before they deay into otherpartiles with longer lifetimes. It is these partiles and their trajetoriesand momenta that are deteted. Sine the Standard Model Higgs boson isa neutral partile, it has to deay into harged partiles before the detetorsan \see" the partile, as with any other neutral partile. A large part ofthe omputer analysis is the simulation of the detetor, in order to �ndout how partiles inside the detetor behaves. When one has determinedwhih proesses are expeted to happen in the detetor, one an omparethe observed data to what is expeted to have taken plae in the detetor.However, this is not enough. The signal from the detetor saying apartile just hit some of the subdetetors might not be a true signal, but aneither be a result of other Standard Model proesses looking like the signalthe physiists are looking for, it might be osmi ray indued bakgroundnoise or it might be eletroni noise in the detetor, although this very rarelyis a problem.4.1 Con�dene limits and hypothesis testing ofsearh resultsWhen some event have satis�ed ertain seletion riteria of the searh, onehas to deide whether the detetor has atually seen a true signal or if someother proesses has produed a fake signal. This is done by a hypothesistest, where the agreement between the observed data and the predited21



probabilities, i.e. the signal whih is found by e.g. Monte Carlo simulations,is omputed.The normal proedure is to de�ne the hypothesis saying the signal isabsent as the null hypothesis, and the alternate hypothesis as saying thesignal is a true one. Instead of just giving a yes-or-no answer when analyzingthe hypotheses, the strength of the disovery or exlusion of the hypothesisis stated as a on�dene level.The probability density funtion (p.d.f.) is a funtion desribing how theprobability of having an outome X in an in�nitesimal interval, [x; x+ dx℄,varies over the range of possible outomes. Thus the probability densityfuntion f(X) is de�ned asP (X 2 [x; x+ dx℄) = f(x)dx: (4.1)To be able to ompare the observed data to the hypothesis, a test statis-ti, whih is a funtion of the observed data, is seleted. The test statisti isonstruted in suh a way that it will inrease if the experiment gets morelike a true signal, and derease if the experiment gets less like a true signaland more bakground-like.Unfortunately it is not possible to turn o� the bakground in the de-tetor, but one will have to ompare a hypothesis where both signal andbakground noise are inluded to the bakground-only hypothesis. Thebakground-only hypothesis is a predition of what is seen in the detetorshad there been only bakground events.The on�dene in the signal+bakground hypothesis is given by the prob-ability of the test-statisti to be less than or equal to the observed value XobsCLsb = Ps+b(X � Xobs); (4.2)where Ps+b is found by integrating the probability density funtion from 0to the observed value, Ps+b(X � Xobs) = R Xobs0 fs+b(x)dx.Equally, the on�dene level of the bakground only hypothesis isCLb = Pb(X � Xobs); (4.3)where Pb is found by integrating the probability density funtion for the bak-ground only hypothesis from zero to the observed value, Pb = R Xobs0 fb(x)dx,just as in the signal+bakground ase.To give a piture of what would have been seen in the detetor had therebeen no bakground proesses in the detetor, the on�dene of the sig-nal+bakground hypothesis is normalized to the bakground only hypothesisto form what is hosen to be de�ned as the on�dene of the signal onlyhypothesis. CLs � CLs+bCLb : (4.4)22



CLs is not a true on�dene [12℄, but due to its similarity, one says that thesignal hypothesis is exluded at the on�dene level CL when1� CLs � CL: (4.5)4.2 The Likelihood Ratio Test StatistiGiven a hypothesis with a p.d.f f(x), the probability of having the �rst ofseveral outomes in the interval [x1; x1+dx1℄ is f(x1)dx1, the probability ofhaving the seond outome in the interval [x2; x2 + dx2℄ is f(x2)dx2, [13℄,and so on. Assuming that all measurements are independent, i.e. thereis no orrelation between the di�erent values xi, the expression for all theobserved events is:P (8i : xi 2 [xi; xi + dxi℄) = nYi=1 f(xi)dxi: (4.6)This expression motivates the making of the likelihood funtion 1, also knownas the method of betting odds : L = nYi=1 f(xi); (4.7)whih, in reality, is just the joint probability density funtion of all theobserved values. In a hypothesis test one an as a test-statisti use the ratioof the likelihood funtions of the two hypotheses, the likelihood ratioQ = L( ~X;A)L( ~X;B) ; (4.8)where ~X is the spae of possible outomes, and A and B are parametersof the hypotheses being tested. Sine the likelihood ratio maximizes theprobability of exluding a false hypothesis [14℄, it is ommonly used as atest statisti.An appropriate likelihood ratio for searhes in partile physis isQ = L( ~X ; s+ b)L( ~X; b) ; (4.9)where s and b are the integrated signal and bakground rates for the hypothe-ses being tested. Sine these parameters share the same spae of outomes,~X is dropped from the expression for simpliity.1This also motivates the method of maximum likelihood, where the parameters of thehypothesis are found by di�erentiating the likelihood funtion with respet to its estima-tors �: �L�� = 0. 23



If the searh inludes some measurements on the experimental andi-dates, e.g. the mass distribution of the observed andidates, the likelihoodfuntion of the hypothesis has to inlude more information than just thenumber of observed events. This information is given in the form of a dis-riminating variable.Sine the Poisson distribution desribes proesses where the probabilityof eah event is small and onstant, i.e. is independent with respet to timeand spae, it is well suited in the searh for new partiles, whih normallyhave few, if any, observed events. In a searh with Nhan distint searhhannels, the likelihood ratio takes this form:Q = QNhani=1 e�(si+bi)(si+bi)nini!QNhani=1 e�bibniini Qnij=1 siSi(xij)+biBi(xij)si+biQnij=1Bi(xij) ; (4.10)with ni as the number of observed andidates in eah hannel, xij is thedisriminating variable, in ase more information than just the number ofobserved events in eah hannel is known, and Si(xij) and Bi(xij) are theprobability density funtions of the disriminating variable for respetivelythe signal hypothesis and the bakground hypothesis. This expression anbe simpli�ed to Q = e�stot NhanYi=1 niYj=1�1 + siSi(xij)biBi(xij)� : (4.11)This likelihood ratio an, if the p.d.f.'s of the disriminating variable is equalfor signal and bakground, or if there haven't been measured a p.d.f. of thedisriminating variable, be simpli�ed even more:Q = e�stot NhanYi=1 niYj=1�1 + sibi� : (4.12)To obtain a linear expression, one an take the logarithm of Eq. 4.12:ln(Q) = �stot + NhanXk=1 nkwk; (4.13)where the weight wk is given bywk = ln�1 + sibi� : (4.14)This means that the likelihood ratio is more or less a method of ountingweighted events.In this setion, there have been made no di�erene between a posteriorand a prior probability, [14℄. 24



When one has knowledge of the experiment before doing it, one has aprior probabilities. An example of this would be tossing a oin: it an landon either side, with equal probabilities, or it an land on the edge, whih isfairly improbable.If, for some reason, the a prior probability an not be known in advane,the a posterior probability is found by performing the experiment. The aposterior probability inludes experimental unertainties, while the a priorprobability is known exatly. To derease the experimental unertainties ofthe a posterior probabilities, the experiment has to be performed severaltimes (to obtain an unertainty of zero, the experiment has to be performedin�nitely many times).Stritly speaking, the term likelihood ratio desribed above applies onlyto a posteriori probabilities, but has been used with a priori probabilitiesfor onveniene.4.3 When analytial solutions are not possibleIn a multihannel searh where the probability density funtion also inludesdisriminating variable in addition to the number of observed events, �ndingan analyti solution of the likelihood probability distribution funtion, asdesribed in the previous setion, is tehnially impossible. If one tries tosolve Eq. 4.10 for a searh with n hannels and m possible outomes foreah hannel, one have to solve an expression of order O(nm) terms [15℄. Amultihannel searh might have as many as 5000 hannels, when ountingthe di�erent mass bins in eah searh hannel as a single hannel. Restritingthe number of possible outomes to zero, one or two andidates in any bin,this gives an expression of 35000 terms to solve. In the 1998 DELPHI Higgsboson searh, one will easily have to solve expressions with more than 105000term.To solve this problem, the probability density funtions have to be foundnon-analytially. One possibility is Monte Carlo generation of the p.d.f. Theon�dene limit is then the fration of the Monte Carlo experiments withQ � Qobs. Another is desribed in the following setion.4.3.1 Semianalyti omputation of the p.d.f.In this alternative method, the probability distribution funtion is foundby looking at the probability of di�erent outomes in the di�erent hannelsand then ombining these probabilities. The meaning of \hannel" is thesame as in the previous setion, it an either be a searh hannel in a searhwith number of observed events as the only information, or it an e.g. bea mass bin in a searh with mass information in addition to the numberof observed andidates. A shemati piture of how the p.d.f. is reated is25
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Figure 4.3: One an laim disovery if the area of the bakground onlyhypotheses, represented by the heked area, left of the observed event islarger than 1� 5:7� 10�7.that the probability of the bakground reating the observation is less thanthe probability of having a 5 standard deviations utuation in a Gaus-sian distribution, i.e. that the probability of bakground proesses beingresponsible for the observation is less than 5:7� 10�7.The signal also needs to be found where it is expeted to be found.If it is not, one has found something that is not reated by bakgroundproesses, but sine the signal hypotheses does not predit the signal, it isnot a on�rmation of the hypotheses.
28



Chapter 5The searh for the HiggsbosonIn this hapter a short desription of the 1998 DELPHI Higgs boson searhwill be given. The full analysis is found in Ref. [17℄, and although [17℄desribe both the searh for SM and MSSM Higgs bosons, only the searhfor SM Higgs boson will be desribed here.The data were taken at an average enter-of-mass energy of ps=183GeV, with an integrated luminosity of 54.0�0.5 pb�1.At LEP200 the main Higgs prodution hannel is the e+e� ! ZH han-nel, see Fig. 5.1 with H�+��, He+e� and the H��� hannel and hannelswith jets and taus or purely hadroni hannels as the main deay hannelsof the Higgs and the Z. The analysis has been optimized for events wherethe Higgs boson either deays into a �+�� pair or into bb events, sine at theHiggs boson masses searhed for b�b dominates the bakground, whih makesb-tagging important. With a Higgs boson mass of 85 GeV, the branhingratio for Higgs boson deaying into a b�b pair is approximately 90%, and forHiggs boson deaying into a �+�� pair the branhing ratio is approximately8% [18℄.
Figure 5.1: The dominant Higgs prodution hannel at LEP200.29



5.1 Common features for all hannelsIn the analysis of [17℄, there is a set of seletion riteria that are ommon forall events, in addition to deay hannel spei� seletion uts. The ommonfeatures are listed below.5.1.1 Partile seletionIn all the deay hannels, harged traks are seleted if they have a momen-tum greater than 100 MeV and if they originate from the ollision enter (i.e.within 10 m from the interation enter along the beam pipe and within 4m in the transverse diretion). Neutral partiles are found either as energylusters in the alorimeters or as reonstruted verties in the traking vol-ume. Neutral partiles found in the alorimeter are seleted if the energy isgreater than 200 MeV, and neutral partiles found in the traking volume(i.e. hadronial energy lusters) are seleted if the energy of the luster isgreater than 500 MeV.5.1.2 b-taggingThe b-tagging has been performed using a method whih ombine the dif-ferenes between events ontaining b-quarks and other events in one singlevariable xib, see Ref. [19℄.The Jet lifetime probability P+j is the probability that the jet orrespondto the primary vertex. For a b-event, this probability is smaller that forevents with lighter quarks.The distribution of the e�etive mass of the partiles in the seondaryvertex Ms is higher for b-events than for the other events.The distribution of the rapidity of the traks inluded in the seondaryvertex with respet to the jet Rtrs diretion is normally lower for b-eventsthan for -events, sine B hadrons are heavier and has a higher multipliity.The distribution of the fration of harged energy of the jet inluded inthe seondary vertex Xhs is for b-events determined by a fragmentation fun-tion f(b ! B). This fragmentation funtion is harder than the equivalentfuntion for -events. This tag has the weakest tagging power of the vari-ables, sine the distributions for b-events almost overlaps the distributionsfor events with other quark avors.Compared to other b-tagging method, where only the impat parame-ters are taken into onsideration, this method provides better rejetion ofbakground.5.1.3 Constrained �tsTo extrat the Higgs mass two kinds of onstrained mass �ts have been used:'4-C' �t if only total energy and momentum onservation have been imposed,30



and '5-C' �t if the Z mass or the shape of the Z resonane is required aswell. In [17℄ this proedure was also often used to redue bakground.5.1.4 Analysis optimizationThe eÆieny of eah hannel has been set in suh a way that the sensitivityof the ombination is maximized. The working point for eah hannel is givenby the point of the eÆieny versus bakground plot giving the smallestexpeted signal on�dene. This proedure is performed one hannel afteranother, and �nally a global optimization, where all hannels are optimizedtogether, is performed.The analysis of Ref. [17℄ has been divided by the di�erent deay hannelsof the Higgs boson and the Z boson.5.2 Searhes in events with jets and eletrons ormuonsThe He+e� and H�+�� deay hannels ombined represent 6.7% of the�nal HZ states.Muon identi�ation is mainly provided by an algorithm whih relies onthe assoiation of harged partile traks to the signals in the barrel andforward muon hambers.Eletron identi�ation is provided by an algorithm that is tuned foreÆieny and not purity, sine eletrons in the HZ hannel are expeted tobe well isolated. EÆieny of this algorithm is 94%, but with a probabilityof misidenti�ating a pion as an eletron of 16%. This misidenti�ationprobability an be lowered to 13% by aepting only traks assoiated witheletromagneti showers. This, however, redues the eÆieny to 83%.In the eletron hannel events have to onsist of �ve or more hargedpartiles, where two must have a momentum greater than 10 GeV, and thetotal energy of the event must be more than 0.12ps.Events in the muon hannel have to have at least four harged partiles,and the total energy of the harged partiles must be over 0.30ps. In addi-tion, the total energy in the barrel eletromagneti alorimeter must be lessthan 100 GeV.5.3 Searhes in events with jets and missing en-ergyThis hannel, where the missing energy is due to neutrinos esaping unde-teted through the detetors, represents 20% of the �nal HZ states. Theexperimental signature of this deay hannel is a pair of aollinear jets, witha reoiling mass lose to the expeted mass of Z ! ��� deays.31



In order for an event to be seleted, it has to onsist of at least nineharged partiles and the total energy of the harged partiles has to belarger than 0.1ps.To quantify the di�erenes between the Higgs signal and the bakgroundproesses, a multidimensional, iterative disriminant analysis was used.5.4 Searhes in events with jets and tausThe experimental �ngerprint of this deay hannel is two jets and two iso-lated taus, and 8.5% of all �nalHZ states end up in this hannel. Preseletedhadroni events in this hannel ontain at least seven harged partiles and,either a total energy arried by the harged partiles greater than 0.15ps,or a total energy greater than 0.30ps and forward and bakward energiesgreater than 0.03ps.In this hannel, either the H or the Z an deay into the �+�� pair. Ifthe Higgs deays into the � 's, the mass of the � pair must be high, sinethe searh is for Higgs boson with high mass, and the mass of the jets to belose to Z-mass. On the other hand, if the Z deays into the � 's, the Higgsdeays mostly into b-events, and thus b-tagging is a powerful tool againstbakground in this deay hannel.5.5 Searhes in events with purely hadroni jetsThe preseletion, whih is equal for all four-jet events, attempts to reduethe q�q() bakground events while keeping most of the Higgs signal. Anevent is seleted if it ontains at least 18 harged partiles, a total energyabove 0.6ps and a total neutral energy less than 0.5ps. In order to exludeevents where an on-shell Z is produed with a photon, no photons withenergy above 30 GeV are allowed in the event.After the preseletion, a probabilisti analysis was used. To redue themain bakground proesses, both b-tagging, topologial and kinematial in-formation was used.5.6 Results of the analysisAs an be seen from Table 5.1, there was no evidene of Higgs bosons inany of the searh hannels, whih means that instead of laiming a disov-ery, there has been set an exlusion limit on the Higgs mass. In [17℄ thistranslates to a lower limit on the mass of the SM Higgs boson of 85.7 GeVat 95 % CL. The observed CLb and CLs together with the expeted CLs,omputed with SA�COUNTING, see Appendix A, is shown in Figure 5.2. InChapter 6, this analysis will be used to ompare three di�erent methods ofsemianalyti on�dene limit alulations.32
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Figure 5.2: Figure (a) shows the observed on�dene of the bakgroundhypothesis, CLb. The solid line of (b) is the observed on�dene of the signalhypothesis CLobss , while the doted line shows the expeted on�dene.Channel Data Total bakground Total sim. signalH�+�� 2 0.49�0.06�0.17 0.43He+e� 1 0.68�0.12+0:09�0:10 0.26H��� 1 0.50�0.08�0.10 1.25H�+�� 1 0.74�0.09�0.08 0.25Z�+�� 0 0.34�0.07�0.04 0.12Hq�q 1 3.74�0.20�0.18 5.18Table 5.1: Data, expeted bakground and simulated signals after all utsand seletions for mH=85 GeV and ps=183 GeV.33



Chapter 6Comparison of threedi�erent semianalytiimplementationsIn this hapter a omparison of four di�erent implementations alulatingon�dene limits will be desribed. These implementations have been usedto analyze data from the 1998 DELPHI Higgs boson searh, desribed inChapter 5.6.1 Di�erenes of the implementationsThree di�erent implementations of the statistial method mentioned in Chap-ter 4 have been developed: SA�COUNTING, see Appendix A, E�CLS [15℄ andALRMC�HIST [12℄. Eah of these implementations has its own set of strengthsand weaknesses. The Monte Carlo routine ALRMC has been used to omparethe semianalyti implementations.ALRMC� and SA�COUNTING ombine all the di�erent hannels at one,i.e. they start with the di�erent outomes for the probability of havingone andidate of all the hannels, then �nd the di�erent possible outomesfor two ombinations for all the hannels, and so on until the distributionhas reahed almost unity. E�CLS starts with the two hannels having thesmallest signal-to-bakground ratio, and �nds all the di�erent possible om-binations for these two hannels for as many andidates as it takes to getthe aumulated distribution lose to 1.0. ALRMC�HIST and SA�COUNTINGompute the distributions until the integrated bakground p.d.f. has reahed0.999999, while E�CLS has a default setting of 0.999. If one needs to omputethe p.d.f.'s more or less aurately, hanging this number is easy. E�CLS justneeds a hange of a on�guration �le, while ALRMC�HIST and SA�COUNTINGneed a small hange of the ode and a reompiling.34
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While E�CLS and SA�COUNTING simply hek whether a new ombina-tion already exists, and if it does add the probability for the new ombina-tion to the probability for that spei� weight, ALRMC�HIST makes a two-dimensional histogram, see Fig. 6.1, with the histogram for one andidatealong one axis, and the histogram for the previous andidate along the otheraxis. Then the ontributions for di�erent values of lnQ are found by addingthe di�erent entries along the diagonal going from one axis to the otherwith equal equal lnQ. This two-dimensional histogram is then split alongthe diagonal, and the ontributions lying in the upper half of the diagonalis ignored. This an be done sine these ontributions are so small they willvanish ompared to the other ontributions. Estimation of the histogramparameters is done with a few hundred Monte Carlo experiments.SA�COUNTING estimates the size of the p.d.f. by �nding the hannelwith the largest lnQ, and then multiplying this weight with the number ofandidates it will take to have the aummulated Poisson distribution loseto unity. Contributions lose to this number are ignored, as they will bevanishingly small.6.2 Comparison of exeution speedTo investigate the speed and auray of the three di�erent implementations,several analyses of di�erent parts of the mass spetrum in the Higgs searhhave been made with all three implementations. To illustrate the speedof di�erent implementations, and of the semianalyti method in general,they have been ompared to a Monte Carlo routine, ALRMC(Monte Carlo),whih is part of the ALRMC pakage. The alulations were performed on a2�PentiumII 400 MHz omputer running the Linux operating system. TheMonte Carlo generations has been done with 100000 Monte Carlo experi-ments. Table 6.1 shows CPU-time spent in di�erent mass regions of theHiggs searh.mass, step (GeV) SA�COUNTING E�CLS ALRMC�HIST ALRMC55.0-95.0, 0.1 1385 1589 786 1247555.0-65.0, 0.05 861 898 475 712685.0-95.0, 0.05 497 634 299 4843Table 6.1: CPU onsumption, in seonds, of the di�erent implementa-tions over di�erent mass hypotheses in the DELPHI Higgs boson searhat ps=183 GeV.Comparing the auray has been done by alulating the relative di�er-enes of the signal on�denes, �CLs=CLs, of eah of the implementations.Figure 6.2 and 6.3 shows the relative di�erenes.36
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Notie that the relative di�erenes of all the implementations onvergestowards zero as the Higgs mass hypotheses inreases. This is due to thefat that the programs are tuned to give better results at the heavy Higgsmass hypotheses, where the Higgs hypotheses gives fewer expeted signalsthan the lighter one. This makes the hypotheses of the heavy region botheasier and faster to handle than the hypotheses in the light region. In thease of E�CLS and SA�COUNTING, the heavy Higgs hypotheses gives a shorterlist of expeted signals and bakground than the light Higgs hypotheses, forALRMC�HIST the result is a histogram with fewer bins.6.3 Binning in the di�erent implementationsE�CLS has a binning that is part linear and part logarithmi. For proba-bilities less than 1.0 % the binning is logarithmi, with the default settingbeing 20 bins per deade. Probabilities larger than 0.01 have a binning thatis spaed 0.1 % apart.SA�COUNTING has no prede�ned bins but makes the bins as the ombi-nations are alulated. This explains in part the disadvantage in speed om-pared to ALRMC�HIST, see Table 6.1. For eah new ontribution, SA�COUNTINGhas to go through the list of previously alulated ombination to see whetheror not a new bin has to be added to the list. Determination of the bin sizedepends on the expeted signals and bakgrounds. If they have weights withalmost the same values, the bins are smaller than if the expeted signals andbakground have fairly di�erent weights.As default, ALRMC�HIST has 2000 bins, whih is fewer than both E�CLSand SA�COUNTING. This is a large part of the explanation of why ALRMC�HISTis faster than E�CLS and SA�COUNTING.However, both E�CLS and SA�COUNTING an be hanged to have a less�ne binning, but the gain in speed will be at the ost of less auray.6.4 Improving the list type implementationsTo separate the di�erent hannels, SA�COUNTING multiplies eah hannelslnQ with a number. Sine the hannels tend to have fairly equal weights,the default is 300. A number smaller than that gives SA�COUNTING problemsseparating the hannels, with the result that several hannels might end up inthe This is a problem that is not dealt with in either of the implementations.Inreasing the number being multiplied to the hannels has the e�etof inreasing number of bins, with inreased resolution as the result. Asmentioned in the previous setion, when inreasing the resolution, the CPUonsumption also inreases, see Figure 6.4 and Table 6.4. When omputingthe observed CLs with a �ne binning, both auray and the onsisteny ofthe auray inreases, whih an be seen when looking at Figure 6.4.39



Fator CPU onsumption (se)300 497500 5711000 8401500 11062000 16342500 1862Table 6.2: Time spent in CPU loops by SA�COUNTING for di�erent values ofthe number being multiplied to eah hannels weight.ALRMC ALRMC�HIST E�CLS SA�COUNTINGmH (GeV 85.70 85.70 85.65 85.75Table 6.3: Upper limit of the Higgs mass at 95 % CL using the three di�erentimplementations.6.5 Computed limitsIt is lear, when looking at the Figures 6.2 and 6.3 and Table 6.1 thatthe histogram-type implementation of ALRMC�HIST is both faster and moreaurate than the list-type implementations of E�CLS and SA�COUNTING.However, the relative di�erenes between the list-type implementations andthe Monte Carlo routine for Higgs mass hypothesis around the upper limitis lose to zero and the exluding power of these implementations shouldbe lose to ALRMC�HIST. When looking at Tab. 6.3, this is proven orret.The di�erent implementations have their upper limit of the Higgs mass at95 % on�dene within 50 MeV of the lower limit omputed with the MonteCarlo routine. By inreasing the binning, SA�COUNTING is able to reproduethe same upper limit as ALRMC.
40



Figure 6.4: The relative di�erene between ALRMC and SA�COUNTING fordi�erent values of the number multiplied to the weight of eah hannel, inorder to inrease the resolution of the binning. Figure (a) through (f) showsobserved �CLs=CLs when this number is, respetively, 300, whih is thedefault, 500, 1000, 1500, 2000 and 2500.
41



Figure 6.5: Observed on�dene limits of the Higgs boson mass alulatedwith the di�erent implementations, given the 1998 DELPHI data taken atps GeV.Figure (a) shows the results obtained with ALRMC, (b) SA�COUNTING,() E�CLS and (d) ALRMC�HIST.
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Chapter 7Searh for supersymmetrideay of the WIn [9℄, a proedure for searhes for W� bosons deaying into the lightesthargino-neutralino pair, W� ! ~��1 ~�01; (7.1)in W pair prodution, where one of the W 's deays aording to the rea-tion 7.1 and the other to either q�q0 or l�l, and a method to determine thebranhing ratio BR(W ! ~��1 ~�01) is desribed.Figure 7.1: The prodution hannel of the lightest positively hargedhargino and neutralino.In models having the sneutrino as the lightest supersymmetri partile(LSP), the hargino of Eq. 7.1 will, if its mass is slightly above the LSPmass, deay into a sneutrino and a harged lepton:~�+1 ! ~�ll+: (7.2)Only the positively harged reations are shown, the harge onjugated re-ations are left out for onveniene; they are just as likely to happen. Ifthe SM deaying W deays hadronially, the detetion of the spartiles isalmost impossible if the mass di�erene of the hargino and the sneutrino,�M = m~�+1 �m~� , are below a few GeV. The sneutrino-lepton pair of Eq. 7.243



will be soft, and hidden inside the total event. On the other hand, if the SMdeaying W deays into a lepton-neutrino pair, the low event multipliityan make the detetion of the supersymmetri partiles possible. The exper-imental signature an thus be said to be hard leptons plus missing energy.In the analysis desribed in [9℄, the seletion uts have been split into two,one for �M between 0 GeV and 0.5 GeV and one for < �M between 0.5GeV and 2 GeV.In the analysis desribed in [9℄, the on�dene limit of the branhing ratioof the reation desribed above has been alulated with the simple \PDGmethod", i.e. that all information has been put into one bin. The analysishas been reprodued to see the advantages of using a more sophistiatedmethod of omputing the on�dene limits, suh as SA�COUNTING, omparedto the simple method used in [9℄.7.1 Event seletionDuring the 1997 runs at LEP, with enter-of-mass energy ps ' 183 GeV,54 pb�1 of data was olleted at the DELPHI detetor. 51.65 pb�1 of thisolletion has been delared suitable for data analysis (the rest have beenleft out due to some problem or ineÆieny in the detetors). Of the dataolleted at the 172 GeV run in 1996, 9.98 pb�1 is used.The di�erent event seletions and uts are desribed in detail in [9℄, pp.2-10. Several Monte Carlo generators were used to reate simulated events,whih in turn gave rise to the riteria used in seletion of the experimentalevents.Shower seletionSome of the riteria deiding whether a harged trak an be used or not,given by the shower seletion, are� j~pj > 200 MeV,� Trak length has to be over 20 m, unless it's a VD-only (see Fig. 3.2)trak. In that ase it has to stay outside �3o of the 90o.Resaling of the trak momentum is attempted if, for more than six hargedtraks, the trak momentum is greater than 75 % of the beam momentum, orin the ase of zero to six harged events the trak momentum is greater than125 % of the beam momentum. Unassoiated showers in the alorimetersare aepted if their energy is above 0.5 GeV (or above 0.75 GeV if theshower is in the HAC).Traks not meeting these requirements does not enter the alulationsfor the overall event properties, but they are kept as loked traks.44



PreseletionFor traks with more than six harged partiles in the shower, they have tohave� 40 < Evis < 120 GeV,� Etrans > 20 GeV,� Missing ptrans > 15 GeV,� The demand on the polar angle of the thrust is #thr30o < #thr < 50o.Traks with a harged multipliity between zero and six have to meet:� Evisible > 10 GeV,� The energy fration arried by the hardest partile must be more than80 % of the visible energy. The energy fration arried by the mostenergeti jet has to be above 90 % of the visible energy,� If the harged multipliity is above one, then 30o < #thr < 150o.If a trak has passed the preseletion, the following uts are applied:Seletion of hadroni showersIn showers with more than six harged traks, the traks are aepted if� the visible energy is above 90 GeV,� invariant mass of all partiles is between 55 GeV and 85 GeV,� there are no identi�ed eletrons or muons with energy above 5 GeV,� no isolated harged partile is deteted with energy above 15 GeV.Seletion of leptoni showersThe seletion of leptoni traks are divided in one in the ase of �M verysmall, 0 GeV < �M < 0.5 GeV, and one in the ase of �M small, 0.5 GeV< �M < 2.0 GeV. If �M is very small, the seletion uts on leptoni traksare � Number of harged partiles has to be one, two or three,� Visible energy less than 80 GeV,� Energy of the hardest trak for ps=183 GeV data between 24 GeVand 74 GeV and for ps=172 GeV data between 26 and 62 GeV,45



� No neutral shower with energy above 5 GeV is allowed,� No loked traks with energy above 3 GeV.For small �M , the uts are muh the same, but the demand on the lokedtraks is that they annot have energy above 5 GeV, and the harged mul-tipliity must be exatly two.7.2 Predited bakgrounds and signalsThe predited signal eÆienies found by Monte Carlo simulations are listedin Table 7.1 and the expeted bakground rates are listed in Table 7.3and 7.2. � M = 0 GeV � M = 0.5 GeV � M = 2 GeVHADRONIC CHANNEL (183 GeV)0.159LEPTONIC CHANNEL (183 GeV)seletion A 0.131 0.121seletion B 0.104 0.110HADRONIC CHANNEL (172 GeV)0.166LEPTONIC CHANNEL (172 GeV)seletion A 0.111 0.118seletion B 0.106 0.104Table 7.1: EÆienies for seleting ~�l+ deaying from �+. The �+ is a deayprodut of the reation W+W� ! ~�1+ ~�10. Seletion A and B refer to theseletions optimized to 0 < �M < 0.5 GeV and 0.5 GeV < �M < 2 GeV,respetively. Hadroni Leptoni Leptoniseletion seletion seletion(0 < �M < 0:5) (0:5 < �M < 2)� pred. bg. rates 8.89 5.02 2.57Observed events 8 4 2Table 7.2: The Standard Model predited bakgrounds and observed andi-dates remaining after the uts from the ps=183 GeV run at LEP200.Of the bakround proesses, e+e� ! Z0(n)! �+��(n) and e+e� !l�ll0�l0 are the main bakground proesses in the leptoni setor with 0.5<46



Hadroni Leptoni Leptoniseletion seletion seletion(0 < �M < 0:5) (0:5 < �M < 2)� predited bakground 1.85 0.93 0.37Observed events 2 0 0Table 7.3: The Standard Model predited bakgrounds and observed andi-dates left after the uts from the ps=172 GeV run at LEP200.�M < 2 GeV, Bhabha and Compton sattering and e+e� ! l�ll0�l0 pro-esses dominate in the leptoni setor with 0 < �M < 0.5 GeV. In thehadroni setor the proesses e+e� ! ���q�q0, e+e� ! l�ll0�l0 and e+e� !Z0(n)! q�q(n) dominate the bakground.7.3 Computing limits on the branhing ratiosusing SA�COUNTINGThe expeted signal and bakground rates found in Tables 7.1, 7.3 and 7.2inlude, due to limited Monte Carlo statistis, unertainties (these are shownin [9℄). Sine SA�COUNTING (see Appendix A) does not handle unertainties,these errors have not been inluded in the alulations.Table 7.1 shows the eÆienies of seleting e+e� !W+W� events withone W deaying supersymmetrily aording to Eq. 7.1 and the other deay-ing into Standard Model partiles. However, when alulating the branhingratio, it is the expeted signal ratio that is used. This quantity an be foundby de�ning the fration of W deaying into hargino-neutralino pairs asx = BR(W� ! ~��1 ~�01): (7.3)This means that the fration of proesses deaying into standard modelpartiles only is (1�x). The branhing ratio ofW+W� where oneW deaysinto SUSY partiles and the other into SM partiles thus has a fration of2x(1� x). The number of expeted events N is then found byN = 2x(1� x) XEmsLi�thi "i; (7.4)where the sum is over the di�erent enter-of-mass energies, Li are the dif-ferent luminosities, reall that the luminosity for the ps=183 GeV run is51.65 pb�1 and 9,98 pb�1 for the 172 GeV data. �thi are the theoretialross-setion of W 's deaying into a hargino-neutralino pair and "i are thedetetor eÆienies. The measured ross-setion only takes SM deays intoaount, sine there is no experimental evidene of the existene of SUSY47



partiles. An expression for supersymmetri ross-setion given the mea-sured ross-setion, is given by�th = �meas(1� x)2 : (7.5)Using this expression for the ross-setion, the number of expeted events isN = 2x(1� x) XEmsLi�measi "i: (7.6)The branhing ratio at a 95 % on�dene limit is then found by alulat-ing the on�dene of the expeted signal and bakground rates, using theprogram SA�COUNTING, for di�erent values of the fration x.�M=0 GeV �M=0.5 Gev �M=2 GeV183 GeV 1.50 % 1.56 % 1.40 %172 GeV 6.08 % 6.34 % 6.39 %Combined 1.34 % 0.99 % 1.32 %Table 7.4: The observed branhing ratio at 95 % on�dene, usingSA�COUNTING, for 172 and 183 GeV. The olumn 'Combined' is the resultsobtained when the data for the two di�erent enter-of-mass energies areombined. The largest branhing ratio in the 'ombined' olumn is taken tobe the branhing ratio.�M=0 GeV �M=0.5 GeV �M=2 GeV183 GeV 2.16 % 2.24 % 2.05 %172 GeV 8.32 % 7.65 % 7.71 %Combined 2.11 % 1.61 % 1.94 %Table 7.5: The expeted branhing ratio at 95 % on�dene, usingSA�COUNTING, for 172 and 183 GeV.Taking the worst, i.e. the largest, result in the olumn 'Combined' inTable 7.4 as the branhing ratio, the observed branhing ratio at 95 % CLis found to be BRobs(W� ! ~��1 ~�01) < 1:34%: (7.7)In the same manner, looking at Table 7.5 the expeted branhing ratio isfound to be BRexpet(W� ! ~��1 ~�01) < 2:11%: (7.8)48
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Figure 7.2: The ombined results for �M=0 GeV, whih is the value of �M that yields the largest branhing ratios. The solid line is the observedbranhing ratio, the dashed line is the expeted ratioThe observed branhing ratio is slightly smaller than the expeted ratio,whih means that there are fewer bakground events than what had beenexpeted. With the de�nition of the hypothesis saying that there are nosupersymmetri deays of the W as the null hypothesis, one an say thatthis hypothesis has been exluded stronger than what had been expeted.If these branhing ratios had been omputed using the simple PDGmethod, instead of the method desribed in Chapter 6, the observed branh-ing ratio would have been 1.54 % and the expeted branhing ratio wouldhave been 2.17 %.The alulated observed branhing rate of [9℄, is 1.56% whih is in goodagreement with the result obtained using the PDG method (the analysisof [9℄ does not inlude alulations of the expeted branhing ratio). Com-paring the results obtained using SA�COUNTING with the results obtainedusing the simple PDG method, it is lear that the semianalyti method isthe stronger of the two, although the di�erene is fairly small. Table 7.2shows that in this searh, the hadroni hannel dominated the other han-nels. This makes the di�erenes between the semianalytial and the PDGmethod smaller. Had the observed andidates and expeted signal and bak-ground rates been more evenly distributed among the hannels, the di�er-enes between the two methods would have been inreased.In the alulations for the branhing ratios, the assumption thatBR(~��1 !49



~�ll�) ' 1 has been made.7.4 MSSM parameter exlusionHaving found an upper limit on the observed branhing ratio, one an useEq. 2.47, �(W+ ! �+i �0j ) = GFm3W�1=2ij6p2��f[2� �2i � �2j � (�2i � �2j )2℄(Q2Lij + Q2Rij)+12�i�jQLijQRijg;where the matriesQRij and QLij are linear ombinations of the diagonalizedgaugino mixing matries, reall Eq. 2.49, and instead of summing over allthe di�erent harginos and neutralinos, the equation is solved for the lightesthargino-neutralino pair, whih is equal to setting i and j equal to one. Theregions in the parameter spae of the higgsino and bino masses that areexluded at the same on�dene limit as the branhing ratio, i.e. at 95 %CL, an then be found.The partial width for W� deaying into a hargino-neutralino pair isgiven by�(W� ! ~��1 ~�01) = BR(W� ! ~��1 ~�01) � �(W� ! anything); (7.9)and sine both the total width of the W , �(W� ! anything) and thebranhing ratio, BR(W� ! ~��1 ~�01) is known, the partial width is given.The neutralino and hargino masses are found when the harged andneutral gaugino mass-matries, see Eq 2.32 and 2.44, are diagonalized, butthe masses of the gauginos and the higgsino are parameters not deided bythe theory. By varying the bino and the higgsino masses, expressions forthe hargino and neutralino masses an be found.The Higgs mixing term tan� have been �xed, and M2 and � have beenvaried to �nd the regions of the (M2; �) parameter spae that are allowed.In Fig. 7.3 and Fig. 7.4 the regions with allowed higgsino and bino massesare found for several values of tan�.Compared with the exluded regions of the (M2; �) plane for di�erentvalues of tan � of Ref. [9℄, the improved branhing ratio results in a slightlyinrease of the exluded regions, see Figure 7.5.The omputations have been performed using SUSYPAR, see Appendix B.50



Figure 7.3: The exluded regions in the (M2; �) plane for small values oftan �. Notie how the two exluded regions at tan�=1.0 merge into one astan� inreases. 51



Figure 7.4: The exluded regions of the (M2; �) plane for larger values oftan�. The onion-shape of the exluded region grows as the value of tan�inreases. 52



Figure 7.5: The di�erene between the (M2; �) planes exluded using thebranhing ratio obtained with the semianalytial method and the branh-ing ratio obtained using the PDG method for (a) tan�=1.0, (b) tan �=2.0,() tan�=10.0 and (d) tan�=20.0.The di�erene between the planes alu-lated with the two branhing ratios are lying along the edge of the exludedregions.
53



Chapter 8Conlusions and outlook8.1 Physis resultsAs is seen in Chapter 5 no trae of the existene of a Higgs boson is seen upto a enter-of-mass energy of 183 GeV. This orresponds to the exlusion ata 95 % on�dene level of a Higgs boson with mass less than 85.7 GeV.In Chapter 6 it was shown that if the W boson deays into a pair ofsupersymmetri partiles, the branhing ratio of this proess is less than0.0134.� BR(W� ! ~��1 ~�01) < 1.34% (95% CL)With this branhing ratio, one an exlude part of the SUSY parameterspae, in this ase the hosen spae was the mass of the higgsino and bino.The essene of this is that at the energies these two searhes have beenperformed, there are no traes of new physis.8.2 Tehnial results and outlookImplementating and developing the semianalyti on�dene limit alulatorSA�COUNTING, proved that when used in a searh with many hannels, asthe Higgs boson searh, the list type implementations was both slower andmore unpreise than what had been hoped for.Given more time, I would like to understand the handling of system-ati unertainties. In Ref. [20℄, Cousins and Highland desribe a methodto inorporate statistial unertainties in one-hannel searhes. This anbe generalized into searhes with several distint hannels, see for exampleRef. [21℄.I am pretty sure there must be a less CPU-onsuming method of han-dling the list, but this is evidently not as intuitive as the one implementedin SA�COUNTING, and it would had been exiting to see if a smarter imple-mentation ould have been developed.54



I was also told near the end of my work with this thesis that another,even faster method of omputing the likelihood ratio probability densityfuntions has been developed whih is based on Fourier transforming thehannels, and it would be interesting to understand this method.
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Appendix APROGRAM sa_ounting_v2**....Program that alulates the probability distribution funtions*....(p.d.f.) of hypothesis semianalytial, with the use of the likelihood*....ratio test-statisti* IMPLICIT NONEINTEGER nhan,no_binsREAL sa_ounting,ppois,tCOMMON/params/nhan,no_binsEXTERNAL sa_ounting**....reading the number of searh hannels and number of bins in the*....p.d.f-list from file param.h* OPEN(10,name='param.h',status='old')READ(10,100)nhanREAD(10,101)no_bins100 FORMAT(I2)101 FORMAT(I5)CLOSE(10)**....alling the main routine* CALL sao_v2END**********************************************......This is just a trik to allow dynami56



*......memory alloation of the long arrays*************************************************SUBROUTINE sao_v2IMPLICIT NONE**....variables**....Number of hannels and number of bins* INTEGER nhan,no_binsCOMMON/params/nhan,no_bins*....ounting variablesINTEGER i,j,k,l,m,nINTEGER k_sb,m_sbINTEGER next_length,nl_sb !the length of the p.d.f-arraysINTEGER n_o(nhan)**....Variables onerning the total integrated signal and bakground rates*....and Poisson probabilities* REAL wt(nhan),b(nhan),s(nhan),pwtsb(nhan)REAL pwtb(nhan),stot,btot,ptotb,ptotsb,wb,wsbREAL itemp1b,itemp2bREAL itemp1sb,itemp2sb**....These variables onerns the arrays the p.d.f.'s are made from*....one_b and one_sb are the arrays for the integrated b and (s+b)*....rates, resp. next_b and next_sb is the arrays for the p.d.f.'s*....for (n-1) andidates that has NOT been multiplied with the approprialte*....Poisson-prob. result_b & result_sb are the arrays for the aumulated p.d.f's* REAL one_b(2,nhan),next_b(2,no_bins),new_b(2,no_bins)REAL result_b(2,no_bins),integr_b(no_bins)REAL l_b,l_sREAL one_sb(2,no_bins),next_sb(2,no_bins)REAL new_sb(2,no_bins),result_sb(2,no_bins)REAL integr_sb(no_bins),l_sb57



REAL expt,wt_expt,gen_xisq**....the expeted onfidenes* REAL interm_s(no_bins),l_s_inftyREAL interm_sb(no_bins),l_sb_inftyREAL ppoisEXTERNAL ppois**....HBOOK stuff* integer mwp,hparameter(mwp=10000)ommon/paw/h(mwp)real itemp1,itemp2real tDO i=1,no_binsnext_b(1,i)=0.new_b(1,i)=0.result_b(1,i)=0.ENDDODO i=1,no_binsnext_sb(2,i)=0.new_sb(2,i)=0.result_sb(2,i)=0.ENDDO**....Reading the integrated signal and bakground rates and number of*....observed andidates from file date.19* OPEN(10,name='data.19',status='old')DO i=1,nhanREAD(10,*)s(i),b(i),n_o(i)ENDDO 58



100 FORMAT(F6.4,T9,F6.4,T17,I2)CLOSE(10)ptotb=0.ptotsb=0.btot=0.stot=0.expt=0.**....initial alulations. wt(i) = the weigth of hannel #i*....expt = the observed value* DO i=1,nhanwt(i)=ALOG(1.+s(i)/b(i))pwtb(i)=b(i)pwtsb(i)=s(i)+b(i)ptotb=ptotb+pwtb(i)ptotsb=ptotsb+pwtsb(i)stot=stot+s(i)btot=btot+b(i)expt=expt+n_o(i)*(1+INT(500*wt(i)))wt_expt=wt_expt+(n_o(i)*wt(i))ENDDODO i=1,nhanpwtb(i)=pwtb(i)/ptotbpwtsb(i)=pwtsb(i)/ptotsbENDDO**....Initializing the list of int. sign. and bg. rates* DO i=1,nhanone_b(1,i)=1.+INT(500*wt(i))one_b(2,i)=pwtb(i)one_sb(1,i)=1.+INT(500*wt(i))one_sb(2,i)=pwtsb(i)ENDDO**....Chek to see if to hannels end up in the same bin*....If this happens, no one knows exatly what will happen!59



* DO i=1,nhanDO j=1,i-1IF(one_b(1,i).EQ.one_b(1,j))THENPRINT *,'>>>>>>>'PRINT *,'>>>>>>>TWO CHANNELS IN SAME BIN'PRINT *,'>>>>>>>SOMEWHAT UNRELIABLE RESULTS'PRINT *,'>>>>>>>'ENDIFENDDOENDDO**....Preparing the histograms for one andidate* wb=ppois(btot,1)wsb=ppois(stot+btot,1)DO i=1,nhannext_b(1,i)=one_b(1,i)next_b(2,i)=one_b(2,i)next_sb(1,i)=one_sb(1,i)next_sb(2,i)=one_sb(2,i)ENDDO**....Making the one andidate-histograms* DO i=1,nhanresult_b(1,i)=one_b(1,i)result_b(2,i)=one_b(2,i)*wbresult_sb(1,i)=one_sb(1,i)result_sb(2,i)=one_sb(2,i)*wsbENDDO**....Histogram for two andidates, bakground only**....This is the final two andidates histogram, multiplied with*....the Poissonprobability 60



* k=1m=nhan+1wb=ppois(btot,2)DO i=1,nhanDO j=1,nhanitemp1b=one_b(1,i)+one_b(1,j)itemp2b=one_b(2,i)*one_b(2,j)DO l=1,m-1IF(ABS(result_b(1,l)-itemp1b).LT.1.5)THENresult_b(2,l)=result_b(2,l)+itemp2b*wbGOTO 197ENDIFENDDOresult_b(1,m)=itemp1bresult_b(2,m)=itemp2b*wbm=m+1197 CONTINUEENDDOENDDO**....This is just an 'intermediary' working vetor for two andidates*....(atually, it's idential to the result-vetor, but it isn't*....multiplied with the Poissonprobability)* DO i=1,nhanDO j=1,nhanitemp1b=one_b(1,i)+one_b(1,j)itemp2b=one_b(2,i)*one_b(2,j)DO l=1,k-1IF(ABS(next_b(1,l)-itemp1b).LT.1.5)THENnext_b(2,l)=next_b(2,l)+itemp2bGOTO 198ENDIFENDDOnext_b(1,k)=itemp1bnext_b(2,k)=itemp2bk=k+1198 CONTINUEENDDOENDDO 61



**....Histograms for two andidates, this time for signal+bakground*....Same story as the bakground only-histogram* k_sb=1m_sb=nhan+1wsb=ppois(stot+btot,2)DO i=1,nhanDO j=1,nhanitemp1sb=one_sb(1,i)+one_sb(1,j)itemp2sb=one_sb(2,i)*one_sb(2,j)DO l=1,m_sb-1IF(ABS(result_sb(1,l)-itemp1sb).LT.1.5)THENresult_sb(2,l)=result_sb(2,l)+itemp2sb*wsbGOTO 200ENDIFENDDOresult_sb(1,m_sb)=itemp1sbresult_sb(2,m_sb)=itemp2sb*wsbm_sb=m_sb+1200 CONTINUEENDDOENDDODO i=1,nhanDO j=1,nhanitemp1sb=one_sb(1,i)+one_sb(1,j)itemp2sb=one_sb(2,i)*one_sb(2,j)DO l=1,k_sb-1IF(ABS(next_sb(1,l)-itemp1sb).LT.1.5)THENnext_sb(2,l)=next_sb(2,l)+itemp2sbGOTO 2013 ENDIFENDDOnext_sb(1,k_sb)=itemp1sbnext_sb(2,k_sb)=itemp2sbk_sb=k_sb+1201 CONTINUEENDDOENDDO**....Folding for the rest of the andidates. Folding until the62



*....bakground prob. is nearly 1.0* ptotb=ppois(btot,0)+ppois(btot,1)+wbn=2next_length=k-1nl_sb=k_sb-1DO WHILE(ptotb.LT.0.999) !OBS 0.999999n=n+1wb=ppois(btot,n)wsb=ppois(stot+btot,n)ptotb=ptotb+wbk=1k_sb=1DO i=1,nhanDO j=1,next_lengthitemp1b=one_b(1,i)+next_b(1,j)itemp2b=one_b(2,i)*next_b(2,j)DO l=1,k-1IF(ABS(new_b(1,l)-itemp1b).LT.1.5)THENnew_b(2,l)=new_b(2,l)+itemp2bGOTO 399ENDIFENDDOnew_b(1,k)=itemp1bnew_b(2,k)=itemp2bk=k+1399 CONTINUEENDDOENDDOnext_length=k-1DO i=1,next_lengthnext_b(1,i)=new_b(1,i)next_b(2,i)=new_b(2,i)ENDDODO i=1,nhanDO j=1,nl_sbitemp1sb=one_sb(1,i)+next_sb(1,j)itemp2sb=one_sb(2,i)*next_sb(2,j)DO l=1,k_sb-1IF(ABS(new_sb(1,l)-itemp1sb).LT.1.5)THENnew_sb(2,l)=new_sb(2,l)+itemp2sbGOTO 499ENDIFENDDO 63



new_sb(1,k_sb)=itemp1sbnew_sb(2,k_sb)=itemp2sbk_sb=k_sb+1499 CONTINUEENDDOENDDOnl_sb=k_sb-1DO i=1,nl_sbnext_sb(1,i)=new_sb(1,i)next_sb(2,i)=new_sb(2,i)ENDDODO i=1,next_lengthitemp1b=next_b(1,i)itemp2b=next_b(2,i)DO j=1,m-1IF(ABS(result_b(1,j)-itemp1b).LT.1.5)THENresult_b(2,j)=result_b(2,j)+itemp2b*wbGOTO 599ENDIFENDDOresult_b(1,m)=itemp1bresult_b(2,m)=itemp2b*wbm=m+1599 CONTINUEENDDODO i=1,nl_sbitemp1sb=next_sb(1,i)itemp2sb=next_sb(2,i)DO j=1,m_sb-1IF(ABS(result_sb(1,j)-itemp1sb).LT.1.5)THENresult_sb(2,j)=result_sb(2,j)+itemp2sb*wsbGOTO 699ENDIFENDDOresult_sb(1,m_sb)=itemp1sbresult_sb(2,m_sb)=itemp2sb*wsbm_sb=m_sb+1699 CONTINUEENDDOENDDO**....Inserting the zero andidates-histogram into the result-vetor64



*....by hand* result_b(1,m)=0.result_b(2,m)=EXP(-btot)result_sb(1,m_sb)=0.result_sb(2,m_sb)=EXP(-stot-btot)**....sorting the result-vetor (bakground only) with respet to*....the weigths* DO i=1,mDO j=1,i-1IF(result_b(1,j).GT.result_b(1,i).AND.result_b(2,i)&.NE.0.0)THENitemp1=result_b(1,i)itemp2=result_b(2,i)result_b(1,i)=result_b(1,j)result_b(2,i)=result_b(2,j)result_b(1,j)=itemp1result_b(2,j)=itemp2ENDIFENDDOENDDO**....Sorting the result-vetor (signal+bakground)* DO i=1,m_sbDO j=1,i-1IF(result_sb(1,j).GT.result_sb(1,i).AND.result_sb(2,i)&.NE.0.0)THENitemp1=result_sb(1,i)itemp2=result_sb(2,i)result_sb(1,i)=result_sb(1,j)result_sb(2,i)=result_sb(2,j)result_sb(1,j)=itemp1result_sb(2,j)=itemp2ENDIFENDDOENDDO**....Writing the y-oordinates of the p.d.f's in asending order65



*....to file p_pdf and sb_pdf* open(19,name='b_pdf',status='unknown')open(20,name='sb_pdf',status='unknown')do i=1,mwrite(19,*)result_b(2,i)enddodo i=1,m_sbwrite(20,*)result_sb(2,i)enddolose(19)lose(20)**....Preparing the integration of both the bg. only and the s+b*....vetors* DO i=1,no_binsintegr_b(i)=result_b(2,i)integr_sb(i)=result_sb(2,i)ENDDO**....Integrating!* DO i=2,no_binsintegr_b(i)=integr_b(i)+integr_b(i-1)integr_sb(i)=integr_sb(i)+integr_sb(i-1)ENDDO**....Writing the integrated distributions to files*....int_sb and int_b* open(31,name='int_sb',status='unknown')open(32,name='int_b',status='unknown')do i=1,mwrite(32,*)integr_b(i)enddodo i=1,m_sbwrite(31,*)integr_sb(i)enddo 66



lose(31)lose(32)**....Calulating the onfidene for bg. only* l_b=0.i=1DO WHILE(expt.GE.result_b(1,i))l_b=integr_b(i)i=i+1ENDDO**....And signal+bakground....* l_sb=0.i=1DO WHILE(expt.GE.result_sb(1,i))l_sb=integr_sb(i)i=i+1ENDDO**....Computing derived quantities....**....the observed signal onfidenel_s=l_sb/l_bgen_xisq=(2*stot)-wt_expt**....Preparing alulations of expeted CL_s and CL_sb* DO i=1,no_binsinterm_s(i)=integr_sb(i)/integr_b(i)interm_sb(i)=result_b(2,i)*integr_sb(i)ENDDODO i=1,no_binsinterm_s(i)=result_b(2,i)*interm_s(i)ENDDODO i=2,no_bins 67



interm_s(i)=interm_s(i)+interm_s(i-1)interm_sb(i)=interm_sb(i)+interm_sb(i-1)ENDDO**....<CL_s> and <CL_sb>!* l_s_infty=interm_s(no_bins) !the expeted signall_sb_infty=interm_sb(no_bins)PRINT 799799 FORMAT (/3x,'CL_sb CL_b CL_s& <CL_s> <CL_sb> <CL_b>')PRINT 899,l_sb,l_b,l_s,als,alsb,alb899 FORMAT(E16.8,1X,E16.8,1X,E16.8,1X,E16.8,1X,E16.8,1X,E16.8)PRINT *,' 'END
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Appendix Bprogram susypar**....Program that omputes the exluded M_2/mu plane in MSSM* impliit nonedouble preision m2,mw,mz,m1,m0,k1,k2,beta,theta,pidouble preision u(2,2),v(2,2)double preision sigma(2,2),detX,Ql,Qrdouble preision Gf,g1,g2,lambda,gamma,branhing_ratiodouble preision m,m_prim,mu,w_width,m_rot**....This is the varibles onerning the diagonalization of the*....neutralino mixing matrix. Borrwed from SUSYGEN2.2,*....see IC/HEP/97-5.* real fma(4,4),wr(4),dr(4,4),work(16),vtemp(4)double preision neut_mass(4),neut_phase(4)double preision vo(4,4),neut_mix(4,4),neut_dmatrix(4,4),a1,a2double preision temp,temp1,t1,t2,t3,t4integer ierrdouble preision w,w_root,bv**....Counting variables* integer i,j**....variables onerning HBOOK69



* logial hexistexternal hexistinteger mwp,hparameter(mwp=11200000)ommon/paw/h(mwp)all hlimit(11200000)**....Reading the value of tan(beta) from file betavalue* open(10,name='betavalue',status='old')read(10,*)bvlose(10)**....Reading the value of the branhing ratio of*....W^+ -> X_0^+ X_0^0 from file br_rate* open(11,name='br_rate',status='old')read(11,*)branhing_ratiolose(11)**....Values of onstants* pi=3.1415927mw=80.41 !W-boson massmz=91.187 !Z-boson massbeta=atan(bv) !mixing angle between Higgses va. exp. valuetheta=asin(sqrt(0.23124)) !Weak mixing angleGf=1.16639e-5 !Fermi oupling onstantw_width=2.06*branhing_ratio !2.06 GeV is the (W -> anything) width**....Pauli matrix #3* sigma(1,1)=1sigma(1,2)=0 70



sigma(2,1)=0sigma(2,2)=-1**....HBOOK histogram booking* CALL hbook2(123,'M_2/mu plane',801,-200.,200.,401,0.,200.,0.)**....Neutralino Mixing Matrix N(ij)* vo(1,1)=os(theta)vo(1,2)=-sin(theta)vo(1,3)=0.vo(1,4)=0.vo(2,1)=sin(theta)vo(2,2)=os(theta)vo(2,3)=0.vo(2,4)=0.vo(3,1)=0.vo(3,2)=0.vo(3,3)=os(beta)vo(3,4)=sin(beta)vo(4,1)=0.vo(4,2)=0.vo(4,3)=-sin(beta)vo(4,4)=os(beta)**....Varying some of the parameters in the MSSM theory: M_2 & mu* DO mu=-200.,200.,0.5DO m=0.,200.,0.5**....The neutralino mixing matrix (this is opied from SUSYGEN):71



* m_prim=m*5./3.*sin(theta)**2/os(theta)**2**....This is the neutralino mixing matrix* fma(1,1)=m_prim*os(theta)**2+m*sin(theta)**2fma(2,1)=(m-m_prim)*sin(theta)*os(theta)fma(3,1)=0.fma(4,1)=0.fma(1,2)=(m-m_prim)*sin(theta)*os(theta)fma(2,2)=m_prim*sin(theta)**2+m*os(theta)**2fma(3,2)=mw/os(theta)fma(4,2)=0.fma(1,3)=0.fma(2,3)=mw/os(theta)fma(3,3)=mu*(2.*sin(beta)*os(beta))fma(4,3)=-mu*(os(beta)**2-sin(beta)**2)fma(1,4)=0.fma(2,4)=0.fma(3,4)=-mu*(os(beta)**2-sin(beta)**2)fma(4,4)=-mu*(2.*sin(beta)*os(beta))**....Diagonalizing the mixing matrix in order to find*....the neutralino mass egienstates* all eisrs1(4,4,fma,wr,dr,ierr,work)if(ierr.ne.0)thenprint *,'FUBAR!!!!!'stopendifdo i=1,4neut_mass(i)=dble(abs(wr(i)))neut_phase(i)=dble(sign(1.,wr(i)))enddodo i=1,4do j=i+1,4if(neut_mass(i).gt.neut_mass(j))thenall uopy(dr(1,j),vtemp,4)temp=abs(neut_mass(j))72



temp1=neut_phase(j)all uopy(dr(1,i),dr(1,j),4)neut_mass(j)=neut_mass(i)neut_phase(j)=neut_phase(i)all uopy(vtemp,dr(1,i),4)neut_mass(i)=tempneut_phase(i)=temp1endifenddoenddodo i=1,4do j=1,4neut_dmatrix(i,j)=dble(dr(i,j))enddoenddodo i=1,4do j=1,4neut_mix(i,j)=vo(j,1)*neut_dmatrix(1,i)+vo(j,2)*&neut_dmatrix(2,i)+vo(j,3)*neut_dmatrix(3,i)+vo(j,4)*&neut_dmatrix(4,i)enddoenddo**....End of SUSYGEN's matrix-diagonalizing part***....These are the hargino mixing matries*....(sine the hargino mixing matrix is a 2x2 matrix,*....dagonalization has been done analytal):* if(tan(beta).gt.1.)thent1=1.if((m*os(beta)+mu*sin(beta)).gt.0.)thent2=1.elset2=-1.endifif((m*sin(beta)+mu*os(beta)).gt.0)thent3=1.elset3=-1. 73



endift4=1.elseif(tan(beta).lt.1.)thenif((m*os(beta)+mu*sin(beta)).gt.0.)thent1=1.elset1=-1.endift2=1.t3=1.if((m*sin(beta)+mu*os(beta)).gt.0)thent4=1.elset4=-1.endifendif**....This is part of the hargino mixing matrix* w=(m**2+mu**2+2*mw**2)**2-4*(m*mu-mw**2*sin(2*beta)**2)**....Sine w enters the matrix under a sqare root, negative values aren't*....allowed!* if(w.lt.0.)thenw=0.print *,'Just adjusted for negative roots!'endif**....The different matrix elements of the hargino mixing matrix.*....These expressions are found analytial.* u(1,2)=t1/sqrt(2.)*sqrt(1+(m**2-mu**2-2*mw**2*os(2*beta))/&sqrt(w))u(2,1)=t1/sqrt(2.)*sqrt(1+(m**2-mu**2-2*mw**2*os(2*beta))/&sqrt(w))u(2,2)=t2/sqrt(2.)*sqrt(1-(m**2-mu**2-2*mw**2*os(2*beta))/74



&sqrt(w))u(1,1)=-t2/sqrt(2.)*sqrt(1-(m**2-mu**2-2*mw**2*os(2*beta))&/sqrt(w))v(2,1)=t3/sqrt(2.)*sqrt(1+(m**2-mu**2+2*mw**2*os(2*beta))/&sqrt(w))v(1,2)=-t3/sqrt(2.)*sqrt(1+(m**2-mu**2+2*mw**2*os(2*beta))&/sqrt(w))v(2,2)=t4/sqrt(2.)*sqrt(1-(m**2-mu**2+2*mw**2*os(2*beta))&/sqrt(w))v(1,1)=t4/sqrt(2.)*sqrt(1-(m**2-mu**2+2*mw**2*os(2*beta))&/sqrt(w))**....The oupling of the hargino and the neutralino to the W:* Ql=(neut_mix(1,2)*v(1,1))-&(1./sqrt(2.)*neut_mix(1,4)*v(1,2))Qr=(neut_mix(1,2)*u(1,1))+&(1./sqrt(2.)*neut_mix(1,3)*u(1,2))**....Calulating the hargino mass* m_rot=0.5*(m**2+mu**2+2*mw**2-sqrt((m**2-mu**2)**2+& 4*mw**4*(os(2*beta))**2+& 4*mw**2*(m**2+mu**2+2*m*mu*sin(2*beta))))m2=sqrt(m_rot) !the hargino massm1=neut_mass(1) !the neutralino mass**....The ratio between the hargino/neutralino masses and the W mass* k1=m2/mw 75



k2=m1/mw**....a few of the onstants in the Kalinowsky-Zerwas equation* lambda=(1-(k1**2)-(k2**2))**2-&(4*(k1**2)*(k2**2))g1=((Gf)*(mw**3)*sqrt(lambda))/(6*sqrt(2.)*pi)g2=(2-(k1**2)-(k2**2)-((k1**2)-(k2**2))**2)*....This is the Kalinowski-Zerwas equation as found in Phys. Rep. 117 (1985):gamma=g1*(g2*((Ql**2)+(Qr**2))+(12*k1*k2*Ql*Qr))**....Idioti result-preventing hek* if(m1+m2.lt.0.)thenprint *,m1,m2,m1+m2print *,'?'endif**....Histogramming the physial possible results:* if((m1+m2).le.mw)then !To hek if m1+m2 mass less than W-mass.!if not -> unphysial reation!**....Cheking whether or not the W width omputed in the Haber-Kane*....equation is less or greater than the experimental W width.*....These are all for the SUSY deay, with sneutrino og neutralino*....nearly mass degenerate:***....Exluded results are histogrammed* if(gamma.gt.w_width)thenall hfill(123,real(mu),real(m),real(gamma))endif 76



endif999 ontinueENDDOENDDOall hrput(0,'susy.hst','n')END
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