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Abstract

Two methods are used to measure weak contributions to the Bhabha cross section
in the acceptance of the DELPHT Small Angle Tagger. Data taken with the Small
Angle Tagger and the Very Small Angle Tagger in 1993 are used. Theoretical
formulae of the cross section in the above acceptance containing leading higher-
order weak corrections are implemented in a computer program, and a study
of various weak contributions has been performed. Corrections to the number
of light neutrino species in Nature due to the introduction of weak higher-order
corrections in the SAT visible cross section in the luminosity measurement, are
determined.
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Chapter 1

Introduction

One of man’s enduring hopes has been to find a few simple general laws that
would explain why Nature with all its seeming complexity and variety is the way
it is. Today the closest we can get to an unified view of Nature is a description
of the "fundamental” constituents of matter; the elementary particles, and their
mutual interactions. In the last forty years there has been dramatic progress in our
understanding of these particles and the forces between them. This has resulted in
the formulation of the Standard Model of particle physics, which seems to provide,
at least in principle, a microscopic basis for all known physical phenomena except
gravity.

The Standard Model attempts to explain all the phenomena of particle physics
in terms of the properties and interactions of a small number of particles of three
distinct types: the spin 1/2 fermions leptons and quarks and the spin-1 gauge
bosons.

One of the forces acting between these fermions is the weak force, where nuclear
B-decay, which was observed already at the end of the last century, is the most
famous example of an interaction with such a force acting. Fermi postulated in
1935 a pointlike interaction between four fermions to describe 3-decay, of strength

G 1],

G = 9 107°GeV 2 (1.1)

M2 ’

where Mp is the mass of the massive propagator P, and the weak couplings to
the quarks and leptons are denoted by the single number g. Later in this cen-
tury, processes such as the 7 — y and y — e decays were discovered and were
found to have lifetimes in the region of the g-decay lifetime. The concept of a
distinctive class of interactions began to emerge and in the 1950°s the discovery
of parity non-conservation in -decays led to the formation of the V—A theory of
electroweak interactions. This V—A (vector-axial vector) structure of the weak
currents emerged from the experimental fact that only left handed fermions are

present in the weak interactions. This theory however turned out to have prob-
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Figure 1.1: The 79 mass together with its uncertainty as a function of the years
from 1980-1995 [5]. The dramatic improvement in the uncertainty after 1989
comes from the fact that the LEP accelerator became operative.

lems with renormalisability’. The introduction of massive gauge hosons and a
spontaneous broken gauge theory, in which the gauge boson masses were gener-
ated by the Higgs mechanism, resolved this problem, and formed a theory known
as the Glashow-Salam-Weinberg theory. This theory, also known as the Standard
Model of electroweak interactions, unified the weak and electromagnetic forces,
and also predicted the existence of weak neutral current interactions mediated by
an uncharged boson, the so-called 79 boson. This prediction was later confirmed
experimentally.

The theory has also been successful in predicting the existence of the gluon,
the top-quark? and predicts the existence of a Higgs-boson. There is however
some questions one may ask, which makes us think that the Standard Model can
not be the final solution. The theory does not explain why the particles carry the
masses which have been measured, and why the quarks and leptons exist in three
generations. There is a large amount of parameters which are left undetermined
and must be inserted by hand. If these parameters are truly determined by theory,
one must find a still more fundamental theory which reduces to the Standard Model
at presently explored energies and precisions. Some schemes predicts new physics

VA technique developed to deal with infinites in the theories.
2Fermilab’s Tevatron measured the top-quark to have a mass 180 + 12 GeV, spring 1995.



at the cutoff energy [2]

Vi, 12

where M is the vector-boson mass. This cutoff is of order a few TeV, and repres-

/\N

ents the threshold energy for new physics. Future experiments such as the LHC
(Large Hadron Collider), will cover this energy range and reveal the existence
of new physics. However, particles that are too heavy to be openly produced at
lower energies can affect the properties of the Z? boson through weak radiative
corrections. The virtual presence of heavy physical states affect the theoretical
predictions of the Standard Model in a calculable way. Thus, high precision meas-
urements at presently available energies offer not only the opportunity to test the
electroweak model, but also to look for departures due to new physics at energies
beyond the range of what is available today.

When it comes to experimental precision tests of the electroweak model, ete™
annihilation processes at the energy of the 7% boson are ideal. T.ots of physical
observables sensitive to the electroweak couplings can be measured at very high
accuracies from this process. An ete™ accelerator was therefore built at CERN
during the 1980’s, LEP. Four experiments have been operative in LEP since 1989.
Tests are made by comparing cross-sections and asymmetries with the theoretical
predictions for different centre-of mass energies around the 79 resonance peak.
Fach successive year the precision of the Standard Model tests has improved
thanks to the increase in the statistical and systematical precision of the measure-
ments and also thanks to the improvements of the theoretical predictions [3]. A
plot of the 7% mass and corresponding uncertainty as a function of time is shown
in Figure 1.1.

The work of this thesis will cover some aspects of the luminosity measurement,
in the DELPHI experiment, mainly the weak contributions to the SAT visible
Bhabha scattering cross section, which is described in Chapter 3. Experimental
measurements of weak effects in low angle Bhabha scattering are performed. Ef-
fects on the Z° lineshape measurement due to the introduction of higher order
weak contributions in the visible Bhabha cross section are examined. Results
from both the experimental measurements and the effects on the Z° lineshape
measurement are presented in Chapter 4. An introduction to the instruments
used in the measurements is given in Chapter 2. But first, in the next section, an
outline of the electroweak Standard Model is presented.

1.1 The Standard Model of electroweak interac-
tions

One of the most profound insights in theoretical physics is that interactions are
dictated by symmetry principles. The present belief is that all particle interactions



may be dictated by so-called local gauge symmetries.

The Standard Model of elecroweak interactions unifies electromagnetism and
weak interactions. The gauge group of the theory is SU(2)r x U(1)y which
consists of the SU(2)r group of weak isospin, T', and the U(1)y group of weak
hypercharge, Y. FExperiments show that only left-handed fermions are present in
the charged weak currents. The left-handed component of the fermion fields of

;z;—(f) and (Z,) (1.3)

therefore transforms as SU(2)r doublets of weak isospin. d; = >, Vijd; where V
is the Cabibbo-Kobayashi-Maskawa mixing matrix. The right handed fields are
SU(2)r singlets.

The SU(2)r structure of the weak currents leads to the an isospin triplet of

the 1" fermion family,

weak currents

; 1 . .
JA = 107#5771/)7 with 1=1,2.3, (]-4>

where 1 denotes the isospin doublets in (1.3) and 7; are the Pauli matrices. The
U(1)y gauge symmetry leads to the weak hypercharge current

T = Y, (1.5)

where the weak hypercharge Y is defined by

Y
Q=T"+ oR (1.6)
where () is the electromagnetic charge and 77 is the third component of the weak
isospin. That is,

N < ] N
js :,]§+§jj. (1.7)

The coupling of the weak isospin current to the weak isospin triplet W;:? with
1 = 1,2,3 and coupling constant ¢, and the coupling of the weak hypercharge
current to the singlet B, with coupling constant ¢’, gives the interaction term in
the Lagrangian this form [4]

/
L= —ig(Jy W) — i) B,. (1.8)
Since the presence of mass terms for gauge fields destroys the gauge invariance
of the Lagrangian, the weak interactions, mediated by massive gauge bosons,
raises a problem. The introduction of "spontaneous symmetry breaking” through
the Higgs-mechanism, helps us, by making it possible to generate the mass of a
particle without breaking the SU(2)r x U(1)y gauge symmetry. The two fields

1
W= J;(WJ TiW?) (1.9)

6



H Boson Mass (GeV) H

y <3 x 1077
79 91.187 + 0.007
W=+ 80.22 + 0.26

Table 1.1: Gauge boson masses [5].

get massive by this spontaneous symmetry breaking and describe the two charged
massive bosons W¥*. The masses of these two bosons are

1
My = 39 (1.10)

where v is the vacuum expectation value of the Higgs field. The two neutral fields
W; and B, mix in such way that the physical state

A, = BycosOyw + T/V;‘?sinﬂw7 (1.11)
is massless and the orthogonal state
7, = —B,sinfy + W3C0(99W7 (1.12)

is massive. fy is called the Weinberg angle or weak mixing angle and is given
by the ratio of the coupling constants of the two independent SU(2)7 and U(1)y
groups

tanfw = ¢'/g. (1.13)

The mass of the 7° boson, which is represented by the 7, field, is given by

1
My = 57)\/.(]2%—.(]’2. (1.14)

The presently known boson masses can be seen in Table 1.1. By manipulating
FEqn. 1.10, 1.13 and 1.14, it is easy to find the relation between the W* mass and
the 7% mass to be

COS!QW = MW/MZ (]]5)
The inequality My # My is due to the mixing between W; and B, fields where
it is required that the photon is massless. In the limit Ay = 0, we see that

My = Mw. The result (1.15) for My /My is a prediction of the Standard Model
with its choices in the Higgs sector. The parameter p, which specifies the relative
strength between the neutral and charged current weak interactions, will due to

Eqn. 1.15 be fixed to

M2
V. (1.16)

P= MZcos20y

7



Fermion Mass (MeV
(MeV)

Ve <T7.0x107°°
e 0.511

u 2-8

d 5-15

v, < 0.27

L 105.66

c 1000-1600
s 100-300
Vs, < 24

T 1777.14+0.5
f (180+12) x10?
b 4000-4500

Table 1.2: Fermion masses. All values is taken from [5], except the top mass
value, which is an average of the CDF and DO results [6], and the v, limit [7].

An experimental measurement of the parameter p is therefore an interesting test
of the electroweak theory.

A fermion mass term in the Lagrangian destroys, like a mass term in Eqn. 1.8,
the gauge invariance of the Lagrangian. The same Higgs doublet which generates
W# and 7° masses is however also sufficient to give masses to the leptons and
quarks. The fermion masses are given by

B G o
— ok

where (¢ are the fermion coupling constants. These constants are unconstrained

(1.17)

my

by theory and have to be determined through experimental measurements of the
fermion masses. The presently known values of the fermion masses can be found
in Table 1.2.

The weak neutral current JLVC can be found from (1.8), (1.12) and by using
the requirement (1.13):

JNC =T — sin®Owi", (1.18)

which relates the neutral current J¥Y to the weak isospin current J. Tt is cus-

NC
!

tomary to express in this form:

1
JNC = ¢7M§(q}j — ey ). (1.19)

By comparing (1.18) and (1.19) one finds the vector and axial-vector couplings to
be
el =T7 — 25in*0wQy, (1.20)

U
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ol =177, (1.21)

where T? and @ ; are the the third component of the weak isospin and the charge
of fermion f, respectively.

The Standard Model has three free parameters which are not fixed by theory
(neglecting the masses of the fermions and the Higgs-hoson). In order to minimize
the theoretical uncertainty on the predictions from the theory, it is clearly advant-
ageous to choose physical inputs which are precisely measured. Two such precise
inputs are the fine structure constant, «, determined from Thomson scattering
[5],

a = 1/137.0359895(61), (1.22)

and the Fermi coupling constant, determined through measurement of the muon
lifetime [5],

Gr = 1.16639(2) x 107°GeV 2 (1.23)

For physics at the Z° resonance, the most natural choice of the third parameter
is the 7" mass, where M is obtained from a precise scan of the Z° resonance
shape. With these parameters as inputs, predictions for other observables can be
made and confronted with experiment.



Chapter 2

Instruments

The biggest research center in the world for nuclear and particle physics is CERN'
near Geneva, Switzerland. The CERN organization was established in 1955 in an
attempt to regain Furope’s position in the forefront of scientific research which
was lost during the Second World War. Today this European collaboration has
17 member states, among them Norway.

2.1 The LEP ring

The LEP? ring with colliding beams of electrons and positrons is the newest and
most complex accelerator at CERN. It was built during the period 1983 to 1989
in a 27 km long circular tunnel and is the biggest colliding beam accelerator in
the world. Tt was designed to accelerate electrons to an energy around 45.5 GeV
and then to store the electron-bunches at this energy. This gives a centre-of-mass
energy of 91 GeV which is ideal for Z° production. Of eight interaction points
in the ring, four are strongly focused and equipped with detectors. These four
detectors (experiments) have been operative since August 1989 and have detected
over 4 millions 7Y decays each produced by LEP.

The LLEP ring is soon going to be upgraded to run at higher beam-energies
of somewhere hetween 90-100 GeV?*. LEP is then changing name to LEP2. One
of the tasks for LEP2 is to produce particles which could reveal the existence
of a Higgs-boson. A feature which is important to consider with LEP2 is the
synchrotron energy loss. For a particle of charge e, velocity v = e, and energy
F = yme?, traveling in a circular orbit of radius R, the energy loss per revolution
oK is [5]

47 e?

3 Eﬁ%“. (2.1)

"Conseil Europeen pour la Recherche Nucleaire. Today the official name is Furopean Or-

oK =

ganization for Nuclear Research, but the old acronym is still used.
2Large Electron Positron collider.
3TEP raised its beam-energy to 65 GeV on Qctober 30, 1995.
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For high-energy electrons (3 = 1), this becomes:
SE(GeV) =885 x 107 °[E(GeV)]*/R(m). (2.2)

If we use these formulae for the LEP and LEP2 beam-energies, we see that the
LLEP2 energy loss will be about 20 times the LEP energy loss. In LEP2 this
electron loss must therefore be compensated by installation of super-conducting
RF-cavities for acceleration and installation of an improved cooling system.

2.2 DELPHI

DELPHT* is one of the four experiments in the LEP ring. The other three are
ALEPH, .3 and OPAL. The DELPHI detector [8] consists of many sub-detectors
with various tasks. LEP produces a great variety of particles in the collisions and
different particles usually require different detectors to be seen. All the different
sub-detectors are therefore needed to detect these different particles. A short
description of some of the most important sub-detectors follows (the Tuminosity
monitors are described in some greater detail in the next sections).

Hadron calorimeter Used for measuring the energies of hadrons. A hadron
calorimeter is necessary for the detection of neutral hadronic particles. The
detector consists of a barrel and a end-cap section.

High density projection chamber (HPC) A barrel electro-magnetic calori-
meter used for determining electron and photon energies. When a shower
develops inside a module, it ionizes the gas. The freed electrons drift to-
wards the end of each gap, where they are detected by a proportional cham-

ber.

Time projection chamber (TPC) Used for finding particle momenta and charge.
A charged particle crossing the gas volume creates an ionization path along
its track. The ionization path drifts towards a multi-wire proportional cham-
ber due to the longitudinal electric field. The magnetic fields bends the
trajectories for momentum determination.

Barrel RICH The Ring Imaging Cherenkov counter is used to identify hadrons.
Whenever the velocity of a charged particle exceeds ¢/n (n is the refractive
index of the medium), Cherenkov light is produced. Tt can be shown that
the light will travel relative to the particle-axis at an angle 6 given by

1
cosl) = —. (2.3)

n

By measuring 6, 3 can be found, and with the use of TPC the momentum
is found and since 8 = p/ F, the particle mass can be determined.

“DEtector for Lepton, Photon and Hadron Identification.
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Forward Chamber A Barrel Muon Chambers

Forward RICH Barrel Hadron Calorimeter

Forward Chamber B Scintillators
Forward EM Calorimeter Superconducting Coil
Forward Hadron Calorimeter High Density Projection Chamber
Forward Hodoscope Outer Detector

Forward Muon Chambers

Surround Muon Chambers

DELPHI

Time Projection Chamber

Figure 2.1: The DELPHTI detector.

Micro-vertex detector Placed very close to the interaction point. Gives high
precision measurements of charged tracks close to the beam pipe.

2.3 The DELPHI Coordinate System

In this thesis the following definition of the DELPHI coordinate system is used:
x: Horizontal, pointing towards the LEP centre.
y: Up.

z: Along beam, anticlockwise (as viewed from above), that is, parallel to the

electron beam.

The corresponding spherical coordinates are defined by

x = rsinfcoso, 0<o¢<2r
y = rsinfsing, 0<op<m
z = rcosf,

where 1 is the distance from the origin.
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Figure 2.2: The SAT detector’s place in the hierarchy of experimental particle
physics.

2.4 SAT

The SAT? detector consists of electro-magnetic calorimeters installed on hoth
sides of the interaction point and a tracker unit of 2 planes in front of one of
the calorimeters. It is made for luminosity monitoring through the detection of
Bhabha-scattering. The calorimeters covers scattering angles between approxim-
ately 43 and 135 mrad corresponding to a visible cross section of about 27 nb after
selection cuts. The importance of the forward region for luminosity monitoring
is discussed in the next chapter. The detector is also used for identification of
reactions which are backgrounds for interesting processes. Such a background
process can be radiative Bhabha scattering, where the final-state electrons remain
near to the beam pipe and is a background to neutrino counting through the
process eTem = 70 — vy,

Figure 2.1 shows where SAT was placed in the DELPHIT experiment, it was
situated approximately where STIC can be seen in the figure. Figure 2.2 shows
the SAT detector’s place in the hierarchy of experimental particle physics.

The segmentation of one half barrel is shown in Figure 2.3. From the figure
we can see that the calorimeter consists of eight rings where the inner six have
radial extensions of 3.00 cm and the two outermost 3.25 ecm. The inner ring starts
at a radius of 10 cm and the outer ends at 34.5 cm. The ® segmentation is 15.0
degrees in the inner four rings and 7.5 degrees in the outer four. The active part
of the calorimeter modules are located at zposition between 232 em and 272 cm.
A set of lead masks were installed in front of one of the calorimeters to define a
precise acceptance region. A second mask, the ¢ mask, covers the junction in the
vertical plane of the two halves of the masked calorimeter. More information of
the calorimeter can be found in references [8, 9].

The tracker unit of 2 planes was installed in front of the SAT calorimeter on

"Small Angle Tagger

13



Figure 2.3: The SAT calorimeter.

side A, opposite the masked calorimeter in arm C. The two planes are located at
z = -230.0 and -202.7 cm. The sensitive region extends from 43.3 to 120.3 mrad,
and the inner radii of both planes are 9.95 em. For the 1993 running the use of the
tracker data allowed a considerable reduction in the systematic error due to the
definition of the fiducial region in the unmasked calorimeter. More information
about the SAT tracker can be found in [10].

When space around the SAT was freed up due to the installation of a beam-
pipe with a smaller radius, the decision was made to replace SAT with a new
luminosity monitor. The replacement took place during the spring in 1994 and
the new detector is described in the following section.

2.5 STIC

The STIC (Small angle TTle Calorimeter) detector was installed before the 1994
LEP run. 1t consist of two lead scintillator sampling calorimeters, each divided
into two halves for a total of four modules. It is located in DELPHI at 2200
mm from the interaction point, covering an angular region from 29 to 188 mrad,
with a front radius between 65 and 417.5 mm [11] corresponding to a visible
cross section of about 60 nb after selection cuts. The calorimeters consist of
47 lead /scintillator layers and two planes of Si detectors. The two planes of Si
strip detectors are installed because the detector should be able to measure the
direction of a shower with a ~10 mrad accuracy to improve the rejection of off
momentum electrons. A tungsten ring (for the same purpose as the lead mask
with SAT) is also used with STTC but in addition radial position measurements
with this new detector makes it possible to define other smaller acceptance regions

14
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Figure 2.4: Layout of the position of the VSAT modules with respect to the
DELPHT origin.

and determine the luminosity without using the tungsten ring, thus providing an
(almost) independent luminosity measurement. The major improvements with
respect to the SAT luminometer can be summarized as follows:

1. A very good energy resolution allows for an easy separation of Bhabha scat-
tering events from the background due to off momentum particles from
beam-gas interactions.

2. The accuracy in the definition of the internal geometry of the detector, the
absence of discontinuities and the good spatial resolution allow for a very
precise definition of the geometrical acceptance.

2.6 VSAT

The VSAT (Very Small Angle Tagger) is also an electro-magnetic calorimeter for
the luminosity measurement in DELPHI. Tt is composed of four modules adjacent,
to the beam pipe, in the elliptical section located at 7.7 m from the interaction
point (further away from the TP than the super-conducting quadropoles (SCQ)),
two in the forward region and two in the backward region (Figure 2.4). The
distance between two neighboring modules is about 12 ¢cm. The dimensions of
the four calorimeters, composed of planes of detectors and tungsten blocks, are 3
cm in the transverse horizontal direction (), 5 cm in the vertical direction (y) and
about 10 ¢m along the beam direction (z). Due to the very small emission angle
of the Bhabha events accepted in the VSAT, in spite of the restricted angular
acceptance of the detector which is between 5 and 7 mrad in polar angle and 180
degrees in azimuth, the accepted Bhabha cross section is very large, about 500
nb. Due to the defocusing effect of the SCQ magnets, the visible cross section
will be larger than the visible cross section in the angular acceptance between
5 and 7 mrad, Bhabhas with somewhat smaller angles (before they reach the

15
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Figure 2.5: Diagram illustrating the principle of asymmetric acceptances. The
solid horizontal line shows the nominal beam axis and the dashed line parallel
to this axis is an arbitrary radially displaced beam axis. The dashed lines not
parallel to the beam axis, show the projection of the inner radius of the "inner”
acceptance region in arm C through a vertically displaced TP to arm A.

SCQ) will also be monitored. That is, the effective distance from the center of
DELPHT to the VSAT modules will increase [13]. The large cross section allows
the Tuminosity to be monitored with high statistics. The energy measurement of
the shower produced inside the modules is made using the signals of 11 silicon Full
Area Detectors (FAD), whereas the shower position is measured using 3 silicon
strip planes, with a pitch of 1 mm, placed at 5, 7 and 9 radiation lengths. More
details are given in references [14, 15].

2.7 Beam displacements

The center of the DELPHI detector is defined as the center of the TPC. Several
detectors (Micro-vertex detector, VSAT) measure the beam interaction point (1P)
relative to this centre. The IP position varies with time and it is necessary to
study how the detector acceptances are affected by this and find methods to reduce
the effects on the visible cross section caused by these TP-displacements. A well-
established method of defining an asymmetric geometric acceptance in a pair of
identical detectors placed symmetrically about the TP can be used to minimize the
sensitivity of the acceptance to the properties of the 1P [16]. Figure 2.5 illustrates
the principle of this method.

16



From this figure we see that a vertical displacement of the TP from its nom-
inal position (the center of DELPHI), the minimum scattering angle in the top,
right 7inner” counter, fy, is reduced while the minimum scattering angle into the
bottom, right "inner” counter, 5, is increased. The net effect is a lowest order
cancelation in the sum of the changes to the visible cross-section. For longitud-
inal displacements of the TP the use of the acceptance mask technique in SAT
prevents the longitudinal symmetrization of the acceptance. This results in an
uncompensated first order dependence of the acceptance to the z-position of the
P [17]:

1 Ao

oo Az

— (—0.754 + —0.002)%/cm, (2.4)

where o is the measured cross section, Az the longitudinal displacement, oq is
the cross section at Az = 0 and Ao the correction on the cross section due to
the longitudinal displacement. Figure 2.6 shows how the SAT detector acceptance
depend on various beam parameters [17].

17
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Chapter 3

Luminosity

A cross section is measured by using the formula

N
y =, 3.1
Tr = (3.1)

where N, is the number of events produced in any reaction z, and o, is the cross
section for that process. The integrated luminosity, I, is defined as

= /[,dt _ N (3.2)
. Oy
It is important to know the beam-luminosity in an experiment at a high level
of accuracy if one is going to measure any cross-section precisely. The luminos-
ity measurement at LEP consists of counting the number of events produced by
Bhabha scattering detected within a certain acceptance and dividing by the the-
oretical cross section into that acceptance. An accurate determination of absolute
cross sections for other processes can therefore be achieved with a high precision
measurement of the luminosity. Bhabha scattering is a process one has found suit-
able for the determination of the lTuminosity due to its high cross section at low
angles and its well known theory. The theory is however not trivial because the
present LEP Tuminometer precisions is very high and contributions to the cross
section from weak and higher order effects are therefore non-negligible. Lowest

order QED calculations do thus not suffice.

3.1 Present experimental errors on the luminosity
measurement at LEP

Recently the LEP Collaborations have all made significant progress in reducing
the pure experimental error in their lTuminosity measurements. Some of them

have reached a precision better than 0.1 % in this error. By the replacement of
SAT by STIC, the experimental error in the DELPHI luminosity measurement
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was reduced from 0.24 % to 0.09 % [18]. The theoretical predictions of these
measurements must therefore be improved to the same below 0.1 % regime in order
to avoid letting the theoretical errors unnecessarily impede the high precision tests
of the Standard Model.

In the rest of this chapter T will present a formulae for calculation of the lowest,
order QED and EW Bhabha cross section and show plots of these and of some
O(«) and higher-order contributions to the weak cross section.

3.2 Bhabha Scattering

By elastic Bhabha Scattering one means the process

ete” = ete” (3.3)

Te~ pairis detected in the final state. This process never occurs, as

where only an e
the process is always accompanied by the emission of electro-magnetic radiation.

This is called Radiative Bhabha Scattering

ete” = etey (3.4)

where an additional photon is also produced. A Bhabha event in the forward
direction can be seen in Figure 3.1.

3.2.1 The QED Cross Section

The Feynman diagrams in Figure 3.2 visualize lowest order QED Bhabha scat-
tering. The electron and positron interact by exchanging either a space-like or a
time-like photon-propagator. At LLEP energies, where the electron mass can be
neglected, the centre-of-mass differential cross section is found to be [19]

ED
do? a?

——((1+H+2
10 430 )+

Ut et 0+ (35)

(1 —¢)? 1 —e¢

where ¢ = cosfl, s is the centre-of mass energy squared and df2 is the solid angle
element decosfldgp. The angles # and ¢ are defined as the polar and azimuthal
scattering angles of the positron. The three terms in the formula correspond
to the annihilation diagram, the exchange diagram and the interference term,
respectively. This formula can be reduced to a simpler form:

de@PP 2 <3 +C2)2 (36)

a0 4s

Figure 3.3 shows how the differential cross section varies as a function of ¢ and

1 —¢

the centre-of-mass energy. When the polar angle is small, § < 1, we can write

do8"P 1602 1

20



> ™ TE

< | DELPHI Interactive Analysis 0o s 5 o
f /C?; Beam: 45.6 GeV Run: -999 DAS: 21-Mar-1994 (0 (25 (5 (0
d 14:17:05 o 0 0 0

é%

7/

[ ! Evt: 1 .

& Proc: 21-Mar»19 - Scan:  30-Mar-1994 (0 (0 (0 (0
=7 . 2.2-X

Figure 3.1: A Bhabha event in the forward directions seen in the X-Y, 7-X and
7-Y plane.
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Figure 3.2: Feynman diagrams for the lowest order QEI Bhabha scattering.

This formula clearly shows how strongly the cross section depends on the scat-
tering angle, A. To find a integrated cross section, we can write the lowest order
differential cross section as

AP B 32ma? 1

3.8
do s 03 (3:8)
resulting in an integrated cross section of
16ma?| 1 1
QRD _
70 B S [9;7w N eznm”‘|7 (39)

where 0,,,;, and 0,,,,. define the outer limits of the acceptance. An uncertainty on
the inner radius, R,,;,, of the acceptance, thus, induces an error on the estimated
cross section, of

AO—(?ED A'gm,in ART)MW
—— ~2 X ~ 2 X .
TQED Hm,in Rm,in

(3.10)

The uncertainty of the SAT calorimeter geometry is 2-3 mm and this is why one
has found it necessary to install a lead-mask in front of one of the calorimeters.

3.2.2 The Electro-weak Cross Section

As mentioned earlier, the contribution from the weak diagrams, shown in Fig-
ure 3.4 cannot be neglected in the luminosity measurement. The electro-weak
differential cross section is found to be [19]:
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Figure 3.3: The differential lowest order QED cross section as a function of the
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polar scattering angle, #, and the centre-of-mass energy.
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Figure 3.4: Feynman diagrams for the lowest order weak Bhabha scattering.
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+2ReS 7 (s5,5) + 2ReS" (5,t) + 2ReSV (1, 5) + 2ReSY (1, 1)
4577 (s, 8) + 2ReS77 (s, 1) + S77 (1, t))

where the S are defined by

S(s,8) = [FI(1 4+ ¢%) + G (20)| 7 (5)v4(5)

9.0) = [ 6] L2 o = 5700

- N N (v (1
S”(t,t) _ Q[F”[(] + C)Q +4} + (i {(] + 0)2 - 4]] X?,( )X,?( )
0oy
a’nd .. . . . . .. . . . .
F' = (v'v! + (1,7’(1,'7)27 G = (v'a’ + (1,7’7)'7)2
where a7 = 0,07 =1, 0" = .——, v* = (1 — 45} )a’, ¢ = cosh and

t=—5/2(1 — ¢).

) = T o

Xy(s) = 1.

(3.11)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

To see how the weak terms contribute to the cross section, we can write 3.11

as
EW QFED
dog™  dog

— (1
ds) ds)

+ (sm)

(3.17)

and 4, will contain the weak effect. Figure 3.5 shows 4,, as a function of centre-

of-mass energy and scattering angle. We see that the weak effect has a peak at
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Figure 3.5: The weak correction to the Bhabha cross section as a function of
center-of-mass energy and scattering angle, 6.

the 7 resonance and that it grows fast with the scattering angle. The weak effect
originates mainly from the 7% annihilation channel and the interference between
this and the photon channels. Figure 3.6 shows the same cross section as Figure
3.5, but now in greater detail at low scattering angles, which is the interesting
area for luminosity-monitoring. At these low angles, the photon exchange channel
contribution is huge, and the weak contribution is therefore rather small compared
with larger angles. We see that the weak terms have a positive contribution below
the Z° resonance and a negative contribution above and form a typical pattern
around the Z° resonance. This pattern mainly originates from the interference
between the ~, and 7, terms. On top of the Z° resonance however, the weak effect
is barely seen at these angles. This can be explained from Eqn. 3.13, where it can
be seen that the interference terms are imaginary at the top of the 79 resonance.
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Figure 3.6: The weak correction to the Bhabha cross section as a function of
center-of-mass energy and scattering angle, #, at small scattering angles.
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3.2.3 QED corrections to the lowest order Bhabha cross
section

As shown earlier in this chapter, the lowest order QED expression for the Bhabha
scattering cross section is very simple (3.6). The higher order cross section is
however more complicated and depends on the interplay between final states with
one or more additional photons and the experimental cuts. The method used
to find an estimated cross section is therefore based on Monte Carlo simulation
techniques, where events are produced by an event generator and passed through
a detailed detector simulation program. After analyzing these events the same
way as real data, the number of events remaining inside the detector acceptance
then gives the theoretical cross section. The cross section precision will therefore
depend on the number of simulated events. The events, used to find the SAT
theoretical cross section, were produced at a fixed centre-of-mass energy of /s =
My, where M, was fixed to 91.1 GeV. The weak effects was taken care of by
the BABAMC event generator [20] which is a full O(«) Bhabha scattering MC
program containing 7% exchange terms. Today the Monte Carlo event generator
BHLUMTI V4.02 [22, 23], which contains weak O(«) and Leading Log (LL) higher
order corrections, is used to find the SAT visible cross section.

The total QED contribution (without any weak effects) to the Bhabha cross
section varies like ~ 1/s, similar to the lowest order QED contribution (3.9).
Energy-dependent contributions on the lowest order QED cross section will there-
fore come from weak effects and can be extracted from relative Bhabha cross sec-
tions at different energies without knowing any details of the QED contributions
other than the lowest order dependence. QED corrections to the lowest order QED
cross section are therefore not treated here. Information on these corrections can

be found in references [20, 21, 22].

3.2.4 O(«) corrections to the terms containing Z-boson ex-
change

The limiting factor in the luminosity precision has until 1992-93 been the lu-
minometers and a very detailed calculation of the theoretical cross section has
therefore not been necessary. But recently the luminometers have become more
precise (SAT replaced by STIC spring 94) and an improved theoretical calcula-
tion was needed. To understand this we have to remember that the precision of
LEP luminometers was originally planned around 1%. With this precision, the
lowest order weak contributions to the cross section would suffice in the theoret-
ical calculation. But with the present luminometer-precision of less than 0.1%,
weak O(a) corrections has to be included in the calculations together with leading
higher-order corrections. A great effort in achieving this has been done and work
is still in progress [23].

To get a clearer picture and to see the importance of the O(a) corrections,
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Figure 3.7: 7-boson exchange contributions calculated from the formulae in [24]
and presented as fraction (%) of the Born cross section in the symmetric angular
region between 3.2° and 7.3°. The corresponding numerical values are presented

in Table 3.1.
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Figure 3.8: 7Y self energy Feynman diagrams contributing to the weak corrections
to Bhabha scattering.

Figure 3.7 shows the most important contributions, together with the lowest or-
der weak contribution, in percent of the Born cross section, in the symmetric
angular region between 3.2 degrees and 7.3 degrees, which approximates the SAT
acceptance. All the contributions in Figure 3.7 together represent the entire 7, con-
tribution as calculated in O(«). This can be split into the lowest order ”7-born”
(Zs-v-interference) and the "O(«) correction” which is the rest of the graphs. The
"QED O(a)” represents the pure bremsstrahlung (photonic) part of the "O(«)
correction” and the remaining graphs denotes the rest of the "O(«a) correction”,
that is, all kinds of vacuum polarizations and self-energies. Figure 3.9 shows some
Feynman diagrams of the "QED O(«)” contributions and Figure 3.8 shows the
79 self energy Feynman diagrams. An approximate formulae is used to calculate
these contributions [24] and describes the results of the Monte Carlo program
BABAMC and the semi-analytical program ALTBABA' [25] (without the leading
higher-order corrections)? with a precision of 0.07 % of the full Born cross-section.

As can be seen from Figure 3.7, the QED O(«) corrections to the 7-boson
exchange contributions above the 79 resonance, can reach 50 % of the peak value
at lowest order, whereas the remaining O(«) corrections are rather small (below
0.05% of the Born cross section).

3.2.5 Leading higher-order contributions to the terms con-
taining Z-boson exchange

The same formulae [24] are also used to calculate the leading higher-order terms

and describe the results of ALTBABA? with a precision of 0.06 %. Figure 3.10

TATTBABA: A semi-analytical program, containing Z-exchange contributions, that calculates
full O(«a) corrections and in addition re-summation effects and higher-order multi-photon QED
corrections in the leading-log approximation.

’Leading higher-order corrections are originally present in ALTBABA.

INow with leading higher-order contributions.
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Figure 3.9: Feynman diagrams with 7% boson exchange which contribute to the
photonic corrections to Bhabha scattering.



Energy | 7Z-born | QED | Vacuum | 7 self- | Higher-
(GeV) O(a) Pol. energy | order

89.661 | +0.991 | -0.237 | +0.027 | 40.037 | +0.861
90.036 | +1.010 | -0.221 | 40.027 | 40.021 | 40.891
90.411 | +0.905 | -0.144 | 40.024 | -0.002 | 40.837
90.786 | +0.572 | +0.036 | +0.015 | -0.018 | +0.622
91.161 | +0.000 | +0.300 | +0.000 | +0.000 | +0.229
91.536 | -0.591 | +0.514 | -0.016 | 40.037 | -0.201
91.911 | -0.956 | 4+0.582 | -0.026 | +0.048 | -0.504
92.286 | -1.085 | 4+0.542 | -0.029 | +0.035 | -0.653
92.661 | -1.077 | +0.463 | -0.029 | 40.017 | -0.702

Table 3.1: Some numerical values of the plots in Figure 3.7. Fach column rep-
resent different contributions in % of the Born cross section. The last column
represent the total weak contribution including higher order corrections to the
Born cross section.

shows the contribution from these terms that is added to the O(a) calculation in
BABAMC, and the full weak corrections including higher-order contributions can
be seen in the last column of Table 3.1.

From Figure 3.10 we see that the higher order terms contribute with an ~0.1%
effect at the Z-peak. BABAMC calculates the weak corrections only to O(«). The
current SAT QED uncertainty is 0.16% and the weak higher order contributions
is therefore nedded in the calculation of the SAT visible cross section to minimize
the total error.
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Chapter 4

Results

The SAT-detector is used to investigate weak contributions to the Bhabha QED
cross section across the 7° resonance. T have used two methods to find these
contributions to the cross section in the SAT acceptance. T have made use of
the other luminosity-monitor present in DELPHI, VSAT. By using the Bhabhas
collected by SAT and dividing them by the VSAT luminosity, the Bhabha cross
section in the SAT acceptance is found at the 1993 energy points. This cross
section is then compared to a theoretical QED cross section and the weak contri-
butions is found. Weak effects, although not in the same acceptance, is also found
by measuring the variation of the angular distribution of the cross section with
respect to the centre-of-mass energy. This is done by measuring the ratio between
two cross sections in the SAT-acceptance where one cross section is defined in
the angular region from an angle ,,;; to the upper limit of the SAT-acceptance
and the other in the angular region from the angle 0,,,; to the lower limit of the
SAT-acceptance. This is explained further below. The two methods have both
their advantages and disadvantages.

4.1 SAT/VSAT

In 1993 LEP was operative at four different centre-of-mass energies, at a prescan
energy' at 91.3 GeV and three scan-energies of 89.4, 91.2 and 93.0 GeV. Due to
the relatively large weak corrections to the SAT lowest order QED Bhabha cross
sections at the two scan-energies of 89.4 and 93.0 GeV (also known as the +2GeV
energies) seen from theory (Figure 3.6), we thought that it was possible to see
these corrections with a reasonable uncertainty from data taken with the SAT
detector. In order to do this, we decided to make use of the other luminosity-
monitor present in the DELPHI-experiment, VSAT. This detector is placed at
very low angles well below 12 and from Figure 3.6 we see that the weak corrections

"When LEP started to run in 1993 the beam-energy was constant, later in the year the
beam-energy began to scan between the other three so-called scan energies.
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at these angles are very small and can therefore be neglected, contributions similar
to a pure QED cross section is assumed. By dividing the number of Bhabhas
detected in the SAT by the corresponding VSAT luminosity, the SAT cross section
was found at each energy point. By comparing this SAT cross section with a
theoretical QED cross section, the weak corrections on the QED cross section, 4,

5—( 7 ])x]()()%. (4.1)
TQED

There was however some problems which occured because VSAT has a big

was found,

error in the absolute luminosity of about 1 %. An accurate measurement of the
SAT absolute cross section is therefore impossible. However, a measurement of
the SAT relative cross sections for each energy point could be done, and when
these was measured, the 4 in Eqgn. 4.1 was found. This was done by setting the
cross section at the resonance peak energy point to equal the QED cross section
at this energy point. Then an expression for ogrp in Eqn. 4.1 was found by
the use of Eqn. 3.9 where the 1/s dependence of this cross section is stated.
Thereafter § for the other energy points was easily obtained by the use of the
corp expression and the measured cross sections at the respective energy points,
in KEgn. 4.1. This however meant that the corrections at the resonance peak could
not be found because this was used as a normalizing point.

The data T have used is located in so-called Tuminosity-files where inform-
ation of the luminosity down to cassette-level? is stored. 1 have written some
C-programs to go through the files to choose the usable data and correct them
where necessary.

As described in the previous chapter, SAT is sensitive to the position of the
interaction point (IP). This effect was taken care of by leaving out the runs where
the radial displacements of the TP was greater than 0.35cm (Figure 2.6). This
was however not a big problem because almost all of the TP-displacements were
less than this. But the z-displacements had to be taken care of. From Kqn. 2.4
we see that there is a linear dependence of the acceptance on the zposition of the
IP. This was corrected for in every run by making use of IP-position information
from the central tracking of DELLPHI.

The result is shown in Figure 4.1 with the corresponding numerical values in
Table 4.1. From the Figure we see that some of the experimental points lie outside
the theoretical values even when the uncertainty is taken into consideration. We
must remember that due to the uncertainty in the absolute VSAT luminosity,
the experimental points can be pushed equally +1% up and down the plot. The
theoretical values will however still lie outside the prescan peak point and the 89.4
GeV scan-point uncertainty.

?Data taken with the DELPHI detector is stored in cassettes where up to 20 cassettes are
needed for a LEP fill which usually lasts from 10-14 hours. Each cassette can store up to 200
MRB data.
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Figure 4.1: The weak contribution in % of the Born cross section at the four 1993
energies, the resonance-peak energy cross section is set equal to the QED cross
section. The corresponding numerical values are presented in Table 4.1. The
dotted line is the weak theoretical contribution.

‘ Centre-of-mass Fnergy (GeV) ‘ 89.4 ‘ 91.2 ‘ 91.3 ‘ 93.0 ‘
Measured Weak Contribution % | 1.25 | 0.00 | -0.72 | -0.85
Statistical uncertainty % 0.30 | 0.29 | 0.34 | 0.30
SAT systematical uncertainty % | 0.24 | 0.24 | 0.24 | 0.24
VSAT systematical uncertainty % | 0.10 | 0.05 [ 0.09 | 0.11
Theoretical Contribution % 0.73 1 0.18 | 0.07 | -0.67

Table 4.1: The weak contribution in % of the Born cross section at the four 1993
energies, the resonance peak energy cross section is set to equal the QED cross
section. The SAT and VSAT systematical uncertainty are taken from [18] and
[28,13] respectively.

4.2 SAT

The other method T have used is to divide SAT into two angular bins at an angle
Ospir and then find the ratio between Bhabhas in the two parts at each energy-
point. A difference in these ratios means that there exist non-QED contributions
to the cross section. This method has an advantage over the above method because
we now only have to use data from one detector and therefore do not have to think
about the uncertainty element the use of data from two detectors involve. The
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Figure 4.2: The ratio % as a function of the polar angle, f;,,;;, where the detector
is split, at the +2GeV energy point.

VSAT has a strong dependence on beam parameters, and errors in connection with
these dependences are eliminated. The number of Bhabhas available is however
smaller and this will affect the statistical uncertainty.

4.2.1 By

split to get the best result. To obtain this, I used my analytical programs and the
1/6%-distribution of the differential cross section (3.8), and found N, 4, number of
standard deviations, as an approximate function of ;. Ny4 is defined as §/o,
where ¢ is defined as '
§ = (M - 1) < 100%, (4.2)
Tat0peqk
where the ratios are between the cross sections in the highest and lowest angle
part of the split detector, and o is the statistical uncertainty of §. Figure 4.2
shows how N, varies as a function of #,,;. The optimal 0, value was then
determined. From Figure 4.2 it can be seen that this value lies around 4.8 degrees.
It can also be seen that § at this angle is only 1.6xo. The number of Bhabhas
taken by the SAT at each energy point varies from about 250000 to 430000, where
the largest number of Bhabhas is at the energy point at the resonance peak. With
the new STIC-detector these numbers will increase due to its bigger visible cross
section and then a better result can be achieved.
Throughout this chapter T will use both # in degrees and radius in em to
describe where the detector is split. The relationship between § and the radius,



1s:

r = tanf x z, (4.3)

where 7 is the distance from the origin to the SAT calorimeters. This distance is

231.8 cm.

4.2.2 Cuts and results

To measure § as a function of the centre-of-mass energy, I made use of SAT-
ntuples, which are data files where the data collected by the SAT is stored in a
format readable by the physics analysis program PAW [29]. The cuts which were
used to choose the wanted Bhabha events, are:

1. Radius in the masked calorimeter inside the outer ring of readout elements
to avoid edge effects at the calorimeter surface.

2. Radius in the unmasked calorimeter more than 2.5 ecm from the inner edge
to reduce background.

3. Less than half of the shower energy in the masked calorimeter in the inner
ring of readout elements to avoid contamination from events passing inside
the mask and entering the calorimeter through the inner surface.

4. Radius greater than 4.0 cm from the inner edge if cluster energy is greater
than 1.5 X Fjeup to avoid letting low-energy photons and minimum ionizing
particles which hit the readout system (fibers, light guides and photodiodes)
and simulate high energy depositions, count as events.

5. Energy in both calorimeters greater than 0.65 X Fieuom -

6. Azimuthal position in the masked calorimeter more than 8° from vertical
junction between the calorimeter half-barrels to reject background caused
by the tail of the showers penetrating the ¢ mask.

7. Acoplanarity angle® between two opposite clusters less than 20 degrees to
suppress background from off momentum electrons.

More information on these cuts can be found in references [26, 27].

I summed the Bhabhas for each energy with the above cuts and with § greater
than and less than the angle where the detector was split, f,,:. The ratios in Fqn.
4.2 were then determined. And by dividing the +2GeV energy points by the ratio
at the peak energy, the correction, 4, defined in Eqgn. 4.2, was determined. T used
my analytic formulae again to compare this § to theory. Since the correctionsin the

Defined as the angle between a line drawn from one cluster through origo to the opposite
calorimeter and the line drawn from origo to the other cluster, when these lines are projected
into the X-Y plane.
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Figure 4.3: The ratio between the cross sections in the two parts of the split
detector, oy in the upper part and o, in the lower, as a function of the CMS-
energy. The full line is the theoretical ratio normalized to the experimental point
at the 7° peak.

lowest-angle part of the split detector are non-negligible, theoretical calculations of
the corrections only in the highest-angle part of the detector, as in the SAT/VSAT
method, do not suffice. A calculation of the cross section in both parts had to be
done. After doing this, the same ratios as above can be found and the theoretical &
for the scan-points are easily obtained. Asin the SAT/VSAT method, the § found
here is not the correction to the QED cross section, but the difference between
the corrections of the 2 GeV energy points in the scan and the corrections at the
70 peak, to the QED cross section.

To clarify, Figure 4.3 shows the ratio between the cross sections in the upper
and lower parts of the split detector, respectively, at the different centre-of-mass
energies together with the corresponding theoretical values. The theoretical ratio
is normalized to the experimental point at the Z° peak®. The experimental ratios

Due to uncertainties in the SAT geometry, an exact theoretical radial cut could not be set.
The theoretical ratio thus had to be normalized to the experimental ratio at the 7% resonance
peak.



Centre-of-mass Fnergy (GeV)
89.4 | 912 | 93.0
Radius(em) Measured Weak Effects (§)

16.5 0.26+0.40 | 0.004+0.31 | -0.80+0.40
17.5 0.29+0.38 | 0.004+0.30 | -0.95+0.39
18.5 0.29+0.39 | 0.004+0.31 | -0.85+0.40
19.0 0.36+0.40 | 0.004+0.31 | -0.86+0.40
19.5 0.51+0.40 | 0.004+0.31 | -0.82+0.41
20.0 0.4240.40 | 0.004+0.31 | -0.88 +0.41
20.5 0.5240.41 | 0.00+0.32 | -0.72+0.42
21.5 0.30+0.45 | 0.004+0.35 | -0.51+0.46
22.5 0.3040.46 | 0.00+0.36 | -0.57+0.48

Table 4.2: Numerical values of the plots in Figure 4.5. The errors are statistical.

are then used in (4.2) and § is found for the two +2 GeV scan-points.

Figure 4.4 shows how the theoretical § varies when the detector is split at
different radii. § is set to equal 0 at the energy of the 7° peak (as T did in
the experimental calculation). This explains why the contributions seem much
larger at the +2 GeV-energy point above peak-energy than below. The weak
O(a)-corrections contribute with an approximate 0.2% effect to the Born cross
section at the energy point at the Z? peak and if § is set to equal this value at the
resonance peak energy, the contributions above and below this energy will become
more alike. In Figure 4.4 it is the difference between the weak correction from
88 to 94 GeV and the correction at the 79 peak that is shown. The Figure shows
that § grows with larger f,,5,;, but the statistical uncertainty grows® too and the
best result is therefore obviously not achieved at the largest possible angle (see
Figure 4.2).

Figure 4.5 shows how the experimental § varies when the detector is split at
different radii. It can be seen that the uncertainty grows when the detector is
split at larger radii. The figure in the middle is found from Figure 4.2 to give the
best result. The corresponding numerical values are shown in Table 4.2.

The result when the detector is split at an radius of 19.5 e¢m is shown in
Figure 4.6 together with the theoretical values. As can be seen from this figure,
the experimental points agree very well with the corresponding theoretical values.
The statistical uncertainty is however quite big.

5That is if Ospiiv is bigger than the angle where the ratio between the Bhabhas in the two
detector-parts equals 1.
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Figure 4.4: The theoretical differences in % between the ratio of the cross sections
in the two parts of the split SAT detector and the ratio at the resonance peak as
a function of centre-of-mass energy for five different split-radii. The numbers on
the plot show at which radius (em) the detector was split.
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Figure 4.5: The differences between the ratio of the Bhabhas in the two parts
of the split detector and the ratio at the resonance peak for the two +2 GeV
energy-points, that is § (defined in the text), when the detector is split at a radius
r.
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Figure 4.6: Measurement of the parameter 4, described in the text, when the
detector is split at a radius r=19.5 cm. The full line is the theoretical dependence

calculated with M, = 91.187, T';, = 2.487 and sin’f,, = 0.2273.

4.2.3 Other methods

The method used above is not the only method one can use to extract the weak
contributions from the data taken with the SAT detector. An other, and presum-
ably better, way to extract the weak contributions is to split the detector into more
than two angular bins. This will allow for a more detailed study of the variation
of the angular distribution of the cross section with respect to the centre-of-mass
energy. More information can then be read from the data. This method is however
not used in this thesis due to the limited amount of time available.

4.3 Fit to sin’fy

By making use of the function minimization and error analysis program MINUIT
[30], T fitted the theoretical formulae with sin?fy as a free parameter to the three
experimental measured energy points. Figure 4.7 shows how the weak corrections
depends on this parameter. As can be seen from the figure, the corrections grow
larger with bigger sin®fy,. The fitted value of sin®0y is 0.21 £ 0.05. The error
is quite big, but we can conclude that the result is in good agreement with the

presently known value [5] of 0.2247 + 0.0019.

42



‘ Centre-of-mass Fnergy (GeV) ‘ 89.4 ‘ 91.2 ‘ 91.3 ‘ 93.0 ‘

Measured Weak FEffects(d) 0.50 | 0.00 | -0.04 | -0.83
Statistical uncertainty 0.40 | 0.38 | 0.53 | 0.41
Systematical uncertainty 0.24 [ 0.24 | 0.24 | 0.24
Theoretical & 0.44 1 0.00 | -0.14 | -0.79

Table 4.3: Numerical values of the plots in Figure 4.6. The systematical uncer-
tainty is taken from [18].

4.4 Effects on fits to the 7" mass and width

The program BABAMC was used for the theoretical calculation of the visible
cross section in the luminosity measurement in DELPHI. As this program only
calculates the cross section to the precision of O(«), it could be interesting to see
how the introduction of weak higher-order contributions affects the values of the
7Y mass and width calculated without higher order contributions.

4.4.1 The Z° Lineshape

The 79 resonance shape can be determined with very high precision in ete”
annihilation measurements at LLEP. The collision energy in LEP has been varied
over several steps across the 7% resonance (energy-scans) in some of the past
years (1989, 1990, 1991 and 1993 with a number of 10, 7, 7 and 4 energy points,
respectively each year) observing the absolute cross section for the production
and subsequent decay of the 7% hoson into well defined states. This makes it
possible to determine the Z° mass, total decay width and peak cross section. 70%
of the total decay width comes from the hadronic decay channel and most of the
statistical precision therefore comes from this channel. Only about 10% of 7%
decay to a charged lepton pair and the remaining ~20% decays into a neutrino pair
and will go undetected. The separate measurements of the leptonic and hadronic
lineshapes allows the determination of the corresponding partial decay widths and,
thus, more rigorous tests of the Standard Model. The lineshape is sensitive to the
number of light neutrino types in Nature. Fach additional neutrino type will
caunse an decrease of the peak cross section, ¢% by 13%, and an increase of the
total decay width, I'z, by 6.5%.

The shape of the cross section around the 7% peak can be described by a

Breit-Wigner ansatz with an energy-dependent total width [31]

B ]QWrerh,a,r]rons S
ST o e

o(v5) (4.4)
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Figure 4.7: The weak corrections as a function of the centre-of-mass energy with
different sin?0y. The numbers on the plot show the sin?fy used in the calcula-
tion.

which has a maximum for

M
Vo= —2 (4.5)
(14+42)7
with r
7
-~ 4.6
= (4.6)

The three main properties of this distribution, that is, the position of the peak,
the width of the distribution, and the height of the peak, determine respectively
the values of Mz, T'z, and T'(ete™) x T'(ff), where T'(eTe™) and T'(ff) are the
electron and fermion partial widths of the Z°. The quantitative determination of
these parameters is done by writing analytic expressions for these cross sections in
terms of the parameters and fitting the calculated cross sections to the measured
ones by varying these parameters.

The LEP collaborations have chosen the following primary set of parameters
for fitting: My, Ty, 0% . R(lepton), A%%. where of equals (4.4) with
s = M2, R(lepton) = T'(hadrons)/T(leptons) and A%% is the forward-backward
asymmetry of charged leptons. The advantage of this choice of fit-parameters is
that they form the least correlated set of parameters, so that it becomes easy to
combine results from the different LEP experiments [5].

The experimental determination of the Z° lineshape relies on cross section
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Parameter Input Fitted | Difference
parameters | results (MeV)
Mz(GeV) 91.1870 91.1866 -0.4
I'7(GeV) 2.4870 2.4879 +0.9

Table 4.4: Differences between the input and fitted values of the parameters I';
and M.

measurements. The cross section is determined via the relation:

o(V/5) = (4.7)

L’
where /s is the centre-of-mass energy where the cross section is determined, N is
the number of events passing the selection criteria minus background and I is the
time integrated luminosity. From the measured cross sections, the Z° resonance
parameters are then extracted via a fit to a theoretical expression. The use of only
cross section data leads to a four-parameter fit (lepton universality assumed), in
other words, A%IB values are not determined.

The introduction of weak higher order contributions in the determination of
the visible cross section in the luminosity measurement (3.2) will change the value
of I in (4.7) and therefore also the cross section. T have made use of the program
ZFITTER [32], which is an analytical program for fermion pair production in

+e~ annihilation, to calculate a hadronic cross section across the Z° resonance.

e
This cross section is then perturbed with the higher order corrections calculated
with the formulae in [24] with an angular acceptance from 3.2° to 7.3°, shown in
Figure 3.10. A plot of the perturbed and unperturbed cross section is shown in
Figure 4.8. MINUIT together with ZFITTER are then used to fit the hadronic
cross section to the perturbed cross section points, with the parameters I'; and
My set free. The effect due to the introduction of higher order corrections on
the 7" -mass and total decay width can then be found. The result is shown in

Table 4.4 , which shows that My will decrease about half a MeV and the I'; will

increase about 1 MeV due to the weak higher order corrections.

4.4.2 Number of light neutrino species in Nature

Three so-called "generations” of fermions (¢, v.), (=, v,) and (77, v,) are known
to exist and further generations with the same properties are easily incorporated
within the standard electroweak theory. If any additional charged leptons exist,
they must be too heavy to contribute to Z° decays or they would have heen
detected at LEP. However if additional neutrinos exist in the sequence v., v,,
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Figure 4.8: The hadronic cross section unperturbed by the weak leading higher
order contributions in the luminosity measurement (full line) and the perturbed
hadronic cross section (dots).
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Us,..., with masses much less than My, then the 79 would decay to them with a
rate given by I', which can be calculated from the standard elecroweak theory.

As mentioned above, I'; is used to measure the number of light neutrino types
present in Nature. A correction on I'; will therefore change this number. The
total 7% decay width can be expressed as [26]

]QWFthM . ]Qﬂ'Rl

= Ty e (4.8)
2 0 2 0 ?
Mz 0y04 M504

where '} denotes the average leptonic decay width and R; is defined by R, =
I'h2q/T. The invisible decay width, I';,,,, which is defined as I'y — 'y, — 317, then

takes the form
127 R,
Uiy = U\ ——— — R, — 3]. 4.9
’ : [ M%O-?,ar] : ] ( )

The number of light neutrino types follows from [5]:

rhﬂ) r
N, = -7 (_’) , (4.10)
AT S s

where I';, ', and T, are the partial widths of leptons, neutrinos and the invisible

7. width respectively. Using the values of the widths from [5], where the Standard
Model prediction(I', /T))sar = 1.992+0.003, I'; = 83.84 +0.27 and I';,,, = 498.2+
4.2, the number of light neutrino types is found to be 2.983+ 0.027. A correction
of I'(7) by 40.9 MeV will increase invisible width and as a consequence the light
v type value will increase from 2.983 to 2.988. If we compare this increase of
0.005 with the total uncertainty of the present known value of +0.027 calculated
without the higher order corrections, we see that there is a bias of 1/5 of the total
uncertainty.

4.5 Summary

The SAT detector is used to measure elecroweak effects on the Bhabha cross
section across the 79 resonance. Two methods are used. The first makes use of
the VSAT detector to find the cross section in the SAT acceptance for the different
energy-points. Due to the large uncertainty in the VSAT absolute luminosity, the
cross section at the peak-energy is set to equal the lowest order QED cross section,
and the corrections for the other energy points are then found. The result is given
in Table 4.1 and Figure 4.1.

The other method makes use of only the SAT detector. The detector is split
in two angular bins at an angle .+, and the ratio between Bhabhas in the two
detector-parts is found at the different energy points. A difference in these ratios
means that there exist an energy dependent correction to the QED cross section
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which comes from weak effects. These corrections are then compared to theory.
The result is given in Table 4.3 and Figure 4.6.

The theoretical formulae is then fitted to this experimental result with sin?0y
as a free parameter using the program MINUIT, resulting in a sin?fy of 0.21 +
0.05.

The theoretical formulae are also used to perturb a hadronic cross section as
a consequence of introducing leading higher order weak corrections on the visible
cross section in the luminosity measurement. By fitting a hadronic cross section
to this perturbed cross section with the parameters My and 'z free, the effect of
the introduction of these higher order corrections on the number of light neutrino
types in Nature is found. The number will increase from 2.983 to 2.988, that is,
by 0.17%. The total uncertainty of the number of light neutrino types in Nature
is 0.91 %, which means that there exist a bias of 1/5 of the total uncertainty.
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Chapter 5

Conclusions

The Standard Model of electroweak interactions has been successful in predicting
a large amount of physical observables which have been measured precisely by
experiments. Despite its success there are some arguments which indicates that
this cannot be the final description of physics. For example, the fermion masses
are unconstrained by the theory and the theory gives us no explanation of why the
number of fermion families are measured to be three. Today there is a common
belief that new physics will be revealed in experiments at higher energies of ~1
TeV. But until accelerators which can reach these energies are built, like the
[LHC collider, we must continue to make tests of the Standard Model at presently
available energies.

DELPHI experiment have been performed. This consists of 2 complementary
measurements of weak contributions to the Bhabha cross section in the SAT ac-
ceptance. The relative Bhabha cross section in the SAT acceptance has been
found for the different energy points in the 1993 energy-scan by using luminosity
data from the VSAT detector, and the weak contributions have been extracted.
Albeit the statistics could have been better, one can conclude that the result is
in good agreement with the electroweak theory. Two of the points lie however a
bit further away from the theoretical values than what is expected. This is be-
lieved to originate from properties of the VSAT detector which are not presently
understood.

The weak contributions have also been found from splitting the SAT-detector
into two angular bins and then calculating the ratio between the number of Bh-
abhas recorded in the two bins at each energy-point. A difference in these ra-
tios, indicating centre-of-mass energy dependent contributions coming from weak
effects, was found to agree very well with theoretical predictions from the elec-
troweak theory. The statistical uncertainty was however too big to do precision
tests of the theory. Compared to the SAT/VSAT method it is worth mentioning
that, even though the uncertainty is rather big, the values of all the points agree
better with the theory. This also indicates that it is properties of the VSAT de-
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tector which are the reason for the small disagreement between theory and two of
the points in the SAT/VSAT method.

Precision measurements of cross sections at several centre-of-mass energies
around the 7Y resonance in the DEL.PHT experiment (and the other experiments at
LLEP), which determine the 7% mass and width, constrain the electroweak theory
so that accurate predictions of other physical observables can be made. These
precision measurements depend however on an accurate luminosity measurement,
which again depend on luminosity monitors with high experimental precision,
high statistics and small errors in the theoretical calculation of their visible cross
section.

Bhabha scattering at low angles is used to measure the luminosity in the
experiments at LEP. This process is chosen due to its high cross section at low
angles and its well known theory. The process is dominated by the v t-channel
at low angles but weak effects such as the 7 ,-~;-interference can reach ~1 %
of the born cross section below and above the 7% peak energy (Figure 3.7) in
the SAT acceptance. O(a) corrections to the terms containing 7-boson exchange
contribute with a ~0.5 % effect above the 7% peak energy (Figure 3.7). A higher
order contribution with a maximum value of ~0.1% is also present (Figure 3.10).

The SAT total theoretical error is 0.16 %. An improved theoretical calculation
including weak higher order contributions was therefore needed to minimize the
total theoretical error on the luminosity measurement and to avoid letting the
theoretical part of the luminosity measurement unnecessarily impede the precision
tests of the electroweak theory.

In this thesis various weak contributions to the Bhabha cross section has been
studied. The weak I.T, O(a?) correction to the weak O(«) calculation in BABAMC
is presented. The effect on the lineshape measurement of introducing these O(a?)
corrections in the lTuminosity measurement, has been found to result in a small
increase of the 7" width and small decrease of the 7% mass . This again has been
calculated to result in a bias of 1/5 of the total uncertainty of the number of light
neutrino species in Nature.
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