

Some numerical methods

Lars Bugge

Magnar K. Bugge

A few examples of generating random numbers following given distributions are presented. In addition, a geometrical/numerical method to calculate the number π is presented.

Outline:

- Generation of numbers following the Gaussian (normal) distribution using the central limit theorem.
- A direct way to generate numbers following the Gaussian (normal) distribution.
- Generation of numbers following distributions which are integrable and the integral is invertible.
- The distribution $1/x^4$

- A standard method to generate numbers following a given distribution.
- A simplistic way to calculate the number π

1 The normal distribution from the central limit theorem

- The sum of many numbers following some distribution approximates the normal distribution.
- We add successively more uniformly distributed numbers on the interval $(0,1)$. Adding two such numbers, we obtain the characteristic triangle distribution, as shown in figure 1. Figure 2 shows the result from adding 12 uniformly distributed numbers.

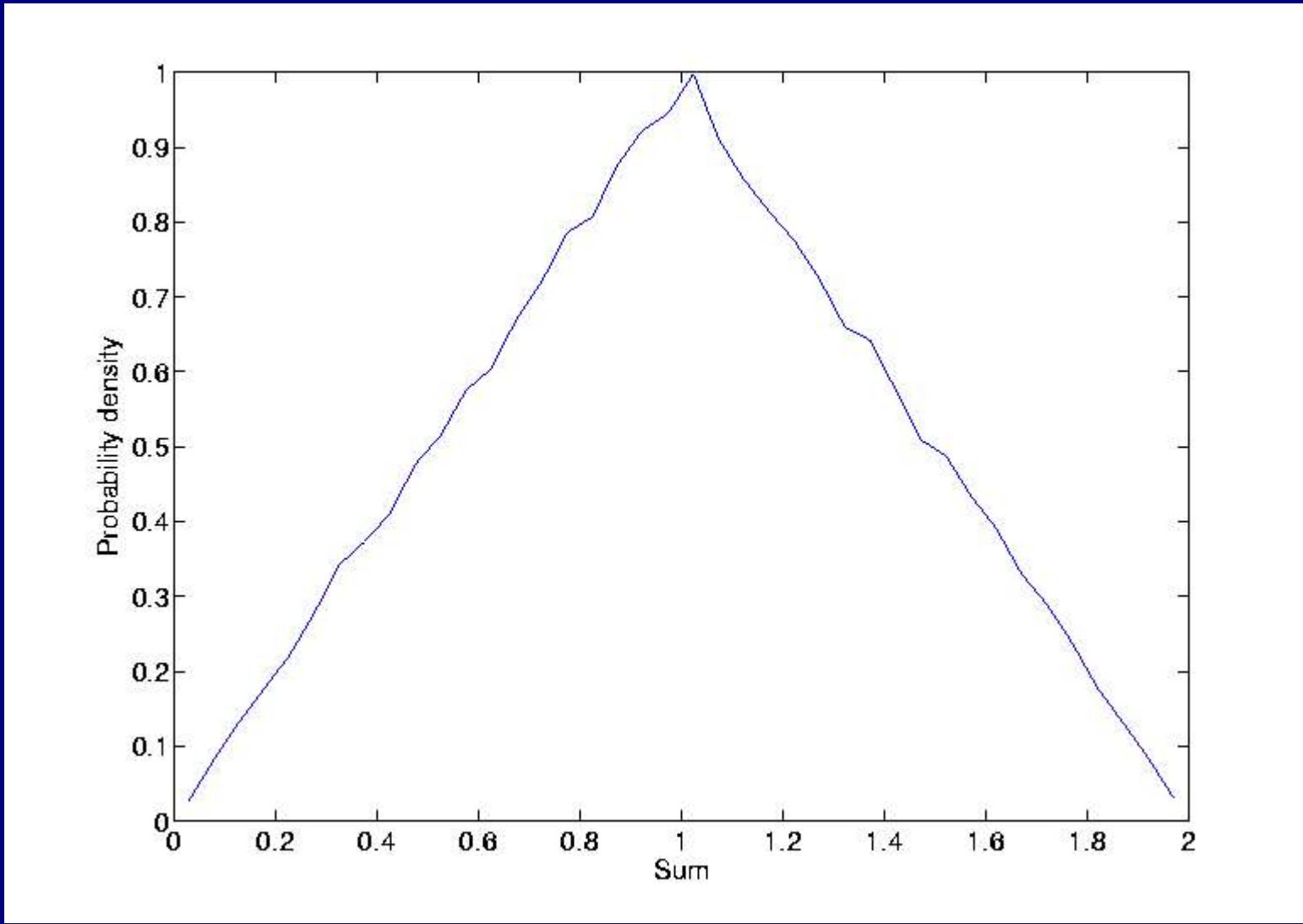


Figure 1: The triangle distribution obtained by adding two uniformly distributed numbers.

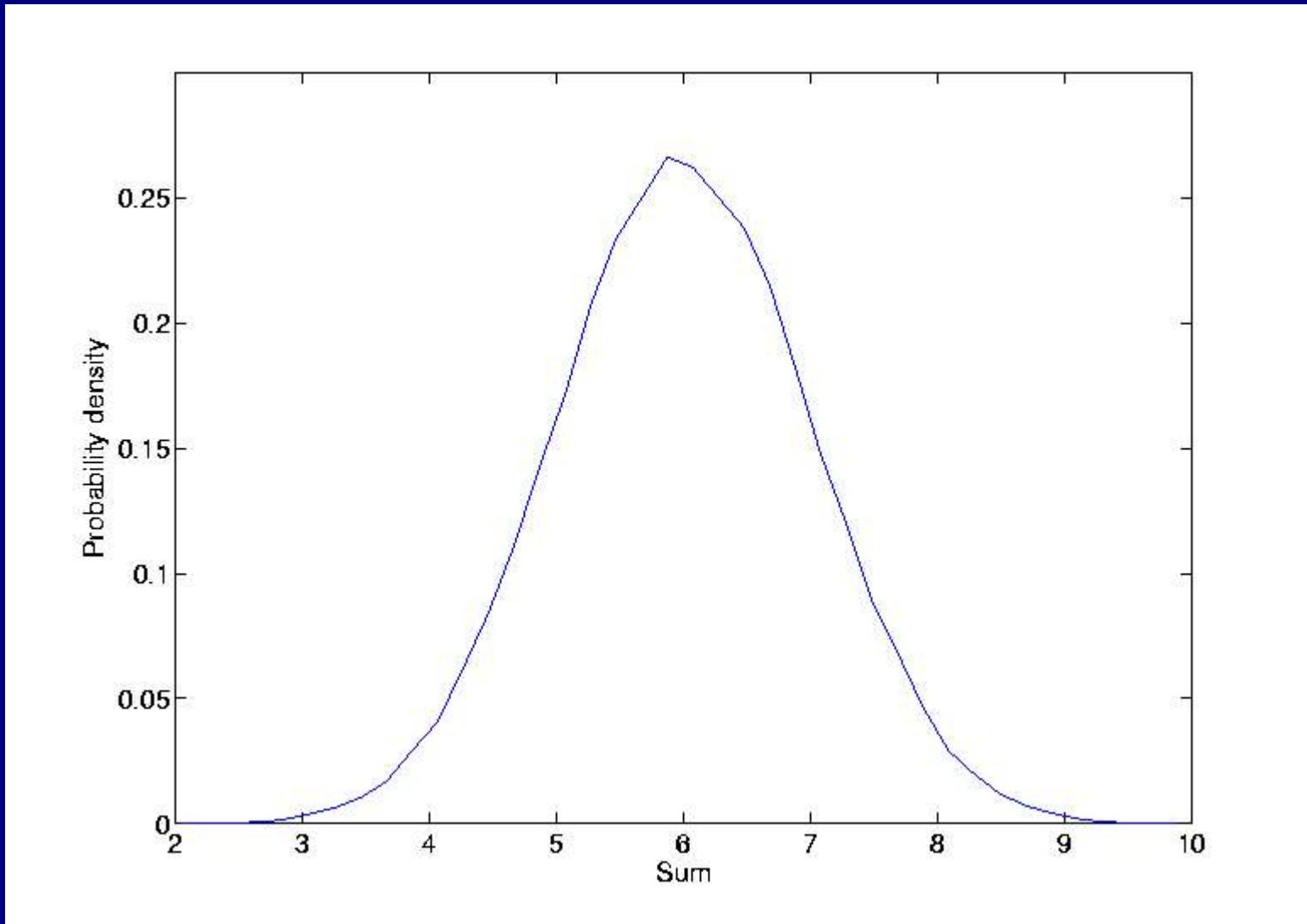


Figure 2: The approximate Gaussian distribution obtained by adding twelve uniformly distributed numbers.

2 A direct way to generate numbers following the Gaussian distribution

- Two independent numbers X, Y , following the normal distr. $(\mu, \sigma) = (0, 1)$ are to be generated.
- That X and Y are independent and normal $(0, 1)$ means that the quadratic sum $r^2 = X^2 + Y^2$ is χ^2 -distributed with two degrees of freedom. In polar coordinates $X = r \cos \theta$, $Y = r \sin \theta$. For the probability density, f , we thus write

$$f(r^2) = \frac{1}{2} e^{-r^2/2}$$

- The cumulative probability is uniformly distributed:

$$F(r^2) = \int_0^{r^2} \frac{1}{2} e^{-r'^2/2} dr'^2 = 1 - e^{-r^2/2} \equiv u \text{ uniform on } (0,1)$$

- From the equation $1 - e^{-r^2/2} = u$ we obtain

$$r = \sqrt{-2 \ln(1-u)}$$

- We generate θ uniformly over $(0, 2\pi)$ and u uniformly over $(0,1)$. Then $X = r \cos \theta, Y = r \sin \theta$.

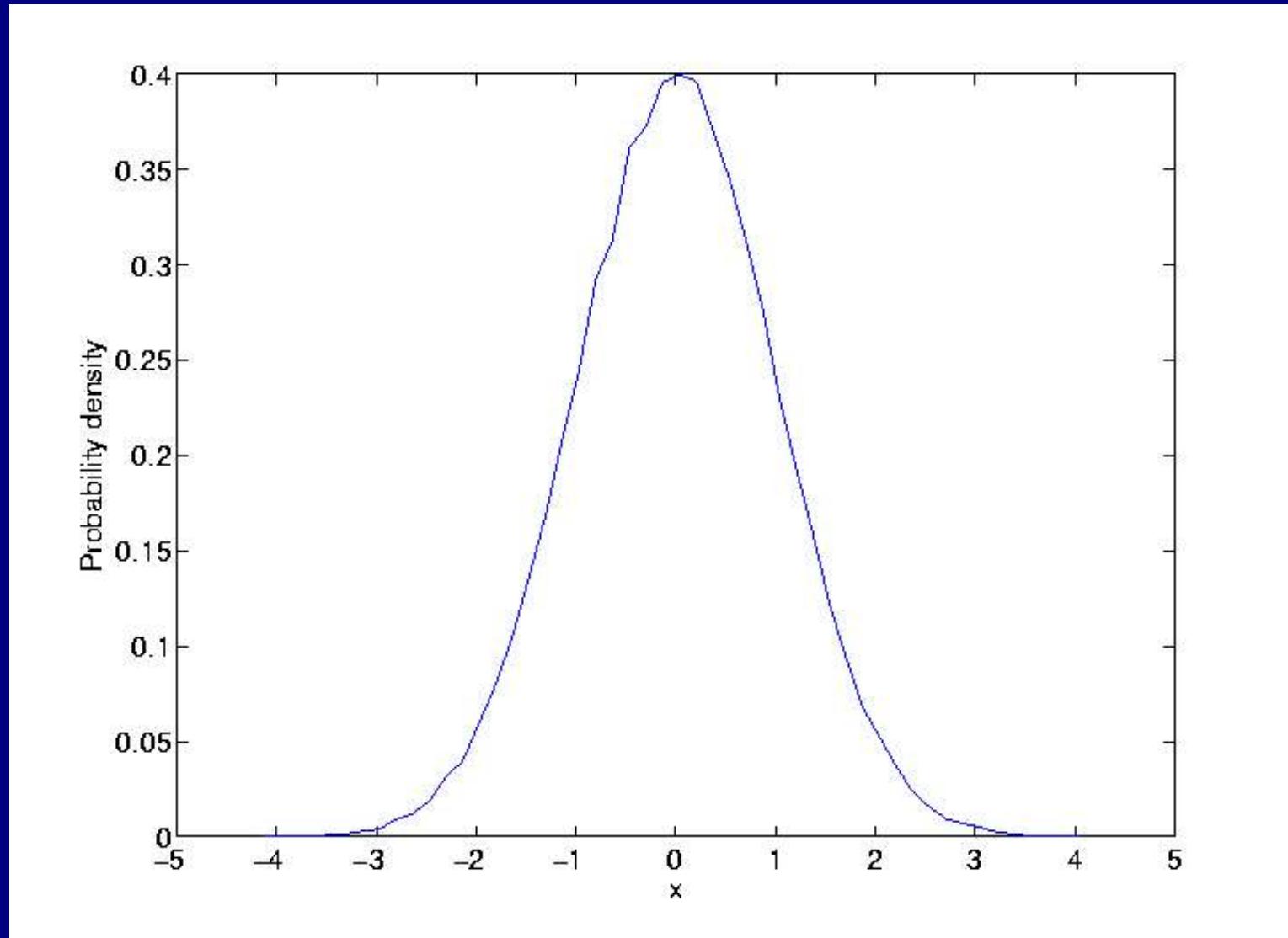


Figure 3: The one-dimensional Gaussian distribution X .

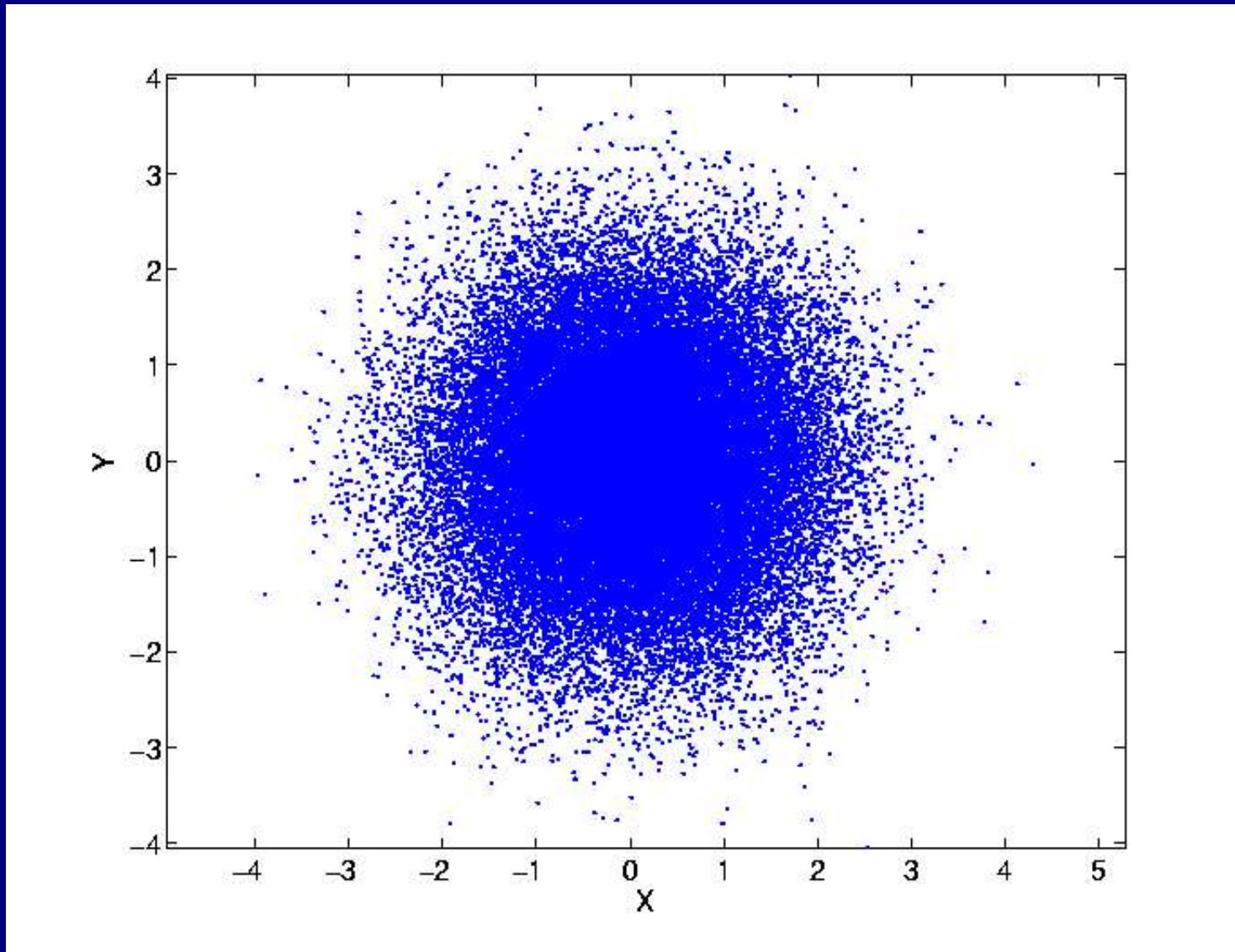


Figure 4: The two-dimensional Gaussian distribution Y vs X .

3 Generation of numbers following distributions which are integrable and the integral is invertible

- Let X be a random variable with probability density $f(x)$.
- We define the cumulative probability function $F(x)$ by

$$F(x) = \Pr(X \leq x) = \int_{-\infty}^x f(x') dx'$$

- $Y = F(X)$ is then uniformly distributed, i.e. the probability density of $F(X)$ equals unity on $(0,1)$.

- Observe that $X = F^{-1}(Y)$.
- Generating X is then done by generating Y uniformly on the interval $(0,1)$, and applying F^{-1} .

The distribution $1/x$ in some detail

- We want to generate X with probability density proportional to $1/x$ on $(1,10)$.
- We define the normalization constant C as

$$C = \int_1^{10} \frac{1}{x} dx = \ln 10 - \ln 1 = \ln 10$$

- We want to generate X with probability density

$$f(x) = \frac{1}{C} \frac{1}{x} \text{ for } x \text{ on } (1,10), 0 \text{ otherwise}$$

- Then

$$F(x) = \int_{-\infty}^x f(x') dx' = \frac{1}{C} \int_1^x \frac{1}{x'} dx' = \frac{1}{C} \ln x$$

- The inverse function is $F^{-1}(x) = 10^x$
- We generate Y uniformly on $(0,1)$, and apply F^{-1} to obtain X . The result is shown in figure 5.

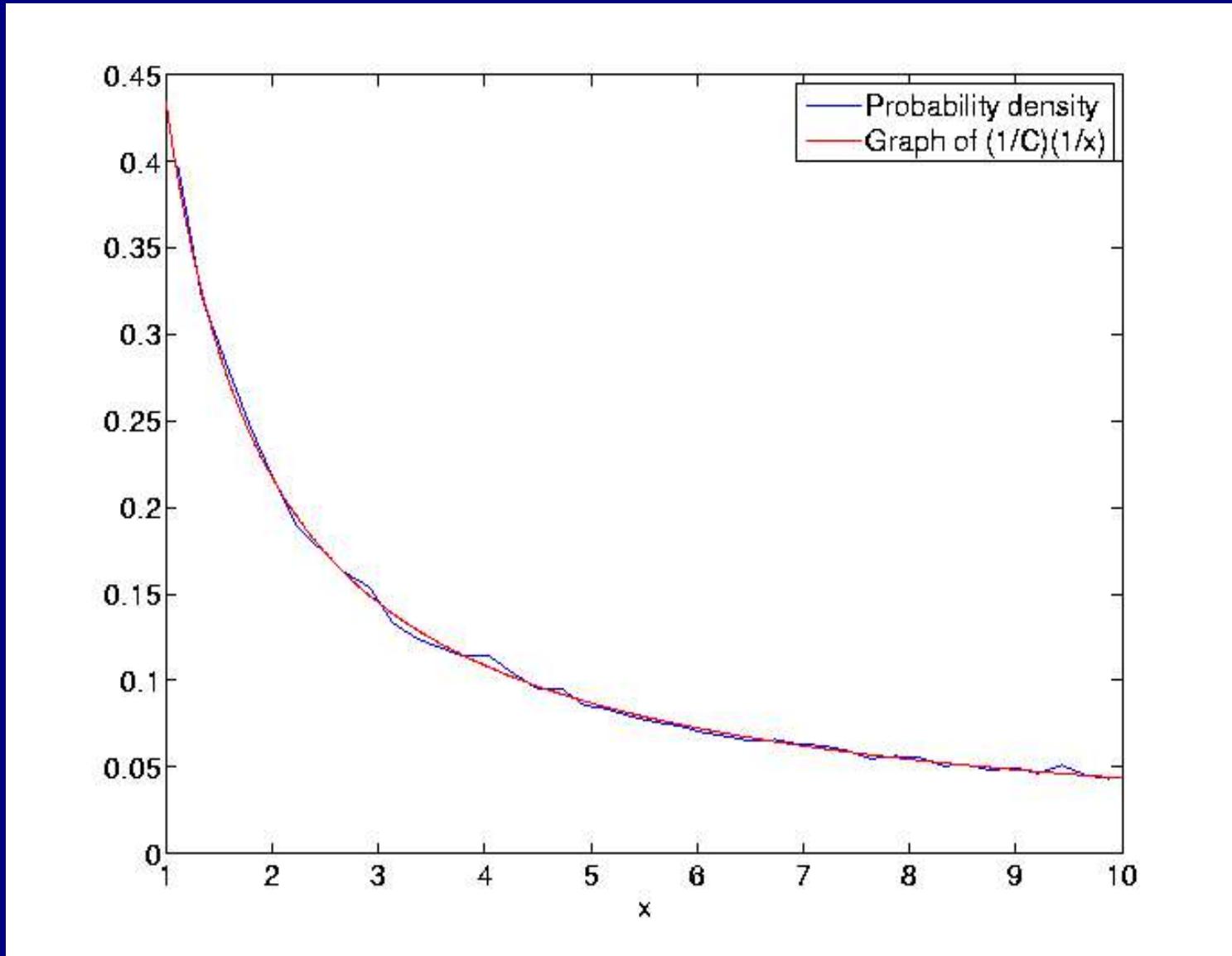


Figure 5: The distribution $1/(Cx)$ plotted together with the true graph of $1/(Cx)$.

The distribution $1/x^4$

- The angular distribution of elastic electron-positron scattering (Bhabha scattering) is approximately proportional to $1/\theta^4$ for small scattering angles θ .
- We generate $1/(Cx^4)$ on $(5/1000, 50/1000)$ (radians) using the same technique as in the previous example. The result is shown in figure 6.

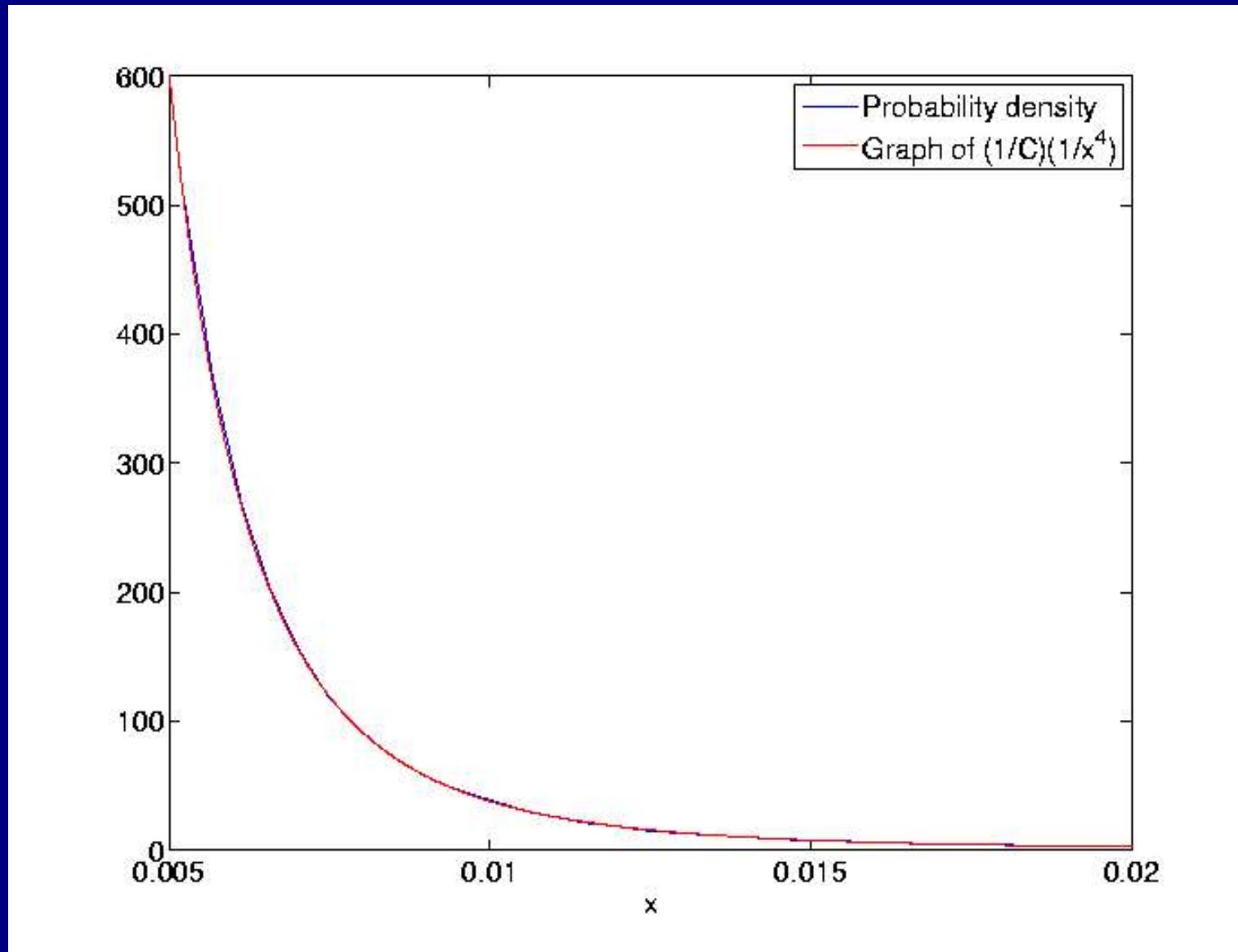


Figure 6: The distribution $1/(Cx^4)$ plotted together with the true graph of $1/(Cx^4)$.

4 A standard method to generate numbers following a given distribution

- A method is presented for generating random numbers following a probability density $f(x)$ on (a,b)
- The probability density can be in either analytical or histogram form
- We define y_{\max} to be greater than or equal to the max value of $f(x)$ on (a,b)

- X is generated uniformly over (a,b) . For given X , Y is generated uniformly from 0 to y_{\max} .
- If $Y < f(X)$ X is accepted, otherwise rejected
- The resulting X follows the distribution $f(x)$
- As an example, X with probability density function $f(x) = (1/2)\sin(x)$ for x in $(0, \pi)$ was generated. Result in figure 7.
- This method is more general than the one in section 3, but not nearly as fast

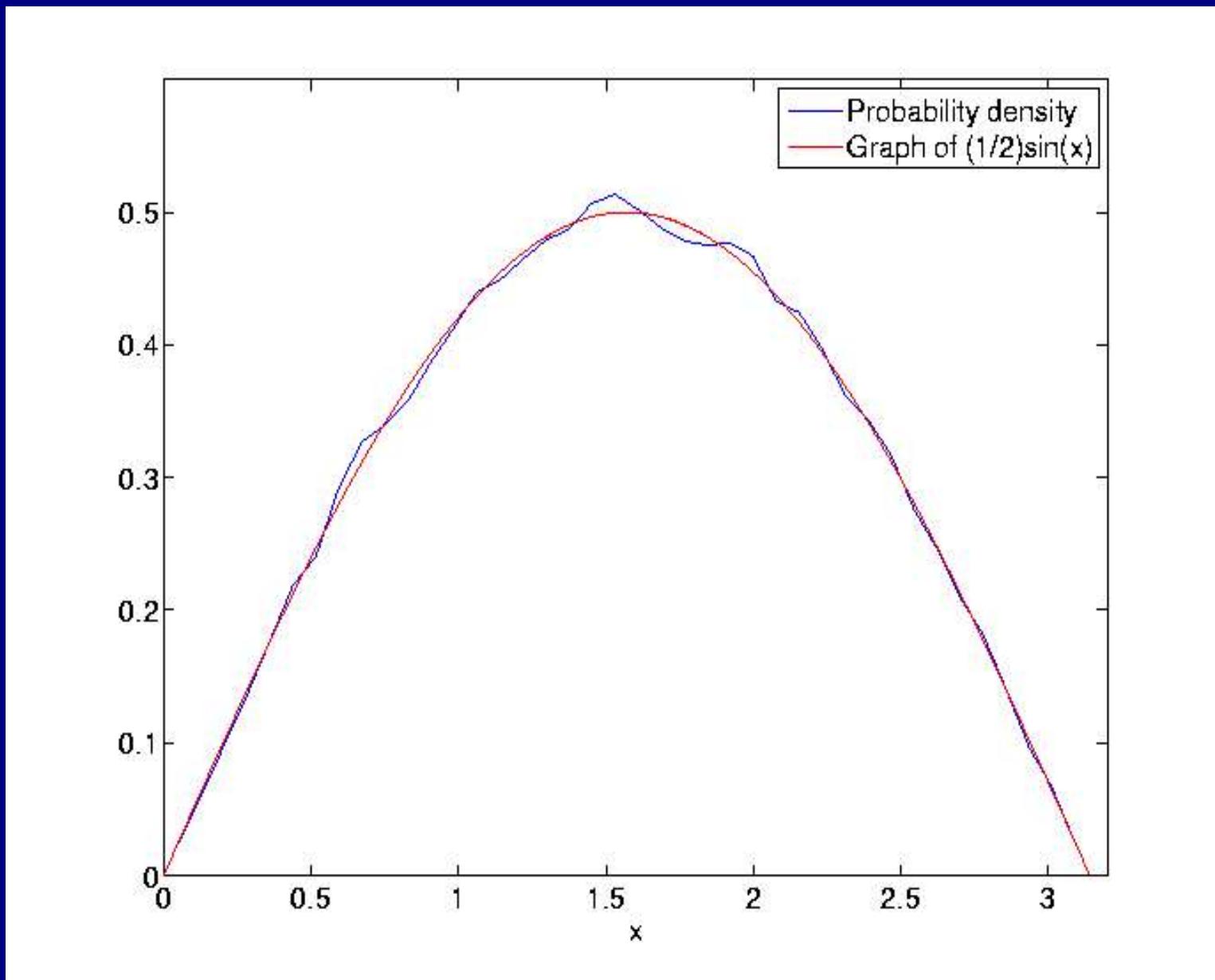


Figure 7: The distribution $(1/2)\sin(x)$ plotted together with the true graph of $(1/2)\sin(x)$.

5 A simplistic way to calculate the number π (geometrically inspired)

- Consider N_{gen} points (x,y) randomly generated over a square with sides of length 2.
- Inscribed in the square is a unit circle (radius 1).
- The number of points falling inside the circle, N_{acc} , is counted.
- The estimated ratio of the areas of the circle and the square is $\pi/4$:

$$\frac{\pi}{4} = \frac{(\text{Area of unit circle})}{(\text{Area of square})} \approx \frac{N_{\text{acc}}}{N} \Rightarrow \pi \approx 4 \frac{N_{\text{acc}}}{N}$$

- This method was applied with 100 000 points generated.
- The generated points are shown in figure 8, the accepted ones in figure 9.
- From this, a value of 3.1390 was estimated for π
- A better approximation can be obtained by generating more points (requiring more calculation time).

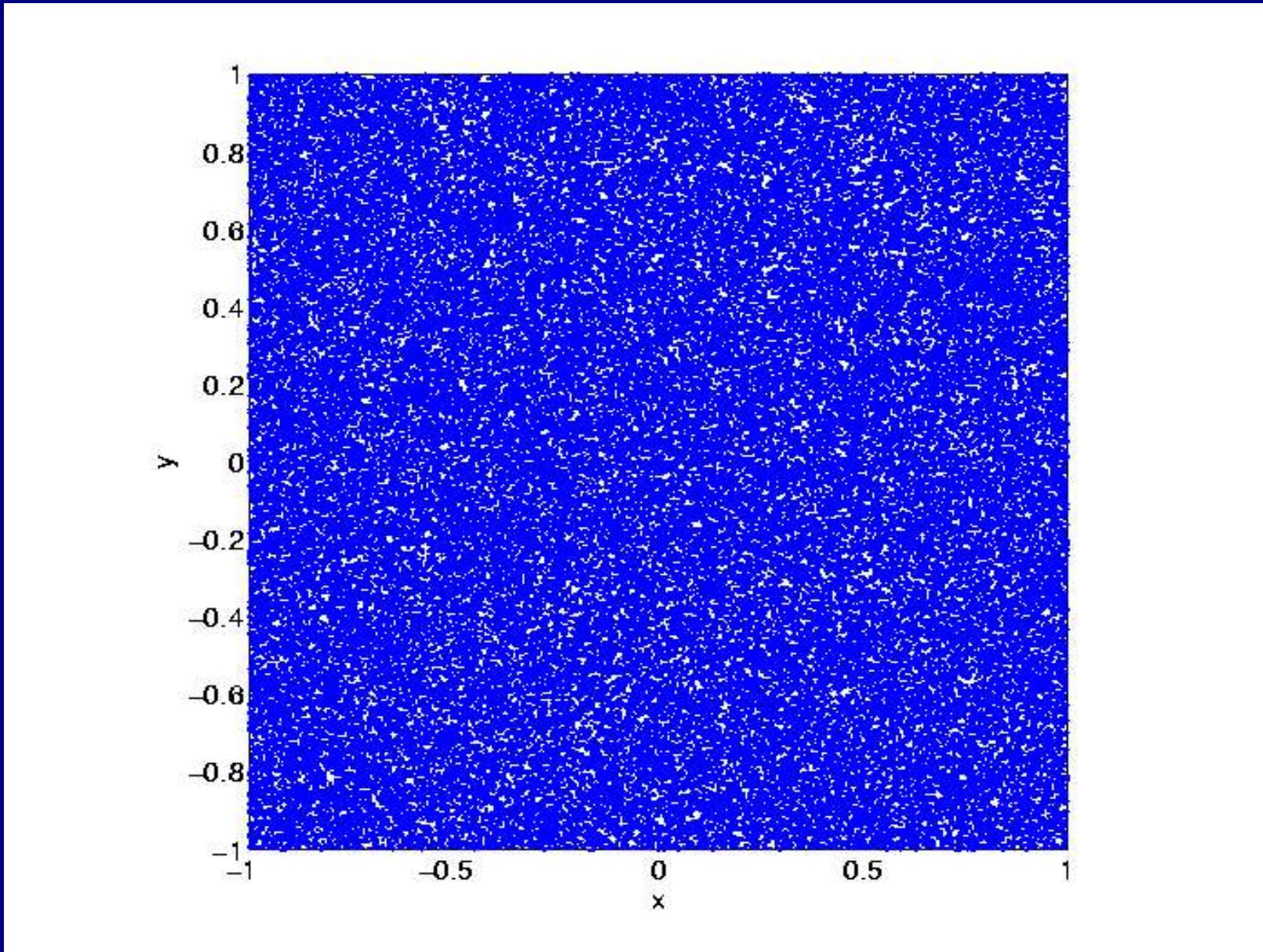


Figure 8: Points (x,y) generated uniformly over the square.

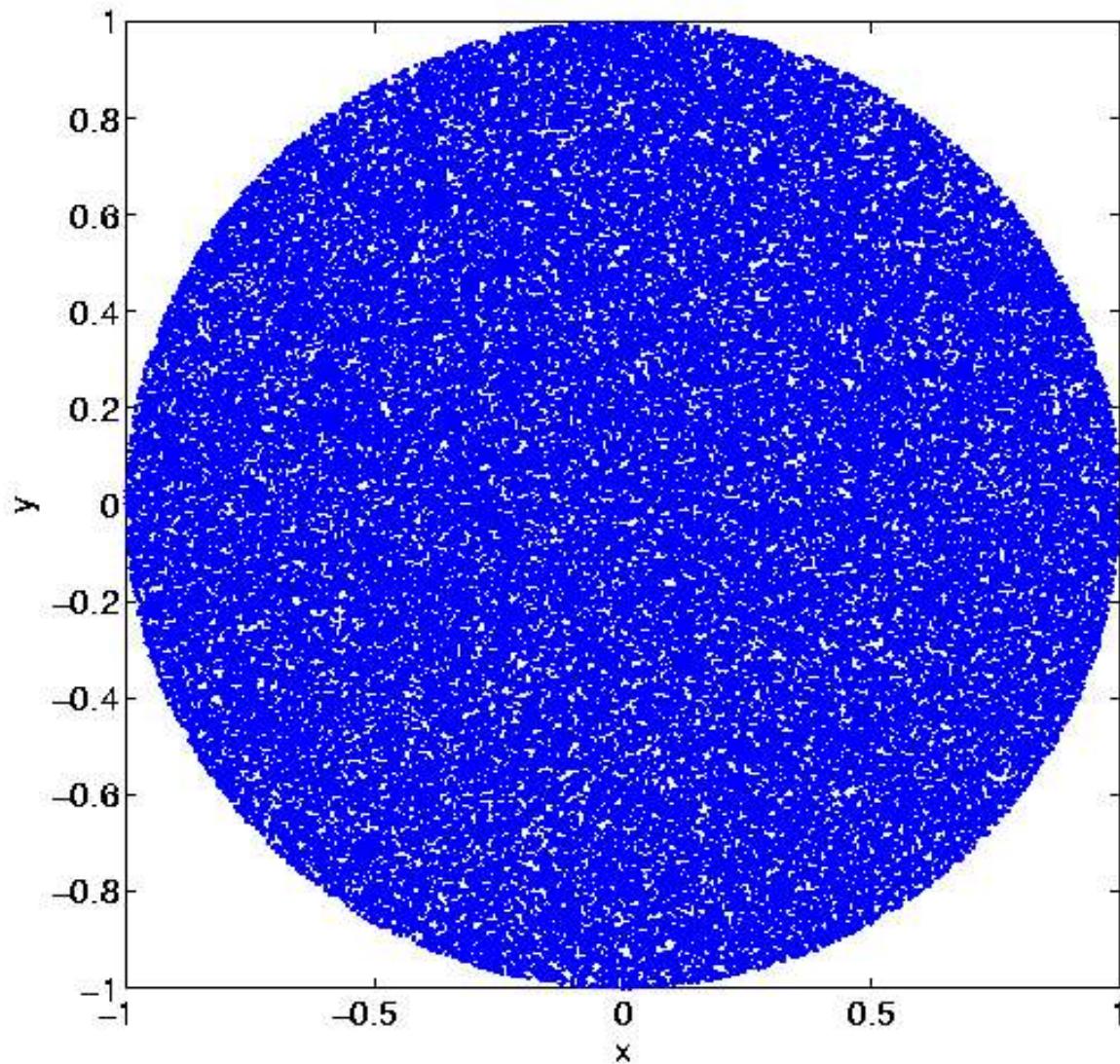


Figure 9: Points (x,y) inside the unit circle.