
ARC Data Management and ARC Data Management and 
Future Developments by NDGFFuture Developments by NDGFFuture Developments by NDGFFuture Developments by NDGF

David Cameron
EPF Seminar 2/11/07



Data in Jobs

I ill t lk b t d t t i t d t j b� I will talk about data management associated to jobs
� ARC does not manage large-scale data transfer outside the job 

framework
� When submitting a job to NorduGrid, input and/or output 

data can be specified
� The job has to access input data and write output data 

and there are two options
� Submit the data with the job/copy the output back to the user� Submit the data with the job/copy the output back to the user
� Have the data ‘on the Grid’

� In the second case the Grid middleware takes care of 
the data for you

� I will concentrate on this case here



Specifying Data

� Input data is specified in the description of the job in 
URLs in one of two ways
� Giving the path to the file stored on a Grid storage element� Giving the path to the file stored on a Grid storage element

� eg "srm://srm.ndgf.org/pnfs/ndgf.org/data/atlas/file1“
� The file is downloaded for your job from herey j

� Giving the name of the file in an indexing service 
� eg “rls://atlasrls.nordugrid.org/file1”
� An indexing service maps Logical File Names (LFNs) (file1 in 

this case) to physical replicas
� The file is downloaded from one of the possible physical� The file is downloaded from one of the possible physical 

locations in the indexing service



Specifying Output Data

� The same options are available for output data
� Giving a physical location for the data

eg “srm://srm ndgf org/pnfs/ndgf org/data/atlas/file2”� eg srm://srm.ndgf.org/pnfs/ndgf.org/data/atlas/file2
� Giving an indexing service with a LFN

� eg “rls://atlasrls.nordugrid.org/file2”g g g
� The physical destination for the file is chosen from a list 

within the indexing service



Data Movement

� So how do the input files get to where the job is running?
� This is the job of the ARC Grid Manager (GM)

� A GM runs per cluster of Grid resources and takes care of data 
management for all Grid jobs submitted to that resource

clusterGMstorage storageindexing
service

get/write data

se ce
query

l tGM

User
job clusterGM

job storageclusterGM storage



Data Caching

� Each GM maintains a local cache, in order that input files 
do not have to be downloaded from Grid storage every 
time they are requestedtime they are requested

� When the cache is full, the oldest unused files are 
deleteddeleted

� Rule of ARC: No middleware on the worker node!� Rule of ARC: No middleware on the worker node!
� Read this as everything Grid-related is done before and after the 

job enters the local batch system
� Once the job is running it knows nothing about Grid



Planned Improvements

� It has been stated that there are no plans in KnowARC 
for development on the GM
� So NDGF which is supporting ‘classic ARC’ will implement� So NDGF, which is supporting classic ARC , will implement 

some improved features

� The order I present these is not the order or priority for p p y
implementation!
� But any thoughts you have on this are welcome



Planned Improvements

� Use of gLite File Transfer Service for data movement� Use of gLite File Transfer Service for data movement
� This solves a lot of the problems further down this list
� But requires that GM cache is accessible from outside
� gsiftp endpoints work but are not supported in FTS� gsiftp endpoints work but are not supported in FTS

� It is unlikely we could ask all sites to use SRM
� Use this for large sites and have current solution as fallback and for 

small sites?s a s tes
� Multiple hosts per GM for doing the data transfer

� It seems we have reached a limit on data transfer which is the cable into 
the box hosting the GM

� GM can spawn the data transfer processes on different nodes
� Or have multiple GMs per site
� Or split large sites into sub-sites

� Having the GM cache spread across multiple directories
� This could solve the above problem, if the directories were on physically 

different hosts, mounted on the GM host



Planned Improvements

C di d l di l f l i fil� Coordinate downloading large sets of large input files
� So as not to have jobs blocked by other jobs with large input data sets
� Possibly having separate queues/priorities for large/small input data y g p q p g p

sets 
� Management of the GM cache - use for data aware scheduling

� Cached files are registered in the indexing service but are not used for� Cached files are registered in the indexing service but are not used for 
brokering during job submission

� Storing the DN associated with cached files
� Each time a cached file is used we have to check access permissions of 

a copy on Grid storage
� If we store the DN we don’t need to check this if same user requests the q

same file



Planned Improvements

D li ith diti G id i d t li i� Dealing with error conditions eg Grid services down, retry policies
� At the moment the retry policies are very simple

� Dealing with data on tape 
� If a requested file is stored on tape, the GM will simply block until the file 

is staged to disk
� For output files, be able to specify output storage preferences as an p p y p g p

ordered list 
� This is from the ATLAS production system use case, where they want to 

have a primary storage and fallback storages in case of failure of the 
primary

� Direct I/O of files on Grid storage
� Many use cases involve accessing a small piece of a large filey g g
� Here it makes more sense not to copy the whole file for the job

� But remember – no middleware on the worker node!



Conclusions

� There is an endless list of possible improvements to be 
made
� We now have to prioritise these� We now have to prioritise these

� The ‘problem’ is that the current system works very well
� So we have to try not to introduce anything that interferes too� So we have to try not to introduce anything that interferes too 

much with this
� So we plan to start with minimalistic changes ☺
� We also have to keep an eye on KnowARC development


