BaBar Measurements of CP Violation, Mixing and Lifetimes of B Mesons

Concezio Bozzi INFN Ferrara, Italy

17th Nordic Particle Physics Meeting January 5th 2002 Spåtind, Norway

Outline

- CP Violation, CKM Matrix and the Unitarity Triangle
- Observation of CP Violation in the interference of Decay and Mixing \Rightarrow Sin2 β
 - The PEP-II B Factory & The BaBar Detector
 - The three linked steps towards the $sin 2\beta$ measurement
 - B Lifetime
 - B Mixing $(\Rightarrow$ digression on dileptons...)
 - CP Asymmetry
- The way forward : Summary and Outlook

CP violation in the Standard Model

CP violation arises from single phase in CKM matrix

$$\mathbf{V} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathbf{O}(\lambda^4)$$

Unitarity of V implies eg. $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ \rightarrow represented as 'unitary triangle' in complex plane

The Unitarity Triangle without CP Violation Measurements

CP from Interference of Mixing and Decay

CP violation results from interference between decays with and without mixing

$$\lambda_{f_{CP}} \neq \pm 1 \implies \operatorname{Prob}(\overline{B}^0_{phys}(t) \rightarrow f_{CP}) \neq \operatorname{Prob}(B^0_{phys}(t) \rightarrow f_{CP})$$

Time-dependent CP asymmetry:

$$\begin{split} A_{f_{CP}}(t) = & \frac{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) - \Gamma(B^0_{phys}(t) \to f_{CP})}{\Gamma(\bar{B}^0_{phys}(t) \to f_{CP}) + \Gamma(B^0_{phys}(t) \to f_{CP})} \\ = & C_{f_{CP}} \cos (\Delta m_d t) + S_{f_{CP}} \sin (\Delta m_d t) \end{split}$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 \operatorname{Im} \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

- Theoretically clean mode to measure $\sin 2\beta$
- Clean experimental signature
- "Large" branching fraction compared to other CP eigenstates

Time-dependent CP asymmetry
$$A_{CP}(t) = -\eta_{CP} \sin 2\beta \sin(\Delta m t)$$

Decay Time Distribution in $B \rightarrow f_{CP}$

$$f_{+}: \overline{B}_{phys}^{0} \to f_{CP}$$
$$f_{-}: \overline{B}_{phys}^{0} \to f_{CP}$$

$$f_{\pm}(B \to f_{CP}, t) = \frac{\Gamma}{4} e^{-\Gamma |\Delta t|} \left[1 \pm C_{f_{CP}} \cos(\Delta m_d t) \mp S_{f_{CP}} \sin(\Delta m_d t) \right]$$

Decay Time Evolution & A_{CP} for $B^0 \rightarrow J/\psi K^0_{S}$

Exptal Requirements For CPV Measurement

- BR $(B \rightarrow f_{CP}) \sim 10^{-4} \Rightarrow$ Need to record and reconstruct a large # of B Mesons
- Determine the flavor of the initial B meson to separate B^0 from \overline{B}^0 (B Flavor Tagging)
- Define and measure a 'time' in order to study the timedependent asymmetry
 - B Mesons must travel a measurable distance before decaying
 - Vertex Reconstruction: A high precision tracking system to measure the distance between the B decay points

BaBar Detector @ PEP-II B Factory as example

PEP-II Asymmetric Energy B-Factory at SLAC

Collides 9 GeV e⁻ on 3.1 GeV e⁺

Y(4S) boost in lab frame : $\beta \gamma = 0.56$

C. Bozzi - INFN Ferrara

PEP-II Performance Has Been Spectacular !

Jan 5, 2002

C. Bozzi - INFN Ferrara

The BaBar Detector

SVT: 97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks) SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%$ DIRC:

K-π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/c

 $\sigma_{\rm F}/{\rm E} = 2.3 \% \cdot {\rm E}^{-1/4} \oplus 1.9 \%$ EMC:

Jan 5, 2002

Sin2^β Analysis Strategy

Factorize the time-dependent analysis in 3 building blocks Obtain All analysis ingredients from DATA (not MC)

3. Reconstruct Inclusively the vertex of the "other" B meson (B_{TAG})

- 1. Fully reconstruct one B meson in self tagging (B_{REC})
- 2. Reconstruct the decay vertex

4. compute the proper time difference Δt 5. Fit the Δt spectra

Fully-Reconstructed Hadronic B Decay sample **Flavor Eigenstates B**_{flav}: for lifetime and mixing measurements °//€/ ₩400 Self-tagging hadronic decays Neutral 30 fb⁻¹ **B** Mesons <u>്</u>ന1200 $b \rightarrow c \overline{u} d$ "Open Charm" decays 000 E $N_{B^0/\overline{B}^0} \approx 9400$ 800 d. s 600 purity 83% $\sum_{\overline{a},\overline{a}} B^0 \to D^{(*)-} \pi^+ / \rho^+ / a_1^+$ $B^- \to D^{(*)0} \pi^-$ 400 b 200 5210 5240 5250 5260 5270 5280 5290 5300 5200 5220 5230 ā ā Beam-Energy Substituted Mass (MeV/c °∬400 ₩ BABAR Hadronic decays into final states Charged <u>5</u>1200 with Charmonium $b \rightarrow (c \ \overline{c}) s$ **B** Mesons Events 000 $N_{B^+/B^-} \approx 8500$ C, U 800 b 600 purity 85% ā 400 $B^0 \rightarrow J/\psi K^{*0}(K^+\pi^-)$ 200 5200 5210 5220 5230 5240 5250 5260 5270 5280 5290 5300 $B^+ \rightarrow J/\psi K^+, \psi(2S)K^+$ Beam-Energy Substituted Mass (MeV/c²) C. Bozzi - INFN Ferrara = $\left(E_{\text{boom}}^{\text{cm}} \right)^2 - \left(p_{\text{R}}^{\text{cm}} \right)^2$ [GeV] 17 Jan 5, 2002

Recoil (Tag) side Vertex and Δz Reconstruction

- Average Δz resolution is 180 μ m (<| Δz |> ~ $\beta \gamma C \tau$ = 260 μ m)
- ∆t resolution function characterized from data

Jan 5, 2002

τ_{B} Measurement at Boosted $\Upsilon(4S)$: Unique

Need to disentangle resolution function from physics

C. Bozzi - INFN Ferrara

Δt Resolution Function

- event-by-event $\sigma(\Delta t)$ from vertex errors
- Charm Lifetime induced bias leads to
 - Small correlation between the lifetime and the Resolution Function parameters

BA**B**AR

 $\sigma_{\Lambda z}$

0.03

0.04

~0.6

0.01

0

0.02

 $\sigma_{\Delta z}$ (cm)

 $B^{\theta} \to D^{(*)} \pi^{+}, \rho^{+}, a_{1}^{+}$

B Lifetime Likelihood Fit

- Simultaneous unbinned maximum likelihood fit to B⁰/B⁺ samples
- Use data to extract the properties of background events
 - Mass distribution provides the signal probability
 - Use the events in the sideband $(m_{ES} < 5.27)$ to determine the Δt structure of the background events under the signal peak
- 19 free parameters
 - τ(B⁺) and τ(B⁰)
 - At signal resolution
 - empirical background description

2

5

12

B Lifetime Results: Calibrating The BaBar Clock

$ au_{o}$	= $1.546 \pm 0.032 \pm 0.022$ ps
	PDG: 1.548 \pm 0.032 ps
$ au_{\pm}$	= $1.673 \pm 0.032 \pm 0.022$ ps
	PDG: 1.653 \pm 0.028 ps
τ_{\pm}/τ_{o}	$= 1.082 \pm 0.026 \pm 0.011$
_	PDG: 1.062 ± 0.029

- Precision measurement !
 - 2 % statistical error
 - 1.5% systematic error
- Main source of systematic error
 - Parameterization of the Δt resolution function
 - Description of events with large measured Δt (outliers)

Comparison of Lifetime Ratio Measurements

Sin2β Analysis Strategy (Part II)

Measurements

Analysis Ingredient

- = E*/E011folmes
- (a) Reconstruction of B mesons in flavor eigenstates
 (b) B vertex reconstruction

• $B^0 \overline{B^0}$ -Mixing

(c) B Flavor Tagging (+ a + b)

 CP-Asymmetries
 Reconstruction of neutral B mesons in CP eigenstates (+ a + b + c)

6. Fit the Δt spectra of mixed and unmixed events

Δt Spectrum of Mixed and Unmixed B Events

B Flavor Tagging Methods Hierarchical Tagging Categories

For electrons, muons and Kaons use the charge correlation

B Flavor Tagging Performance Using B Mixing

The large sample of fully reconstructed hadronic B decays provides the precise determination of the tagging parameters required in the CP fit

	Tagging category	Fraction of tagged events ε (%)	Wrong tag fraction w (%)	$Q = \epsilon (1-2w)^2$ (%)	
	Lepton	10.9 ±0.3	8.9 ± 1.3	7.4 ± 0.5	
	Kaon	35.8 ±0.5	17.6 ± 1.0	15.0 ± 0.9	
	NT1	7.8 ±0.3	22.0 ± 2.1	2.5 ± 0.4	
	NT2	13.8 ±0.3	35.1 ± 1.9	1.2 ± 0.3	
	ALL	68.4 ±0.7		26.1 \pm 1.2	
Highest "efficiency"		The error on sin2β	the quality factor Q	Smallest mistag fraction	
		$\sigma(\sin 2\beta)$	$(B) \propto \frac{1}{\sqrt{Q}}$		

Δt Resolution Function

C. Bozzi - INFN Ferrara

Mixing Likelihood Fit

Unbinned maximum likelihood fit to flavor-tagged neutral B sample

$B^0\overline{B}^0$ Mixing Fit Result

Asymmetry(Δt) = $\frac{N(\text{unmixed}) - N(\text{mixed})}{N(\text{unmixed}) + N(\text{mixed})} \approx (1 - 2w) \times \cos(\Delta m_d \Delta t)$

 $\Delta m_d = 0.516 \pm 0.016 \text{ (stat)} \pm 0.010 \text{ (syst)} \text{ fr } \text{ps}^{-1}$

hep-ex/0112044

Δm_d Measurements in Comparison

- B⁰ and B[±] admixture
- Efficient Neural Network event selection
- Very accurate description of the residual background
- $\Delta z \rightarrow$ points of closest approach of the leptons to the beam spot in transverse plane
- Extraction of Δm from time evolution: $e^{-\Gamma |\Delta t|} [1 \pm cos(\Delta m \Delta t)]$
- Study of CPV in mixing from charge asymmetry of same sign leptons:

 $A_{T} = (N_{l+l+} - N_{l-l}) / (N_{l+l+} + N_{l-l}) \sim \frac{4Re(\epsilon)}{1+|\epsilon|^{2}}$

Dileptons: sample composition

99010 events selected in 20.7 fb⁻¹

- Direct leptons (~78%)
 - sensitive to mixing (!)
 - B-lifetime component
- Opposite-B cascade (OBC) leptons (~7%)
 - sensitive to mixing, but
 - source of mistag (~100%)
 - extra-lifetime due to charm decay
 (B-lifetime + effective lifetime from charm)
- Same-B cascade (SBC) leptons (~5%)
 - not sensitive to mixing
 - source of opposite-sign leptons only
 - effective lifetime from charm
- Misidentified leptons (~5%):
 - same topologies (and resolution function) as above
 - extra mistag to be taken into account
- Continuum (~5%): fit off-resonance data

Dilepton Mixing: Δt measurement

Dilepton mixing results

CPV with dileptons: Background reduction

Almost all background comes from cascade leptons from B+ or unmixed B0

Cut at 200 μ m Correct for background dilution by weighting in bins of $|\Delta z|$

$$A_T^{mes}(\Delta t) = A_T(\Delta t) \cdot \frac{S(\Delta t)}{S(\Delta t) + B(\Delta t)}$$

Neglect background asymmetry \Rightarrow small systematics

CPV with dileptons: results

Corrected for charge asymmetries in the detection (particle ID, tracking)

Most precise single measurement!

$\frac{\text{Re}(\epsilon)}{1+|\epsilon|^2} = 0.11 \pm 0.29 \pm 0.36 \%, \text{ or}$ $|\mathbf{q}/\mathbf{p}| = 0.998 \pm 0.006 \pm 0.007$

Systematics dominated by charge asymmetries in the detector

C. Bozzi - INFN Ferrara

5. compute the proper time difference Δt 6. Fit the Δt spectra of B⁰ and <u>B⁰</u> tagged events

The fully Reconstructed CP Sample

Δt Spectrum of CP Events

Sin2β Likelihood Fit

Combined unbinned maximum likelihood fit to Δt spectra of flavor and CP sample

Fit Parameters

Sin2β Mistag fractions for B^0 and $\overline{B^0}$ tags in each Cat. Signal resolution function Empirical description of background Δt B lifetime fixed to the PDG value Mixing Frequency fixed to the PDG value

tagged CP samples <mark>8</mark> 16 tagged flavor sample 20 $\tau_{\rm B} = 1.548 \ {\rm ps}$ $\Delta m_{d} = 0.472 \text{ ps}^{-1}$

Global correlation coefficient for $sin 2\beta$: 13%

Different Δt resolution function parameters for Run1 and Run2

45 total free parameters

- ✓ All ∆t parameters extracted from data
 ✓ Correct estimate of the error and
- correlations

Sin2b in various sub-samples

C. Bozzi - INFN Ferrara

Run1→Run2 Changes/Results

- First publication in March 2001 $sin(2\beta) = 0.34 \pm 0.20 \pm 0.05$ PRL 86 (2001) 2515
- Changes since then:
 - More data (run 2): 23 \rightarrow 32 BB pairs
 - Improved reconstruction efficiency
 - Optimized selection criteria takes into account CP asymmetry of background in $J/\psi K_L$
 - Additional decay modes $\chi_{C1}K_S$ and $J/\psi K^{*0}$
 - Improved vertex resolution for reconstructed and tag B

Run 1 / Run 2 Results

Major Sources of Systematic Error in Sin2 β

Error/Sample	K _S	K _L	K*0	Total			
Statistical	0.15	0.34	1.01	0.14			
Systematic	0.05	0.10	0.16	0.05			

Measurement is Statistics Dominated

- - Resolution model, outliers, residual misalignment of the Silicon Vertex Detector
- Flavor Tagging
 0.03
 - possible differences between B_{CP} and B_{flavor} samples
- Background Characterization: 0.02 (overall)
 - Signal probability, fraction of B⁺ background in the signal region, CP content of background
 - Total 0.09 for J/ Ψ K_L channel; 0.11 for J/ Ψ K^{*0}
- Total Systematic Uncertainty: 0.05 for total sample

Search for Direct CP

If at least 2 amplitudes with a weak phase difference contribute

 $|\lambda|$ might be different from 1

(tree amplitude and leading penguin amplitude for $B \rightarrow J/\psi K_s$ have same weak phase in SM)

$$A_{CP} = C_{f_{CP}} \cos \Delta m_d \Delta t + S_{f_{CP}} \sin \Delta m_d \Delta t$$

$$C_{f_{CP}} = \frac{1 - |\lambda_{f_{CP}}|^2}{1 + |\lambda_{f_{CP}}|^2}$$
$$S_{f_{CP}} = \frac{-2 Im \lambda_{f_{CP}}}{1 + |\lambda_{f_{CP}}|^2}$$

Probing new physics (only use η_{CP} =-1 sample that contains no \mathscr{P} background)

$|\lambda| = 0.93 \pm 0.09$ (stat.) ± 0.03 (syst.)

No evidence of direct CP violation due to decay amplitude interference (coefficient of the "sine" term unchanged)

Luminosity Projection to Summer 2002

Luminosity Plans for BABAR & PEP II

Expect 550 fb⁻¹ By 2006

Prognostications on Future $Sin 2\beta$ Precision

- In the Charmonium Modes
 - Add more sub-modes "drops in the bucket" :
 - Select $\Psi \rightarrow$ hadrons, not just $\Psi \rightarrow e^+e^-$ or $\mu^+\mu^-$,
 - smarter event selection (bremstrahlung recovery)
 - Expect for charmonium modes: $\sigma_{\sin 2\beta} \le 0.08$ for 100 fb⁻¹
 - Add new CP modes :
 - $b \rightarrow ss\bar{s} \Rightarrow B \rightarrow \phi K_s$ Compare with sin2ß from $b \rightarrow c \bar{c} s$ $\sigma_{sin2\beta} \leq 0.25$ for 500 fb^{-1}
 - Compare with $\sin 2\beta$ from $b \rightarrow c \overline{c} s$
 - Cabibbo Suppressed $B \to \Psi \pi^0 \implies \sigma_{\sin 2\beta} \le 0.23$ for $500 \, fb^{-1}$
 - Look for difference in $\sin 2\beta$ measured from $b \rightarrow c\overline{cs}$
 - » bound u-quark penguin pollution
 - Cabibbo suppressed $b \rightarrow c\overline{c}d \Rightarrow B \rightarrow D^{(*+)} D^{(*-)}$
 - May contain (small but unknown) penguin pollution
 - » D*D* mode requires angular analysis (in progress)

New Modes for "Sin2 β ": 20 fb⁻¹

$B \rightarrow \pi^+\pi^-, K^+\pi^-, K^+K^-$ Data Sample

$B \rightarrow \pi^+\pi^-/K^+\pi^-$ Likelihood Fit

- Simultaneous extended ML fit to the BRs and CP asymmetries:
 - − 8 event types (Sig and Bkg: $\pi^+\pi^-$, K⁺ π^- , K⁻ π^+ , K⁺K⁻ → measure also direct CP violation in charge asymmetry

 $A = N(K^{-}\pi^{+}) - N(K^{+}\pi^{-})/N(K^{-}\pi^{+}) + N(K^{+}\pi^{-})$

- Discriminating variables (m_{ES} , ΔE , *Fisher*, Cherenkov angles, Δt)
- Mistag rates and Δt signal resolution function same as in sin2 β fit (uses also untagged events to improve BR measurements)
- $-\Delta m_d$, B⁰ lifetime fixed
- Empirical background parameters determined from m_{ES} sidebands
- With 30.4 fb⁻¹:

65 $\pm \frac{12}{11} \pi^{+}\pi^{-}$, **217** $\pm 18 \ \text{K}^{+}\pi^{-}$, **4.3** $\pm \frac{6.3}{4.3} \ \text{K}^{+}\text{K}^{-}$

- Measurement compatible with no \mathcal{CP} in $B^0 \rightarrow \pi^+\pi^-$
- Statistically limited due to small branching fraction
- Need ~500/fb for $\sigma(S_{\pi\pi}) \sim 0.10-0.15$

Summary and Outlook

• New precision measurements of B^0/B^+ lifetimes and $B^0\overline{B}^0$ mixing frequency Δm_d

$$\begin{split} \tau_0 &= 1.546 \pm 0.032 \pm 0.022 \text{ ps} \\ \tau_{\pm} &= 1.673 \pm 0.032 \pm 0.022 \text{ ps} \\ \tau_0 / \tau_{\pm} &= 1.082 \pm 0.026 \pm 0.011 \\ \Delta m_d &= 0.516 \pm 0.016 \pm 0.010 \text{ ps}^{-1} \text{ (hadronic)} \\ \Delta m_d &= 0.493 \pm 0.012 \pm 0.009 \text{ ps}^{-1} \text{ (dileptons)} \end{split}$$

- Measurement of flavor-tagged, time-dependent B decays at asymmetric B factory has become established technique
- BaBar observes CP violation in the B^0 system at 4σ level

$$sin(2\beta) = 0.59 \pm 0.14 \pm 0.05$$

- Probability is $< 3 \times 10^{-5}$ to observe an equal or larger value if no CP violation exists

- Corresponding probability for only the η_{CP} = -1 modes is 2 x 10⁻⁴

Summary and Outlook (cont.)

• Best measurement of CPV in mixing:

$|q/p| = 0.998 \pm 0.006 \pm 0.007$

• First measurement of time-dependent CP asymmetry in rare B decay mode $B \rightarrow \pi^+\pi^-$

 $S(\pi^{+}\pi^{-}) = 0.03^{+0.53}_{-0.56} (stat) \pm 0.11 (syst)$ $C(\pi^{+}\pi^{-}) = -0.25^{+0.45}_{-0.47} (stat) \pm 0.14 (syst)$

- The study of CP violation in the B system has started:
 - $sin(2\beta)$ will very soon become precision measurement (\rightarrow unitarity triangle constraints will be limited by other CKM parameters)
 - Need to compare $sin(2\beta)$ from different decay modes to test standard model
- With anticipated 100 fb⁻¹ by next summer, error in sin(2 β) will be 0.08 and for the asymmetry in B $\rightarrow \pi^+\pi^-$ error will be ~0.3

BaBar Aim : Multiple Measurements and Tests to Overconstrain the Unitarity Triangle

Sin2 β is just one focus of BaBar: Work in progress on Many Fronts An Exciting era of B physics in Progress !

C. Bozzi - INFN Ferrara

The Unitarity Triangle and This Measurement

