

Investigation of the decays $B^0_{d,s}$ -> $J/\psi\eta$ in the ATLAS experiment at the LHC

by Chafik Driouichi

17'th Nordic Particle Physics Meeting Spåtind, January 2002

People involved

- · Lund:
 - C. Driouichi, P. Eerola
- · Grenoble:
 - F.Ohlsson-Malek, S. Viret, M. Melcher

Note ISN-01.68, LUNDF6/(NFFL-7198)2001 submitted as an ATLAS Scientific Note.

Physics Motivation (1)

• Probing the mixing phase: $\phi_s = -2\lambda \eta = 2\lambda \sin \gamma |v_{ub}/v_{cb}|$ ϕ_s 5M ~ 0.039 $\rightarrow \gamma$ is very hard to extract!

 $B^0_{s,d}$ ->J/ $\psi\eta$ modes are U-spin related (d<->s) can be used to extract the γ -angle of the Unitarity triangle (hep-ph9903455):

- General parametrization of the $B^0_{s,d}$ ->J/ $\psi\eta$ decay amplitudes:

$$A_{s,d}(t) \propto 1 - b_{s,d} e^{i\rho_{s,d}} e^{i\gamma}$$
 $\rho_{s,d}$ the strong phases.

$$b_s = \frac{\lambda^2}{1 - \lambda^2} a_s \qquad b_d = a_d$$

 b_s is strongly Cabibbo suppressed \rightarrow Small CP violation effects

 \rightarrow use B_d^0 ->J/ $\psi\eta$ channel to calculate CP asymmetry

Physics Motivation (2)

- Calculate the time-dependent asymmetries: $A_{cn}^{dir}, A_{cn}^{mix}, A_{\Lambda\Gamma}$

However due to:
$$\left(A_{cp}^{dir}\right)^2 + \left(A_{cp}^{mix}\right)^2 + \left(A_{\Delta\Gamma}\right)^2 = 1$$

→ need new observable:

 $\langle \Gamma_s \rangle$ and $\langle \Gamma_d \rangle \rightarrow$ build new observable H=f(b, ρ,γ)

3 unknowns (b,ρ,γ) , 3 independent observables:

U-spin symmetry:
$$a_s = a_d$$
 $\rho s - \rho_d = \pi$

$$\tan \gamma \approx \frac{\sin \phi - \eta A_{cp}^{mix}}{(1 - H)\cos \phi_M}$$
 ϕ is the B_d-B_d mixing phase.

Physics Motivation (3)

• Branching ratio of $B_{s,d}^0 \rightarrow J/\psi \eta$:

LEP/L3 Br(B_s ->
$$J/\psi\eta$$
) < 3.8 10⁻³

By combining these modes and using the U-spin symmetry one was able to predict the branching ratios for both channels depending on the $\eta-\eta'$ mixing angle (-20 to -10):

$$Br(B_s^0 - J/\psi\eta) = 9.5 - 8.3 \cdot 10^{-4}$$

$$Br(B_d^0 - J/\psi\eta) = 1.6 - 4.1 \ 10^{-6}$$

Physics Motivation (5)

- Decays B_{s}^{0} -> $J/\psi \phi$, $B_{s,d}^{0}$ -> $J/\psi \eta$, $B_{s,d}^{0}$ -> $D_{s}^{+} D_{s}^{-}$ are analogous, but up to now, only the first one has been studied.
- Advantages of B_s^0 ->J/ $\psi\eta$: no angular analysis needed since the final state is a CP eigenstate (V-PS).

• Cross-check of the decay mode B_s^0 -> $J/\psi \phi$. New input to B-Physics measurements: B_d^0 -> $J/\psi \eta \equiv B_d^0$ -> $D_d^+ D_d^- = Sin^2 B_d^-$

Simulation Tools

- Generation: ATGEN-B (PYTHIA 5.7)
 - b-quarks produced via: lowest order process, gluon splitting, flavour excitation.
 - Exclusive modes $B_{s,d}$ --> $J/\psi\eta$ ($\mu6\mu3$, $|\eta|$ < 2.5) $\eta(\gamma\gamma)$ for signal.
 - Inclusive mode B --> $J/\psi(\mu6\mu3, |\eta| < 2.5) X$ for physics back.
 - p-p --> J/ψ X is not used, harmless for B_s --> $J/\psi \varphi$ (TDR).
- Simulation: Dice 98_2, full detector
 - srt release 1.3.0, OLD layout

17 000 $B_s --> J/ψη$ events ,15 000 $B_d --> J/ψη$ events

23 000 B --> J/ψ X events

- · Reconstruction: ATRECON
 - srt release 1.3.0, using xKalman

Physics analysis

J/psi Reconstruction

- Pairs of muons with $p_T(\mu 1)>6$ GeV, $p_T(\mu 2)>3$ GeV have been selected: efficiency: 85% for $\mu 1$ (incl. level-1 and reconstruction in muon spectrometer), 78% for $\mu 2$ (incl. Reconstruction in muon spectrometer and tilecal). Fake rate is very small.
- Cuts:
 - Fit Quality: χ²/ndf<6
 - Transverse Decay Length: Lxy >250 μm
 - → J/ ψ mass resolution ~ 39 MeV
 - \rightarrow J/ ψ reconstruction efficiency: 79%

η Reconstruction

- · Reconstructed in the ATLAS LAr Calorimeter:
 - Cell size: $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$
 - Energy resolution : $\sigma(E)/E = 10\%/\sqrt{E} \oplus 1\%$
 - Cluster size 3x3 cells with $E_{thr} > 1$ GeV:
 - $\gamma\gamma$ openning angle > 5°
 - \rightarrow 20% of $\eta -> \gamma \gamma$ retained.
- Further selection cuts:
 - Energy sharing in the 3 ECAL/lay and HCAL
 - Cluster width
 - -Energy containment in the 3x3 window
 - → η mass resolution ~35 MeV
 - → Reconstruction efficiency ~2.3%

Bos,d Reconstruction

Combining reconstructed J/ψ and η candidates, and choosing events with $P_{t}(B) > 5$ GeV.

→ mass resolution : $\sigma(B_{s,d}^0)$ = 67 MeV.

Results for 30 fb⁻¹ (???)

$$N_{\text{signal}}^{\text{prod}} = 2\sigma(\text{pp} \rightarrow \text{b}\bar{\text{b}})\mathcal{B}r(\text{b} \rightarrow \text{B}_{\text{s,d}}^{0})\mathcal{B}r(\text{B}_{\text{s,d}}^{0} \rightarrow \text{J}/\psi\eta)\mathcal{B}r(\text{J}/\psi \rightarrow \mu^{+}\mu^{-})$$

 $\cdot A(\mu 6)A(\mu 3)\mathcal{B}r(\eta \rightarrow \gamma\gamma)\int \mathcal{L}dt,$
 $N_{\text{back}}^{\text{prod}} = \sigma(\text{pp} \rightarrow \text{b}\bar{\text{b}} \rightarrow \text{J}/\psi\text{X})A(\mu 6)A(\mu 3)\int \mathcal{L}dt.$

$$N_{\mathrm{Bs}}^{\mathrm{prod}} = 9.2 \cdot 10^8 \cdot \mathcal{B}\mathrm{r}(\mathrm{B_s^0} \to \mathrm{J}/\psi\eta),$$

 $N_{\mathrm{Bd}}^{\mathrm{prod}} = 4.9 \cdot 10^9 \cdot \mathcal{B}\mathrm{r}(\mathrm{B_d^0} \to \mathrm{J}/\psi\eta).$

$$N_{\rm back}^{\rm prod} = 1.2 \cdot 10^8.$$

	$\theta_P = -10^{o}$	$\theta_P = -20^o$
$\mathcal{B}r(B_s^0 \to J/\psi \eta)$	$8.3 \cdot 10^{-4}$	$9.5 \cdot 10^{-4}$
$N_{\mathrm{Bs}}^{\mathrm{obs}}$	8 500	9 700
$\mathcal{B}r(B_d^0 \to J/\psi \eta)$	$4.1 \cdot 10^{-6}$	$1.6 \cdot 10^{-6}$
$N_{ m Bd}^{ m obs}$	200	80
$N_{ m back}^{ m obs}$	10 800	10 800

- \rightarrow Clear B_s signal 5/B~0.8
- → B_d CANNOT be observed

CP-asymmetry measurement (1)

Reminder:

Decay amplitude parametrization:

$$A_s(t) \propto 1 + a_s \frac{\lambda^2}{1 - \lambda^2} e^{i\theta_s} e^{i\gamma} \quad A_d(t) \propto 1 - a_d e^{i\theta_d} e^{i\gamma}$$

where $\theta_{\text{s,d}}$ the strong phases, $\textbf{a}_{\text{s,d}}$ their respective amplitude, λ the wolfenstein parameter.

CP asymmetry is doubly cabbibo suppressed in the $B_s --> J/\psi$.

Since the B_d --> $J/\psi\eta$ cannot be observed, one thought of calculating the CP asymmetry in the B_s --> $J/\psi\eta$ channel.

CP-asymmetry measurement (2)

- Events need to be tagged as B or anti-B:
 - Lepton tagging: Not possible due to low statistics.
 - Jet Charge Tagging (SST): exploits the correlation between the charge of a jet and the charge of the quark producing the jet:

$$Q_{jet} = \frac{\sum_{i} q_{i} P_{i}^{k}}{\sum_{i} P_{i}^{k}}$$

 q_i is the charge of the i^{th} particle in the jet, Pi its momentum.

Charged particles with: $P_{\tau} > 0.5$ GeV and $|\eta| < 2.5$, $\Delta R < 0.8$, $d_{o} < 1$ cm, |z| < 5 cm were considered. $\mu^{+}\mu^{-}$ were excluded.

CP-asymmetry measurement (3)

The reconstructed B-meson was defined as Bs-meson (anti Bs-meson) if the $Q_{iet} > +c$ ($Q_{iet} < -c$). c is a tunable cut.

The exponent (K) was optimized to maximize the the tagging quality factor $Q=\mathcal{E}_{tag}$. D^2_{tag} , where D_{tag} is the dilution factor and ε_{tag} is the tagging efficiency

Optimal parameters were found to be: K=0.2, c=0.2

→ Q = 3.85%
$$D_{tag} = 0.26$$
 $\varepsilon_{tag} = 0.57$

$$D_{tag} = 0.26$$

$$\varepsilon_{\text{tag}} = 0.57$$

CP-asymmetry measurement (4)

The observable asymmetry is:

$$a_{obs}(t)$$
= $D.a_{cp}(t)$ = $D.sin\phi_s.sin\Delta m_s t$

where $D=D_{tag}.D_{back}$, $D_{back}=N_s/N_s+N_{back}$.

Assuming the decay time resolution to be $\Delta \tau$ =0.073ps, the Bs lifetime τ_{Bs} =1.464ps:

Fit:

$$\rightarrow \delta(\sin\phi_s) = 0.27$$
 for $x_s = \Delta m_s/\Gamma_s = 19$
 $\rightarrow \delta(\sin\phi_s) = 0.31$ for $x_s = \Delta m_s/\Gamma_s = 30$

CP-asymmetry measurement (5)

In case of New Physics, ex: SB-LR model (phys. lett. B 475 (2000) 111)

$$A_{CP}^{\text{mix}}(Bs - 5) = \sin \phi_s$$
, $\phi_s = \phi_s^{SM} + \phi_s^{NP} = -2\lambda^2 \eta + \phi_s^{NP}$
 $\Delta \Gamma_s = \Delta \Gamma_s^{SM} \cos(\phi_s)$

- CP asymmetry as large as $\vartheta(40\%)$ may arise in the Bs channel while for $B_d \to J/\Psi K_s$, A_{cp} as large as $\vartheta(10\%)$.
- Affects also the B_s^0 - B_s^0 mass and width differences, where Δm_s may be reduced significantly

Lund Layout v.s. Old layout

Geometry has been changed

- Simulation: 6000 B_s --> $J/\psi\eta$ events (srt release 1.3.7).
- · Reconstruction: xKalman++.

Calo : No damage caused $(\eta - \gamma \gamma)$.

INDet : Mass resolution of $(J/\psi --> \mu^+\mu^-) \sim 50$ MeV.

Comparison and Conclusions

Simple estimates:

- B-factories PEPII, KEKB cannot produce B_s
- Tevatron CDF 2 fb⁻¹: 190 B_s-> $J/\psi\eta$
- · LHC ATLAS 30 fb-1: 9700 B_s->J/ψη
- LHC LHCb 10 fb⁻¹: 260 000 B_s -> $J/\psi \eta$, 2150 B_d -> $J/\psi \eta$

ATLAS can see a clear signal of B_s ->J/ $\psi\eta$, measure BR and other parameters measurement (mixing parameters), cross-check of other experiments. New sizeable effects beyond the SM can be observed.

Improve statistics by

- investigating $\eta \rightarrow \pi^+\pi^-\pi^0$ (BR=23%)
- improve η efficiency by better use of the fine granularity
 of the first ECAL compline (cluster fine structure)

of the first ECAL sampling (cluster fine structure)