B Physics in LHC Era The 17'th Nordic Particle Physics Meeting 4-10 January 2002 Spåtind, Norway

Tatsuya Nakada CERN and University of Lausanne

1) CKM picture

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
Unitarity: $V^{\dagger}V = 1$

1)
$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

 $\alpha = \arg \frac{-V_{tb}^* V_{td}}{V_{ub}^* V_{ud}}$
 $V_{cb}^* V_{cd}$ $Unitarity$
means
 $P = \arg \frac{-V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$
 $\beta = \pi - \arg \frac{V_{tb}^* V_{td}}{V_{cb}^* V_{cd}}$
 $\alpha + \beta + \gamma = \pi$

 \rightarrow This is not a test of unitarity.

CP violation measurements measure the angles (β and γ):

 $|V_{cb}|$, $|V_{ub}|$ and $|V_{td}|$ measurements define a triangle:

α

ά

 $\beta \neq \beta', \gamma \neq \gamma'$

Using the Wolfenstein's parametrization (λ , A, ρ , η)

Important conclusions:

$$\beta = \tan^{-1} \frac{\eta}{1-\rho} \left(1 - \frac{\lambda^2}{2(1-\rho)} \right)$$

$$\arg V_{tb} = -\gamma$$

$$\arg V_{ts} = \delta\gamma + \pi$$

$$\gamma = \tan^{-1} \frac{\eta}{\rho}$$

$$\delta\gamma = \eta\lambda^2$$

If we ignore the λ^2 correction, 1) and 2) are degenerate.

A must for the next generation experiments!

2) β , γ , and $\delta\gamma$ measurements B- \overline{B} oscillation dispersive part: M_{12}

$$\Delta m = 2|M_{12}| \propto B_{d}f_{d}^{2}|V_{td}|^{2} |V_{tb}|^{2}$$

arg $M_{12} = \arg (V_{td}^{*}V_{tb})^{2} + \pi$
 $= 2\beta + \pi$

$$\Delta m_{\rm s} = 2|M_{12}| \propto B_{\rm s} f_{\rm s}^2 |V_{\rm ts}|^2 |V_{\rm tb}|^2$$

$$\arg M_{12} = \arg (V_{ts} * V_{tb})^2 + \pi$$
$$= -2\delta\gamma + \pi$$

To be more precise...

The mass and decay width differences: $m_{\text{heavy}} - m_{\text{light}} \equiv \Delta m = -2|M_{12}| \times \cos(\arg M_{12}/\Gamma_{12})$ $\Gamma_{\text{heavy}} - \Gamma_{\text{light}} \equiv \Delta \Gamma = 2|\Gamma_{12}| \times \cos(\arg M_{12}/\Gamma_{12})$ ~ -1

CP violation in the oscillation:

$$d = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} = -\frac{\Delta\Gamma}{\Delta m} \sin\left(\arg M_{12}/\Gamma_{12}\right)$$

$$5 \times 10^{-3} \begin{cases} \sim 10^{-1} & (B_d) \\ \sim 5 \times 10^{-3} & (B_s) \end{cases}$$

$$\overline{B}_{t=0} \xrightarrow{\to} B_t - B_{t=0} \xrightarrow{\to} \overline{B}_t \\ \overline{B}_{t=0} \xrightarrow{\to} B_t + B_{t=0} \xrightarrow{\to} \overline{B}_t \end{cases} = 2d < 10^{-3}$$

NB: penguin contribution

 $b \rightarrow c + \overline{u}d$ and $b \rightarrow u + \overline{c}d$ may have a strong phase difference Δ !

$$\overline{B}{}^0 \rightarrow D^{*+}\pi^- \text{ and } \overline{B}{}^0 \rightarrow D^{*-}\pi^+$$

 $2\beta + \gamma + \Delta$ and $2\beta + \gamma - \Delta$

Strong phase difference can be measured.

Theoretically VERY clean measurement.

 $\sin 2\delta\gamma \times \sin \Delta mt$

$$\begin{aligned} & \operatorname{CP}(J/\psi) = +1, \ \operatorname{CP}(\phi) = +1 \\ & \operatorname{CP}(J/\psi \ \phi) = (-1)^{L_{J/\psi-\phi}} \\ & S = S_{J/\psi} + S_{\phi}: \ 0, \ 1, \ 2, \ J = S + L = 0 \\ & L_{J/\psi-\phi} = 0, \ 1 \ \text{or} \ 2 \\ & \rightarrow \text{fraction of } L_{J/\psi-\phi} = 1 \text{ needed: angular analysis} \end{aligned}$$

 $\begin{aligned} & CP(J/\psi) = +1, \ CP(\eta) = -1 \\ & CP(J/\psi \ \eta) = -(-1)^{L_{J/\psi} - \eta 0} = +1 \end{aligned}$

 $\sin 2\delta \gamma - \gamma \times \sin \Delta m t$

Strong phase: same as the $B_d \rightarrow D^*\pi$ case, i.e. measurable!

 \bigcirc Δ*Γ*/*Γ* ≈ 0.1 → cos 2δγ−γ × sinh Δ*Γt* measurable.

Theoretically VERY clean measurement.

CKM fit without sin 2β measurements

 $\rho=0.23\pm0.?, \eta=0.33\pm0.?$ "?" is somewhat "theological"

 $\sin 2\beta = 0.50 - 0.86 \text{ CL} > 32\%$ A.Höcker et al. 0.698 ± 0.066 A.Stocchi et al.

 $\beta = 23.2$ Y without λ^2 correction, 22.5 Y with λ^2 correction sin 2 β differs by 0.02 Kaon system: $|\epsilon| = (2.271 \pm 0.017)10^{-3}$ known to better than 1% theoretical uncertainties ~10% $Re(\epsilon'/\epsilon) = (17.3 \pm 2.3) \times 10^{-4}$ known to 13% theoretical uncertainties >100%

 \rightarrow No precision test is possible

Major improvements expected...

Theory: A better understanding of $Bf_B{}^2 \rightarrow |V_{td}/V_{cb}|^2$ from $\Delta m(B_d)$ $\sqrt{(1-\rho)^2 + \eta^2}$

Theory and more data A better understanding of b→u, c+ ℓ v decays: $|V_{ub}/V_{cb}|$ $\sqrt{\rho^2 + \eta^2}$

More data

An order of magnitude smaller error on sin 2 β : before hitting the penguin pollution $\sqrt{(1-\rho)^2 + \eta^2}$ from the $\Delta m(B_d)/\Delta m(B_s)$ measurement

2001 ~2007 $\sqrt{\rho^2 + \eta^2}$: improved by a factor of 3 $\sqrt{(1 - \rho)^2 + \eta^2}$: improved by a factor of 4 sin 2 β : ±0.01

4) Possible effect of new physics

arg $M_{12} = 2\beta + \phi_{bd}^{NP}$ CP asymmetry in $B_d \rightarrow J/\psi K_S \iff \sin 2\beta$

arg $M_{12} = 2\beta + \phi_{bd}^{NP}$ CP asymmetry in $B_d \rightarrow J/\psi K_S \iff \sin(2\beta + \phi_{bd}^{NP})$ CP asymmetry in $B_d \rightarrow D^* \pi \iff \sin(2\beta + \gamma + \phi_{bd}^{NP})$

B_s arg $M_{12} = 2\delta\gamma + \phi_{bs}^{NP}$ CP asymmetry in B_s → J/ψ φ \longleftrightarrow sin (2δγ + ϕ_{bs}^{NP}) CP asymmetry in B_s → D_s K \longleftrightarrow sin (2δγ + γ + ϕ_{bs}^{NP})

 \Rightarrow γ can be determined!

~2007 clean measurements BABAR, BELLE: $|V_{cb}|$, $|V_{ub}|$, Δm_d , sin 2 β , CDF (D0): Δm_s , sin 2 β ,

Clean measurements of γ: ±5°

Dedicated B experiments at LHC (and Tevatron)!!!

 $\sin ? \times \sin \Delta mt$

Future experiments need to have:

High statistics B_d and B_s .

Trigger sensitive to the final state with leptons and with only hadrons.

Good proper time resolution for measuring the CP violating oscillation amplitudes of the B_s meson.

Good π/K/μ/e separation to reduce the background from both combinatorics and other B meson decays.
 -kaon identification also useful for the flavour tag-

Good momentum and vertex resolutions to reduce background.

5) LHC experimental conditions

ATLAS

LHC will become operational in ~2006 with a starting luminosity of 10^{32} to 10^{33} cm⁻²s⁻¹ (design luminosity > 10^{34} cm⁻²s⁻¹)

```
\sigma_{b\overline{b}} expected in pp collisions at \sqrt{s} = 14 \text{ TeV}:500 \mu b

5 \times 10^{11} \text{ to } 5 \times 10^{12} \text{ b}\overline{b} \text{ pairs in 1 year (107 s)}

\rightarrow \text{powerful source of b quarks!}

cf.

\Upsilon(4S) B factories: 10<sup>7</sup> B-B/year @ L = 10^{33} \text{ cm}^{-2} \text{s}^{-1}
```

LHC could have a big potential for B physics.

However not too easy experimental environment...

$$\frac{\sigma_{bb}}{\sigma_{inelastic}} = 5 \times 10^{-3}$$

cf Y(4S) B factories: 0.2 HERA-B 10⁻⁶

Fixed target charm experiments

$$\frac{\sigma_{cc}}{\sigma_{inelastic}} \approx 10^{-3}$$

Bunch crossing frequency: $f_{pp} = 40$ MHz, i.e. every 25 nsec

 $p_{\rm T}$ threshold can be set low: \rightarrow high b efficiency

Momentum spectrum and decay distance for B mesons

6) Some detector requirements

What do we measure? (an example)

7) LHCb Detector

VEetex LOcator(VELO)

RICH

Required momentum rage and angular coverage.

RICH1:

RICH2:

5cm aerogel, n = 1.03, 2-11 GeV 4 m³ C₄F₁₀, n = 1.0014, 10-70 GeV $100 \text{ m}^3 \text{ CF}_4, \text{ n} = 1.0005$ 17-150 GeV

bump bonded pixel readout électronics.

Trigger

Level-0: High $p_{\rm T}$ leptons and hadrons Level-1: Detached decay vertices

LHCb Trigger Efficiency for reconstructed and correctly tagged events

	L0(%)				L1(%)	L2(%)	Total(%)
	μ	e	h	all			
$B_d \rightarrow J/\psi(ee)K_s + tag$	17	63	17	72	42	81	24
$B_d \rightarrow J/\psi(\mu\mu)K_S + tag$	87	6	16	88	50	81	36
$B_s \rightarrow D_s K + tag$	15	9	45	54	56	92	28
$B_d \rightarrow DK^*$	8	3	31	37	59	95	21
$B_d \rightarrow \pi^+ \pi^- + tag$	14	8	70	76	48	83	30

- trigger efficiencies are $\sim 30\%$

- hadron trigger is important for hadronic final states
 useful only with the kaon tag
- lepton trigger is important for final states with leptons

evenly spread selectivity = robust and flexible

8) Something about reconstruction Flavour tag with high $p_{\rm T}$ leptons and large impact parameter (d_0) kaons

9) Some LHCb Physics Performance

CP asymmetries in

- B_d → J/ψ K_S (>40k tagged /10⁷ sec) $\sigma_{sin2β} = 0.02 /10^7$ sec
- $B_s \rightarrow J/\psi \phi$ excellent σ_t
 - $\sigma_{2\delta\phi} = 0.04 0.06 / 10^7 \sec(x_s = 20 40)$

 B_s oscillations: hadron trigger, excellent σ_t

 $B_s → D_s \pi$ measurable up to $x_s ≈ 80$ (54 ps⁻¹) with 5σ CP violation in radiative decays

 $B_{d} \rightarrow K^{*0}\mu^{+}\mu^{-} s = 4.5k/10^{7} sec (Br=1.5\times10^{-6}), s/b = 16$ error on forward-backward asymmetry≈0.03/10⁷ sec $B_{d} \rightarrow K^{*0}\gamma \qquad single photon trigger$ s = 26k/10⁷ sec (Br=4.9×10⁻⁵), s/b = 1

error on CP asymmetry $\approx 0.01/10^7$ sec

CP asymmetries in $B_d \rightarrow D^{*\pm} \pi^{\mp}$ hadron trigger 260 k tagged /10⁷ sec $\sigma_{\nu} \approx 10^{\circ}$ $B_{c} \rightarrow D_{c}^{\mp} K^{\pm}$ particle ID, hadron trigger, excellent σ_t σ_ν ≈ 10Υ $2.4 \text{ k} \text{ tagged } /10^7 \text{ sec}$ Time dependent Dalitz plot study: hadron trigger $B_s \rightarrow \pi^+ \pi^- \pi^0$ $\sigma_{\beta+\gamma} \approx 5 \Upsilon to \ 10 \% 10^7 \text{ sec}$ CP asymmetries in particle ID, hadron trigger $B_d \rightarrow \pi^+\pi^-$ 4.9 k tagged $/10^7$ sec (Br = 5×10⁻⁶) and $B_s \rightarrow K^+ K^-$ particle ID, hadron trigger, excellent σ_t 4.6 k tagged $/10^7$ sec (Br = 1.9×10^{-5}) $\sigma_{v} \approx 5.4 \text{ V/}10^7 \text{ sec for } \Delta m_s = 20 \text{ ps}^{-1}$ Rare decays $s = 10 / 10^7 \text{ sec} (Br = 3.5 \times 10^{-9}), s/b = 3$ $B_s \rightarrow \mu^+ \mu^-$

10) Conclusions

Unique property of LHC

Large yield for different b hadrons (10¹²/10⁷ sec)

Unique properties of LHCb

Trigger: high $P_{\rm T}$ lepton or hadron + secondary vertex Sensitive to final states: lepton only & leptons+hadrons & hadron only

RICH system: clean K/ π separation over wide range of *p* Kaon tag (enhancing the importance of the hadron trigger), Clean reconstruction of hadronic final states

Vertex detector: excellent decay time resolution High CP and oscillation sensitivities for the B_s system

Unique opportunity to search for new physics through CP violation and rare decays in B-meson decays!!

stations are overlapped

Small r- ϕ strip Si detector: 300µm n-on-n double metal layer

Decay time resolution...

Dilution of CP asymmetry for B_s due to σ_{τ} must be less than due to other sources: < 0.5

 $\sigma_{\tau} < 50 \text{ fs} \approx 0.03 \tau_{B}$

$$< l_{\rm B} > \approx 1 \text{ cm}$$

 $\sigma_l \approx 300 \text{ }\mu\text{m}$

RICH Performance

Realistic simulation:

•tested by the test beam dat<sup>
•engineering design
•measured HPD performan
•all the background photon
•pattern recognition
</sup>

(some can still improve 4) No. of detected photons 56.6: RICH-1 aerogel 32.7: RICH-1 C_4F_{10} 18.4: RICH-2 CF_4

Particle identification is required in a momentum rage of $p_{\min} = \sim 1 \text{ GeV}/c$ (Kaon tag) to

 $p_{\text{max}} = \sim 100 \text{ GeV}/c.$ (two-body B decay products)

Ring Imaging Cherenkov is a suitable technique.

Can new physics make CP violation in oscillation to be large?

Even better would be?

