# Physics at the Tevatron Part 1: Experience from Run 1 Part 2: Upgrades and Prospects for Run 2

# Peter Wilson Fermilab 8 January 2002

P.J. Wilson, 8 Jan 2002

# Outline

### • Part 1 Today: Experience from Run 1

- > Run 1 Tevatron performance
- ➤ Run 1 CDF and D0 detectors
- > Overview of Run 1 Tevatron Physics and techniques
  - Physics range of Tevatron
  - QCD physics
  - Electroweak
  - B-physics
  - Putting it all together: top physics
  - Putting it together again: searches for new phenomena

### • Part 2 Tomorrow: Physics at the Tevatron in Run II

- > Improvements to Fermilab Accelerator Complex
- > CDF and DO Detector Upgrades
- Current accelerator and detector status
- > Projections for Run II physics



## Fermilab





# The Fermilab Tevatron Collider



꿓

## **D0** Collaboration



Physics at Tevatron: Run 1 Experience - 5

Totals



# **CDF** Collaboration





## **Tevatron Timeline**

| 1985      | First proton-antiproton collisions                                                                                                                                                                  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1988-89   | First physics run, CDF only                                                                                                                                                                         |  |  |  |
| 1992-96   | Run 1: 120 pb <sup>-1</sup> , 1.8TeV, CDF and DØ                                                                                                                                                    |  |  |  |
|           | 6 bunches, 3.5 ms between collisions;<br>L ~ $10^{31}$ cm <sup>-2</sup> s <sup>-1</sup> (10mb <sup>-1</sup> s <sup>-1</sup> ), L <sub>peak</sub> ~ 2 x10 <sup>31</sup> , <n<sub>int&gt;~2.5</n<sub> |  |  |  |
| 1996-2001 | Major detector upgrades                                                                                                                                                                             |  |  |  |
| 2001-04   | <b>1</b> Run 2a: 2 fb <sup>-1</sup> , 1.96 TeV                                                                                                                                                      |  |  |  |
| Now       | $\frac{1}{2}$ 6 bunches, 396 ns between collisions;<br>L ~ 2 ^10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> (0.2nb <sup>-1</sup> s <sup>-1</sup> )                                              |  |  |  |
| 2004      | Short shutdown to install new silicon detectors (+)                                                                                                                                                 |  |  |  |
| 2004-07   | Run 2b: ~ 15 fb <sup>-1</sup> (total)                                                                                                                                                               |  |  |  |
|           | 99 bunches, 132 ns between collisions;<br>L ~ 5 $^{10^{32}}$ cm <sup>-2</sup> s <sup>-1</sup>                                                                                                       |  |  |  |
| 2007?     | LHC operation starts at CERN                                                                                                                                                                        |  |  |  |
|           |                                                                                                                                                                                                     |  |  |  |

- Top quark production cross section ~ 5 pb
- Higgs, supersymmetry, . . . ~ few ~ 100 fb



# **Tevatron Luminosity History**



Physics at Tevatron: Run 1 Experience - 8

P.J. Wilson, 8 Jan 2002



## The Particle Menu at the Tevatron

- pp collisions Tevatron provides a broad spectrum of physics: QCD, B's, W, Z, tt, new particle searches
- Cross sections for particle production vary by a factor of ~ 10<sup>10</sup> (diffraction to Higgs)
- Enormous b rates ~ 10<sup>3</sup> -10<sup>4</sup>/s
  - > challenge: triggers, flavor tagging
- Large W boson samples
  - challenge: lepton, MET precision
- Modest t t samples
  - > challenge: B's in jets, jet Et
- Searches for Higgs, SUSY...
  - challenge: backgrounds, statistics





- QCD Jet, Photon, J/y... cross-sections angular distributions...
  - > Jet and photon reconstruction good calorimeters
- B's lifetimes, cross-sections (really QCD), B<sub>c</sub>, mixing, CP violation...
  - > Lepton I D (e and  $\mu$ )
  - > Displaced vertex measurements
  - > Flavor tagging (leptons, particle I D)
- Electroweak M<sub>W</sub>, G<sub>W</sub>, W Asymmetry...
  - > Lepton I D (e and  $\mu$ )
- tt and new particle searches
  - > Use all of the above





## **Run 1 CDF Detector**





## **Run 1 D0 Detector**



P.J. Wilson, 8 Jan 2002



### Run 1 Triggering limited to (CDF example):

> Leptons (Electron or Muon)

~20 GeV for EW work

~8 GeV with some prescale for b->Xlv

Dimuon 2 GeV

- > Jets 20 GeV w/large prescale to 100 GeV un-prescaled
- Photons 23 GeV un-prescaled

➤ Missing Et

### Most heavy flavor physics done from lepton samples

| Level | Bandwidth | Trigger On                             |  |
|-------|-----------|----------------------------------------|--|
|       | 300kHz    | Beam Crossing                          |  |
| L1    | 1kHz      | Cal Tower (EM or HAD), mstub, SEt, Et  |  |
| L2    | 25Hz      | Add Tracking, Cal clusters, processors |  |
| L3    | 5Hz       | Offline type reconstruction in farm    |  |

ᅷ

- Before LEPII the Tevatron was the center of measurements of properties of the W- Boson. This will again be true in Run 2
- Cross section for W+X on order of 20 nb
- Studies done almost exclusively with leptonic decays to e and **m** A few studies done with **Z**->**m** (eg **Zg**from DO)
- Properties measured in Run 1

>> W Mass

- > W Width both directly and indirectly
- > W/Z production asymmetries
- > Di-doson production (WW, WZ, ZZ, W $\gamma$ , Z $\gamma$ )
- > W+n jets production
- $> W/Z P_T$
- > Drell-Yan production



## **Precision Measurement of M**<sub>w</sub>

LEP 2 (e⁺e⁻)





 $W^{+} \rightarrow e^{+}v, W^{-} \rightarrow u\overline{d}$  $P_{i}(W^{+}) + P_{i}(W^{-}) = 0, i=1,2,3$  $E(W^{+}) + E(W^{-}) = E(e^{+}) + E(e^{-})$ 

u  
p  
W<sup>+</sup> 
$$\rightarrow e^+v$$
  
P<sub>i</sub>(W<sup>+</sup>) = 0, i=1,2  
P<sub>T</sub> =  $\sqrt{P_1^2 + P_2^2}$ 

 $M_T^W = \sqrt{2P_T^e P_T^v (1 - \cos\theta_{2D})}$ 

 $M^{W} = \sqrt{2P^{e}P^{v}(1-\cos\theta_{3D})}$ 

Physics at Tevatron: Run 1 Experience - 16

P.J. Wilson, 8 Jan 2002



# **Precision Measurement of M**<sub>w</sub>

#### • Clean low bias W samples:

- ▶ m+ track in COT
- EM shower w/minimal Had energy and narrow transverse shape + COT track
- ➤ E<sub>T</sub> >~20 GeV
- > Exclude events with jets
- Dominant systematics are data dependent -> decrease with higher statistics
  - > energy and momentum scales
  - > PDFs (from W asymmetry)
  - ≫ ...
- Energy scale:
  - Testbeam data
  - from Z®ee (cross-check with E/P at CDF)
- Momentum Scale (CDF):
  - ≫ Z®mm, J/y ® mm, Y ® mm





## **Energy and Momentum Scale**

CDF Z ® II







# **Energy Scale Check**

#### **Energy Scale Check**

- > E/P in W ℗ ev
- ✓ Check against material seen in conversions
- Get shift relative to Z @ee, not explained by material. Apply as systematic. (Worked in 1A)

#### **Material from Conversions**





ᅷ

## W mass: Fits to $M_T$





# Width of the W

G(W) measured directly from tail of  $\textbf{M}_{T}$  distribution. Not sensitive to theory or

#### other measurements.



| Experiment          | G(W) (GeV) | Stat             | Sys   |
|---------------------|------------|------------------|-------|
| CDF e <b>n (1A)</b> | 2.11       | 0.28             | 0.16  |
| CDF e <b>n (1B)</b> | 2.17       | 0.125            | 0.105 |
| CDF <b>mn</b> (1B)  | 1.78       | 0.195            | 0.135 |
| CDF Comb            | 2.055      | 0.100            | 0.075 |
| D0 e <b>n</b> (1B)  | 2.231      | +0.145<br>-0.138 | 0.092 |
| SM Pred             | 2.0937     | 0.0025           |       |



Physics at Tevatron: Run 1 Experience - 21



# **QCD – Jets and Photons**

 Jet and Photon cross sections are used to probe the structure of the

### proton at very small scales

- Test perterbative QCD
- Tests of the parton distribution functions
- At large Et or Jet-Jet mass, sensitive to new physics such as quark substructure

## OCD measurements

- Jet and Photon x-sec
- Di-jet, di-photon x-sec
- Multi-jet x-sec
- $> \gamma \mu$  xsec (c and b in proton)
- > J/ $\psi$ , Upsilon, B cross-sections
- > Diffractive production of jest  $J/\psi$ ...





## **Tevatron Jet Events**

#### Jets are reconstructed in combination of Hadronic and Electromagnetic calorimeters

- Showers are wide due to fragmentation
- Reconstruct using fixed cone algorithm
  - Jet Cross sections: R=0.7
  - Top analysis: R=0.4 to reduce merging
  - R<sub>sep</sub> used to separate jets
- > Starting to use  $K_T$  algorithm
  - Cluster based on  $K^{}_{\rm T}$  relative to seed tower or parton (MC)
  - Avoid infared divergence







**CDF 5 Jet Event** 





# **Jet Energy Calibrations**

#### • Need to account for:

- Detector response Data
- Different fragmentation (e.g. charge fraction) –Data + MC
- Losses from cone to get back to original parton MC
- Underlying event minimum-bias Data
- D0 uses Jet-Photon to calibrate energy response and map region to region

#### • CDF uses

- single charged particle response and MC to determine response of central region:
  - Test beam data (single e/pi)
  - Single pion in colliding beam data
  - Use resolution in MC vs to tune MC
- CDF uses Jet-Jet balancing to crosscalibrate regions
  - Jet-Z(->II) and Jet-Photon balance as cross check



ᅷ

## **DO Inclusive Jet Spectra**





# **CDF Inclusive Jet Spectra**



Amazing agreement over 7 orders of magnitude Best agreement with CTEQ4 pdf Also good agreement for Di-Jets —



Physics at Tevatron: Run 1 Experience - 26

\* \*

# **CDF and DO Jets Compared**





## **Photon Production**

- Sensitive to gluon content of the proton qg->qg
- Photons selected based on EM energy
  - a small region of calorimeter
    - minimal deposition in hadron compartment
    - > absence of charge particle track match pointing at cluster
    - > Narrow transverse shower shape
    - > I solated in calorimeter to reject against background from parton fragmented to single  $\pi^0$  or  $\eta^0$
- Energy calibration based on Electron calibration see Ws
- Direct g separated from p<sup>0</sup> decay through statistical measures based on transverse shower profile and conversion probability before cal (CDF)







Isolation Cono.J. Wilson, 8 Jan 2002





#### Inclusive B production properties |y| < 1.0

#### **D0**



#### CDF

# **B** Physics

## Cross section for bb O(100mb)

## Run 1 Trigger limited to

- ≫ B-> J/ψ X, J/ψ -> μμ
- > B-> X I v (e or  $\mu$ )

## • Key features of CDF for B's:

- > SVX lifetimes
  - 51 cm long, 2D, r-φ readout
  - $\sigma_d = [13 \oplus 40/p_T(\text{GeV/ c})]\mu\text{m}$
- CTC mass resolution and dE/dx
  - $(\delta p_T / p_T)^2 = (0.0009 \bullet p_T)^2$

## • Key measurements

- > Inclusive and Exclusive ( $B^+$ ,  $B^0_d$ ,  $B_s$ ,  $B_c$ ,  $\Lambda_b$ ) lifetimes
- Mixing (Bs and Bd) -> probe of |Vtd|
- > Measurement of Sin  $2\beta$
- ➤ Discovery of B<sub>c</sub>
- ➤ Mass measurements of Bd, B+, Bs...



## **CDF B Physics: Masses**





# **CDF B Physics: Lifetimes**

### B hadron lifetimes

- > Extract |Vcb| using  $1/\Gamma$
- Lifetimes are the same at 0<sup>th</sup> order for all B hadrons

1.8

: 1.9 2 2.1 Mass (K<sup>#4</sup>K) [GeV/c<sup>2</sup>]

1.025

Mass (K K) [GeV/e<sup>2</sup>]

K w rong sign

1.85

- >  $\tau(B^+)/\tau(B^0) = 1.09 \pm 0.05$
- $> \tau(B_s) = 1.36 \pm 0.09 + 0.06_{-0.05}$  ps
- $> \Delta \Gamma_{\rm s} / \Gamma_{\rm s} < 0.83$  at 95 % CL

#### **CDF B Lifetimes**



Physics at revatron: Run 1 Experience - 33

Mass (K,K) [GeV/c2]

2.1

2.2

2.1

2.2

100

 $D_s \Rightarrow \phi \pi$ 

1.9

2

Mass  $(\phi \pi')$  [GeV/c<sup>2</sup>]

Candidates/10 MeV/c<sup>2</sup> 2

Candidates / 10 MeV/c



a reng rigs

2.2

1.075



# **CDF B Physics: Mixing**

### • $B^0/\overline{B^0}$ Flavor Oscillations

- Semileptonic B<sup>0</sup>/B<sup>0</sup> decays
- Tag flavor at production
  - Soft Lepton Tagging
  - Jet Charge Tagging (  $\Sigma \mbox{ Q P}_T/\Sigma \mbox{ P}_T$  )
  - Same Side Tagging
- $> A(t) = Dcos(\Delta m_d t), D \equiv (1-2w)$
- **D** $m_d = 0.495 \pm 0.026 \pm 0.025 \text{ ps}^{-1}$



 $SST in B^0 \Longrightarrow l^+ D^{*-} X$ 

#### CDF $\Delta m_d$ Results





# CDF B Physics: sin2b

#### Measurement of sin2b

- > CP asymmetry in  $B^0 \Rightarrow J/\psi K_s$
- $> A_{CP}(t) = sin2\beta sin(\Delta m_d t)$
- > Combine taggers: εD<sup>2</sup> (%)
  - SLT: 2.2 ± 0.5
  - JCT: 2.2 ± 1.3
  - SST: 2.1 ± 1.0
- > Combined  $\varepsilon D^2 = (6.3 \pm 1.1)\%$
- Taggers calibrated on mixing

• sin2b = 0.79 + 0.41 + sys)







## **CDF B Physics: Bs**

Amplitude

Limit on B<sub>s</sub> mixing  $> B_s \Rightarrow \nu I^+ \phi X; \phi \Rightarrow K^+ K^-$ > Flavor tagging as in B<sup>0</sup> > Amplitude fit method  $Dm_s > 5.8 \text{ ps}^{-1}$  at 95% CL

• CP fraction in  $B_s \Rightarrow J/\psi\phi$ > Angular fits in transversity basis Find parity-odd contribution  $|A_{\wedge}|^2 = 0.23 \pm 0.19 \pm 0.04$ 



n 2002



**More Signa** 

# Top from Search to Studies

- Top lifetime
   t<sub>top</sub> ~ 1/ M<sup>3</sup><sub>top</sub>~10<sup>-24</sup> sec
   t<sub>qcd</sub> ~ L<sup>-1</sup> ~10<sup>-23</sup> sec
- BR(t ® Wb) @ 100%
  Decay channels:
- Dilepton
  - Both W's decay leptonically
  - ≻ final state: I**n In bb**
- Lepton + Jets
  - > One W's decays leptonically
  - ≻ final state: I**n** qq **bb**
- All-Hadronic
  - > Both W's decay hadronically
  - ➤ final state: qq qq bb

the top quark does not hadronize. It decays as a free quark!



P.J. Wilson, 8 Jan 2002



## Finding b-Jets at CDF/D0



- b-quark lifetime
   ct ~ 450mm
  - b hadrons travel Lxy ~ 3 mm before decay
- Secondary VerteX Tagging
- **C**(SVX) ~ 25%



- Identify semileptonic B decay
  - >  $b \rightarrow |, b \rightarrow c \rightarrow |$
- Soft Lepton Tagging
- Contemporary Co



## **Top Events**

#### **D0 Diplepton Events**



#### CDF Lepton + 4 Jet Event





## Top Discovery→Cross Section

DØ combined





**Top Cross Sections** 

Physics at Tevatron: Run 1 Experience - 40

P.J. Wilson, 8 Jan 2002

5.9±1.7 pb



# Measurement of M<sub>Top</sub>

Likelihood Fits to MC templates (ala M<sub>W</sub>)

- Use Jet, **m** e calibration from EW/QCD
- Additional corrections for b-jets to account

#### for mand n from b->cln (MC)





Physics at Tevatron: Run 1 Experience - 41



LEP2



Physics at Tevatron: Run 1 Experience - 42



# **\***

# New Adventures - Basic Tools

### • Indirect searches:

- Deviations in comparisons of precision measurements with theory (e.g. width of W or Z)
- > Excess in High  $E_T$  or high Mass production (e.g. jets)

### • Direct searches

- Signature based not necessarily driven by a specific model
- All use the tools of EW, QCD, b and t physics to classify events



## Supersymmetry



P.J. Wilson, 8 Jan 2002



## **Squarks and Gluinos**

#### D0 searchs:

- 1. 2 electrons, 2 jets + Missing  $E_T$
- 2. jets plus missing  $E_T$  and no electrons/muons



#### CDF search: 3 jets + Missing E<sub>T</sub>





# Stop, Sbottom and Gauginos





CDF Trilepton search: not competitive with LEP in Run 1. Could be very interesting in Run 2

Physics at Tevatron: Run 1 Experience - 47



Physics at Tevatron: Run 1 Experience - 48

P.J. Wilson, 8 Jan 2002

## Summary

### • Tevatron Run 1 was a very successful program:

- > Excellent accelerator performance
- > Discovery of top quark!
- > Top mass, cross section...
- Precision W mass and width measurements
- ➤ B hadron lifetimes
- > B<sub>c</sub> meson discovered!
- > Measurement of sin2 $\beta$
- > Many tests of perturbative QCD

≻ ...

### • CDF and DO learned many techniques...

- > b-tagging for top (and Higgs!) with soft leptons and Si
- > Flavor tagging for B-physics
- > Deficiencies of our experiments...

## Summary

### • Deficiencies we wanted to correct after Run 1:

> More collisions !

### ➤ CDF wanted:

- more Si coverage greater b tagging efficiency
- Higher bandwidth trigger more B physics
- Greater lepton coverage W's, b's, J/psi's
- Better calorimetry at high eta W's, jets
- Particle ID for b-flavor tagging

#### > D0 wanted:

- Magnet + tracking for  $P_T$  measurement leptons and b's
- Si for b tagging greater b-tagging, B physics
- Improved muon systems:
- Higher bandwidth trigger
- > See tomorrow what we got!