

Microsensors – 15.06.2009

Daniel Lapadatu, SensoNor Technologies

www.multimems.com daniel.lapadatu@sensonor.no

15-June-2009

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- 4. Pressure Sensors
- **5. Accelerometers**
- 6. Gyroscopes

Based on: Adriana Lapadatu, "Microsensors",

1st e-CUBES Summer School, Uppsala Univ., 3-5 Sep. 2007, © 2007 Infineon Technologies.

1. Classification of Sensors

- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- **6.** Gyroscopes

Mechanical

Force, acceleration, pressure, torque, flow, displacement, velocity, level, position, tilt...

Thermal

Temperature, heat, specific heat, entropy, heat flow...

Chemical

Composition, concentration, reaction rate...

Biosensors

Cells, sugars, proteins, hormones, antigens...

Radiation

Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves...

Magnetic

Field intensity, flux density, moment, magnetization, permeability...

Inputs and Outputs of Sensors

Sensors transform a *physical* input into an *electrical* output.

ERROR SOURCES

Copyright © 2009 SensoNor Technologies. All rights reserved.

15-June-2009

1. Classification of Sensors

- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- **6.** Gyroscopes

Examples of Automotive Applications

Safety devices:

- Airbag deployment,
- Antilock braking systems (position sensors),
- Suspension systems (displacement, position and pressure sensors),
- Object avoidance (pressure and displacement sensors),
- Navigation (gyroscope).

Engine and power train:

- Manifold control with pressure sensors,
- Airflow control,

15-June-2009

- Exhaust gas analysis and control,
- Fuel pump pressure and fuel injection control,
- Transmission force and pressure control.

- Vehicle diagnostics and health monitoring:
 - Engine oil pressure,
 - Tire pressure,
 - Brake oil pressure,
 - Transmission fluid,
 - Fuel pressure.

Comfort:

- Seat control,
- Air quality and flow,
- Air temperature and humidity,
- Satellite navigation.

Medical Applications

- Disposable blood pressure sensors (17 millions units per year);
- Intrauterine pressure sensor (1 millions units per year);
- Infusion pump pressure sensor (200 000 units per year);
- Catheter type pressure sensors;
- Lungs capacity meters;
- Kidney dialysis equipment;
- Human care support systems...

Other Applications

Aerospace industry:

- Pressure sensors for oil, fuel, transmission and hydraulic systems,
- Airspeed measurements,
- Safety devices
 (ejection seat control),
- Navigation (gyroscopes).

Consumer electronics:

- Bicycle computers,
- Scuba diving watches and computers,
- Washers with water-level controls,
- Smart toys.

Military applications:

- "Smart" weapons,
- Impact and void detection,
- Navigation and guidance systems,
- Seismometry.

15-June-2009

Environmental applications:

- Concentration of substances.

Food industry:

- Contaminants.

Industrial products for:

- Hydraulic systems,
- Heating, ventilation and air conditioning systems,
- Water level control.
- Robotics:
 - Distance, acceleration, force, pressure, temperature,
 - Position, tilt.

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- **6.** Gyroscopes

Microsensors

MEMS based devices (Micro-Electro-Mechanical Systems):

- A fabrication approach that enables the development of electromechanical systems using batch fabrication techniques similar to those used for *microelectronics*.
- Integrates mechanical elements, sensors and actuators, and electronics on a common substrate.
- MEMS generally range in size from a µm to a mm:
 - Surface effects such as electrostatics and wetting dominate volume effects such as inertia and thermal capacity.
- Why microsensors?

- Lower manufacturing cost (mass production, less material);
- Exploitation of the IC technology;
- Wider applicability to sensors arrays;
- Lower weight (greater portability).

MEMS vs. Microelectronics

Materials:

- ME: Silicon and silicon compounds, metals;
- MEMS: Silicon and silicon compounds, metals, polymers, glass, etc.

Functions:

- ME: Electrical;
- MEMS: Electrical, mechanical, optical, chemical, biological, etc.

Structures:

- ME: Stationary, high density, 2D, isolated from environment;
- MEMS: Stationary and movable, low density, 3D, interfaced with contacting media.

Maturity:

- ME: Mature design methodology, standardised, well documented;
- MEMS: No design methodology, no standards, distinct techniques.

Slide 14

Multi

Basic Process Flow

- Layers are *deposited*.
- Photoresist is lithographically patterned.
- Underlying materials are *etched*.
- The process is repeated until completion of the microstructure.

MEMS Processes

- Photolithography.
- Implantations and Diffusions.
- Deposition processes:
 - Oxidation;
 - Sputter deposition;
 - Physical and Chemical Vapour Deposition (PVD, CVD);
 - 🕨 Electroplating. 🤜

Etching processes:

- Wet etching: isotropic or anisotropic;
- Reactive Ion Etching (RIE);
- Deep Reactive Ion Etching (DRIE).

Wafer Bonding.

15-June-2009

MEMS specific processes

Micromachining Techniques

Bulk Micromachining is a *process* that produces structures *inside* the substrate by selective etching.

Surface Micromachining is a process that creates structures on top of the substrate by film deposition and selective etching.

LIGA

Wet Anisotropic Etching

RIE and DRIE

- Chemical and physical, higly-selective etching.
- Bosch" process.

Wafer Bonding Techniques

Anodic bonding.

- Direct bonding:
 - Fusion,
 - High temperature;
 - Plasma activated,
 - Low temperature.
- Eutectic bonding.
- Thermocompression bonding.
- Glass frit bonding.
- Epoxy bonding.

Trends in Sensors Technology

Miniaturization:

► Low size → high volume → low cost.

Integration (sensor, signal processing, actuator):

- Sensors with signal processing circuits, (for linearization of the output, etc.);
- Sensors with built-in actuator for self-test, automatic calibration, change of sensitivity...

Arrays of sensors:

- One-function units,
 - for improving reliability and
 - for achieving larger output signals.

Multiple function units.

General Requirements for a Sensor

- Low sensitivity to secondary inputs, such as:
 - Low temperature sensitivity,
 - Low off-axis sensitivity;
- Linearity;
- Long-term stability;
- Low pressure and temperature hysteresis;
- Small size, low cost;
- Hermeticity;
- Resistance to corrosive ambients;
- Biocompatibility with the body...

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- **6.** Gyroscopes

Pressure Sensors Designs

Pressure Sensors: Sensing Principles

Piezoresistive:

► Deformation → Stress → Resistance change.

Capacitive:

▶ Deformation \rightarrow Displacement \rightarrow Capacitance change.

Resonant:

► Deformation → Stress → Resonance frequency change.

Optical:

▶ Deformation \rightarrow Phase change \rightarrow Interference pattern.

Thermal:

Thermal conductivity change between a heat source and heat sink.

Piezo-junction effect:

► Deformation → Stress → Junction internal potential.

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
 - 4.1. Piezoresistive Pressure Sensors
- **5. Accelerometers**
- 6. Gyroscopes

Piezoresistive Effect

The structures are typically designed such that the principal in-plane stress is along the resistor axis.

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Slide 27

MultiM

Wheatstone Bridge

15-June-2009

Slide 28

Stress in Square Membranes

Mechanical stress in a clamped, square silicon membrane subjected to an uniform pressure:

Slide 29

MultiMEN

Copyright © 2009 SensoNor Technologies. All rights reserved.

Placement of Resistors

Criteria:

- Sensitivity (locations with high stress values);
- Non-linearity effects;
- Process tolerances;
- Off-set;

15-June-2009

Pacakage stress.

Slide 30

MultiMEMS

Membrane size.

Sensitivity to Process Variations

Alignment between membrane and resistors.

Membrane thickness.

Resistors size:

- Perpendicular resistors extend away from the edge;
 - Example: For a 100 µm long resistor on 1 mm x 1 mm membrane, the average stress is 60% of the value at the edge.
- Parallel resistors must be placed at a certain distance from the edge to guard against alignment errors.
- Resistors matching (lithography effects).
- Membrane taper (non-uniform thickness);
 - Small effect on sensitivity for membranes thicker than 10 μ m.

Temperature coefficient of sensitivity, TCS: $TCS = \frac{1}{S} \cdot \frac{\partial S}{\partial T}$ Temperature coefficient of off-set, TCO: $TCO = \frac{1}{V_{dd}} \cdot \frac{\partial V_{out|P=0}}{\partial T}$

Temperature dependence of the piezoresistive coefficients.

- Gas expansion in the reference cavity (if present).
- Resistors tracking errors.
- Junction leakage currents.
- Thermally induced stress at the Si-insulator interface.
- Packaging effects.

Sources of Non-Linearity

- Non-linearity of the mechanical stress with the applied pressure (the balloon effect);
 - Can be reduced by local stiffening of the membrane, but at the expense of miniaturization.
- Misbalance of the Wheatstone bridge;
 - Can be reduced by design and good process control.
- Non-linearity of piezoresistive effect:
 - Depends on the crystallographic orientation (larger non-linearity for the directions with larger Π coefficients);
 - Depends on temperature.

Bulk vs. Surface Micromachined **Piezoresistive** Pressure Sensors

Single Crystal Silicon

- Few defects;
- Repeatable mechanical properties;
- Larger piezoresistive gauge factor.

Polysilicon Films:

15-June-2009

- Mechanical properties strongly varying with the processing conditions;
- Compressive or tensile stress present in the films;
- Smaller piezoresistive gauge factor.

Parameter	SM	BM
Mechanical properties	Good	Superior
Cost, low volume	Fair	Good
Cost, high volume	Good	Fair
Dimensional control	Better	Good
CMOS integration	Good	Fair
Packaging	Fair	Fair
Size	Smaller	Small

BM parts appear to be more sensitive to package stress.

SM parts are smaller.

In general, better performances for **BM** sensorss, except for TCS and TCO (caused by the non-optimal stress isolation of the **BM** dice from the package).

SensoNor's Pressure Elements

Key features:

- High stability buried piezoresistors;
- High precision membrane definition (by anisotropic wet etching and electrochemical etch-stop);
- Hermetically sealed cavities with electrical feed-throughs (by triple-stack anodic bonding).

SensoNor's TPMS

- SW412 sensor element:
 - Pressure sensor;
 - Accelerometer (to detect rolling).
- SP30-type ASIC:
 - ► ADC;

15-June-2009

- µ-controller.
- Assembly on lead-frame in an SOIC-package.

Triple Stack Sensor Element

Copyright © 2009 SensoNor Technologies. All rights reserved.

Motorola, Inc.

Absolute pressure sensor.

Motorola's Pressure Elements

Key features:

- Fully integrated (bipolar transistors) for the on-chip circuitry);
- Optimized bipolar process for (100) wafers;
- Single, low doped piezoresistor, oriented at a 45° angle to the side of the square membrane;
- CrSi alloy trimmed resistor contacts;
- Wet anisotropic etching with electrochemical etch-stop;
- Silicon-silicon glass frit bonding.

Motorola's MAP Sensor

- Key features:
 - Wafer-level sealing with glass frit;
 - Die bond with low stress silicone gel;
 - Pre-molded package;
 - Wire bonding to a lead frame;
 - Silicone gel for protection against ambient;
 - Stainless steel cap.

Packed manifold absolute pressure (MAP) sensor. Motorola, Inc.

X-Fab's Pressure Sensors

- On pre-processed substrates:
 - Fusion bonding;
 - High temperature annealing;
 - Thinning;
 - Si-piezoresistors;
 - Fully integrated (CMOS process).
- On backside sealing of a relative pressure sensor:
 - Sensor processing, including wet anisotropic etching with electrochemical etch stop;
 - Si-piezoresistors;
 - Low temperature plasma activated bonding.

Toyota's Pressure Sensors

Key features:

- Silicon nitride diaphragm;
- Polysilicon piezoresistors;
- Surface micromachined;
- Electronics can be integrated on the same die;
- 32x32 array and electronics, suitable for tactile sensing.

Absolute pressure sensor. Toyota Central R&D Laboratory, Inc.

15-June-2009

nitride

nitride

Copyright © 2009 SensoNor Technologies. All rights reserved.

Al

Sandia's Pressure Sensor

Key features:

- Low-stress silicon nitride or polysilicon diaphragms, with clamped edges;
- Polysilicon piezoresistors;

oxide

- Entirely CMOS compatible process;
- Stiction may occur for diaphragms larger than 250 µm diameter.

release etch

Absolute pressure sensors. Sandia National Laboratories.

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
 - 4.2. Capacitive Pressure Sensors
- **5. Accelerometers**
- 6. Gyroscopes

Capacitive Sensing Principle

Copyright © 2009 SensoNor Technologies. All rights reserved.

Capacitive Sensing Trade-offs

Advantages:

- Larger dynamic range;
- Lower temperature coefficients;
- Lower power consumption.
- Drawbacks:
 - Nonlinear response to the applied pressure,
 - Difficult sensor compensation;
 - Somewhat more difficult process:
 - Control of gap (warp, bending, etc.),
 - □ Stiction;

- Larger die area;
- Parasitic (stray, insulating) capacitances;
- Trade-off between dynamic range, linearity and absolute sensitivity.

Sources of Errors

Non-linearity of the response to the applied pressure.

Parasitic capacitances:

- Usually of the same order of magnitude as the sensing capacitance, few pF.
- The electrostatic pressure:
 - Systematic error (important if the voltage is high and the pressure range small),
 - Failure of the sensor if collapse occurs.

Trapped gas compression, $P_{ref} = f(P_{ext})$:

- Decreased sensitivity,
- Increased non-linearity,
- Large temperature drift.

Residual stress in membrane (intrinsic or/and caused by thermal mismatch):

- − Tensile stress → Increased stiffness → Decreased sensitivity
- Compressive stress \rightarrow Buckling \rightarrow Device failure.

Sources of Errors Illustrated

Copyright © 2009 SensoNor Technologies. All rights reserved.

Tohoku's Pressure Sensor

Key features:

- Bulk micromachined device;
- Wet anisotropic etching;
- Glass-silicon-glass anodic bonding;
- Non-evaporable getter for low cavity pressure;
- Vertical feed-throughs;
- Electronics can be integrated on the same die.

ISSYS' Pressure Sensor

Key features:

- Dissolved wafer process;
- Single-crystal silicon microstructures on glass substrates;
- Challenging electrical interconnection between the cavity and the outside (ISSYS patent).

Absolute pressure sensor.

Fraunhofer's Pressure Sensor

Key features:

- Surface micromachined array of capacitors array;
- Range: 1 bar up to 350 bars sensors, absolute or relative;
- High overpressure stability;
- Low temperature dependency (reference cell used);
- Low power consumption;
- Small chip size;
- Monolithic ASIC integration;
- Extended temperature range for the SOI version.

Absolute and relative pressure sensors. Fraunhofer IMS, Duisburg.

15-June-2009

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
 - 4.3. Resonant Pressure Sensors
- **5. Accelerometers**
- 6. Gyroscopes

Slide 50 MultiMEMS

Resonance Sensing Principle

- The resonance frequency of a vibrating microstructure depends on the mechanical stress.

Advantages:

- The frequency output allows easy coupling to digital electronics:
 A high precision measurements A high resolution;
- Requires only relative voltage level or phase shift measurements
 more immune to interferences;
- ► Frequency is not dependent on electrical signals (unstable), but rather on mechanical properties → long term stability;
- Very low temperature errors (several orders of magnitude lower).

Drawbacks:

- Requires an excitation technique to initiate oscillations;
- Mechanical damping is critical;
- \blacktriangleright Inherently nonlinear \rightarrow more calibration points required.

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Petersen's Resonant Pressure Sensor

Key features:

- Diaphragm with embedded microbeam;
- Bulk micromachining;
- Fusion and anodic bonding;
- Electrostatic excitation;
- Piezoresistive detection.

Principle:

 External pressure...
 tensile stress in the beam...
 change of resonance frequency...
 supply voltage adjustment required to keep the beam vibrating in the new state.

Wisconsin's Resonant Pressure Sensor

Key features:

- Diaphragm with embedded microbeam;
- Surface micromachining;
- Electrostatic excitation;
- Piezoresistive detection.

Principle:

- External pressure...
 tensile stress in the beam...
 - → change of resonance frequency...

→ supply voltage adjustment required to keep the beam vibrating.

Capacitive detection cannot be used (small sense capacitance compared to parasitics).

Honeywell's Optical Pressure Sensor

Key features:

- Diaphragm with embedded microbeam;
- Surface micromachining;
- Optical excitation (pn-junction laser through optical fiber);
- Optical detection.

Principle:

 External pressure...
 tensile stress in the beam...
 change of resonance frequency...
 reflectivity change of the Fabry-Pérot cavity...

➔ modulation of the reflected light.

KTH's Resonant Pressure Sensor

Key features:

- Dual diaphragm device;
- Fusion and anodic bonding;
- Electrostatic excitation;
- Capacitive detection;
- Pressure to be measured inside the capsule.

Principle:

15-June-2009

 External pressure...
 change of shape and stiffness of diaphragms...
 change of resonance frequency.

Absolute/relative pressure sensor. KTH, Royal Institute of Technology.

Fraunhofer's Tuning Fork

Key features:

- Bulk micromachining;
- Fusion bonding;
- Electrostatic excitation;
- Capacitive detection;
- Ultrasonic *drilling* of holes in glass for ventilation and electrical contacts;
- Shadow mask technology for selective Al deposition.

Principle:

- External pressure...
 change of gas viscosity...
 - → change of resonance frequency.

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- **6.** Gyroscopes

Definitions

Mechanical sensitivity, S_z:

Frequency band:

- The domain in which the input acceleration can be still measured correctly by the accelerometer;
 - Strongly related to the natural resonant frequency of the mechanical system.

Mass-Spring System

The equation is solved for a pure sinusoidal acceleration $a \cdot cos(\omega t)$. The result for an arbitrary acceleration is obtained by superposition of such solutions.

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Slide 59 MultiMEMS

Transfer Function

15-June-2009 Copyri

Copyright © 2009 SensoNor Technologies. All rights reserved.

Specifications for Accelerometers

Sensitivity;	PARAM
Operation range;	Operat
Frequency range;	Freque
Resolution;	Resolu
Off-axis sensitivity;	Off-Ax
Full-scale	Sens
non-linearity (FSN);	FSN
	Max. S
Shock survival;	Tempe Rang
 Offset; 	TC of C

Drift.

ARAMETER	AUTOMOTIVE	NAVIGATION
peration Range	±50 g (airbag) ±2 g (vehicle stability system)	±1 g
requency Range	DC to 400 Hz	DC to 100 Hz
esolution	< 100 mg (airbag) < 10 mg (vehicle stability system)	< 4 µg
Off-Axis Sensitivity	< 5%	< 0.1%
SN	< 2%	< 0.1%
lax. Shock	> 2000 g	> 10 g
emperature Range	–40 to 125 °C	–40 to 80 °C
C of Offset	–60 mg/°C	–60 μg/°C
C of Sensitivity	900 ppm/°C	±50 ppm/°C

Accelerometers: Sensing Principles

Piezoresistive:

► Deformation → Stress → Resistance change.

Capacitive:

▶ Deformation → Displacement → Capacitance change.

Tunneling:

▶ Deformation → Displacement → Barrier change.

Resonant:

► Deformation → Stress → Resonance frequency change.

Optical:

▶ Deformation \rightarrow Phase change \rightarrow Interference pattern.

Piezoelectric:

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
 - 5.1. Piezoresistive Accelerometers
- 6. Gyroscopes

Piezoresistive Accelerometers Trade-offs

Advantages:

- Simpler structure;
- Simpler fabrication process (based on bulk micromachining);
- Simpler read-out circuitry.
- Drawbacks:

- Larger temperature sensitivity;
- Lower mechanical sensitivity;
- High power consumption.

SensoNor's Crash Sensors

Key features:

- Surface piezoresistors;
- Self-test features;
- High aspect ratio front side RIE to produce free standing structures;
- Hermetically sealed cavities with electrical feed-throughs (by triplestack anodic bonding).

SA50:

2-axes crash sensor.

SAC60:

1-axis side crash sensor.

SA50 (above) and SAC60 (below) crash sensors. SensoNor Technologies AS.

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
 - 5.2. Capacitive Accelerometers
- 6. Gyroscopes

Capacitive Accelerometers Trade-offs

Advantages:

- High sensitivity;
- Good DC response and noise performance;
- Low drift;
- Low temperature sensitivity;
- Low power consumption.
- Drawbacks:

- Susceptible to electromagnetic interference,
 - Shielding and suitable packaging required;
- Nonlinear output;
- Somewhat more difficult process.

Capacitive Position Measurement

Differential capacitors: two capacitors that are nominally of equal size when the moveable component is centered. Achieve linearization about the balance point.

Slide 68

Micromachined Capacitive Accelerometers

Bulk micromachining:

- Large proof mass
 → high resolution
 (in the µg/√Hz range).
- Requires wafer bonding
 larger temperature coefficients, unless made only of silicon.
- Forming damping holes in their structural layers is not easy.
- Requires packaging at specified pressure to control damping.

Surface micromachining:

- Utilizes deposited polysilicon layers to form the sense element.
- Small proof mass
 - ➔ high mechanical noise,
 - → *lower resolution* (in the range 100 μ g/ \sqrt{Hz} range).
- Allows integration of the sensor and interface circuitry on the same chip → enable detection of very small capacitance changes.
- Does not require wafer bonding.
- Easy to control damping.

KU Leuven's Accelerometer

Key features:

- 4-wafer stack;
- Sensor processing, including wet anisotropic etching with electrochemical etch stop;
- Fusion and anodic bonding;
- Differential, double-side capacitors.

Differential accelerometer. KU Leuven.

Ford's Accelerometer

Key features:

- Dissolved wafer process;
- Bulk micromachining;
- Anodic bonding;
- Used as 1-axis crash sensor.

Integrated automotive accelerometer. Ford Microelectronics, Inc.

Analog Devices' ADXL150

Key features:

- Fully integrated;
- Self-test features;
- Surface micromachining;
- Surface mount package.

MultiMEMS

Slide 72

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
 - 5.3. Tunneling Accelerometers
- 6. Gyroscopes

Tunneling Sensing Principle

Copyright © 2009 SensoNor Technologies. All rights reserved.

Slide 74

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Northwestern University's Accelerometer

Key features:

- Bulk micromachining,
 - can be realised in surface micromachining as well;
- Epoxy bonding;
- Electrostatic actuation;
- Resolution: 10 ng.

Principle:

- Acceleration...
 - → change of tip position...
 - → change of tunneling current...
 - → change of feed-back bias.

Bulk micromachined tunneling accelerometer. Northwestern University.

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
 - 5.4. Resonant Accelerometers
- 6. Gyroscopes

SensoNor's Force Sensor

SA30 key features:

- Resonant sensor with thermal excitation;
- Piezoresistive detection with high sensitivity surface piezoresistors;
- High precision spring and mass definition (by anisotropic wet etching, electrochemical etch-stop and RIE);
- Hermetically sealed cavities with electrical feed-through (by triple-stack anodic bonding);
- Used as 1-axis crash sensor.

SA30 force sensor. SensoNor Technologies.

Accelerometer Challenges and Future Trends

- Low cost, sub-µg noise levels, long-term stability and low temperature sensitivity inertial-grade accelerometers.
- Low stress, low drift packaging technologies for inertial-grade devices.
- Low drift read-out and control *circuitry* with high sensitivity, low noise level and large dynamic range.
- Highly stable inertial-grade multi-axis devices with sub-µg resolution.

15-June-2009

- **1. Classification of Sensors**
- **2. Applications**
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- 6. Gyroscopes

15-June-2009

Slide 79

Coriolis Force

Acts within rotating reference frames on masses that move with a non-zero linear velocity.

$$\mathbf{a_c} = 2 \cdot \mathbf{v} \times \mathbf{\Omega}$$

The Coriolis Rate Gyroscope

A resonant motion of fixed amplitude is required in a direction perpendicular to the axis of rotation.

$$a_c = 2 \cdot v \times \Omega$$

The Coriolis force induces motion in the *third* direction, perpendicular both to the direction of rotation and to the driven motion.

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Specifications for Gyroscopes

- Sensitivity [V/(º/s)]:
 - Scale factor accuracy (SFA);
- Operation range;
- Frequency range;
- Zero-rate output;

- Output/bias drift;
- Noise,
 - Angle random walk;
- Shock survival.

PARAMETER	RATE	TACTICAL	INERTIAL
Operation Range	50 1000 °/s	> 500 °/s	> 400 °/s
Scale Factor Accuracy	< 1%	< 0.1%	< 0.001%
Frequency Range	> 70 Hz	ca. 100 Hz	ca. 100 Hz
Output/Bias Drift	10 1000 °/h	0.1 10 º/h	< 0.01 °/h
Angle Random Walk	> 0.5 °/√h	0.05 0.5 °/√h	< 0.001 °/√h
Max. Shock	1000 g	10000 g	1000 g

Angle Random Walk (ARW)

- **ARW**, a measure of gyroscope noise and stability:
 - The variation (or standard deviation) of the result of integrating the output of a stationary gyroscope over time.

MultiMEI

Generalized Gyroscopic Modes

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Slide 84

MultiMEN

Design Challenges

- A gyroscope practically consists of two high performance MEMS devices integrated in one:
 - A self-tuned resonator in the drive axis and
 - ► A micro-*accelerometer* in the *sensing axis*.
- Gyroscopes are very sensitive to all potential manufacturing variations, packaging, linear acceleration, temperature, etc.
- The Coriolis force is extremely small.
- Low-noise readout, signal processing and control *electronics* are required.
- Packaging issues must also be addressed in the initial phase of the design cycle.

15-June-2009

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- **6.** Gyroscopes
 - 6.1. Tuning-Fork Gyroscopes

Copyright © 2009 SensoNor Technologies. All rights reserved.

Operation Principle of Tuning-Fork

Excitation (*discrete*, *linear* motion):

- Electrostatic;
- Electromagnetic;
- Piezoelectric.

Detection modes:

- As differential bending of prongs;
- As torsional vibration of stem.

Detection principles:

- Capacitive;
- Piezoresistive;
- Piezoelectric;
- Optical,

15-June-2009

Most sensitive and most expensive.

Frequency tuning:

Maximum sensitivity is achieved when the *excitation* and *detection* resonance frequencies are equal.

Systron Donner's Gyroscope

Key features:

- Quartz oscillator:
 - High quality factor even at atmospheric pressure,
 - High level of performance,
 - Not compatible with batch-fabrication;
- Piezoelectric driving:
 - □ In-plane *bending* of drive tines;
- Capacitive sensing:
 - Out of plane bending of sense tines,
 - Evaporated electrodes on sense tines;
- Bulk micromachined;
- Rate grade device.

Quartz gyroscope. Systron Donner Inertial.

Draper's Double-Gimbal Gyroscope

Key features:

15-June-2009

- Electrostatic driving:
 - Oscillation of both gimbals;
- Capacitive sensing:
 - Oscillation of inner gimbal;
- Bulk micromachined;
- Dissolved wafer process (silicon on glass);
- Rate, tactical and inertial grade devices.

Slide 89

Draper's Comb-Drive Gyroscope

Key features:

- Electrostatic comb-driving:
 - In-plane antiphase vibration of masses;
- Capacitive sensing:
 - Out of plane *antiphase vibration* of masses,
 - Differential sensing,
 - Closed-loop operation;
- Surface micromachined;
- Perforated masses to reduce the out of plane damping;
- Fully integrated;
- Rate and inertial grade devices.

SensoNor's Butterfly Gyroscope

- SW510 sensor element.
- SAR10-type ASIC:
 - ► ADC;
 - µ-controller.
- Assembly on lead-frame in an SOIC-package.

Package

Epoxy Moulded

15-June-2009

SensoNor's Gyro Element

Key features:

- Electrostatic driving:
 - In-plane antiphase vibration of masses;
- Capacitive sensing:
 - Out of plane *antiphase vibration* of masses,
 - Differential sensing,
 - Closed-loop operation;
- Electrostatic tuning;
- Bulk micromachined;
- Asymmetric springs;
- Perforated masses to reduce the out of plane damping;
- Inertial grade device.

Asymmetric Springs Concept

Advantages:

15-June-2009

- Larger amplitude;
- Lower Brownian noise;
- Simpler processing.

Drawbacks:

- Parasitic vertical movement,
 - Excitation of parasitic mode;
- Sensitive to tolerances;
- Nonlinear.

15-June-2009

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- 6. Gyroscopes
 - 6.2. Disk Gyroscopes

Operation Principle of Disk Gyroscopes

Excitation (*discrete*, *circular* motion):

Electrostatic.

Detection mode:

As torsional vibration of hinges.

Detection principles:

- Capacitive,
 - Possibility to operate in closed-loop;
- Piezoresistive;
- Piezoelectric;
- Optical.

15-June-2009

Frequency tuning:

Maximum sensitivity is achieved when the *excitation* and *detection* resonance frequencies are equal.

Slide 95

MicroSensors' Gyroscope

Key features:

- Electrostatic comb-driving:
 - □ In-plane *vibration* of mass;
- Capacitive sensing:
 - Out of plane vibration of mass,
 - □ Differential sensing,
 - Closed-loop operation;
- Electrostatic tuning;
- Surface micromachined;
- Perforated disk to reduce the out of plane damping;
- Rate grade device.

The "Silicon MicroRing Gyro". MicroSensors, Inc.

- **1. Classification of Sensors**
- **2.** Applications
- **3. MEMS Technologies**
- **4. Pressure Sensors**
- **5. Accelerometers**
- 6. Gyroscopes
 - 6.3. Hemispherical Resonant Gyroscopes

15-June-2009

Operation Principle of HRGs

- Change of vibration axis of oscillators in the presence of angular rates. No temperature dependency in the first order.
- Excitation (continous vibrating mode):
 - Electrostatic;
 - Piezoelectric.

Detection mode:

As torsional vibration of hinge(s).

Detection principles:

- Capacitive;
- Piezoresistive;
- Piezoelectric.

University of Michigan Gyroscope

Key features:

- Electrostatic driving:
 - In-plane vibration of ring,
 - Elliptically-shaped primary flexural mode;
- Capacitive sensing:
 - □ In-plane *vibration* of ring,
 - Elliptically-shaped secondary flexural mode, located 45° apart from primary mode;
- High aspect ratio bulk and surface micromachining;
- High degree of symmetry,
 - Low sesitivity to spurious vibrations;
- Vibrating ring made of p⁺⁺/polysilicon,
 - High quality factor and sensitivity.

Vibrating Ring Gyroscope

- Fabricated by HARPSS
 (High Aspect Ratio combined
 Poly- and Single-crystal Silicon)
 micromachining technology:
 - The ring and springs are created by re-filling deep dry etched trenches with p⁺⁺/polysilicon deposited over a sacrificial LPCVD oxide;
 - The electrodes are p⁺⁺ islands hanging over an EDP-etched pit.

Slide 100 MultiMEMS

Vibrating ring gyroscope. University of Michigan.

Gyroscope Future Trends

- Large volume production of low-cost, high-performance, highly reliable micromachined gyroscopes.
- Precision micromachining requires mixed fabrication technologies combined with high aspect ratio deep dry etching techniques:
 - Sub-micrometer capacitor gaps through sacrificial etching;
 - Lower bias and control voltages;
 - Thick, high-aspect ratio structures with uniform material properties and high quality factor.
- Robust vacuum packaging:
 - Chip-level vacuum packaging.
- High-performance interface *circuitry* and dynamic electronic tuning techniques to compensate for temperature- and longterm drift.

Thank you for your attention !

15-June-2009

Copyright © 2009 SensoNor Technologies. All rights reserved.

Slide 102 MultiMEMS