Materials and basic processes in microelectronics

Frøydis Oldervoll SINTEF ICT Instrumentation department

Oldervoll Mars 2009

Introduction Materials and basic processes

Die attach

Interconnect

Board assembly

Metals

Important functions:

- Electrical conductors
 - Printed circuit boards
 - Contacts
 - Cables
- Mechanical
 - Welding
 - Soldering

Heat transport

Component cooling

	<u> </u>	Electrical	Thermal	Thermal
	Melting Point	Resistivity	Exp. Coeff.	Conductivity
Metal/Conductor	[°C]	[10 ⁻⁸ Ohm•m]	[10-7/°C]	[W/m·°K]
Copper	1083	1.7	170	393
Silver	960	1.6	197	418
Gold	1063	2.2	142	297
Tungsten	3415	5.5	45	200
Molybdenum	2625	5.2	50	146
Platinum	1774	10.6	90	71
Palladium	1552	10.8	110	70
Nickel	1455	6.8	133	92
Chromium	1900	20	63	66
Invar	1500	46	15	11
Kovar	1450	50	53	17
Silver-Palladium	1145	20	140	150
Gold-Platinum	1350	30	100	130
Aluminium	660	4.3	230	240
Au-20%Sn	280	16	159	57
Pb-5%Sn	310	19	290	63
Cu-W(20%Cu)	1083	2.5	70	248
Cu-Mo(20%Cu)	1083	2.4	72	197

SINTEF

.

Semiconductors (Silicon)

- Crystalline
- High thermal conductivity (150 W/m K)
- Low CTE (2.6 ppm/K)
- Electrical conductivity controlled by doping
- Silicon micro-sensors:
 - Silicon is machined by anisotropic wet-etching or reactive ion-etching
 - Silicon is elastic

SOI trykksensor fra Leti

Inorganic materials Ceramics

- Non-metallic materials processed in high temperature reactions (>600 °C)
- Electrical insulator
- Powder method:
 - Powder is mixed with binder and pressed in a mould,.
 - During subsequent heat treatment (sintering) the binder evaporates and the materials are partly melted together
 - Considerably shrinkage during sintering (15-20%)

IKT

Ceramics (cont.)

- Chemically and thermally very stable materials
- CTE range from negative to 20 ppm/K
- Thermal conductivity can vary a lot
- Most ceramics are brittle materials.
 Tolerates high compression, but little strain.

	Relative	Thermal Exp.	Thermal	Approximate
	Dielectric	Coefficient	Conductivity	Processing
Non Organics	Constant	[10-7/ °C]	[W/ m ^{.0} K]	Temp.[⁰ C]
92% Alumina	9.2	60	18	1500
96% Alumina	9.4	66	20	1600
Si3N4	7	23	30	1600
SiC	42	37	270	2000
AlN	8.8	33	230	1900
BeO	6.8	68	240	2000
BN	6.5	37	600	>2000
Diamond - High Pressure	5.7	23	2000	>2000
Diamond - Plasma CVD	3.5	23	400	1000
Glass-Ceramics	4-8	30-50	5	1000
Cu Clad Invar				
(10%Cu)/ (Glass Coated)	-	30	100	800
Glass coated Steel	6	100	50	1000

Inorganic materials Glass

- Amorphous structure
- Used for
 - Binder and insulating layers on ceramic circuit boards
 - Insulation in electrical feed throughs

Glass feed-throughs from Schott

IKT

Organic materials - plastic

- Plastic can be found in nearly all electronics:
 - Mechanical building material (like IC moulding)
 - Thin dielectric layers on PCB (like polyimide)
 - Cable insulation (like PET, polyimide, Teflon)
 - Binder in organic circuit boards (like epoxy in FR4)
 - Conductive and non-conductive adhesives (like epoxy)
 - Photo resist in PCB production

Motor control, SINTEF-project

Important properties of plastics

- High electrical resistivity, high breakdown strength, low dielectric loss, low dielectric constant
- CTE is often higher than for metals or semiconductors
- Plastic with high mechanical strength or soft and flexible properties are available
- Adhesion many plastics have good adhesion to other materials, but not all (like Teflon)
- Easy to process
- A certain water absorption takes place, little influence on material properties.
- Cheap raw material and production

Plastic molecule structure

Linear (a), branched (b) and cross-linked (c) polymer chains

Thermoplastic

Thermosetting

Plastic Building blocks

H

H

- Consist of long chains of organic molecules
- The repeating block is termed a monomer
- The process of forming long chains is called a polymerization process.

Plastic Building blocks

Structural unit

Polyphenylene sulphide

Polyether sulphone

T_g: Glass transition temperature

- Transition from a glasslike phase to a rubber like phase
- Below Tg the molecules are 'frozen'. A certain thermal energy is needed for movement, Tg represents this limit.
- The material does not melt, but becomes more flexible.
- CTE is higher above T_g

CTE as a function of T, epoxy

Plastics, continued

"Glass transition": change from glass-like to rubber - like

Oldervoll Mars 2009

IKT

-

Thermal conductivity

Fouriers law:
$$\frac{dQ}{dt} = -\lambda A \nabla T$$

Component cooling depends on the thermal conductivity
 Rule of thumb: "10 °C higher component temperature will typically reduce the lifetime by 50%"

IKT

Oldervoll Mars 2009

Electrical permittivity

Parallel plate capacity:
$$C = \varepsilon_r \varepsilon_o \frac{A}{C}$$

Non-perfect dielectrics will have a complex permittivity $\varepsilon = \varepsilon_0 (k'+jk'')$. This gives rise to loss.

• $\tan \delta = k''/k' = (1/R)/\omega C = 1/Q$

Coefficient of thermal expansion - CTE

- Thermal expansion: CTE = $\Delta I / \Delta T$
- Different thermal expansion in materials gives rise to mechanical stress. In worst case materials can de-laminate due to this effect.
- Thermal cycling of objects with CTE mismatch can cause fatigue.
- Silicon has a low CTE compared to most materials.

Mechanical properties Young's modulus

- Young's modulus (G) gives the relationship between stress and deformation (i.e. material stiffness)
- Stiff materials have little deformation
- Stress, σ : Force pr area (Pa)
- Strain, ε: Deformation
- Hooke's lov: Linear relationship between stress and strain (σ = Gε) Valid for elastic materials.

IKT

Important processes in microelectronics

- Photo lithography
- Screen printing
- Etching
- Plating
- Sputtering
 - Vacuum sputtering
 - RF and DC sputtering
- Methods for electrical and mechanical interconnect:
 - Soldering
 - Gluing
 - Wire-bonding
 - Flip-chip bonding

Chipsett - SP13 Tire pressure sensor (Sensonor)

IKT ,

Photo lithography

- The steps in photolithographic transfer of patterns and the subsequent etching of metal films with <u>negative</u> photo resist.
- If positive resist is used, it is the illuminated part of the photo resist, which is removed during the development.

Screen printing

Screen printing process for printing resistor between metal pads.

Etching

- Wet, chemical etchingDry plasma or reactive ion etching (RIE)
- Example Define copper paths on a circuit board:
 - FeCl₃ + Cu -> FeCl₂ + CuCl
 - In addition: FeCl₃ + CuCl -> FeCl₂ + CuCl₂

Organic films are not attached by ferric chloride, used as masking.

Plating

Electroplating:

Electrical current through solution with ions. External voltage is needed. All areas to be plated must be in contact with external voltage.

Plating

Electroless or chemical plating

- No external current/voltage
- Must be utilized when plating non-conductive surfaces
- Areas not to be plated is masked by photo resist.
- Is often performed before electroplating to make all areas conductive.

_

Vacuum deposition/evaporation

Vacuum evaporation:

- Chamber evacuated to less than 10⁻⁶ Torr
- Resistance heating
- Metal evaporation

Other methods for deposition of conductive or non-conductive films DC Sputtering

Deposition (Cont) Radio Frequency AC Sputtering

RF necessary to avoid charging of nonconductive surfaces

Methods for electrical and mechanical contact **Soldering**

- Soldering: "Create a metallic connection between two metal surfaces by applying a molten metal".
- Wetting properties are important; the solder must wet the contact points, but not the area around.

Bluetooth tranciever Ericsson

Young's equation: $\gamma_{ls} + \gamma_l \cos \Theta = \gamma_s$

 $\gamma_{ls} + \gamma_l \cos \Theta = \gamma_s$

Soldering **Alloys**

Table 5.7. Anoys for sold sold sold and [5.11]										
	All	oy Sys	stem			Code	Me	lting	Shear Strength	
	[mass%	6]		Temperature [°C]		ture [°C]	at 1 mm min ⁻¹ [Nmm ⁻²]		
Sn	Pb	Ag	Sb	In	Bi		Solid	Liquid	20°C	100°C
100						Sn	232		22,1	19,0
63	37					Sn63	183	183	-	-
60	40					Sn60	183	188	33,6	21,6
50	50					Sn50	183	216	30,0	24,0
40	60					Sn40	183	234	34,3	13,7
10	90						275	302	28,9	14,7
5	95						310	314		
62	36	2				Sn62	179	179	43,0	18,6
10	88	2					268	299	-	-
5	93,5	1,5					296	301	23,8	15,7
96,5		3,5				Ag3,5	221	221	37,7	22,5
95			5			Sb5	236	243	37,2	21,1
	40			60		In60	174	185	-	-
	50			50		In50	180	209	-	-
37	37			25		In25	138	138	-	-
42					58	Bi58	139	139	50,0	19,5
15	33				52	Bi52	96	96	-	-
34	42				24	Bi24	100	146	34,3	17,5
43	43				14	Bi14	143	163	-	-

Table 3.7:Alloys for soft soldering [3.11]

Soldering Eutectic lead-tin

Most commonly used solder up to 2006:
 63 % Sn / 37 % Pb (eutectic) Melting point: 183 °C

Phase diagram for 63Sn37Pb

	Temp. [°C]	Value	Unit	
Electrical resistivity, p	25	0.17	µOhm∙m	
- ,	100	0.32	"	
Thermal conductivity, °K	25	51	W/m°K	
	100	49	"	
Thermal coeff. of expansion, α		24.5	ppm/°C	
Specific heat		46 000	J/kg°K	
Modulus of elasticity, E	25	32 000	N/mm ²	
Density, p		8.5	g/cm ³	

 Table 3.6:
 Properties of solder alloys 63 Sn:37 Pb or 60 Sn:40 Pb (weight %)

IKT

Soldering Lead free solder

- Transition to lead-free solder after the use of lead in electronics was heavily restricted by EU in 2006
- Tin-silver-copper (SAC) alloys are most commonly used for lead free soldering
 - Sn 3.0Ag 0.5 Cu = SAC 305
- Higher processing temperature compared to lead based solder
 - 240 260°C
 - Less experience and reliability data available

RoHS: Restriction of the use of certain Hazardous Substances in electrical and electronic equipment

Tin whiskers: Occurs on components plated with pure Tin.

Have also been observed on SAC coated surfaces.

Soldering Temperature dependent properties

RESPONSE OF SOLDER TO STRAINS IN THE -65°C TO +125°C TEMPERATURE RANGE

- FURTHER THE α and β phases of tin-lead solder have different properties, including different expansion coefficients
 - Fig.3.15: Behaviour of solder metal at different temperatures, schematically. [W. Engelmaier].

Soldering Thermal cycling gives rise to fatigue

Fig. 3.16: Solder joint fatigue in surface mounted assemblies is often caused by power cycling.

Soldering Coffin-Manson-equation

- Fatigue is important failure mode for soldered connections. Can give rise to intermittent failures.
- Coffin-Manson equation:

 $N^{0.5} \times \gamma_p$ = constant

where N is the number of stress cycles, γ_{p} is relative deformation amplitude.

Note that both the number of cycles and the stress-level influence on the life time.

Soldering Effect of cyclic stress on life time

Fig. 3.17: Experimental data for fatigue in Sn/Pb solder fillet by cyclical mechanical stress. High temperature and low cycling frequency gives the fastest failure, because the grain structure relaxes most and is damaged

Soldering Contamination effects

Fig. 3.18. a) Left: Dissolution rate of Ag in solder metal, and in solder metal with 2 % Ag, as function of temperature
 b) Right: Dissolution rate of various metals in solder alloy

IKT

Soldering Flux and cleaning

Flux

- Dissolve and remove oxides on the surface.
- Protect the surface
- Improve wetting
- Types:
 - Organic resin fluxes ("rosin")
 - R (Rosin, non-activated): No clorine added.
 - RMA (Rosin mildly activated): < 0.5 % Cl</p>
 - RA (Rosin, activated): > 0.5 % CI
 - Organic non resin based fluxes
 - Inorganic fluxes

Cleaning

Freon (TCTFE) banned. Alcohol most commonly used. Trend towards nocleaning

Soldering Flux and wetting

Fig. 3.19: Time for solder alloy to wet a pure Cu surface, depending on the activation of the solder flux. The degree of activation is given by the concentration of Cl⁻ ions in the flux (temperature: 230 °C)

ікт

Adhesives in electronics

Why?

- Mechanical interconnect
- Electrical interconnect
- Thermal interconnect

Adhesive matrix:

Epoxy, acrylic, phenolic, polyimide, glass

Additives

- Metal particles for conductivity
 - ρ = 1 10 x 10 ⁻⁶ ohm m
- Metal or ceramic particles for thermal conductivity:
 λ ≈ 1 3 W /m x °C
- Ceramic particles for matched thermal expansion

Adhesives Thermal conductivity

Fig. 3.20: Thermal conductivity of epoxy adhesive with various amounts of Ag [3.16 a)]. The concentration is in volume % Ag. (23 vol. % corresponds to approximately 80 weight %).

Adhesives Die-attach

Die attach methods:

- Eutectic die bonding:
 - Au/Si (363 °C), Au/Sn (280 °C)
- Soft soldering: Sn/Pb, Ag/Pb
- Gluing

Adhesive cracking, fig. 3.23: Thermal cycling induces defects giving increased thermal resistance.

Adhesives Fine pitch interconnect

Fig. 3.24: Use of adhesive for contacting IC-chips with small pitch, schematically:

a): Anisotropic conductive adhesive, the conduction is through the metal particles in the adhesive;

b): Electrically insulating adhesive, the conduction is through point contacts where the adhesive has been squeezed out.

Oldervoll Mars 2009

Electrical interconnect Miniaturization

Increasing demand for miniaturization

- Tape Automated Bonding
- Chip on board (multichipmodul MCM)
- Ball grid array (BGA)/ Chip scale package (CSP)
- Flip chip

Bluetooth transiver Ericsson

Electrical interconnect Wire bonding

- Electrical contact from IC to substrate or package
 - Ultrasound
 - Thermo compression
 - Thermo sonic

Geometries

- Ball wedge:Se illustration
- Wedge wedge

(c)

Ball-wedge wire bonding SEM-image

Oldervoll Mars 2009

IKT

Electrical interconnect Ball Grid Array

- Comins flip-chip and package
- Easier to mount than on PCB than direct flip-chip
- Flexibility

Flip Chip CABGA Cross Section

Electrical interconnect Bumping for Flip Chip assembly

- Bumping directly on silicon wafer
- Small bumps (< 135 µm)</p>
- Minimum pitch ~ 150 µm

There are alternative processes were preshaped solder balls are placed on the wafer

> FlipChip International Flex-on-Cap (Standard Flip Chip)

46

Deposit the pre-mixed solder paste (proprietary process).

Reflow the solder.

IKT

Oldervoll Mars 2009

Electrical interconnect Flip Chip

Process:

- Deposit barrier metal
- Deposit solder alloy by photo lithography, printing or sputtering + plating
- Reflow --> sphere shaped bump
- Wafer dicing
- Chipe is mounted on substrate
- Heat substrate to melt the solder

IKT

Oldervoll Mars 2009

47

Electrical interconnect Flip Chip

Advantages:

- Highest packaging density
- Best high frequency properties
- Up to 10 000 I/O
- Disadvantages:
 - Demanding assembly procedure
 - Little thermal flexibility
 - No repair possibilities

Summary - Chip attach

Packaging level	Function	Materials	Processes	Properties
Single chip Die attach	 Mechanical attachment Electrical Interconnection Heat dissipation Reliability 	 Conductive adhesives non-conductive adhesives Lead free solder PbSn solder AuSn solder 	 dispensing curing solder printing reflow 	 Thermal conductivity Electrical conductivity CTE Mechanical strength moisture absorption

CTE = Coefficient of Thermal Expansion

Summary - Chip interconnect

Packaging level	Function	Materials	Processes	Properties
Single chip Interconnect	 Electrical Interconnection I/O density (pitch) 	 Cu, Al or Au Lead free solder (SnAgCu) Conductive adhesive – epoxy with metal filler 	 wire-bonding Flip – chip bonding plating printing reflow dispensing curing 	 Electrical conductivity Fatigue Creep Metal interdiffusion Electromigration CTE moisture absorption

.

Summary - Encapsulation

Packaging level	Function	Materials	Processes	Properties
Encapsulation	Protection	 Polymer materials Epoxy + filler Ceramics Metals solder glass 	 Compression molding Dry pressing Glass sealing welding 	 CTE moisture absorption Thermal conductivity Temperature range

.

Summary - Board assembly

Packaging level	Function	Materials	Processes	Properties
Board assembly	 wiring signal speed Electrical connection 	 Glass-epoxy FR4 Polyimide Electroplated copper Lead-free solders Conductive adhesives 	 Lamination Electroplating Photo lithography Wave soldering Reflow Curing 	 Permittivity Dielectric loss Elastic modulus CTE Glass transition temperature Temperature range Moisture absorption

.