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Mesoscopic Fluctuations of the Pairing Gap

”Fluctuations”:

Variation of quantum properties at zero temperature,
(such as shell energy or pairing gap)
when shape, particle number, etc is varied.




Many-body system

/ R
Hamiltonian: H = Z H. +%ZW (1, ])
i Ny

L H, =T, +V, y

V. : external confinement potential or a mean field.

1

One-body dynamics in V, can be regular, mixed or chaotic.

W(i,j): residual two-body interaction.

W(i,j) important for highly excited states.
Main interest here: ground states
= Include only mean field




|. Shell structure - Mean field

One-body Hamiltonian: H=T+V = Z €, ak+ d,
k

[Distribution of nearest neighbor energy spacings:]

A .1 \Regular:P(s) =¢e° l
Mean field \/ implies (classically) PE) o1

regular/chaotic one-body motion.
Can be distinguished in quantum mech.:

2

Chaotic: P(S) =75 e 4

Energy spacing, (E,,,-E)/d

One-body level density: £ (e) — Z o (e — ek) =p+p |e Reg%ir %Oﬁc
ﬂ“Ferlr%i [ § i
Ground-state energy: E(N) — I e p(E)de —E+E % %
Shell structure seen in p(e) or in E(N) = §

(suppressed in chaotic systems)




|. Shell structure - Nuclear masses

Shell energy | versus neutron number
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Nuclear masses

m(N ) Z)/C2 — EL.D. + Eshell + Erest
E . ~8AMeV, EI™ ~3MeV, E™ ~0.7MeV

rest

Extensive mass calculation with Folded-Yukawa potential + finite range droplet
by Moller, Nix, Myers, Swiatecki, Atom. Data Nucl. Tables 59, 185 (1995):

Calculated shell energy Error in mass formula
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Il. Periodic orbit theory

The fluctuating part of the level density,p(e) = p + p, is given by:

pe)= > > A, -cos(rS, /n+v,,)

periodic r=1
orbits, p
A, . ‘stability amplitude S, = §> pdq :action of periodic orbit p
v, - Maslov index r, =05, /0E :period of p.o
The fluctuating part of the total energy for A particles then becomes [1]:
CF o0
- ~ 2
E(A):jp(e)-e-de=2h o
0 1

The second moment of E can be evaluated and gives for nuclei [2]:
If regular: If chaotic:

Err(;:]ilar \/< Eregular > = 28 Mev Erms \/< Echaos A — MeV

chaos

[1] Leboeuf and Monastra, Ann Phys 297 (2002) 127. [2] O.Bohigas and P.Leboeuf, PRL 88 (2002) 092502. \7&,‘



Error in mass formulae compared to E_, ..«
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Autocorrelations between error in nuclear mass formuale [1]

C(x)= <E(A-xy/2)E(A+ x,/2)>

U8 Theoretical correlation between chaotid states

06F

Correlations 50%

ElQ’earson mass formula
two neutrons apart

04F

N -
“{m§0rrelatlons from error in Moller mass formula
i = T

Correlation

Duflo, Zuker e - T
OF mass formula ——
b et e
L3
-0.2 : : : : :
0 1 2 3 4 2 B

Scaled differens in neutron number

Notice:
*Good agreement between chaotic energy and error in nuclear mass!

*Chaotic energy is NOT random but strongly correlated!
[1] H. Olofsson. S. Aberg, O. Bohigas and P. Leboeuf, Phys. Rev. Lett. 96 (2006) 042502.




Ill. Periodic orbit description of pairing

BCS theory
Hamiltonian: H = Z e, a; d, — G Z a; aE aial
k Kl

Mean field approximation (in pairing space):

Pairing gap (”pairing deformation”): A= <G Z a; a% >
k
is determined by 2 1
gap equation: — =
2
G < \/ ( = ﬂ) + A
¢ p(e)de
%




Ill. Periodic orbit description of pairing

Divide pairing gap in smooth and fluctuating parts:

A=A+A AzZLexp(—ij

Insert into gap equation and assuming A << L
Expand to lowest order in fluctuations gives

‘ A = zgz Ap,rKO(rrp /rA)cos(rSp(e)/h+vp,r) -

P
__n

is characteristic time associated with pairing gap

ZK

1 1.e. no contribution from
1 orbits with

T, >>1,

'Tp/TA'



Ill. Periodic orbit description of pairing

Fluctuations of pairing gap become

2
Th o
where K is the spectral form factor (Fourier transform of 2-point corr. function):

~ A% %
<A2>:2 dr K (z/7,)K(z)

Regular Chaotic
K(t)

A

Ty- Ty

l —

Tmin TI—I Tm[n TH

Y

T yinis shortest periodic orbit, 7 = hp =h/6 is Heisenberg time




Ill. Fluctuations of pairing

Fluctuations of pairing, expressed in o = /<ZZ> [0

single-particle mean level spacing, o:

— 1
a r A N
If regular: Grzeg = Z g FO (D)
If chaotic: o 2 _ 1 F ( D)
ch 2 "1
N 27 /
D 0 .
Xn K 2 (X)dX | — 0 EIDE 1
Fn(D):l_ jow 0 D= Tmln — Zﬂé
jo X"K 2 (x)dx ., 9o
Ty
g = »dimensionless conductance”
z-min

If 7. —> 0= F, =1 universal fluctuations (random matrix theory)

GOE limit derived by: K.A. Matveev and A. Larkin, PRL 78 (1997) 3749



Ill. Fluctuations of pairing

T ¢ A
Three time scales: Corresponding | ——
T\ energy scales: | ——
— hiz . ~2ho
— 152
_TA v
B z-min

Anderson criterion:
No superconductivity if

A>0 & 1, <<71,
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V. Nuclear pairing gap

Pairing gap estimated from odd-even mass difference.
Three-point formula with N odd:

A(N)=-0.5(B(N -1,2)-2B(N,Z)+B(N +1,2))

gives minimum contribution from mean field (s.p. spectrum) [1].

3 Fit gives:
— 2.7
A= INE MeV

If also even N included:

— 12
A= T MeV
I A
0 50 100 15( But includes also

Neutron Number N A-dependence of

mean field
[1] J. Dobaczewski et al PRC63 (2001) 924308



V. Nuclear pairing gap

Estimates of time scales for nuclei

— 2.7
h/TA :A:W |\/|eV

h/z,=0=50/ A MeV
h/z . =80A"° MeV

tima'h
ha

= D=r_ /7, =0.21A"* =0.27-0.33
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V. Fluctuations of nuclear pairing gap

Theor.
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V. Applications to other finite fermi systems




V.a Nanosized metallic grains

Discr XC. rum
screte exc. spectru >\ 2

Irregular shape of grain = chaotic dynamics
- No symmetries — only time-rev. symm.
- Energy level statistics described by GOE

“#% 10 nm size scale

Excitation gap — pairing gap (>>0)
observed for even N

Applied B-field = gap disappears

N ~10% —10°
A~0.38x10°%V 5=21/NeV g=2.6N?*
D= 2z A ~ 0.0004 = F, ~1

g 5

1

27’

= Universal pairing fluctuations: O o =




V.b Ultracold fermionic gases

Trapped atomic quantum gases of bosons or fermions

VY

Bose condensate Degenerate fermi gas

gives possibilities to study new phenomena
in physics of finite many-body systems

Neutral atoms: # electrons = # protons
= # neutrons determines quantum statistics

e.g.: °Li, fermionic
"Li, bosonic




V.b Ultracold fermionic gases

Atom-atom interaction is short-ranged (1-10 A) and
much smaller than interparticle range (~ 10-° m) (dilute gas)

— Approximate int. with: |\/ (rl — r2) =4r— 5(3) (r all )
m

a=scattering length (s-wave)

s 8

T T o
1000t at 1 ]

BCS!

Via Feshbach resonance one can experimentally control
size and sign of interaction (via external magnetic field):

scattering length {a )
=
l!I::l =

g

:

55 20 255 240
B (gauss)

o C.A. Regal, D.S. Jin,
Two free experimental parameters: PRL 90 (2003) 23040

Particle number and interaction strength




V.b Ultracold fermionic gases

In dilute BCS region: A (2 / e)7/ 3 E_ exp| —
F

2k [a|

2E 1
§=—F == (3N)*"
3N ) 3( )

Recent experiments [1] using °Li reach ki|a| = 0.8
and about 10° atoms gives:
negligible fluctuations of the pairing gap

However, for example, for k;|a| = 0.2
and about 103 atoms gives:
large fluctuations of the pairing gap, Oy ~ AlS

[1] C.H. Schunck et al, PRL 98 (2007) 050404




SUMMARY

*Periodic orbit theory of pairing

*Generic description of fluctuations of
pairing gap in finite fermi systems

eAcurate, parameter free description of
fluctuations of nuclear pairing gaps

*Prediction of universal fluctuations in
nanosized metallic grains

eEstimates of pairing fluctuations in
ultracold Fermi gases




