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• Introduction

• The shell model Monte Carlo (SMMC) approach.

• Thermodynamic approach to level densities.

• Level densities in medium-mass nuclei: theory vs experiment.

• Projection on good quantum numbers: spin, parity,…

• Simple models for spin and parity dependence.

• A theoretical challenge: the heavy deformed nuclei.



Nuclear Level Densities: introduction

Experiment: (i) counting (low energies). (ii) charged particles, Oslo
(intermediate energies); (iii) neutron resonances (neutron threshold); (iv)
Ericson fluctuations (higher energies).

 Theory: Fermi gas models ignore important correlations.
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a = single-particle level density
parameter.

Δ = backshift parameter.

• It is difficult to predict ρ to an accuracy better
than an order of magnitude.

⇒ Use the interacting shell model (includes both shell effects and residual
interactions).

But: a and Δ are adjusted for each nucleus.

However, good fits to the data are obtained
using the backshifted Bethe formula (BBF):
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Auxiliary field Monte Carlo (AFMC) methods

Correlations beyond the mean field can be calculated by taking into
account all fluctuations of the mean field:

Gibbs ensemble      can be written as a superposition of
ensembles       of non-interacting nucleons in time-dependent fields

(Hubbard-Stratonovich transformation).

The calculation of the integrand reduces to matrix algebra in the single-
particle space.

The multi-dimensional integral is evaluated by Monte Carlo methods.

•  The method has been used in the interacting shell model:
shell model Monte Carlo (SMMC): Caltech + Yale

• We have recently extended AFMC to ultra-small metallic particles
(nanoparticles).
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We have used SMMC to calculate the statistical properties of nuclei in the
iron region in the complete fpg9/2-shell.

• Single-particle energies from Woods-Saxson potential plus spin-orbit.

• The interaction includes the dominant components of realistic effective
interactions: monopole pairing + multipole-multipole interactions
(quadrupole, octupole, and hexadecupole).

• Multipole-multipole interaction determined self-consistently and
renormalized.

• Pairing interaction is determined to reproduce the experimental gap (from
odd-even mass differences).

Interactions

• Interaction has a good Monte Carlo sign.



Thermodynamic approach
[H. Nakada and Y.Alhassid, PRL 79, 2939 (1997)]

The average level density is given by:

S(E) = canonical entropy; C = canonical heat capacity.

 We calculate the thermal energy E(T) = 〈H〉 in SMMC and integrate

                               to find the partition function.

Entropy:                             ,   Heat capacity:
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Systematics of the level density parameters
[Y.Alhassid, S. Liu, and H. Nakada, PRL 83, 4265 (1999)]

•  a is a smooth function of A.

•  Odd-even staggering effects
in Δ (a pairing effect).

• Good agreement with experimental data without adjustable parameters.

• Improvement over empirical formulas.

SMMC level densities are well fitted to the backshifted Bethe formula

Extract a and Δ



But: since only one major shell is taken, the heat capacity saturates in the
vicinity of the ‘bump’.

• Strong suppression of the BCS peak.

• A ‘bump’ remains for 60Fe around the
neutron pairing transition temperature.

• Correlated with             for J = 0
neutron pairs

Heat capacity
[Liu and Alhassid, PRL 87, 022501 (2001)]
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Systematic of the heat capacity in neutron-rich iron isotopes

A bump develops in the heat capacity of even-even nuclei  with
 increasing number of neutron pairs.



Extending the theory to higher temperatures

[Y.Alhassid., G.F. Bertsch, and L. Fang, Phys. Rev. C 68, 044322 (2003)]

It is time consuming to include higher shells in the Monte Carlo
approach.

We have combined the fully correlated partition in the truncated
space with the independent-particle partition in the full space (all
bound states plus continuum):
(i)  Independent-particle model

•  Include both bound states and continuum:

•  Truncation to one major
shell is problematic for T > 1.5
MeV.

•  The continuum is important
for a nucleus with a small
neutron separation energy
(66Cr).



(ii)  With interactions

Combine the fully correlated partition in the truncated space with the
independent-particle partition in the full space



Extended heat capacity (up to T ~ 4 MeV)

•  Strong odd/even effect: a signature
of pairing phase transition

Theory (SMMC)
Experiment (Oslo)



Spin distributions in even-odd, even-even and odd-odd nuclei

Spin distribution and moment of inertia
[Y. Alhassid, S. Liu and H. Nakada, nucl-th/0607062]
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Spin cutoff model 
(random coupling of s.p. 
spins):

 
• Spin cutoff model works very well
  except at low excitation energies. 

• Staggering effect in spin  for
 even-even nuclei.
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Thermal moment of inertia can be extracted from:

 Signatures of pairing correlations:

• Suppression of moment of inertia at low excitations in even-even nuclei.
• Correlated with pairing energy of J=0 neutrons pairs.



Energy-dependent enhancement of J=0 level density (pairing effect) 



Model:  deformed Woods-Saxon potential plus pairing interaction.

(i) Number-parity projection : the major odd-even effects are described
by a number-parity projection

• Projects on even (η = 1) or odd (η = -1) number of particles.
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A simple model for the moment of inertia
[Alhassid, Bertsch, Fang, and Liu; Phys. Rev. C 72, 064326 (2005)]
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 (negative occupations !)

• include static fluctuations of the pairing order parameter.

(ii) Static path approximation (SPA)

is obtained from                 by the the replacement



iron isotopes (even-even and even-odd nuclei)

• Good agreement with SMMC

• Strong odd/even effect



        A simple model for parity distribution
Alhassid, Bertsch, Liu and Nakada, Phys. Rev. Lett. 84, 4313 (2000)

The distribution to find n particles in single-particle states with
 parity      is a Poisson distribution:
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Where                                           is the total Fermi- Dirac

 occupation in all states with parity
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Occupation distribution of the even-parity
orbits (        )  in  9/ 2

g 60
Ni

•  Deviations from Poisson
distribution for T < 1 MeV
   (pairing effect)

The model should be applied
for
 the quasi-particles:
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    An improved model for the parity dependence
              (H. Chen and Y. Alhassid)

• Deformed WS plus pairing.
• Solve using number-parity projection, SPA plus parity projection.

Ratio of odd-to-even parity 
partition functions

Ratio of odd-to-even parity
level densities

• Improvement of the previous model.



 Nanoparticles  (Δ/δ =1)
        

versus   nuclei

Spin susceptibility Moment of inertia

Heat capacity

Thermal signatures of pairing correlations: summary

Experiment (Oslo)

• Pairing correlations (for Δ/δ ~1) manifest through strong odd/even effects.



The heavy deformed nuclei

• Most SMMC calculations to date were in medium-mass nuclei (small 
deformation, first excitation ~ 1-2 MeV in even-even nuclei).

• Very different situation in heavy nuclei  (large deformation,
  first excitation ~ 100 keV, rotational bands).

Can we describe rotational behavior in a truncated spherical shell model?

Technical challenges

• Choice of single-particle model space: inclusion of intruder states.

• Protons and neutrons occupy different shells: SMMC extended to pn 
 formalism.

• The one-body propagator become ill-conditioned at large imaginary times: 
 apply stabilization methods in the canonical ensemble.

(Y. Alhassid, L. Fang and H. Nakada)
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• Model space includes  1029 configurations !
 (largest SMMC calculation to date).

• Level density is in good 
  agreement with experiments.



                                     Conclusion
• Fully microscopic calculations of level densities are possible by quantum
Monte Carlo methods.

• Nuclei probe the fluctuation-dominated regime of pairing correlations.
Thermal signatures of pairing correlations (heat capacity, moment of
inertia,…) manifest through their dependence on number parity.

• The spin and parity distributions can be calculated using projection
methods (see also talk by K. Van Houcke).

• SMMC successfully extended to heavy deformed nuclei (A ~ 160).

                                             A long-range goal:
  Derive global effective shell model interactions from density functional theory.

 Quadrupole-quadrupole effective interaction:
 Alhassid, Bertsch, Fang and Sabbey, Phys. Rev. C 74, 034301  (2006)


