The shell model Monte Carlo approach to level densities:
from medium-mass to heavy deformed nuclei

Yoram Alhassid (Yale University)
* Introduction
* The shell model Monte Carlo (SMMC) approach.
* Thermodynamic approach to level densities.
* Level densities in medium-mass nuclei: theory vs experiment.
 Projection on good quantum numbers: spin, parity,...
« Simple models for spin and parity dependence.

* A theoretical challenge: the heavy deformed nuclei.



Nuclear Level Densities: introduction

Experiment: (i) counting (low energies). (ii) charged particles, Oslo
(intermediate energies); (iii) neutron resonances (neutron threshold); (iv)
Ericson fluctuations (higher energies).

Theory: Fermi gas models ignore important correlations.
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=> Use the interacting shell model (includes both shell effects and residual
interactions).



Auxiliary field Monte Carlo (AFMC) methods

Correlations beyond the mean field can be calculated by taking into
account all fluctuations of the mean field:

Gibbs ensemble ¢ " ([3 = 1/T) can be written as a superposition of
ensembles U _of non-interacting nucleons in time-dependent fields o (r )

e P =f@[U]GaUG
(Hubbard-Stratonovich transformation).

The calculation of the integrand reduces to matrix algebra in the single-
particle space.

The multi-dimensional integral is evaluated by Monte Carlo methods.

 The method has been used in the interacting shell model:
shell model Monte Carlo (SMMC): Caltech + Yale

* We have recently extended AFMC to ultra-small metallic particles
(nanoparticles).



Interactions

We have used SMMC to calculate the statistical properties of nuclei in the
iron region in the complete fpg,,-shell.

« Single-particle energies from Woods-Saxson potential plus spin-orbit.

* The interaction includes the dominant components of realistic effective
interactions: monopole pairing + multipole-multipole interactions
(quadrupole, octupole, and hexadecupole).

» Multipole-multipole interaction determined self-consistently and
renormalized.

 Pairing interaction is determined to reproduce the experimental gap (from
odd-even mass differences).

* Interaction has a good Monte Carlo sign.



Thermodynamic approach
[H. Nakada and Y.Alhassid, PRL 79, 2939 (1997)]
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The average level density is given by: ~ p(E)= e
\2xT’C
S(E) = canonical entropy; C = canonical heat capacity.

We calculate the thermal energy E£(7) = (H) in SMMC and integrate
-dInZ /o = E(B) to find the partition function.

Entropy: S(E)=InZ + BE , Heatcapacity: C =-B%IE/0p
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Systematics of the level density parameters
[Y.Alhassid, S. Liu, and H. Nakada, PRL 83, 4265 (1999)]

SMMC level densities are well fitted to the backshifted Bethe formula

Extract a and A
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e ais a smooth function of A4.

a(MeV1 )
A(MeV)

e (Odd-even staggering effects
in A (a pairing effect).

e Good agreement with experimental data without adjustable parameters.

e Improvement over empirical formulas.



Heat capacity
[Liu and Alhassid, PRL 87, 022501 (2001)]
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« Strong suppression of the BCS peak.
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* A ‘bump’ remains for 6°Fe around the 10}
neutron pairing transition temperature.
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e Correlated with <A'A>. forJ=0
neutron pairs
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But: since only one major shell is taken, the heat capacity saturates in the
vicinity of the ‘bump’.



Systematic of the heat capacity in neutron-rich iron isotopes
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A bump develops in the heat capacity of even-even nuclei with
increasing number of neutron pairs.



Extending the theory to higher temperatures

[Y.Alhassid., G.F. Bertsch, and L. Fang, Phys. Rev. C 68, 044322 (2003)]

It is time consuming to include higher shells in the Monte Carlo

approach.

We have combined the fully correlated partition in the truncated
space with the independent-particle partition in the full space (all
bound states plus continuum):

(i) Independent-particle model

* |nclude both bound states and continuum:

56Fe (S,,=8.7 MeV)
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66Cr (S,,=1.7 MeV)

—— bound states + continuum

| bound states
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« Truncation to one major
shell is problematic for 77> 1.5
MeV.

* The continuum is important
for a nucleus with a small
neutron separation energy
(°°Cr).



InZ’

(if) With interactions

Combine the fully correlated partition in the truncated space with the
independent-particle partition in the full space
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Extended heat capacity (up to T~ 4 MeV)

Experiment (Oslo)

Theory (SMMC)
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« Strong odd/even effect: a signature
of pairing phase transition



Spin distribution and moment of inertia
[Y. Alhassid, S. Liu and H. Nakada, nucl-th/0607062]

Spin distributions in even-odd, even-even and odd-odd nuclei

Spin cutoff model
(random coupling of s.p.
spins):

P, 2J +1 e—J(J+1)/202
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* Spin cutoff model works very well
except at low excitation energies.

« Staggering effect in spin for
even-even nuclei.
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Spin cutoff model:

fit
—— rigid-body
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Thermal moment of inertia can be extracted from: (72
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Signatures of pairing correlations:

» Suppression of moment of inertia at low excitations in even-even nuclei.
* Correlated with pairing energy of J=0 neutrons pairs.



Energy-dependent enhancement of J=0 level density (pairing effect)
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A simple model for the moment of inertia
[Alhassid, Bertsch, Fang, and Liu; Phys. Rev. C 72, 064326 (2005)]

Model: deformed Woods-Saxon potential plus pairing interaction.

(i) Number-parity projection : the major odd-even effects are described
by a number-parity projection

P =%(1+7]e”m)

 Projectsoneven (n=1) orodd (1 =-1) number of particles.

<>n is obtained from <> by the the replacement
f, = f, = (l—eEk/T )_1 (negative occupations !)

(ii) Static path approximation (SPA)

* include static fluctuations of the pairing order parameter.



iron isotopes (even-even and even-odd nuclei)
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» Good agreement with SMMC

« Strong odd/even effect



A simple model for parity distribution
Alhassid, Bertsch, Liu and Nakada, Phys. Rev. Lett. 84, 4313 (2000)

The distribution to find n particles in single-particle states with
parity sz is a Poisson distribution:

S

P(n) = /;—’:e'f

For an even-even nucleus:

Z (P) _ En_oddp(n) - tanh f
Z(B) Y, P

1 . .
Where [ = Eaer Ty PE is the total Fermi- Dirac

occupation in all states with parity s



e Deviations from Poisson
distribution for T < 1 MeV
(pairing effect)

The model should be applied
for
the quasi-particles:
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An improved model for the parity dependence
(H. Chen and Y. Alhassid)

* Improvement of the previous model.

» Deformed WS plus pairing.
» Solve using number-parity projection, SPA plus parity projection.

Ratio of odd-to-even parity
Ratio of odd-to-even parity level densities

partition functions 1.5—T—T T




Thermal signatures of pairing correlations: summary

Nanoparticles (A/6=1) versus nuclei
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« Pairing correlations (for A/& ~1) manifest through strong odd/even effects.



The heavy deformed nuclei
(Y. Alhassid, L. Fang and H. Nakada)

* Most SMMC calculations to date were in medium-mass nuclei (small
deformation, first excitation ~ 1-2 MeV in even-even nuclei).

* Very different situation in heavy nuclei (large deformation,
first excitation ~ 100 keV, rotational bands).

Can we describe rotational behavior in a truncated spherical shell model?
Technical challenges
 Choice of single-particle model space: inclusion of intruder states.

* Protons and neutrons occupy different shells: SMMC extended to pn
formalism.

* The one-body propagator become ill-conditioned at large imaginary times:
apply stabilization methods in the canonical ensemble.
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« Model space includes 102%° configurations !
(largest SMMC calculation to date).
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 Level density is in good
agreement with experiments.



Conclusion

* Fully microscopic calculations of level densities are possible by quantum
Monte Carlo methods.

* Nuclei probe the fluctuation-dominated regime of pairing correlations.
Thermal signatures of pairing correlations (heat capacity, moment of
inertia,...) manifest through their dependence on number parity.

» The spin and parity distributions can be calculated using projection
methods (see also talk by K. Van Houcke).

* SMMC successfully extended to heavy deformed nuclei (A ~ 160).

A long-range goal:
Derive global effective shell model interactions from density functional theory.

Quadrupole-quadrupole effective interaction:
Alhassid, Bertsch, Fang and Sabbey, Phys. Rev. C 74, 034301 (2006)



