Combinatorial Nuclear Level Density Model

Sven Åberg, Lund University, Sweden

2nd Workshop on Level Density and Gamma Strength Oslo, May 11 - 15, 2009

Combinatorial Nuclear Level Density Model

- I. Introduction
- **II.** Microscopic method for calculating level density
 - Combinatorical intrinsic level density
 - Pairing
 - Rotational enhancements
 - Vibrational enhancements
 - Role of residual interaction

III. Result

- (a) Data at neutron separation energy
- (b) Details of level density (Oslo data)
- (c) Observed discrete states
- (d) Angular momentum distribution
- (e) Parity enhancements (Richter exp.)
- (f) Fission barriers

In collaboration with:

H. Uhrenholt, Lund T. Ichikawa, RIKEN

Subm to PRC, arXiv:0901.1087

P. Möller, Los Alamos

Neutron resonance region

- Fluctuations of eigen energies and wave functions are described by random matrices same for all nuclei
- Level density varies from nucleus to nucleus:

Level density

$$\rho(E_{exc}, I, \pi) = P(E_{exc}, \pi)F(E_{exc}, I)\rho(E_{exc})$$

where *P* and *F* project out parity and angular momentum, resp. In (backshifted) Fermi gas model:

$$P(E_{exc}, \pi) = 0.5$$

$$F(E_{exc}, I) = \frac{I + 0.5}{\sigma^2} \exp\left(-\frac{(I + 0.5)^2}{2\sigma^2}\right)$$

$$\rho(E_{exc}) = \frac{\sqrt{\pi}}{12a^{1/4}U^{5/4}} \exp\left(2\sqrt{aU}\right)$$

where

$$U = E_{exc} - E_{shift}$$

Backshift parameter, E_{shift} , level density parameter, a, and spin cutoff parameter, σ , are typically fitted to data (often dep. on E_{exc}) We want to have: Microscopic model for level density to *calculate* level density, *P* and *F*. Obtain: Structure in ρ , and parity enhancement.

II. Microscopic method for calculation of level density

(a) Intrinsic excitations - combinatorics

Mean field: folded Yukawa potential with parameters (including deformations) from Möller et al.

Count all states and keep track of seniority (v=2n), total parity and K-quantum number for each state

Energy: $E_{\mu}(v, K, \pi)$

Level density composed by v-qp exitations

2 quasi-particle excitation: seniority v=2 v quasi-particle excitation: seniority v

Pairing

Distribution of proton pair gaps

Rotational enhancement

Each state with given K-quantum number is taken as a band-head for a rotational band:

 $\mathbf{E}(\mathbf{K},\mathbf{I}) = \mathbf{E}(\mathbf{K}) + \hbar^2/2\mathbf{J} \ (\varepsilon, \Delta_n, \Delta_p) \ [\mathbf{I}(\mathbf{I}+1)-\mathbf{K}^2]$

where moment of inertia, J, depends on deformation and pairing gaps of that state [1]

 $E_{\mu}(v, I, K, \pi, \Delta_n, \Delta_p)$ **Energy:**

Double counting of rotational states?

Not important for E_{exc} below ~50 MeV

[1] R. Bengtsson and S. Åberg, Phys. Lett. B172 (1986) 277.

Rotational 2⁺ energy:

Rotational enhancement

Vibrational enhancement

Add QQ-interaction corresponding to Y₂₀ (K=0) and Y₂₂ (K=2), double-stretched [1]

50

100

Mass Number A

250

300

[1] H. Sakamoto and T. Kishimoto, Nucl Phys A501 (1989) 205
 S. Åberg, Phys. Lett. B157 (1985) 9.

Exact correction for double-counting of states

For *each* phonon state QPDA solution gives:

Vibrational enhancement

Gives VERY small vibrational enhancement!

- * Phonon energies are not much different from qp-energies
- * Small collectivity
- * Phonons can hardly be repeated

Microscopic foundations for phonon method??

Role of residual interaction on level densities

III. Result

For all nuclei is calculated:

Level density of fixed angular momentum and parity: $ho(E,I,\pi)$

Total level density:
$$\rho_{tot}(E) = \sum_{I,\pi} \rho(E, I, \pi)$$

Level density of fixed parity:
$$\rho_{\pi}(E) = \sum_{I} \rho(E, I, \pi)$$

III.a Comparison to data – neutron resonance spacings

Comparison to data – neutron resonance spacings

Systematics of the error in the model?

III.b Comparison to exp. data - Oslo data [1,2]

[1] M. Guttormsen et al, Phys. Rev. C68 (2003) 064306.
[2] A. Schiller et al, Phys. Rev. C63 (2001) 021306(R).

III.c Comparison to data – low-energy discrete states

[1] S. Goriely, S. Hilaire and A.J. Koning, Phys. Rev. C78 (2008) 064307:

Comparison to data – low-energy discrete states

Nucl	$D_{\rm Th}/D_{\rm Exp}$	Nucl	$D_{\rm Th}/D_{\rm Exp}$	Nucl	D_{Th}/D_{Exp}
^{42}K	0.94	⁵⁶ Fe	0.55	60 Co	0.62
⁹⁴ Nb	2.50	^{107}Cd	0.77	^{127}Te	0.26
$^{148}\mathrm{Pm}$	1.72	¹⁵⁵ Eu	2.95	$^{161}\mathrm{Dy}$	2.61
$^{162}\mathrm{Dy}$	1.27	$^{172}\mathrm{Yb}$	3.10	¹⁹⁴ Ir	4.58
$^{208}\mathrm{Pb}$	0.02	$^{237}\mathrm{U}$	5.18	239 Pu	3.46

Spin and parity functions in microscopic level density model - compared to Fermi gas functions

III.d Angular momentum distribution

III.e Parity enhancement

Fermi gas model: Equal level density of positive and negative parity

Microscopic model: Shell structure may give an enhancement of one parity

Role of deformation

Compared to other models

Parity enhancement in Monte Carlo calc (based on Shell Model) [1]

[1] Y. Alhassid, GF Bertsch, S Liu and H Nakada, PRL 84, 4313 (2000)

Measured parity enhancement in ⁹⁰Zr

[1] High-res E2 (p-scatt.) and M2 (el. scatt.) giant res.Y. Kalmykov et al Phys Rev Lett 99 (2007) 202502 (Richter exp.)

[2] Skyrme-Hartree-Fock calc.

S. Hilaire and G. Goriely, Nucl. Phys. A779 (2006) 63

Extreme enhancement for negative-parity states

III.f Fission dynamics

P. Möller et al, to appear in PRC (2009)

Asymetric vs symmetric shape of outer saddle

How to improve?

- Better treatment of ground state correlations
- Improved mean field
- Improved pairing field/treatment
- Account for deformation changes vs excitation energy
- Level density of drip-line nuclei

SUMMARY

- I. Microscopic model (micro canonical) for level densities including:
 - well tested mean field (Möller et al)
 - pairing, rotational and vibrational enhancements
 - residual interaction schematically included
- **II.** Vibrational enhancement VERY small
- **III.** Fair agreement with data with NO parameters
- **IV.** Pairing remains at high excitation energies
- V. Detailed data on parity asymmetry can be very large!
- VI. Structure of level density important for fission dynamics: symmetric-asymmetric fission
- **VII. Level densities important test for structure models**

Onset of Chaos: Experimental knowledge

Onset of Chaos: Theoretical knowledge

[1] M. Matsuo et al, Nucl Phys A620, 296 (1997)

