

li Fisica Nuclear

101010101010101010

S. Leoni University of Milano and INFN

Oslo WS - May 2009

<u>Warm superdeformed nuclei</u>:

Probes of Nuclear Structure and Tunneling Processes At the Onset of Chaos

- 1 <u>INTRO</u>: Warm Superdeformed Nuclei
- 2- <u>Experimental Analysis</u> ¹⁵¹Tb & ¹⁹⁶Pb EUROBALL IV data
- 3- Theoretical Modelling

Microscopic Monte Carlo simulation

4- <u>OUTLOOK</u>:

Probes of Nuclear Structure & Potential Barriers

<u>Aim of this work</u>: Step forward in Experiment & Theory

EXPERIMENT:

Extensive Study of warm rotation in A=150 and 190: ¹⁵¹Tb and ¹⁹⁶Pb

Evaluation of <u>several</u> independent experimental oservables \Rightarrow stringent test of γ -decay flow

THEORY:

Development of new Monte Carlo model

Based on <u>microscopic calculations</u> \Rightarrow Towards a parameter "free" model

1- The ¹⁵¹Tb and ¹⁹⁶Pb experiments

Two High Statistics EUROBALL-IV Experiments ¹⁵¹Tb and ¹⁹⁶Pb

 ${}^{30}Si + {}^{170}Er \rightarrow {}^{196}Pb + 4n$ Thin target, $E_{beam} = 148$ MeV, $L_{max} \sim 53 \hbar$ Statistics: 8 days

 $\sim 2 \times 10^8 \quad \langle \mathsf{F}_{Ge} \rangle = 3$

<F_γ> = 10
Goals: warm rotation in SD well
(S. Leoni et al., in print in PRL)
GDR in A = 190
(D. Montanari et al., in preparation)

 $^{27}\text{Al} + ^{130}\text{Te} \rightarrow ^{151}\text{Tb} + 6n$

Thin target, E_{beam} = 155 MeV, $L_{max} \sim 80 \ \hbar$

Statistics: 17 days $\sim 9 \times 10^9 \quad \langle F_{Ge} \rangle = 5$ $\langle F_{\gamma} \rangle = 22$

Goals: discrete spectroscopy in SD well (J. Robin et al., PRC77, 014308(2008) search for linking transitions SD → ND (J. Robin et al., PRC78(2008)034319)

Discrete Spectroscopy Info's

J. Robin et al., Pys. Rev. C78(2008)034319

A.N. Wilson et al., Phys. Rev. Lett. 95 (2005)

Quasi-Continuum Spectroscopy: Warm Rotation

¹⁵¹Tb Analysis

Analysis Techniques

1. Spectrum Intensity: population

2. Spectrum Fluctuations: number of bands

Properties of γ-decay flow of SD nucleus

¹⁹⁶Pb Analysis

8 independent observables

2- The Interpretation of the DATA

a <u>Monte Carlo</u> simulation of the γ-decay based on <u>microscopic calculations</u>:

Towards a parameter "free" model

Microscopic calculations entering the Monte Carlo:

1. Interacting cranked shell model

K. Yoshida, M. Matsuo, NPA612(1997)126

2. Microscopic Barriers & Tunneling Actions K. Yoshida, M. Matsuo and Y. Shimizu, NPA696, 85(2001)

Cranked Shell Model at T≠ 0

¹⁵¹Tb microscopic calculations

¹⁹⁶Pb microscopic calculations

Cranked shell model at $T \neq 0$

The simulation parameters

2. The E1 decay strength: the tail of the GDR

 $f_{GDR} = \text{Sum of}$ 3 Lorentzian $T(E1) = H_{1n} \times K_{E1} B(E1) \times E_{\gamma}^{3}$

Hindrance factor ~ 10⁻² (tuned to reproduce the intensity of the yrast band) K.E.G. Lobner, Phys. Lett. 26B, 369(1968) G. Leander, PRC38, 728(1988)

151**Tb:** simulated γ -spectra

<u>Analysis of Simulated Spectra</u>: Spectrum Intensity (population) Fluctuations (number of bands)

SD gated quantities are sensitive to E1/E2 balance

Good agreement with data in both A=150 and 190 region S. Leoni et al. PRL101(2008)142502

Good agreement with data in both A=150 and 190 region S. Leoni et al. PRL101(2008)142502

Exp. versus Theory: Number of Discrete Bands

2

U [MeV]

0

3

4

over wide range of I and U

Good agreement with data in both A=150 and 190 region S. Leoni et al. PRL101(2008)142502

OUTLOOK:

Probes of Nuclear Structure and Tunneling

- 1. Strength of two-body interaction
- 2. Mass parameter in action S
- 3. ND level density

Sensitivity mostly in A = 190 region

Probes of Nuclear Structures

1. Sensitivity to two-body interaction Strength

Probes of Nuclear Structures

2. Sensitivity to Mass Parameter in Action S

$$\Gamma_{t} = \frac{\hbar\omega_{SD}}{2\pi} \frac{D_{SD}}{\hbar\omega_{SD}} (1 + e^{2S})^{-1}$$

action integral along tunneling path

$$S(E) = \int_{path} ds \sqrt{2M_0(V(q(s)) - E)}$$

$$M_0 \approx \frac{1}{\Delta^2} \quad \text{driven by pairing}$$

$$M_0 \rightarrow C_m M_0$$

S. Leoni et al. Submitted to PRC

Probes of Nuclear Structures

3. Sensitivity to level density in ND well

CONCLUSIONS:

Warm Rotation in Superdeformed nuclei is a test bench for

- 1. cranked shell model at finite temperature
- 2. tunneling through potential barrier

Experimental analysis ¹⁵¹Tb & ¹⁹⁶Pb: <u>Intensities and Fluctuations</u> of Quasi-continuum spectra

Data interpretation:

Microscopic Monte Carlo simulation, almost parameter "free"

 Evidence for nuclear structure effects: enhanced E1 strength @ E_γ = 1-2 MeV

Sensitivity to V_{res}, Inertial Mass and ND level density

 $\textbf{Collaborators} \rightarrow$

Participants to the Experiments

Milano University & INFN:

A. Bracco, G. Benzoni, N. Blasi, S. Brambilla, F. Camera, F. Crespi, A. DeConto, S. Leoni, P.Mason, D. Montanari, B. Million, M. Pignanelli, O. Wieland

IRES, Strasbourg:

G.Duchene, J.Robin, D. Curien, Th.Bysrki, F.A.Beck et al.,

Krackow, Poland: A.Maj, M. Kmiecik, P.Bednarczyk, W. Meczynski, J. Styczen, et al.

NBI, Copenhagen: B. Herskind, G. Hagemann, G. Sletten et al.

<u>Oliver Lodge Laboratory, University of Liverpool</u>: P.J.Twin

KTH, Stockholm: A.Odahara, K.Lagergren

+ **EUROBALL** collaborations

Theory: E.Vigezzi (Milano University & INFN) M.Matsuo (Niigata University), Y.R.Shimizu (Kyushu University) et al.

Outlook: detailed analysis of other cases

1. The SD NUCLEUS ¹⁵²Dy

So far investigated in details via a parameter dependent model T.Lautitsen et al., PRC75(2007)064309

2. The PECULIAR case of ¹⁹⁴Hg

the flow bias strongly the population probability

Exp. versus Theory

Number of Discrete Bands

Monte Carlo simulation: TEST of theory over wide spin range !