Neutron Capture Experiments with DANCE

G. E. Mitchell

North Carolina State University Raleigh, NC USA

NC STATE UNIVERSITY

This work was supported in part by the U. S. DoE Grants No. DE-FG52-06NA26194 and DE-FG02-97-ER41042. Work performed, in part, under the auspices of the U.S. DoE by Livermore National Security, LLC, Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. Work performed, in part, under the auspices of the U.S. DoE by Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

People and collaborators

B. Baramsai, R. Chankova, A. Chyzh, D. Dashdorj, G. E. Mitchell, C. Walker North Carolina State University and Triangle Universities Nuclear Laboratory

J. A. Becker, W. Parker, S. A. Sheets, C. Y. Wu Lawrence Livermore National Laboratory

T. A. Bredeweg, A. J. Couture, R. C. Haight, M. Jandel, J.M. O'Donnell, R. Reifarth, R. S. Rundberg, J. L. Ullmann, D. J. Vieira, J. M. Wouters *Los Alamos National Laboratory*

U. Agvaanluvsan Stanford University

M. Krticka, F. Becvar Charles University, Prague

LANSCE User Facility

Neutron-capture using DANCE array at LANSCE

n – beam

DANCE is composed of 160 BaF_2 detectors covering ~4 π .

DANCE is located on Flight

DANCE is located on Flight Path 14 at the Lujan Center.

The neutron-capture of 94,95 Mo, and 152,154,156,157,158,160,nat Gd are measured using the DANCE array and the high granularity of the array was used to extract multiplicity and γ -ray energy distributions.

Calibration

- Gamma Energy
- Time
- Neutron Energy

Gamma Energy Calibration

- Standard sources as ⁸⁸Y, ²²Na, ⁶⁰Co
- Gain shifts are corrected with Ra alpha decay energy for each crystal

Time Calibration

•Average time difference between the crystal and the reference crystal

Calibration

Gating

With proper gating we can significantly improve signal to noise ratio

Neutron Energy Spectrum

Ungated Spectra M ≥ 1 Q Gate is not applied Gated Spectra

Gating

• Particle identification

Gating

Background Reduces Signal to Noise Ratio Increases

DANCE Cluster Multiplicity, Total Energy

Example: The array multiplicity is 8 and the cluster multiplicity is 3.

Performed two different cuts: $\Sigma E_{\gamma} = 4 - 6.5 \text{ MeV} {}^{152,154,156,160}\text{Gd}$ $\Sigma E_{\gamma} = 6.8 - 9 \text{ MeV} {}^{155,157}\text{Gd}$ High efficiency of the DANCE calorimeter is useful for identifying signals due to different total energy of different isotopes.

Isotopes	Q-value (MeV)
¹⁵² Gd	6.2
¹⁵⁴ Gd	6.4
¹⁵⁵ Gd	8.5
¹⁵⁶ Gd	6.3
¹⁵⁷ Gd	7.9
¹⁵⁸ Gd	5.9
¹⁶⁰ Gd	5.6

Target materials

	Percent compositions in Gd targets							
Isotope	^{nat} Gd	¹⁵⁵ Gd	156 Gd	¹⁵⁸ Gd	¹⁵² Gd	¹⁵⁴ Gd	¹⁵⁷ Gd	160 Gd
	target							
¹⁵² Gd	0.20 %	0.03%	0.01%	0.1%	42.49 %	0.05 %	<0.01 %	<0.01 %
¹⁵⁴ Gd	2.18 %	0.63%	0.11%	0.1%	4.38 %	67.34 %	<0.01 %	0.02 %
¹⁵⁵ Gd	14.80 %	91.74%	1.96%	0.96%	15.93 %	21.11 %	0.08~%	0.22 %
¹⁵⁶ Gd	20.46 %	5.12%	93.79%	1.7%	13.91 %	5.65 %	0.09 %	0.37 %
¹⁵⁷ Gd	15.65 %	1.14%	2.53%	3.56%	7.82 %	2.24 %	99.7 %	0.27 %
¹⁵⁸ Gd	24.84 %	0.94%	1.20%	92.0%	9.56 %	2.32 %	0.12 %	0.92 %
¹⁶⁰ Gd	21.87 %	0.40%	0.41%	1.82%	5.91 %	1.29 %	<0.01 %	98.2 %

All targets are made with highly enriched samples and approximately 1 mg/cm².

Data Analysis

On-Line

•The DANCE raw data rate can exceed 1 Terabyte per hour depending on the target material.

•Extract and record only the most fundamental information out of each waveform

•The data rate is reduced to ~1 Mbyte/sec

•DAQ requires 40ms to read out the digitizers, extract the waveform and store reduced waveform and time information in central Midas server

Off-Line

Extraction of Parameters from Each Crystal Back.Subtracted Integrals, T0
Construction of Physics Events Cluster and Crystal Multiplicity
Calibration of Raw Signals to Produce Physics Quantities Obtain real physics quantities
Particle identification and background subtraction Pure capture events are separated
Obtaining Final Results

Many results can be obtained

No ¹⁵²Gd resonances when gates are set > O value Gd152 З Entries 34.89 Mean RMS 7.124 **Gd** Total E_{γ} cut = 4.0-6.5 MeV ¹⁵²Gd Q-value = 6.3 MeV **Gd Gd** ⁼¹⁵⁵Gd **Gd Gd Gd Gd** Neutron Energy (eV) Gd152 З Entries Mean 30.61 RMS 9.44 Total E_{γ} cut = 6.8-9 MeV ¹⁵⁵Gd ^{155,157}Gd Q-value = 8.5, 7.9 MeV **Gd** ¹⁵⁵Gd **Gd Gd Gd** ¹⁵⁵Gd **Gd Gd Gd Gd**

Neutron Energy (eV)

0

NC STATE UNIVERSITY

Comparison between DANCE <u>data and simulation</u> Neutron energy gate is set around well-separated s-wave ¹⁵²Gd resonance at E_n = 39.3 eV.

This is for one well-separated resonance. The gamma-ray spectral shape is sensitive to parameters of the level density and the PSF. Requiring simultaneous fit to all M at once is essential.

Neutron resonances in the

94,95 Mo + n

TABLE I. Summary of DICEBOX simulations of average multiplicities $\langle M_J \rangle$ for *s*- and *p*-wave resonances in ^{94,95}Mo + n systems: the predicted expectation values $E[\langle M_J \rangle]$ and the residual Porter-Thomas uncertainties.

Quantity	$\langle M_J angle$						
J	1/2	3/2	1	2	3	4	
⁹⁴ Mo, <i>s</i> waves	3.25(4) 3.03(15)	3.07(15)					
⁹⁵ Mo, p waves ⁹⁵ Mo, p waves	5.05(15)	5.07(15)	3.30(8)	3.90(4) 3.68(10)	4.23(4) 4.00(12)	4.30(14)	

TABLE II. Isotopic composition for the targets used in the measurements. The amount of isotope is listed as the percentage of the target material.

Target	Isotope abundances							
	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	¹⁰⁰ Mo	
⁹⁴ Mo ⁹⁵ Mo	0.73 0.26	91.59 0.63	5.35 96.47	1.11 1.45	0.37 0.46	0.65 0.63	0.20 0.15	

•Radchem detector – ${}^{87}Y/{}^{88}Y = 1/2 \sigma(n,2n)\Phi_n$, where Φ_n – neutron fluence above 11.6 MeV threshold for ${}^{88}Y(n,2n)$ reaction.

•But: The isotopic ratio ${}^{87}Y/{}^{88}Y$ is altered by (n, γ) reactions, ultimately we want to measure all these with DANCE as precisely as we can.

•No Data for cross section of ${}^{87}Y(n, \gamma)$ and ${}^{88}Y(n, \gamma)$ in ENDF/B, JENDL, and JEFF.

•In the long run we plan to measure ${}^{88}Y(n,\gamma)$ cross section.

•Both ⁸⁷Y and ⁸⁹Y are odd-even nuclei – cross section of ⁸⁹Y(n, γ) will allows to constrain model calculations for nuclei we can not measure with DANCE, for example ⁸⁷Y(n, γ)

Evaluated Cross Section Data for ⁸⁹Y(n,g)

- Different evaluations of ⁸⁹Y(n,γ) provide data with differencies of up to 10¹-10² times at 1 keV
- Ratio ⁸⁹Y(n,el)/⁸⁹Y(n, γ) = 10²-10⁴
- Improved data is needed
- 6 orders of magnitude in cross section – run thin and thick targets to span this range
- ⁸⁹Y(n,tot) was measured via transmission experiment

Conclusions on $^{89}Y(n,\gamma)$ experiment

- DANCE data was taken for 11.5 days of production beam time
- 3 different ⁸⁹Y targets were exposed: 1 mil, 5 mil, 25 mil
- Additional targets were measured for neutron flux determination, neutron scattering background, and contamination in ⁸⁹Y target: ¹⁹⁷Au, ^{nat}Pb, ²⁰⁸Pb ^{nat}Fe, ¹⁸¹Ta
- Neutron flux was determined using the ¹⁹⁷Au experimental data (4.9 keV) as a reference
- Neutron beam was corrected for attenuation + neutron capture yield was corrected for self shielding (blackness of resonances) + 1 resonance was corrected for pileup
- Cuts on E_{sum} and Multiplicity were made for cross section data
- DICEBOX/GEANT4 simulations are to be done to justify efficiency of [E_{sum},M] cuts
- Cross section of 89 Y(n, γ) was calculated in the energy range $E_n = 10 \text{ eV} 300 \text{ keV}$
- Error bars vary: 10-20% in $E_n = 10^{1} 10^{2} \text{ eV}$, 10% at resonances, 50-80% between resonances, 20-50% in $E_n = 2 \cdot 10^{4} 3 \cdot 10^{5} \text{ eV}$

Experimental neutron capture

Spin Determination

Previous Methods

• Average Multiplicity Successfully defined the spins of the ^{94,95}Mo (S.A. Sheets et al. Phys.Rev.C 76, 064317)

$$\overline{M} = \frac{\sum_{i} M_{i} \cdot Y_{i}}{\sum_{i} Y_{i}}$$

 Spin Separation More advanced method Separate unresolved resonances Determined Spins of ¹⁴⁷Sm (P. Koehler et al. Phys.Rev. C76, 025804)

The Method

٠

High segmentation of the detector gives an advent to sort events by γ -ray multiplicity

$$Y_{total}(E) = Y_{I}(E) + Y_{2}(E) + ... + Y_{max}(E)$$

• Normalization of the yields to the total gives the multiplicity distribution $\omega_1^{(J)} + \omega_2^{(J)} + ... + \omega_{max}^{(J)} = 1$

The Method

- The $\omega_m^{(J)}$ are not exactly the same for all resonances, they are distributed around the mean value
- The Distribution Function is a Double Gaussian
- The widths of the Gaussian are determined by the PT distribution and the experimental errors

$$\sigma_m^2 = \sigma_{PT}^2 + \sigma_{Exp.}^2$$

The distance between the two distributions

$$d_m = \omega_m^{(1)} - \omega_m^{(2)}$$

Example in Two Dimension

Distance between the clusters $D = \sqrt{d_5^2 + d_6^2}$

$$D \ge d_5$$
 and $D \ge d_6$

Thus a projection of the distribution into V axis gives more separation Problem is to find an axis V that maximizes separation of the clusters and the threshold value V_0 that minimizes error

$$h(Y) = V^T \cdot Y + v_0$$

h(Y) is called a linear discriminant function

Average Level Spacing

Average level spacing for each spin group is obtained

$$D_{0,1} = 4.9 \text{ eV}$$

 $D_{0,2} = 2.9 \text{ eV}$

Consistent with a (2J+1) level density law