Level densities and $\gamma\text{-ray}$ strength functions in 163,164 Dy

Hilde-Therese Nyhus, Ph.D. student UiO

Workshop Oslo, 2009

14. May, 2009

Overview

Introduction

- Motivation
- Experimental details
- Particle identification
- 2 The Oslo Method
 - The first generation method
 - Brink-Axel's hypothesis
 - Normalizing

Results 3

- Level density
- Thermodynamics
- Gamma-ray strength function

Motivation Experimental details Particle identification

Motivation

Level density:

- Fundamental to understand nuclear structure
- Extract thermodynamic properties

$\gamma\text{-ray}$ strength function:

• Gives average electromagnetic properties

Motivation Experimental details Particle identification

Motivation

- Investigate the 3 MeV pygmy resonance
- * Oslo method: Γ : 1.26 1.57 MeV in ^{160,161,162}Dy (for T = 0.3 MeV) through the reactions (³He,³He') and (³He, α)
- * TSC method: Γ : 0.6 MeV in ¹⁶³Dy through the reaction ¹⁶²Dy(n, γ)¹⁶³Dy
- Extract level density and thermodynamic properties

Motivation Experimental details Particle identification

Motivation

- Investigate the 3 MeV pygmy resonance
- * Oslo method: Γ : 1.26 1.57 MeV in ^{160,161,162}Dy (for T = 0.3 MeV) through the reactions (³He,³He') and (³He, α)
- * TSC method: Γ : 0.6 MeV in ¹⁶³Dy through the reaction ¹⁶²Dy(n, γ)¹⁶³Dy
- Extract level density and thermodynamic properties

Motivation Experimental details Particle identification

- Beam: 38 MeV, ³He.
- **Target**: 1.73 mg/cm² thick foil of 98.5% enriched ¹⁶⁴Dy.
- Detector array:
 - -28 Nal(TI) γ -detectors.
 - -8 Δ E-E Si particle

telescopes.

Motivation Experimental details Particle identification

Particle identification

Inelastic scattering $^{164}\text{Dy}(^{3}\text{He}, ^{3}\text{He'})$ ^{164}Dy Pick-up $^{164}\text{Dy}(^{3}\text{He}, \alpha)$ ^{163}Dy

Motivation Experimental details Particle identification

Particle- γ -coincidence spectra

From the known Q-values the excitation energy of the nuclei are calculated from the detected ejectile energy by using reaction kinematics.

 $\alpha - \gamma$ -coincidence matrix, (¹⁶³ Dy).

Motivation Experimental details Particle identification

Particle- γ -coincidence spectra

From the known Q-values the excitation energy of the nuclei are calculated from the detected ejectile energy by using reaction kinematics.

 $\alpha - \gamma$ -coincidence matrix, (¹⁶³ Dy).

Motivation Experimental details Particle identification

Particle- γ -coincidence spectra

From the known Q-values the excitation energy of the nuclei are calculated from the detected ejectile energy by using reaction kinematics.

$$lpha-\gamma$$
-coincidence matrix, (¹⁶³ Dy).

The first generation method Brink-Axel's hypothesis Normalizing

The Oslo Method

Unfold all γ spectra

 \bullet : M. Guttormsen et al., NIM A374 (1996) 371

Apply the first-generation method

- : M. Guttormsen et al., NIM A255 (1987) 518
- Extract level density and the $\gamma\text{-}\mathrm{ray}$ strength function
 - :A. Schiller et al., NIM A447 (2000) 498

The first generation method Brink-Axel's hypothesis Normalizing

The first generation method

The first γ -rays emitted in each γ -decay cascade are isolated by using a subtraction method.

E_y (MeV)

The first generation method Brink-Axel's hypothesis Normalizing

Brink-Axel's hypothesis

Excitation modes built on excited states have the same properties as those built on the ground state.

 $ightarrow \mathcal{T}(E_\gamma)$ independent of excitation energy.

Factorization according to Fermis Golden rule

$$\mathsf{P}(\mathsf{E}_{\mathsf{i}},\mathsf{E}_{\gamma}) \propto \mathcal{T}(\mathsf{E}_{\gamma})\rho(\mathsf{E}_{\mathsf{i}}-\mathsf{E}_{\gamma}), \text{ where } \mathsf{E}_{\mathsf{f}}=\mathsf{E}_{\mathsf{i}}-\mathsf{E}_{\gamma}$$
 (1)

Least-squares method obtain $\rightarrow \mathcal{T}(E_{\gamma})$ and $\rho(E_i - E_{\gamma})$

$$\tilde{\rho}(E_i - E_{\gamma}) = A \exp[\alpha(E_i - E_{\gamma})] \rho(E_i - E_{\gamma})$$
(2)

and

$$\widetilde{\mathcal{T}}(E_{\gamma}) = B \exp(\alpha E_{\gamma}) \mathcal{T}(E_{\gamma}), \qquad (3)$$

The first generation method Brink-Axel's hypothesis Normalizing

Brink-Axel's hypothesis

Excitation modes built on excited states have the same properties as those built on the ground state.

 $ightarrow \mathcal{T}(E_\gamma)$ independent of excitation energy.

Factorization according to Fermis Golden rule

$$\mathsf{P}(\mathsf{E}_{\mathsf{i}},\mathsf{E}_{\gamma}) \propto \mathcal{T}(\mathsf{E}_{\gamma})\rho(\mathsf{E}_{\mathsf{i}}-\mathsf{E}_{\gamma}), \text{ where } \mathsf{E}_{\mathsf{f}}=\mathsf{E}_{\mathsf{i}}-\mathsf{E}_{\gamma}$$
 (1)

Least-squares method obtain $\rightarrow \mathcal{T}(E_{\gamma})$ and $\rho(E_i - E_{\gamma})$

$$\tilde{\rho}(E_i - E_{\gamma}) = A \exp[\alpha(E_i - E_{\gamma})] \rho(E_i - E_{\gamma})$$
(2)

and

$$\widetilde{\mathcal{T}}(E_{\gamma}) = B \exp(\alpha E_{\gamma}) \mathcal{T}(E_{\gamma}),$$
 (3)

The first generation method Brink-Axel's hypothesis Normalizing

Normalizing $\mathcal{T}(E_{\gamma})$ and $\rho(E_i - E_{\gamma})$

$$ho(E_i-E_\gamma)$$
 :

- Known levels at low energy
- Neutron resonance data → extrapolated by the BS Fermi-gas model

$\mathcal{T}(E_{\gamma})$:

 Calculated from average total radiative width < Γ_γ >

Level density Thermodynamics Gamma-ray strength function

Experimental level density

Level density Thermodynamics Gamma-ray strength function

Micro-canonical ensemble

- Isolated system → the nuclear force has a short range and the nucleus does normally not share its excitation energy with its surrounding.
- Partition function given by the multiplicity of states,

$$\Omega_s(E) \propto \rho(E)(2(J(\langle E \rangle) + 1)) \tag{4}$$

 The spin-distribution is not known, define a multiplicity of states which depends only of ρ(E),

$$\Omega(E) = \frac{\rho(E)}{\rho_0} \tag{5}$$

Level density Thermodynamics Gamma-ray strength function

Micro-canonical entropy

$$S = k_B \Omega(E) = k_B \ln \rho(E) + S_0.$$
 (6)

Extensive quantity with respect to the number of quasi particles,

$$S = nS_1, \quad S_1 \approx 2.1 \ k_B$$
 (7)

Level density Thermodynamics Gamma-ray strength function

Micro-canonical results

$$T = \left(\frac{\delta S}{\delta E}\right)_{V}^{-1} \qquad (8)$$
$$C_{v} = \left(\frac{\delta T}{\delta E}\right)_{V} \qquad (9)$$

Negative heat capacities \rightarrow indicates breaking of pairs

Level density Thermodynamics Gamma-ray strength function

Micro-canonical results

$$T = \left(\frac{\delta S}{\delta E}\right)_{V}^{-1} \qquad (10)$$
$$C_{v} = \left(\frac{\delta T}{\delta E}\right)_{V} \qquad (11)$$

Negative heat capacities \rightarrow indicates breaking of pairs

Level density Thermodynamics Gamma-ray strength function

Predicted γ -ray strength function

$$\mathbf{f} = \kappa (\mathbf{f}_{\mathsf{E1}} + \mathbf{f}_{\mathsf{M1}}) + \mathbf{f}_{\mathsf{py}}$$
(12)

The KMF-model,

$$f_{E1}^{KMF}(E_{\gamma}, T_{f}) = \frac{1}{3\pi^{2}\hbar^{2}c^{2}} \frac{0.7\sigma E_{\gamma}\Gamma^{2}(E_{\gamma}^{2} + 4\pi^{2}T_{f}^{2})}{E(E_{\gamma^{2}} - E^{2})^{2}}$$
(13)

Lorentzian function

$$f_{M1,py} = \frac{1}{3\pi^2\hbar^2c^2} \frac{\sigma E_{\gamma}\Gamma^2}{(E_{\gamma}^2 - E^2)^2 + E_{\gamma}^2\Gamma^2}$$
(14)
$$\overleftarrow{}_{\pi} \underbrace{}_{\nu} \underbrace{$$

Level density Thermodynamics Gamma-ray strength function

Predicted γ -ray strength function

$$\mathbf{f} = \kappa (\mathbf{f}_{\mathsf{E1}} + \mathbf{f}_{\mathsf{M1}}) + \mathbf{f}_{\mathsf{py}}$$
(12)

The KMF-model,

$$f_{E1}^{KMF}(E_{\gamma}, T_{f}) = \frac{1}{3\pi^{2}\hbar^{2}c^{2}} \frac{0.7\sigma E_{\gamma}\Gamma^{2}(E_{\gamma}^{2} + 4\pi^{2}T_{f}^{2})}{E(E_{\gamma^{2}} - E^{2})^{2}}$$
(13)

Lorentzian function

$$f_{M1,py} = \frac{1}{3\pi^2\hbar^2c^2} \frac{\sigma E_{\gamma}\Gamma^2}{(E_{\gamma}^2 - E^2)^2 + E_{\gamma}^2\Gamma^2}$$
(14)

Level density Thermodynamics Gamma-ray strength function

Predicted γ -ray strength function

$$\mathbf{f} = \kappa (\mathbf{f}_{\mathsf{E1}} + \mathbf{f}_{\mathsf{M1}}) + \mathbf{f}_{\mathsf{py}} \tag{12}$$

The KMF-model,

$$f_{E1}^{KMF}(E_{\gamma}, T_{f}) = \frac{1}{3\pi^{2}\hbar^{2}c^{2}} \frac{0.7\sigma E_{\gamma}\Gamma^{2}(E_{\gamma}^{2} + 4\pi^{2}T_{f}^{2})}{E(E_{\gamma^{2}} - E^{2})^{2}}$$
(13)

Lorentzian function

$$f_{M1,py} = \frac{1}{3\pi^2\hbar^2c^2} \frac{\sigma E_{\gamma}\Gamma^2}{(E_{\gamma}^2 - E^2)^2 + E_{\gamma}^2\Gamma^2}$$
(14)

Level density Thermodynamics Gamma-ray strength function

Experimental γ -ray strength function

18

Level density Thermodynamics Gamma-ray strength function

Experimental γ -ray strength function

We see an unpredicted high strength for high energy γ -rays

Summary

- We measure a width of the pygmy resonance in a region between what is previously found in Oslo and what is measured in Prague
- The level density and thermodynamic properties displays characteristic features seen in other rare earth isotopes
- The $\gamma\text{-ray}$ strength function displays an unpredicted high strength for high energy $\gamma\text{-rays}$

Summary

Collaborators

- University of Oslo: S. Siem, M. Guttormsen, A.-C. Larsen, A. Bürger, N. U. H. Syed, H. K. Toft, G. M. Tveten
- Ohio University, USA: A. Voinov

Thank you for listening...