Pygmy E1 and giant M1 resonances in the nucleosyntheis of heavy elements

H. Utsunomiya (Konan University)

Workshop on "Level Density and Gamma Strength" Oslo, Norway, 11. - 15. May 2009.

Outline

- **1.** Basics of the statistical model with emphasis on γ -ray strength function in (n,γ) and (γ,n) reactions
- (γ.n) data indicative of extra γ-ray strengths (pygmy E1 & giant M1)
- 3. HF model predictions of (n,γ) cross sections with γ -ray strength function
- 4. Summary

Collaborators

Konan U.	H. Utsunomiya, H. Akimune, T. Yamagata
AIST	K. Yamada, H. Toyokawa, T. Matsumoto, H. Harano
JAEA	H. Harada, F. Kitatani, S. Goko
RCNP	T. Shima
NewSUBARU	S. Miyamoto
Texas A&M, USA	YW. Lui

ULB, Brussels, BelgiumS. GorielyCEA-Bruyères-le-Châtel, FranceS. Hilaire, S. PeruZG Petten, The NetherlandsA.J. Koning

The present study includes the result of "Study on nuclear data by using a high intensity pulsed neutron source for advanced nuclear system" entrusted to Hokkaido University by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Nucleosynthesis of elements heavier than Fe

Leading reactions

Ζ

s, r-processes: neutron capture

p-process: photodisintegration, [proton capture]

Experimentalist's view of the statistical model

Assumption: compound nuclear reactions under ΔE D ΔE : energy spread of incident particles D: average level spacing or high $\rho(U)$

Hauser-Feshbach model A(a,b)B

$$\sigma_{\beta\alpha} = \frac{\pi}{k_a^2} \sum_{J,\pi} g_J \frac{T_{\beta}T_{\alpha}}{T_{tot}}$$

 $\alpha = a + A, \beta = b + B$

statistical factor

$$g_J = \frac{2J+1}{(2J_a+1)(2J_A+1)}$$

Neutron Capture: ${}^{A}X(n,\gamma)^{A+1}X$

 γ -ray strength function $\dot{f}_{E1}(\varepsilon_{\gamma}) = \varepsilon_{\gamma}^{-3} \langle \Gamma_{E1} \rangle / D$

γ-ray transmission coeff. $T_{E1}(\varepsilon_{\gamma}) = 2\pi \langle \Gamma_{E1} \rangle / D$ $= 2\pi \varepsilon_{\gamma}^{3} f_{E1}(\varepsilon_{\gamma})$

$$P_{E1}(E,J,\pi) = \sum_{\nu} T_{E1}^{\nu} + \int T_{E1}(\varepsilon_{\gamma})\rho(E-\varepsilon_{\gamma})d\varepsilon_{\gamma}$$

Enhancements of neutron capture via pygmy E1 and giant M1 resonances

Goriely, PLB (1998)

GDR vs GDR+PDR

CN vs CN+DC

Closed-shell nuclei with $2 \le S_n$ [MeV] ≤ 4

 $1 \le S_n [MeV] \le 3$

DTBA (Discrete Time Blocking Approximation)

Avdeyenkov, Goriely, Kamerdzhiev, Tertychny (2008)

Key ingredients Single particle continuum Phonon coupling

Correct prediction of PDR in ¹³²Sn at 9.8 MeV

Phonon coupling increases (n,γ) cross sections by a factor of 2-3.

AIST Electron Accelerator Facility; National Institute of Advanced Industrial Science and Technology (AIST)

Tsukuba Electron Ring for Acceleration and Storage (TERAS) at AIST

• Energy
$$E_{\gamma} = 1 - 40 \text{ MeV}$$

Neutron Detector System

Triple-ring neutron detector 20^{3} He counters (4 x 8 x 8) embedded in polyethylene

Ingredients in the Talys code

Talys code: Koning, Hilaire, Duijvestijn, Proc. Int. Conf. on Nuclear Data for Science and Technology, AIP Conf. Proc. 769, 1154 (2005).

GDR γ-ray strength function
Lorentzian models: Axel, PR126 (1962), Kopecky & Uhl, PRC41 (1990)
HFB+QRPA model: Goriely, Khan, Samyn, NPA739 (2006)

#Spin-flip giant M1 γ-ray strength functionGlobal systematics in RIPL Handbook (Bohr & Mottelson)Lorentzian function : $E_0=41A^{-1/3}$ MeV, $\Gamma_0=4$ MeV, $f_{M1}=1.58 \ 10^{-9} \ A^{0.47}$ MeV-3 at 7 MeV

Pygmy E1: No global systematics

HFB+ Combinatorial model: Hilaire & Goriely, NPA779 (2006)

M1 strength in Zr isotopes in the photoneutron channel

γ -ray strength function for ^{92}Zr

 96 Zr(γ ,n) 95 Zr

 γ -ray strength functions E1 : HFB+QRPA plus <u>M1 resonance in Lorentz shape</u> E_o = 8.5 MeV (9.0 MeV for ^{91,92,94}Zr) σ_0 = 7.5mb Γ = 2.5 MeV

NLD HFB+ Combinatorial Goriley & Hilaire (2008)

Optical potential Koning & Delaroche (2003)

in 0.01 – 1 MeV

in 0.01 – 1 MeV

Source of uncertainties

NLD models

1.HFB+Combinatorial 2.BSFG **3.CT (Constant Temp.)** 4.GSM (Gen. Superfluid) **5.HFBCS+statisticales**

Optical potential models 1.KD (Koning & Delaroche 2003) 2.JLM (Bauge et al. 2001)

Pygmy dipole resonance in ¹¹⁷Sn

GDR (HFB+QRPA) + PDR $\Box E_0 = 8.5 \text{ MeV}, \Gamma = 2 \text{ MeV}, s_0 = 7 \text{ mb in Gaussian shape} \Box$

Kovaert et al., PRC57 (1998)

γ -ray strength function for ¹¹⁷Sn

Pygmy dipole resonance in ¹¹⁶Sn

Summary

- Here γ strength function is a key nuclear ingredient in the Hauser-Feshbach model calculations of neutron capture rates.
- H is important to investigate the low-energy E1 γ-ray strength function of GDR as a leading factor and pygmy E1 and giant M1 resonances as extra strengths.
- **K** In particular, it is necessary to investigate experimentally and theoretically the nuclear structure and the global systematics of PDR by combining different probes of γ , *p*, ³He, e, and others.

₭ After all, we still have lots of work to do for E1, M1, E2, ...