Level density and gamma-strength functions from compound nuclear reactions

Ohio University: A.V. Voinov, S.M. Grimes, C.R.Brune, T. Massey et al

Oslo University: M. Guttormsen, A.C. Larsen, S.Siem et al

Nuclear level density

Traditionally, for most of the nuclei, the level density is estimated on the basis of experimental information from low-lying discrete levels and neutron resonance spacing

It is important to obtain the excitation energy dependence of level density from an experiment in a wide energy range

We do not know anything

We know a lot

We know something

We know everything

The level density from particle spectra of compound nuclear reactions

The concept:

$$d\sigma(E) \sim \sigma_{c}(E) \frac{T_{in}(E')\rho_{f}(E^{*})}{\sum_{i} T_{out\,i}} dE$$

The problem :

Make sure that the compound reaction mechanism dominates.

Possible solutions:

- 1. Select appropriate reactions (beam species, energies, targets).
- 2. Measure outgoing particles at backward angles
- 3. Compare reactions with different targets and incoming species leading to the same final nuclei

$$\sigma_{(d,xn)} = \sigma_{dn} + \sigma_{(d,pn)} + \sigma_{(d,an)+...}$$

$$\sigma_{(d,xp)} = \sigma_{dp} + \sigma_{(d,np)} + \sigma_{(d,ap)+...}$$

 $\sigma_{(d,xa)} = \sigma_{da} + \sigma_{(d,na)} + \sigma_{(d,pa)+\dots}$

Traditional technique: measured only one type of outgoing particles, level density is determined below the particle separation threshold

What we do:measure all type of outgoing particles,
level density can be obtained below and above the
particle separation threshold

Reactions with deuterons and He-3

Experimental level densities measured at Edwards Lab. of Ohio University

Testing the technique with ²⁷Al(d,n)²⁸Si

$^{55}Mn(d,n)^{56}Fe, E_d=7.5 MeV$

Points are from our experiment, line – Fermi-gas model with parameters from systematics T.von Egidy, D.Bucurescu, Phys.Rev. C 72, 044311 (2005);

Points are from our experiment, red line is the Fermi-gas model with parameters found from the fit to discrete levels and neutron resonance spacing, black line is the Fermi-gas model fit to experimental points

Measurement of level density below and above the particle separation threshold

- 1. It is necessary to get experimental data in a wide excitation energy interval including the energy range above the particle separation threshold.
- 2. It can be done experimentally by measuring all outgoing particles from compound nuclear reactions
- 3. The constant temperature model seems to be a good approximation for excitation energies far beyond the particle separation threshold (at least for some nuclei)

γ – strength function in continuum

Experimental techniques used to study gamma-strength functions below the particle separation threshold:

- 1. Continues gamma spectra from neutron capture reactions
- 2. Two-step cascades (TSC) following thermal neutron capture reactions (Dubna, Prague)
- 3. Set of gamma spectra at different initial energies (Oslo technique)
- 4. (gamma, gamma')

Measurement of gamma-strength function at Edwards Lab. Of Ohio University

$$\left(\substack{p,2\gamma \\ (d,n)} \right\} \longrightarrow$$
 Produce the same product nucleus

<u>ldea</u>

1 step: we obtain the level density from neutron evaporation spectra. 2 step: we obtain the γ -strength function from 2γ - spectra

The first candidate is ${}^{59}Co(p,2\gamma) {}^{60}Ni$ reaction at $E_p = 1.85 \text{ MeV}$

The level density of ⁶⁰Ni has already been measured from ⁵⁹Co(d,n) ⁶⁰Ni reaction:

Two-step cascades from proton capture

 E_{y}

The difference for TSC technique between proton and thermal neutron capture reactions

_	Neutron capture	Proton capture
Compound nuclear resonances excited	1 or 2	many, ~ 100
Porter-Thomas fluctuations	very strong	suppressed considerably
Quality of TSC spectra (peak resolution)	very good	Not so good
Absolute normalization of TSC intensity	~ 20%	~5%

First results from ${}^{59}Co(p,2\gamma)$

 γ - γ -energy (MeV)

Conclusions

Gamma strength function

Gamma strength function can be studied with combination of (p,2g) and (d,n) reactions. The low energy enhancement is supported by results of these experiments for the ⁶⁰Ni. The low energy enhancement has the preference to be of M1 type.