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Talk PlanTalk Plan

• The importance of innovative nuclear reactors

• The need of cross section data for reactor simulations

• The difficulty of certain measurements and why there is 

a need to rely on theory/extrapolations

• How level density measurements can improve cross 

section calculations

• Norway and the Thorium fuel cycle
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Current Nuclear ReactorsCurrent Nuclear Reactors

Increase in capacity likely because:

• World population growth (energy demand)

• Concerns about CO2 emissions 

• Economic growth (developing nations)

• Depletion of reserves of oil, gas (coal)

• No current economically viable alternative 
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Cross section dataCross section data

• Reactor simulations require X-section data over  large range of nuclei

and a huge range in energy

• Measurements are often partial and/or have large uncertainties

Creation of evaluated data libraries, e.g. ENDF, JENDL, JEFF
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Nucleosynthesis in a Reactor CoreNucleosynthesis in a Reactor Core

T1/2 < 1 hour

T1/2 > 1 hour

Reaction data 

available

Reactor flux φ ~ 1013 n/cm2/s

Supernova φ ~ 1028 n/cm2/s
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Improved accuracy of nuclear data can help reduce 

safety margins of innovative generation IV designs

Cost of data measurements << Cost of generation IV reactor prototype construction

Σ νi Ni σf φ

Σ Niσc φ + Σ Ni (σf + σc) φ

k =

Reactor CriticalityReactor Criticality

We need the sensitivity of  multiplication factor, k, to nuclear data

Multiplication factor, keff 
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Reaction rates in the Core: Long Time ScalesReaction rates in the Core: Long Time Scales

• What is the composition of the spent nuclear fuel?

• How much fissile material can be recovered in fuel 

reprocessing?

• How will this limited amount of fuel constrain scenarios of the

growth of nuclear power?

• How big will the geological repository need to be to 

dissipate the decay heat of the spent fuel?
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Reaction rates in the Core: Short time scalesReaction rates in the Core: Short time scales

PhD Thesis: N. Capellan
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Dependence of Cross sections on TemperatureDependence of Cross sections on Temperature

Doppler Broadening of the resonances can be calculated

Neutronics Thermalhydraulics
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Nuclei where measurements are difficultNuclei where measurements are difficult

Target activity > 109 Bq/mg

69 y
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22 m
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Nuclide Target Activity (bq/mg)

232Th 5.88

243Am 1.01e+07

241Am 1.83e+08

233Pa 1.11e+12

Target activitiesTarget activities

(nTOF  facility limited to 800 bq activity maximum 

for ~100 mg of target material !)
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T1/2 <<  Fuel Irradiation Time  ~ 3-5 years
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It is tempting to conclude:

The importance of  a given nucleus ~ Mass present in the core 

Which for nuclei at equilibrium: ~ 1/λ ~ T1/2

t=0 t=3 y
238U 26328 25655
235U 954 280
236U 0 111

Pu 0 266

Np,Am,
Cm

0 20

FP 0 946

PWR Reactor core inventory at BOC and EOC
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For some nuclei there is no 

experimental data available:

Evaluated data bases rely entirely 

on theory

For certain nuclei, x-section data are:

• Sparse (limited energy range)

• Large uncertainties (> 20%)

• Evaluated data bases rely heavily on 

theory and extrapolations

Limitations of Nuclear DataLimitations of Nuclear Data

233Th

233Pa
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S. Boyer et al. Nucl.Phys. A775, 175 (2006)

233Pa Capture Experiment Results233Pa Capture Experiment Results
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Hauser-Fessbach FormalismHauser-Fessbach Formalism

Differential cross section depends on transmission coefficients, Γ

and level densities of the residual nuclei, ρ

a b
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Level Densities Theory and ExperimentLevel Densities Theory and Experiment

- Level density changes due to collectivity, deformation etc.

- Large effects can occur over a small number of nucleons
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Spectroscopy of

low lying states

Resonance spacings

at the neutron 

binding energy

Level Density MeasurementsLevel Density Measurements

Oslo method

Extrapolation
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• Baseload from hydro 

power (110 TWh in 

2004 out of 120 TWh 

total)

• Occasional electricity 

imports from Europe 

(coal)

European Energy Exchange Spot

Electricity prices – 13-02-08

Norway, Nuclear Power and ThoriumNorway, Nuclear Power and Thorium
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� 3rd generation PWR

� 1600 MWe, 241 assemblies

� Cycle length 18-24 months

� Burnable Gd2O3 poison for longer 

burn-up

� MOX compatible

� Flexible fuel loading

� Availability of 92 % of service life

� Technical service life of 60 years

� Olkiluoto, Finland (2010?)

I: Introduction; The EPR

24
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Dependent Thorium Cycle – PossibilitiesDependent Thorium Cycle – Possibilities

- Remove 238U waste precursor

and replace with Th

- Multi-recycle the Uranium vector

(Masters Thesis: Sunniva Rose)

Norway has the world’s 3rd largest reserves of Thorium

If  Norway built a commerical power reactor could Thorium be used?

What is the simplest way to incoporate Thorium into the fuel cycle?
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.

27
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Over a 60 year life-time the reactor will need:

• UOX:  ~28 000 tons of Uranium, ~17 M SWU

• Th/UOX 90% enriched: ~15 000 tons of Uranium, ~13.8 M SWU

• Th/UOX 20% enriched: ~17 000 tons of Uranium, ~13.0 M SWU

29

Inventories and EconomicsInventories and Economics

Tons Unat SWU
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� Reduction in MA waste

� Less decay heat

� Use of local natural resource 

(Norway)

� High U-233 fissile content in 

the spent fuel

� Multircycling desirable

� Spent fuel U2/3/4/5/6/8 is 

proliferation resistant

� Higher (initial) fuel cost

� Spent Uranium must be handled 

remotedly

� Possible proliferation 

concerns (HEU)

� Pa-233 reactivity effects on 

safety

� Breeding not possible

30
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The Thorium fuel-cycle

� Extra fissile (U5/Pu) needed
� Dependent of the U-cycle

� Mining of Uranium still 
necessary
� U5+Th2        Pa3         U3

� U-233 fissions and 
contributes to total energy 
production

� CR always less than 1 

� Regenerates its own fissile 

(U-233) from the Thorium 

� CR bigger than 1

� No extra fissile needed

� No mining of Uranium 

necessary

31
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The neutron capture process

Cascade

of M gammas

Efficiency of detecting a

Cascade of M gammas

If the detector had THIS property…

…then efficiency of detecting the cascade

is proportional to cascade total cascade energy,

which is constant 

Neutron capture measurementsNeutron capture measurements

(if efficiency is low)
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It is possible to find weighting functions, W(Ei) which

give the detector the desired response

Actual detector response


