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Chaotic motion in nuclei

* Mean field (one-body chaos)

* Strong interaction (mainly two-body)

* High level density

* Mixing of simple configurations

* Destruction of quantum numbers,

(still conserved energy, J,M;T,T3;parity)

* Spectral statistics – Gaussian Orthogonal Ensemble

* Correlations between classes of states

* Coexistence with (damped) collective motion

* Analogy to thermal equilibrium

* Continuum effects



MANY-BODY QUANTUM CHAOS AS AN INSTRUMENT

SPECTRAL STATISTICS – signature of chaos

- missing levels

- purity of quantum numbers

- statistical weight of subsequences

- presence of time-reversal invariance

EXPERIMENTAL TOOL – unresolved fine structure

- width distribution

- damping of collective modes

NEW PHYSICS - statistical enhancement of weak perturbations

(parity violation in neutron scattering and fission) 

- mass fluctuations

- chaos on the border with continuum

THEORETICAL CHALLENGES

- order our of chaos

- chaos and thermalization

- new approximations in many-body problem

- development of computational tools 



CHAOS  versus  THERMALIZATION

L. BOLTZMANN – Stosszahlansatz = MOLECULAR CHAOS

N. BOHR - Compound nucleus = MANY-BODY CHAOS

N. S. KRYLOV - Foundations of statistical mechanics

L. Van HOVE – Quantum ergodicity

L. D. LANDAU and E. M. LIFSHITZ – “Statistical Physics”

Average over the equilibrium ensemble should coincide with 

the expectation value in a generic individual eigenstate of the

same energy – the results of measurements in a closed system

do not depend on exact microscopic conditions or phase
relationships if the eigenstates at the same energy have similar

macroscopic properties

TOOL: MANY-BODY QUANTUM CHAOS



CLOSED MESOSCOPIC SYSTEM

at high level density

Two languages: individual wave functions

thermal excitation

* Mutually exclusive ?

* Complementary ?

* Equivalent ?

Answer depends on thermometer



Temperature T(E)

T(s.p.) and T(inf) =

for individual states !



J=0                 J=2               J=9

Single – particle occupation numbers

Thermodynamic behavior

identical in all symmetry classes

FERMI-LIQUID PICTURE



J=0

Artificially strong interaction (factor of 10)

Single-particle thermometer cannot resolve

spectral evolution



Shell model level density (28Si, J=0, T=0)

Averaging over
(a) 10 levels
(b) 40 levels

(distorted edges)

J = 2, T = 0

Shell  model

versus Fermi-gas

a = 1.4/MeV

a (F-G) = 2/MeV

(two parities?) 



EFFECTIVE TEMPERATURE of INDIVIDUAL STATES

From occupation numbers in the shell model solution (dots)

From thermodynamic entropy defined by level density (lines)

Gaussian level density

839  states  (28 Si)



Information entropy is basis-dependent
- special role of mean field



INFORMATION ENTROPY AT WEAK INTERACTION



INFORMATION  ENTROPY  of   EIGENSTATES

(a)  function of energy; (b) function of ordinal number

ORDERING of EIGENSTATES of GIVEN SYMMETRY   

SHANNON ENTROPY AS THERMODYNAMIC VARIABLE



Smart information entropy

(separation of  center-of-mass excitations

of lower complexity shifted up in energy) 

12C

CROSS-SHELL MIXING WITH SPURIOUS STATES

1183 states



Interaction:  0.1                     1                     10

Exp (S)

Various 

measures

Level density

Information 

Entropy in

units of S(GOE)

Single-particle

entropy

of Fermi-gas



Invariant correlational entropy as signature of phase transitions

Eigenstates Eigenstates Eigenstates Eigenstates in an arbitrary basisin an arbitrary basisin an arbitrary basisin an arbitrary basis
(Hamiltonian with random parameters)(Hamiltonian with random parameters)(Hamiltonian with random parameters)(Hamiltonian with random parameters)

Density matrix of a given state
(averaged over the ensemble)

Correlational entropy
has clear maximum

at phase transition  

(extreme sensitivity)

Pure state:  eigenvalues of the density matrix are 1 (one) and 0 (N-1),

S=0

Mixed state: between 0 and 1,                           S up to ln N

For two discrete points



Model of two levels with

pair transfer

Capacity 16 + 16, N=16

Critical value 0.3

(in BCS  ¼)

Averaging interval 0.01

(seniority 0)

First excited state
“pair vibration”

No  instability in

the exact solution

Softening at the same point 0.3



Shell model 48Ca

Ground state

invariant entropy;

phase transition

depends on

non-pairing

interactions

Occupancy of

f7/2 shell

Correlation energy 

~ 2 MeV



(a)(a)(a)(a) Invariant entropy and the line of phase transitionsInvariant entropy and the line of phase transitionsInvariant entropy and the line of phase transitionsInvariant entropy and the line of phase transitions
(b)(b)(b)(b) Occupancy of the f7/2 orbitalOccupancy of the f7/2 orbitalOccupancy of the f7/2 orbitalOccupancy of the f7/2 orbital
(c)(c)(c)(c) Effective number of T=1 pairsEffective number of T=1 pairsEffective number of T=1 pairsEffective number of T=1 pairs

48 Ca



Isovector against isoscalar pairing

Dependence on non-pairing interactions

(phase transitions smeared,

absolute values of entropy suppressed)

Critical value for T=0 phase transition: ~ 3  /Bertsch, 2009/

24     

Mg  



PAIR CORRELATOR

(b) Only pairing

(d) Non-pairing 

interactions

(f) All interactions



PAIRING

PHASE

TRANSITION

PAIR CORRELATOR as a THERMODYNAMIC FUNCTION



Pair correlator

as a function of J

Yrast states

Average over all states

Old semiclassical theory

(Grin’& Larkin, 1965)

(too small)

Geometry of orbital space
rather than Coriolis force



Pair correlator in 24 Mg

for all states 

of various spins

GLOBAL BEHAVIOR

Central part of the 

spectrum 

is well described

by statistical model

with mean occupation     

numbers



J=0, T=0 states in 24 Mg 

Realistic single-particle energies

+ random interactions

(Gaussian matrix elements

with zero mean and the same 

variance as in realistic interaction) 

Enhancement – for the states

of lowest complexity

Degenerate s.-p. energies

+ realistic interactions

Growing level density 

quickly leads to chaos

In the absence of the

mean-field skeleton,

pairing works for lowest  

states only



RESULTS

• Regular behavior of pair correlator in a mesoscopic system

• Long tail beyond “phase transition”

• Similar picture for all spin and isospin classes

• In the middle – semiclassical picture with average

occupation numbers of single-particle orbitals

• Pairing is considerably influenced by non-pairing interaction

• Are the shell model results generic?

- exact solution

- rotational invariance

- isospin invariance

- well tested at low energy

- with growing level density leads to many-body quantum chaos

in agreement with random matrix theory

- loosely bound systems and effects of continuum 



DO WE UNDERSTAND

ROLE of INCOHERENT INTERACTIONS ?

• Ground state predominantly J=0  (even A)

• Ordered structure of wave functions ?

• New aspects of quantum chaos:

- correlations between different

symmetry sectors governed by the same Hamiltonian

- geometry of a mesoscopic system

- “random” mean field

- effects of time-reversal invariance

- exploration of interaction space

- manifestations of collective phenomena



ORDER FROM RANDOM INTERACTIONS ?

FULL ROTATIONAL INVARIANCE

FERMI-STATISTICS

RANDOM AMPLITUDES V(L)

SYMMETRIC ENSEMBLE

STATISTICS of GROUND STATE SPINS ? 

Non-equivalence of particle-particle and particle-hole channels



Spectra are chaotic:

Gaussian level density,

Wigner-Dyson level spacing distribution,

Exponential distribution of 

off-diagonal many-body matrix elements  

(average over many realizations)            



Distribution of ground state spins

6 particles, j=11/2



Fraction of ground states of Fraction of ground states of Fraction of ground states of Fraction of ground states of 

spin J=0 and J=J(max)                               spin J=0 and J=J(max)                               spin J=0 and J=J(max)                               spin J=0 and J=J(max)                               

(single j model)





GROUND STATE DISTRIBUTION (6 particles, j=21/2)

(a) Natural multiplicity (b) Boson approximation

(c) Uniform V(L) from –1 to +1 (d) Gaussian V(L), dispersion 1

(e) Uniform V(L) scaled 1/(2L+1) (f) [Zhao et al., 2002]

(g) Uniform V(L) except V(0)=-1 (h) As (g) but V(0)=+1

(i) As (g) and (h) but V(0)=0



Degenerate orbitals

63 random m.e.
----------------------

Realistic orbitals

63 random m.e.

---------------------
Realistic orbitals 
and 6 pairing m.e., 
57 random

--------------------
Degenerate orbitals,

6 random  pairing m.e.
---------------------



Do we understand the role of incoherent interactions
in many-body physics ?

-- Random interactions prefer ground state    
spin 0

-- Probability of maximum spin enhanced 

-- Ordered wave functions? Collectivity?

-- New aspect of quantum chaos: 
correlations between the symmetry classes

-- Geometric chaoticity of angular     
momentum  coupling

-- Bosonization of fermion pairs?

-- Role of time-reversal invariance



Widths of level distributions in the J-class for a single-j model

(6 particles)



IDEA of GEOMETRIC CHAOTICITY

Angular momentum coupling as a random process

Bethe (1936)  j(a) + j(b) = J(ab)

+ j(c) = J(abc)

+ j(d) = J(abcd)   

… = J
Many quasi-random paths

Statistical theory of parentage coefficients ?

Effective Hamiltonian of classes

Interacting boson models, quantum dots, …





Effective Hamiltonian for

N particles and given M=J

explained by geometry:

j + j = L

Cranking frequency is

linear in M

Typical predictions for f(0)



Dotted lines – statistical predictions for the state M=J



Predictions for energy of individual states with J=0 and J=J(max)

compared to exact diagonalization

(6 particles, j = 21/2)





Collectivity of low-lying states



Distribution of overlaps

|0> ground state of spin J = 0 in the random ensemble

|s = 0> fully paired state of seniority s = 0

4 particles on j = 15/2 – dimension d(0) = 3 (left)

6 particles on j = 15/2 – dimension d(0) = 4 (right)

Completely random overlaps:



Collectivity out of chaos: Johnson, Dean, Bertsch 1998

V.Z., Volya                      2004

Johson, Nam                   2007

Horoi, V.Z.                      2009

Predominance of prolate deformations :
Teller, Wheeler 1938 – alpha-carcass

Bohr, Wheeler 1939 - liquid drop

Lemmer 1960 - extra kinetic energy of large orbital momenta

Castel, Goeke 1976 - the same in terms of collective energy

Castel, Rowe, Zamick 1990 - adding self-consistency

Frisk 1990 - single-particle level density

Arita et al.          1998 -

periodic orbits and their bifurcations

Deleplanque et al. 2004 –

Hamamoto, Mottelson 1991 - metallic clusters

2009 – surface properties of deformed field

“The nature of the parameters responsible for the prolate dominance

has not yet been adequately understood”





ALAGA   RATIO

(take sequences J=0, J=2)



4 neutrons +

4 protons

0f7/2 + 1p3/2

0.5 4.0

Interaction:

(a) weak 

(b) strong

Distribution of Alaga ratio

Selection by E(4)/E(2)

[3.0, 3.6]
All cases

J=0, J=2

4.0

N= 10 000

Here    A(rot) = 4.10
Selection N(rot):
A between 3.90 and 3.30

Selection  N(prolate):

Q(2)<0



4 protons + 6 neutrons

N(rot) lower, N(prolate) higher

4 neutrons + 4 protons

1p3/2 + 0f7/2

(inverted sequence)

4 neutrons + 4 protons

0f7/2 + 0g9/2 

(opposite parity)



Strong interaction 4.0

Matrix elements

9-12:   pf  mixing,

16 : quadrupole pair transfer,

20-24: quadrupole-quadrupole forces

in particle-hole channel = formation of the mean field



QUESTIONS  and  PROBLEMS

• Geometric chaoticity
• Extension to continuum:
- level densities
- correlations and fluctuations of cross sections
- mesoscopic universal conductance fluctuations
- dependence on intrinsic chaos
- loosely bound nuclei
• Microscopic picture of shape phase transitions
• New approximations for large systems:

pairing + collective motion + incoherent chaos
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