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Introduction
Experimental methods: (i) counting (low energies). (ii) charged particles, 
Oslo method (intermediate energies); (iii) neutron resonances (neutron 
threshold); (iv) Ericson fluctuations (higher energies).

Theory: Fermi gas models ignore important correlations.
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a = single-particle level density 
parameter.

Δ

 

= backshift parameter.

and it is difficult to predict ρ to an accuracy    
better than an order of magnitude.

Τhe interacting shell model includes both shell effects and residual 
interactions but the required model space is prohibitively large.

But: a and Δ

 

are adjusted for each nucleus

Good fits to the data are obtained using the 
backshifted Bethe formula (BBF):
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Shell Model Monte Carlo (SMMC) method

Correlations beyond the mean field can be calculated by taking into 
account all fluctuations of the mean field:

Gibbs ensemble at temperature T can be written as a 
superposition of ensembles       of non-interacting nucleons in time- 
dependent fields

(Hubbard-Stratonovich transformation).

The calculation of the integrand reduces to matrix algebra in the single- 
particle space.

The multi-dimensional integral is evaluated by Monte Carlo methods.

• The method has been used in the interacting shell model and is 
known as the shell model Monte Carlo (SMMC)
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[Lang, Johnson, Koonin, Ormand, PRC  48, 1518 (1993); 
Alhassid, Dean, Koonin, Lang, Ormand, PRL 72, 613 (1994)].



Thermodynamic approach to level densities
[H. Nakada and Y. Alhassid, PRL 79, 2939 (1997)]

The average level density is given by:

S(E) = canonical entropy; C = canonical heat capacity.

We calculate the thermal energy E(T) = 〈H〉

 

in SMMC and integrate 

to find the partition function   .

Entropy:                             ,   Heat capacity:
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The heavy deformed nuclei

• Most SMMC calculations to date were in medium-mass nuclei: 
small deformation, first excitation ~ 1- 2 MeV in even-even nuclei.

• Very different situation in heavy deformed nuclei:
large deformation, first excitation ~ 100 keV, rotational bands.

Can we describe rotational behavior microscopically in a truncated spherical
shell model?

Technical challenges
• Protons and neutrons occupy different shells

[Y. Alhassid, L. Fang and H. Nakada, Phys. Rev. Lett. 101, 082501  (2008)]

⇒

• The one-body propagator becomes ill-conditioned at large imaginary times

• Very large shell model space  (~1029 in rare-earth nuclei)
• Propagation to much longer imaginary time (low temperature)

SMMC extended to pn formalism.

Largest SMMC calculations to date

⇒

⇒ Introduced stabilization methods in the canonical ensemble



Model space

Determine the occupation probability                            
of spherical orbitals of the ground-state solution in a deformed 
Woods-Saxon potential.

• We choose orbitals with 
• Effect of other orbitals is taken into account by renormalization of
the interaction.
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In our studies of rare-earth nuclei we have used the following model space

Protons: [50-82 shell] + 1f7/2.  

Neutrons: 0h11/2 + [82-126 shell] + 1g9/2.



• Single-particle energies: reproduce (in spherical HF) the s.p. energies of a 
Woods-Saxon potential plus spin-orbit coupling.

Effective Hamiltonian

• This interaction has a good Monte Carlo sign.

• The interaction includes the dominant components of realistic effective 
interactions:  pairing + multipole-multipole interactions (quadrupole, octupole, 
and hexadecupole).
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is a suppression factor (accounts for pairing field fluctuations)

Pairing interaction:

reproduces in
particle-projected BCS the 
experimental gap  (from 
odd-even mass differences):

• Multipole-multipole interaction is determined self-consistently and
renormalized (core polarization)



Stabilization of propagator

The propagator                              mixes large and small scales
and becomes ill-conditioned for large number of time slices. 
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• Use a modified Gram-Schmidt for each factor                       
where D is diagonal and A,B are well behaved to stabilize the product

• Stabilize each term in the particle-number projection sum

M ADB=
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• versus      confirms rotational 
character with a moment of inertia:

with
(experimental value is                   ).

2J< > T
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• E versus T in agreement with
a ground-state rotational band: 

0E E T≈ +

Rotational character can be reproduced in a truncated spherical shell model !

Interaction: 20.77; 2.12kγ = =



• SMMC level density is in excellent 
agreement with experiments.

• Results from several experiments 
are fitted to a composite formula:
constant temperature below EM
and BBF above.

• Ground-state energy in SMMC
has additional ~ 3 MeV of correlation
energy as compared with 
Hartree-Fock-Boguliubov (HFB).

Thermal energy vs. inverse temperature



Experimental state density

• An almost complete set of levels
(with spin) is known up to ~ 2 MeV.

(i) A constant temperature formula is 
fitted to level counting.

(ii) A BBF above EM is determined by
matching conditions at EM

A composite formula

(iii) Renormalize Oslo data by fitting
their data and neutron
resonance to the composite formula 

The composite formula is a good 
fit to all three sets of experimental data.

⇒



Crossover from vibrational

 

to rotational collectivity in heavy nuclei

Heavy nuclei exhibit various types of collectivity: vibrational, rotational, …
and crossovers between them.

Successfully described by empirical models.

However, a microscopic description is still lacking.

Can we describe the crossover from vibrational to rotational collectivity
in heavy nuclei using the framework of the interacting shell model ?

The required large model space necessitates the use of SMMC.

The various types of collectivity can be identified by the corresponding
spectra, but SMMC does not provide detailed spectroscopy. 

The behavior of                versus      is sensitive to the type of collectivity 
and can be calculated in SMMC.
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(C. Ozen, Y.A., H. Nakada)



Conclusion
• Fully microscopic calculations of level densities are now possible by shell 
model quantum Monte Carlo methods.

• The spin, isospin and parity distributions can be calculated using projection 
methods  (see talk by H. Nakada).

• SMMC successfully extended to heavy deformed nuclei: rotational 
character can be reproduced in a truncated spherical shell model.

Prospects

• Study collective transitions in heavy nuclei.

• Derive global effective shell model interactions from density functional theory

[Quadrupole: Alhassid, Bertsch, Fang and Sabbey, Phys. Rev. C 74, 034301  (2006);
Quadrupole + pairing: Rodriguez-Guzman, Alhassid, Bertsch, Phys. Rev. C 77, 064308 
(2008)].
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