Cross sections for neutron capture and other compound reactions from Surrogate measurements

Jutta Escher Nuclear Theory & Modeling Lawrence Livermore National Lab

2nd International Workshop on Level Density and Gamma Strength

Oslo, Norway

May 11-15, 2009

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

UCRL-PRES-412925

The Surrogate Idea

$$\sigma_{\alpha\chi} = \sum_{J,\pi} \sigma_{\alpha}^{CN} (E, J, \pi) \cdot G^{CN}_{\chi} (E, J, \pi)$$

The Surrogate Nuclear Reactions approach combines theory and measurements to determine cross sections of compoundnuclear reactions that are difficult/impossible to measure directly.

Level Density and Gamma Strength, Oslo, May 2009

Prologue

Why Surrogates?

- There are important CN cross sections that will be (almost) impossible to measure
- Calculations of CN cross sections can have very large uncertainties (in particular without constraining data)
- The Surrogate method has shown some success for (n,f) cross sections

This presentation:

- Will summarize insights gained over the past few years from theoretical and experimental work on Surrogates
- Will focus on the prospects for extracting (n,γ) cross sections from Surrogate experiments

Level Density and Gamma Strength, Oslo, May 2009

Overview

- 1. Prologue
- 2. Successful applications of the Surrogate method (n,f) reactions
- 3. How about (n,γ) ?
- 4. Notation
- 5. (n,γ) case studies
 - Zr(n,γ)
 - U(n,γ)
- 6. CN spin-parity populations and related challenges
- 7. From case study to data
 - ¹⁵⁶Gd(p,p'γ)
- 8. Insights

Level Density and Gamma Strength, Oslo, May 2009

Successful applications of the Surrogate method

(n,f) reactions

Level Density and Gamma Strength, Oslo, May 2009

Early Surrogate work in the WE limit

Level Density and Gamma Strength, Oslo, May 2009

WE results from the STARS/LiberACE collaboration

Level Density and Gamma Strength, Oslo, May 2009

Ratio results from the STARS/LiberACE collaboration

How about (n, y) reactions?

Level Density and Gamma Strength, Oslo, May 2009

Surrogate approach for (n,y) cross sections

Level Density and Gamma Strength, Oslo, May 2009

Level Density and Gamma Strength, Oslo, May 2009

The Surrogate Idea - Formalism

Level Density and Gamma Strength, Oslo, May 2009

The Weisskopf-Ewing (WE) limit

The Surrogate Ratio approach

Level Density and Gamma Strength, Oslo, May 2009

Investigating decay probabilities, extracted cross sections

Level Density and Gamma Strength, Oslo, May 2009

(n,γ) case studies

Level Density and Gamma Strength, Oslo, May 2009

Case study 1: Zr(n,γ) - a near-spherical target

Level Density and Gamma Strength, Oslo, May 2009

Surrogate approach for ⁹⁵Zr(n,γ)

- Of great interest to nuclear astrophysics
- Wanted: Cross section from 300 eV to 200 keV
- Direct measurement presents a challenge:
- $t_{1/2}(^{95}\text{Zr}) = 64 \text{ d}$
- Calculations have significant uncertainties
- Branch points are close to stable isotopes which can serve as Surrogate targets

Case study 1: Zr(n,γ) - a near-spherical target

 S_n is the neutron separation energy in ⁹²Zr.

Worst-case scenario!

Level Density and Gamma Strength, Oslo, May 2009

J. Escher, LLNL

branching ratios are VERY

sensitive to CN J^{π} values!

Case study 1: Zr(n,γ) - a near-spherical target

Forssen et al. Phys. Rev. C 75 (2007) 055807

$$\sigma_{n\gamma}^{\text{extr}}(\mathsf{E}) = \eta(\mathsf{E}_{s}) \Sigma_{\mathsf{J},\pi} \sigma_{n}^{\text{CN,th}}(\mathsf{E},\mathsf{J},\pi) G^{\text{CN,th}}(\mathsf{E},\mathsf{J},\pi)$$

Surrogate experiments may help constrain models at higher energies and improve calculations in the desired energy range - even for very challenging cases!

Level Density and Gamma Strength, Oslo, May 2009

Case study 2: (n, y) reactions for actinide targets

Case study 2: (n, y) reactions for actinide targets

CN spin-parity distributions in Surrogate reactions and related challenges

Level Density and Gamma Strength, Oslo, May 2009

Challenges for reaction theory

Level Density and Gamma Strength, Oslo, May 2009

Challenges for reaction theory

Formation of a highly excited nucleus in a direct reaction

- inelastic scattering, pickup, stripping reactions
- various projectile-target combinations
- resonances, quasi-bound states

Damping of the excited states into a compound nucleus

- competition between CN formation and non-equilibrium decay (particle escape)
- dependence on J^{π}

Width fluctuation correlations

Level Density and Gamma Strength, Oslo, May 2009

Addressing the challenges

Level Density and Gamma Strength, Oslo, May 2009

γ-rays as a signature of the CN spin-parity distributions

 γ -ray intensities are sensitive to the J^{π} distribution of the decaying CN nucleus. The 'collector' transition (2+->0+) accounts for 90-100% of the intensity.

Level Density and Gamma Strength, Oslo, May 2009

From case study to data...

Level Density and Gamma Strength, Oslo, May 2009

From case study to application: inelastic p scattering on ^{154,156,158}Gd

Silicon Telescope Array

Segmentation allows for geometric particle correlations

N. Scielzo et al. (analysis completed)

Measurements of 154,156,158 Gd(p,p' γ) with with E_p=22 MeV. Goal: determine the 153,155,157 Gd(n, γ) cross sections -- two cross sections are known, can provide tests, one is an unknown cross section of interest to astrophysics.

Target chamber and Ge detectors

Level Density and Gamma Strength, Oslo, May 2009

Level Density and Gamma Strength, Oslo, May 2009

Level Density and Gamma Strength, Oslo, May 2009

Level Density and Gamma Strength, Oslo, May 2009

Implications for extracting cross sections using the Weisskopf-Ewing approximation

Level Density and Gamma Strength, Oslo, May 2009

Some insights

Surrogate measurements of (n, γ) cross sections:

- 1. Have been attempted in several experimental efforts.
- 2. Are more difficult to extract reliably than (n,f) cross sections.
- 3. The measured coincidence probabilities are very sensitive to spin distributions.
- 4. Theoretical simulations of the reactions shed light on the validity of the approximations and identify limitations.
- 5. The angular-momentum mismatch between the Surrogate and desired reactions becomes very important. It is not obvious that the WE or Ratio approximations can be used.
- 6. However: Sensitivity to spin distributions is not only bad.... ...experimental observable sensitive to spin and parity of the CN can be used to place constraints on theory.

Level Density and Gamma Strength, Oslo, May 2009

Special thanks go to.....

Theory:

F.S. Dietrich, D. Gogny, R. Hoffman, I. Thompson, W. Younes *(LLNL)* V. Gueorguiev (*UC Merced*) A.K. Kerman (*MIT/ORNL*), G. Arbanas (*ORNL*)

Experiment:

The STARS/LIBERACE collaboration, in particular: **N. Scielzo**, L. Ahle, J. Burke, L. Bernstein, J. Church, S. Lesher *(LLNL)* S. Basunia, R. Clark, L.W. Phair *(LBNL)* B. Lyles/Goldblum *(LLNL/UC Berkeley)* J. M. Allmond, C. Beausang *(University of Richmond)*

J. Cizewski, R. Hatarik (Rutgers/ORNL)

B. Jurardo (CENBG, Bordeaux)

Level Density and Gamma Strength, Oslo, May 2009

Level Density and Gamma Strength, Oslo, May 2009

Spin-parity distributions in ¹⁵⁶Gd following n capture on ¹⁵⁵Gd

Ratio results from the STARS/LiberACE collaboration

Level Density and Gamma Strength, Oslo, May 2009

J.M Allmond et al. (PRC 79 (2009) 054610)

Result (using the Ratio approximation) is in agreement with evaluated cross section.

Level Density and Gamma Strength, Oslo, May 2009

Predicting J^{π} for inelastic (α , α ') reactions on spherical targets

= 10 Me/

0.9

0.8

0.7

Calculate cross sections for highly-excited ⁹⁰Zr states:

- Start with ph description, weak-binding approximation, phenomenological OMPs, schematic treatment of spreading widths
- Systematic investigation of improved nuclear structure input: use Hartree-Fock/RPA approach,...

Case study 2: (n, y) reactions for actinide targets

Observation: Relative γ -ray intensities depend sensitively on J^{π} distribution of the decaying compound nucleus. Relative γ -ray intensities as function of E for $n+^{235m}U$ and $n+^{235}U$ (not for a Surrogate reaction!)

Level Density and Gamma Strength, Oslo, May 2009

^{236}U fission probabilities' dependence on J^{π}

Observations:

- Fission probabilities show significant J^{π} dependence
- For small energies the WE approximation is not valid
- Differences between fission probabilities increase at onset of 2nd chance fission J. Escher an
- Results depend little on parity (not shown)

J. Escher and F.S. Dietrich, Phys. Rev. C 74 (2006) 054601 It is not *a priori* obvious whether the WE limit applies to a particular reaction in a given energy regime. The validity of the WE approximation depends on the relevant J^{π} and E values.

Level Density and Gamma Strength, Oslo, May 2009

(n,f) cross sections from a WE simulation

J. Escher and F.S. Dietrich, Phys. Rev. C 74 (2006) 054601

Observations

- The deduced cross sections are clearly dependent on the J^π distribution (WE limit not strictly valid)
- The largest uncertainty are below $E_n=3$ MeV and are due to angular-momentum effects
- Deviations at higher energies are due to preequilibrium effects.

- Identifying a Surrogate reaction that produces a CN similar to that of the desired reaction yields the best result for the extracted cross section
- The Surrogate reaction approach does not account for preequilibrium effects in desired reaction.

Level Density and Gamma Strength, Oslo, May 2009