Structure of hot nuclear states

Teng Lek Khoo Argonne National Laboratory

2nd Workshop on Level Density and Gamma Strength Oslo, May 11 - 15, 2009

Samuel Taylor Coleridge The Rime of the Ancient Mariner

And the Albatross begins to be avenged.

Water, water, every where, And all the boards did shrink ; Water, water, every where, Nor any drop to drink.

γs, γs every where,
And all the spectra did shrink ;
γs, γs every where,
Nor any physicist to drink.

~1/2 of γ s unresolved, from hot states.

Topics

- Phase transitions
- Fission barriers and l_{max} in Superheavy Nuclei
- Order to chaos transition in superdeformed nuclei
- Ergodic superdeformed bands

Information extracted from γ spectra. Theoretical description of γ spectrum requires knowledge of ρ & S_{γ}. γs detected with Gammasphere @Argonne & Berkeley

Adventures in the $\beta\gamma$ plane & above

Collective & aligned-particle rotation of nuclei

Phase Transitions above the Yrast Line in ¹⁵⁴Dy

W. C. Ma,¹ V. Martin,² T. L. Khoo,³ T. Lauritsen,³ J. L. Egido,⁴ I. Ahmad,³ P. Bhattacharyya,⁵

M. P. Carpenter,³ P. J. Daly,⁵ Z. W. Grabowski,⁵ J. H. Hamilton,⁶ R. V. F. Janssens,³ D. Nisius,³ A. V. Ramayya,⁶ P. G. Varmette,¹ and C. T. Zhang⁵

FIG. 1. Theoretical yrast line and regions of prolate (dotted) and oblate phases in ¹⁵⁴Dy. The phase boundary (dashed line) corresponds to the $\gamma = -60^{\circ}$ line in finite-temperature Hartree-Fock-Bogoliubov calculations without fluctuations [4]. Sketches of two cascade paths (*A*, *B*) are shown, which connect the experimental entry and exit points for cascades feeding into two selected regions of the yrast line, $I = (16-22)\hbar$ and $I = (34-36)\hbar$.

Prolate (γ =0⁰) & oblate (γ =60⁰) states in N=88, 90 nuclei

- N \leq 86, e.g. ¹⁵²Dy. Particle alignment (γ =60⁰, oblate), yrast isomers.
- N = 88, 90, e.g. ^{154,156}Dy. Both prolate & oblate → rotational & terminating bands.
- N \geq 92, e.g. ¹⁵⁸Dy, prolate rotors (γ =0⁰).

Phase Transitions above the Yrast Line in ¹⁵⁴Dy

W. C. Ma,¹ V. Martin,² T. L. Khoo,³ T. Lauritsen,³ J. L. Egido,⁴ I. Ahmad,³ P. Bhattacharyya,⁵
M. P. Carpenter,³ P. J. Daly,⁵ Z. W. Grabowski,⁵ J. H. Hamilton,⁶ R. V. F. Janssens,³ D. Nisius,³ A. V. Ramayya,⁶ P. G. Varmette,¹ and C. T. Zhang⁵

FIG. 1. Theoretical yrast line and regions of prolate (dotted) and oblate phases in ¹⁵⁴Dy. The phase boundary (dashed line) corresponds to the $\gamma = -60^{\circ}$ line in finite-temperature Hartree-Fock-Bogoliubov calculations without fluctuations [4]. Sketches of two cascade paths (*A*, *B*) are shown, which connect the experimental entry and exit points for cascades feeding into two selected regions of the yrast line, $I = (16-22)\hbar$ and $I = (34-36)\hbar$.

FIG. 3. Differential *E*2 spectra feeding into the yrast line *only* in the indicated spin region ΔI_{feed} . Histograms and solid lines correspond to experiment and theory. The approximate decay pathways corresponding to the top and the bottom spectra are shown as cascades *A* and *B*, respectively, in Fig. 1.

Superheavy nuclei: at the limits of Z,I,E* What are the limits?

Physics questions. • $B_f(I,E^*,Z,N) \& E_{shell}(I,E^*,Z,N)$.

•Variation with I, E* (as well as Z, N) \rightarrow incisive tests of shell structure.

•Spectroscopy \rightarrow detailed tests of E_{sp}, e(ω), E_{band}(I), J^(1,2) (i.e. ∂ E/ ∂ I, ∂ ²E/ ∂ ²I).

ρ , S_v in SHN

- ρ , S_{γ} in SHN with transfer reactions, e.g. ²⁴⁹Cf(d,p), (α ,³He), (d,t), (³He, α)
- Any new aspects, e.g. near top of fission barrier?

How delicate are superheavy nuclei?

- How fragile are these loosely-bound nuclei, barely held together shell-created barriers?
- If you tickle them, will they "laugh" and fall apart?
- If you spin them, will they fission immediately?

5/25/09

T. L. Khoo @ Level Density and Gamma Strength Wshop

Entry Distribution, Fission Barrier, and Formation Mechanism of ²⁵⁴₁₀₂No

P. Reiter,^{1,2} T. L. Khoo,¹ T. Lauritsen,¹ C. J. Lister,¹ D. Seweryniak,¹ A. A. Sonzogni,¹ I. Ahmad,¹ N. Amzal,³
P. Bhattacharyya,⁴ P. A. Butler,³ M. P. Carpenter,¹ A. J. Chewter,³ J. A. Cizewski,^{1,5} C. N. Davids,¹ K. Y. Ding,⁵
N. Fotiades,⁵ J. P. Greene,¹ P. T. Greenlees,³ A. Heinz,¹ W. F. Henning,¹ R.-D. Herzberg,³ R. V. F. Janssens,¹
G. D. Jones,³ H. Kankaanpää,⁷ F. G. Kondev,¹ W. Korten,⁶ M. Leino,⁷ S. Siem,^{1,8} J. Uusitalo,¹
K. Vetter,⁹ and I. Wiedenhöver¹ M. Asai^{1,10}, D. Grayson¹
¹Argonne National Laboratory, Argonne, Illinois 60439
²Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany
³University of Liverpool, Liverpool L69 7ZE, England
⁴Purdue University, New Brunswick, New Jersey 08903
⁶DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
⁷University of Jyväskylä, Jyväskylä, Finland
⁸University of Oslo, Oslo, Norway
⁹Lawrence Berkeley National Laboratory, Berkeley, California 94720 (Received 3 January 2000)

The entry distribution in angular momentum and excitation energy for the formation of ²⁵⁴No has been measured after the ²⁰⁸Pb(⁴⁸Ca, 2n) reaction at 215 and 219 MeV. This nucleus is populated up to spin 22 \hbar and excitation energy ≥ 6 MeV above the yrast line, with the half-maximum points of the energy distributions at ~5 MeV for spins between 12 \hbar and 22 \hbar . This suggests that the fission barrier is ≥ 5 MeV and that the shell-correction energy persists to high spin.

Potential Energy Surface at single spin De

5/25/09

Deformation

Motional Narrowing and Ergodic Bands in Excited Superdeformed States of ¹⁹⁴Hg

Lopez-Martens,¹ T. Døssing,² T. L. Khoo,³ M. Matsuo,⁴ B. Herskind,² T. Lauritsen,³ M. P. Carpenter,³ R. V. F. Janssens,³ G. Hackman,^{3,*} I-Y. Lee,⁵ A. O. Macchiavelli,⁵ E. Vigezzi,⁶ and K. Yoshida⁷
 ¹C.S.N.S.M, IN2P3-CNRS, Batiment 104-108, 91405 Orsay, France
 ²Niels Bohr Institute, DK-2100, Copenhagen, Denmark
 ³Argonne National Laboratory, Argonne, Illinois 60439, USA
 ⁴Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
 ⁵Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ⁶INFN Sezione di Milano and Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano, Italy
 ⁷Institue for Natural Science, Nara University, Nara 631-8502, Japan (Received 31 October 2007; published 14 March 2008)

The E_{γ} - E_{γ} coincidence spectra from the electromagnetic decay of excited superdeformed states in ¹⁹⁴Hg reveal surprisingly narrow ridges, parallel to the diagonal. A total of 100–150 excited bands are found to contribute to these ridges, which account for nearly all the unresolved *E*2 decay strength. Comparison with theory suggests that these excited bands have many components in their wave functions, yet they display remarkable rotational coherence. This phenomenon can be explained in terms of the combination of shell effects and motional narrowing.

Observations: *new phenomenon*

- Exceptionally narrow SD ridges (--10 keV vs. --50 keV for ND).
- Ridge exhausts $\sim 100\%$ of E2 total strength (vs. $\sim 10\%$ for ND).
- No detectable broad component with rotational damping $\Gamma_{rot} \sim 300$ keV.
- Number of bands contributing to the ridge ~150 (vs. ~30 for ND).
- Cf. FWHM_{SD} ~ 10 keV vs. FWHM_{ND} ~ 350 keV
- Narrow ridge implies E2 transitions flow within parallel rotational bands with nearly identical $J^{(2)}$.
- $J^{(2)}$ identical to that of SD band 1.
- Theory

predicted narrow ridges (Matsuo and Yoshida).

suggests that ~2-8 (4, average) basis configurations in excited SD states; from U=1.2-1.6 MeV.

• Predicted by Mottelson

- Small $\Delta \varpi \rightarrow \sim$ identical $J^{(2)} \rightarrow$ "identical" bands.
- Ergodic and identical bands intimately connected.

From Order to Chaos

Chaotic

Quantum numbers lost (except I, π) \rightarrow **no selection rules**.

Statistical spectrum.

Transitions strengths unpredictable, governed by Porter-Thomas fluctuations.

Ergodic

Mostly chaotic, with:

- (a) complicated wavefunctions and
- (b) Porter-Thomas fluctuations in all transitions except collective E2 transitions, with rotational band structure preserved. Unique in ¹⁹⁴Hg.

<u>Ordered</u>

Good quantum numbers \rightarrow *selection rules*.

Well-defined spectrum; equi-spaced (picket-fence) sharp lines from rotation of a cold SD object.

Summary

- 1. Phase transitions along and above the yrast line.
- 2. Superheavy nuclei:

survive to I = 32 hbar;

shell structure robust to high spin.

3. Superdeformed bands:

double cycle of chaos-to-order transition; new ergodic regime with "orderly" E2 flow in chaotic states.