The two-step (and multiple-step) γ cascade method as a tool for studying γ -ray strength functions

charles UNIVERSITY PRAGUE faculty of mathematics and physics

- The method of two-step γ-cascades following thermal neutron capture (setup at Rez near Prague)
- Two-step (multi-step) γ-cascades following resonance neutron capture (DANCE - LANL)
- Data processing DICEBOX code
- Examples / Results
 (Enhancement of PSFs at low energies, Scissors mode)

The method of two-step γ-cascades following TNC

Oslo, May 11, 2009

TSC spectra

Accumulation of the TSC spectrum from, say, detector #1:

The contents of the bin, belonging to the energy $E_{\gamma 1}$, is incremented by

$$q = \alpha_{ij}$$

where α_{ij} is given by the position and the size of the corresponding window in the 2D space "*detection time*"ד*energy sum* $E_{\gamma 1}+E_{\gamma 2}$ ".

⇒ background-free spectrum

TSC spectra

Example of sum-energy spectra (57Fe)

Example of a TSC spectrum

Example of a TSC spectrum

Results of GEANT3 simulations - $^{95}Mo(n,\gamma)^{96}Mo$

- Two-step (multi-step) γ-cascades following neutron capture with higher energies (in the region of resolved or unresolved resonances)
- Measured with BaF₂ detector array (DANCE – LANL, n_TOF)

DANCE @ LANSCE

- Moderated W target gives "white" neutron spectrum, ~14 n's/proton
- DANCE is on a 20 m flight path / ~1 cm @ beam after collimation
- repetition rate 20 Hz
- > pulse width ≈ 125 ns
- DANCE consists of 160 BaF₂ crystals

What can be checked?

What can be checked?

unresolved region \succ

 \succ

How to process data from these experiments?

> Result of interplay of level density and γ -ray SF

- Comparison with predictions from decay governed by different level density formulas and γ-ray strength functions
- Code DICEBOX is used for making these simulations
 - Simulates gamma decay of a compound nucleus within extreme statistical model

Main assumptions:

- For nuclear levels below certain "critical energy" spin, parity and decay properties are known from experiments
- Energies, spins and parities of the remaining levels are assumed to be a random discretization of an *a priori* known level-density formula
- > A partial radiation width $\Gamma_{ijf}^{(XL)}$, characterizing a decay of a level *i* to a level *f*, is a random realization of a chi-square-distributed quantity the expectation value of which is equal to

 $f^{(XL)}(E_{\gamma}) E_{\gamma}^{2L+1} / \rho(E_i),$

where $f^{(XL)}$ and ρ are also *a priori* known

- > Selection rules governing the γ decay are taken into account
- > Any pair of partial radiation widths $\Gamma_{i \mathscr{Y}}^{(XL)}$ is statistically uncorrelated

Modelling within ESM

Simulation of the decay:

- > "nuclear realization" (10⁶ levels \Rightarrow 10¹² $\Gamma_{\lambda\gamma f}$) \Rightarrow "precursors" are introduced
- fluctuations originating from nuclear realizations cannot be suppressed

Outcomes from modelling are compared with experimental data

Deterministic character of random number generators is exploited

Main feature of DICEBOX

> There exists infinite number of artificial nuclei (nuclear realizations), obtained with the same set of level density and γ -ray SFs models that differ in exact number of levels and intensities of transitions between each pair of them

 \Rightarrow leads to different predictions from different nuclear realizations

- DICEBOX allows to treat predictions from different nuclear realizations
- The size of fluctuations from different nuclear realizations depend on the (observable) quantity - in our case intensity of TSC cascades - and nucleus

- > Due to fluctuations only "integral" quantities can be compared
- In principle, simulation of detector response must be applied (very simple in the TSC setup, GEANT simulations for DANCE)

Example of a TSC spectrum

Examples of spectra

Spectrum of energy sums

Normalization of experimental spectra

- Knowing intensity of one
 γ-ray cascade ⇒
 simulated/experimental TSC
 intensities to all final levels can be
 normalized
- Corrections to angular correlation and vetoing must be done

Pictures with comparison similar but correct statistical analysis excludes also this model at 99.8 % confidence level Krticka et al., PRC 77 054319 (2008)

 \Rightarrow the enhancement is very weak if any analysis of data from DANCE confirm this

TSCs in the 162 Dy(n, γ) 163 Dy reaction

TSCs in the 162 Dy(n, γ) 163 Dy reaction

TSCs in the ¹⁵⁹Tb(n,γ)¹⁶⁰Tb reaction

Preliminary results

Entire absence of SRs is assumed

TSCs in the ¹⁵⁹Tb(n,γ)¹⁶⁰Tb reaction

TSCs in the ¹⁵⁹Tb(n,γ)¹⁶⁰Tb reaction

Scissors mode with E = 2.7 MeV $\Sigma B \approx 3 \mu_N^2$

Very similar results also for E = 3.5 MeV $\Sigma B \approx 2-7 \mu_N^2$

J. Kroll, diploma thesis, Prague 2009

¹⁵⁷Gd(n,γ)¹⁵⁸Gd reaction – deformed nuclei

Experiment: TSC vs. DANCE

¹⁵⁷Gd(n,γ)¹⁵⁸Gd reaction – deformed nuclei

¹⁵⁷Gd(n, γ)¹⁵⁸Gd reaction

¹⁵⁴Gd(n, γ)¹⁵⁵Gd reaction

¹⁵⁴Gd(n, γ)¹⁵⁵Gd reaction

- Two-step and multi-step γ cascade methods are very powerful tools for studying γ-ray SF
- Spectra from presented experiments cannot be processed without simulations – DICEBOX code allows to keep inherent uncertainties due to statistical character of the decay under control

TSC meausurements

Prague - F. Bečvář, M. Krtička, J. Kroll

Řež - I. Tomandl

DANCE

LANL - T.A. Bredeweg, R. Haight, J.M. O'Donnell,R.S. Rundberg, J.L Uhlmann, D. Vieira, J.M. Wouters,J.B. Wilhelmy, A. Chyzh, B. Baramsai

LLNL - U. Angvaanluvsan, J.A. Becker, W. Parker, C.Y. Wu, D. Dashdorj

NCSU - G.E. Mitchell

Prague - F. Bečvář, M. Krtička

Dubna - E.I.Sharapov

Thank you for your attention