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Characteristic Response of an Atomic Nucleus to EM Radiation
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• Giant Dipole Resonance:  Ex ~16 MeV, B(E1) ~ W.u.

• Orbital “Scissors” mode: Ex ~ 3 MeV, B(M1) ~ 3µµµµN
2

• Two Phonon Excitation:   Ex ~ 4 MeV, B(E1) ~ 10-3 W.u.

• Pygmy Dipole Resonance ?
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Importance of Dipole Excitations Around the Particle Threshold
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Nuclear structure phenomenon

� New and fundamental mode of excitation below the GDR

Impact on nucleosynthesis

� Gamow window for photo-induced reactions in explosive steller events

Importance for understanding of exotic nuclei

� E1 strength will be shifted to lower energies in neutron rich system
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Motivation

� Low-energy dipole modes of excitation below the neutron threshold

� What is the character of the PDR? Electric or Magnetic?

� What is the strength of the PDR?

� What is the decay pattern below the particle separation energy which is 

governed by the photon strength function?

� What is the impact of PDR on the astrophysical reaction rates at the 

Gamow peak in stellar burning scenarios, especially the p-process?

� Experimental probe: photons (monoenergetic and 100% linearly polarized)

� Experimental technique: Nuclear Resonance Fluorescence



High Intensity Gamma Ray Source (HIGS)

100% linearly and circular polarization of γ rays

Quasi monoenergetic

Tunable from 1 – 100 MeV 

Energy selection: collimation, no need for tagging

Gamma flux on target > 108 s-1



Experimental Setup at HIGS

Gamma beam: Φ
γ

> 108 γ/s  (>1000 γ/s/eV),  ∆E/E = 3%, 
pulsed and 100% horizontally polarized

Detector systems:

� 4 Clovers + BGO;  εarray = 1.4% @ Eγ = 1.33 MeV

� Quartet of 60 % detectors with Pb and Cu passive 

shields

� Beam monitor detector: 123% HPGe
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Nuclear Resonance Fluorescence Technique

� Excitation energy Ex

� Spin and parity J,  π

� Decay width Γ0

� Branching ratio Γi /Γ

Experimental observables in NRF

In a completely model independent way !

� Excitation of a narrow energy window

� Selective E1, M1, and E2 excitation

� High resolution (γ spectroscopy)

HIGS Advantages
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Parity Measurements with a Linearly Polarized Photon Beam
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What we are measuring?

138Ba
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Beam energy: (∆E/E = 3%)

From the beam energy: 

Ei, J, π, Γ0, Γi / Γ, 

σel = f(Eγ)

From the first excited states to g.s.: 

σinel = f(Eγ)

σtot = σel + σinel = σabs

From the 100% linearly polarized HIGS beam

allows to distinguish among 

different transition types



HIGS: Pushing the Limit of Sensitivity

10.615

22Ne + αααα

Ground state transitions  Γ0

Secondary transitions Branching transitions  Γf

HIGS detection 
sensitivities:

resonance states with 
Γtot ≥≥ 1meV



Present Experimental Activities at HIGS
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Present Measurements at HIGS92Mo

• Dependence on N/P ratio
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S. Volz et al., Nucl. Phys. A 779 (2006) 1.
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Present Measurements at HIGS92Mo

• Dependence on N/P ratio

• Dependence on deformation
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N. Benouaret et al., Phys. Rev. C 79   014303 (2009)



Experimental Asymmetry from 138Ba(γ,γ)

Asymmetry = (Nh-Nv)/(Nh+Nv)

� Total of 172 measured states

� 103 states identified for the first time

� Spin and parity assignment for 172 states 

(20 previously known)

� ∑ B(E1) = 0.96 (18) e2 fm2 (1.3% TRK)

� 18 new M1 states identified

� M1 strength highly fragmented

� ∑ B(M1) = 2.2 (8) µN
2

� M1 center of gravity ~ 35 A-1/3

� Completely disentangling the E1 from 

the M1 distribution

� Direct measurement of the E1/M1 

strengths



QPM Calculation of the E1 and M1 Strength in 138Ba

Preliminary calculations by N. Tsoneva



Cross Section Composition in 138Ba

� Elastic-scattering cross section 

dominates in the low-energy 

region (Eγ ≤ 7.5 MeV)

� Inelastic-scattering cross 

section takes over at energies 

close to the neutron separation 

energy

� σel are only 30(5) % of σtot at 

Eγ ≤ Bth

� � The reaction rate will be 

govern by the inelastic part.
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Interpretation of the Pygmy Resonance in QPM calculations

● Evidence for surface neutron density oscillations

● “Soft dipole mode“ at 7 MeV is mixture of isoscalar and isovectorcomponents

N. Tsoneva, H. Lenske, PRC 77, 024321 (2008)

N. Paar et al., Rep. Prog. Phys. 70, 691 (2007)
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First Important Result from HIGS 

PRD is indeed predominantly E1 more of excitation !



Experimental Asymmetry from 90Zr(γ,γ′)

� Total of  83 E1 states analyzed 

so far.

� Total of  29 M1 states 

analyzed so far.

� Center of gravity of M1 

strength at 9 MeV

� ∑ (M1) = 3.8(2) µ
N

2

Fine structure of the Giant M1 resonance

G. Rusev: Data analysis in progress



Investigation of Photon-Strength Functions: 90Zr case
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90Zr(γ, γ) spectrum at HIGS � Photon-strength function describes 

energy distribution of photon emission 

from high-energy states.

f (Eγ) = <Γγ / D Eγ
3>

� Importance: Astrophysical network 

calculations; new fast nuclear reactors, 

statistical models.

Preliminary results

� E1 is the dominant multipolarity

transition

� Primary transitions are strongly 

dictated by the microscopic properties 

of the low-lying levels.

� PSF is not smooth curve below 

the Bn and Eγ > 4 MeV. 

�

G. Rusev et al. PRC 77, 064321 (2008)



Investigation of Photon-Strength Functions: 98Mo case

G. Rusev et al. PRC 77, 064321 (2008)

� Photon-strength function describes 

energy distribution of photon emission 

from high-energy states.

f (Eγ) = <Γγ / D Eγ
3>

� Importance: Astrophysical network 

calculations; new fast nuclear reactors, 

statistical models.



Investigation of Photon-Strength Functions: 98Mo case

G. Rusev et al. PRC 77, 064321 (2008)

� Photon-strength function describes 

energy distribution of photon emission 

from high-energy states.

f (Eγ) = <Γγ / D Eγ
3>

� Importance: Astrophysical network 

calculations; new fast nuclear reactors, 

statistical models



Investigation of Photon-Strength Functions: 98Mo case

G. Rusev et al. PRC 77, 064321 (2008)

� Photon-strength function describes 

energy distribution of photon emission 

from high-energy states.

f (Eγ) = <Γγ / D Eγ
3>

� Importance: Astrophysical network 

calculations; new fast nuclear reactors, 

statistical models.

� Present data from HIGS support 

standard Lorentzian shape down to 

4MeV

� Measurements with different probes.

Proposed reactions:

HIGS: 98Mo (γ,γ)

DANCE: 97Mo(n,γ)

Tandem: 98Mo(n,n’γ)

Techniques

NRF, neutron capture, neutron scattering 



Summary 

� More than 1000 new parities were assigned in: 90Zr, 98Mo, 
112,124Sn,138Ba 140Ce, and 142Nd.

� PDR is indeed an E1 excitation.

� PDR is an enhanced strength below the GDR
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