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Introduction

Neutron-rich High Energy Density Plasmas
(nHEDP) at the National Ignition Facility

Nucleosynthesis in stellar n(HEDPS
Results from NIF — 19mMAu/% Ay

Other planned and potential experiments
— NIF-based exploding pusher with 13#Xe

— Accelerator-based using Au beams

— Petawatt-laser beam-target experiment (Au)

Final questions/Summary

Nuclear Level Density and Radiative Strength is crucial
to understanding the formation of elements in nHEDPsS




~ Matter
. Temperature >108K

" Radiation
Temperature >3.5 x 106 K

Densities  >103 g/cm3
Pressures >10'1 atm
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The high e, ¥ and n-flux in a NIF capsule might allows us to -

explore reactions on short-lived nuclear states

NIF capsule/hohlraum
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Excited State Reaction Possibilities M

Option #1: Excite a target nucleus with the plasma then hit it with neutrons

<

—Option #2: Excite a target nucleus with neutrons then interact with the plasma—=




Roughly half of the elements with 26<Z<83 are formed via slow -

neutron capture in an astrophysical high energy density plasmas
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NIF @ 10'4 neutrons crams 2800 years* of neutron capture into every shot

Can we use NIF to study the effects of the HEDP on (n,y) nucleosynthesis?
*Busso, Gallino and Wasserburg, Annu. Rev. Astron. Astrophys. 1999. 37:239-309

R.A. Ward, Ap. J. 216: 540-547, 1977, Z.S. Nemeth et al., Ap. J. 426 357-365, (1994)
T. Hayakawa, et al., AIP Conf. Proc. 1238, 225 (2010), doi: 10.1063/1.3455935




Electron-driven Nuclear-Plasma Interactions (NPI) are most

likely to cause the excitation of keV nuclear states

Photo-absorption
Time Reverse: y-ray decay

.
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Atomic-nuclear (electron) interactions
NEEC, NEET, IES*
Time Reverse: IC-decay
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Can we use NIF to see if these interactions fast enough
to interact with highly excited nuclear states in a HEDP?




First hints of NPl at NIF; Radioactive 1°°Au and 1%2Au
from (n,2n) and (n,y) on the ¥Au hohlraum

Diagnostic Insertion Manipulator (DIM)

Passive Particle Detector
Blast Shield removed
post-shot & counted

Time Sequence
1. Shot

2. 6-12 hours later DIM removed, samples collected and
transported to Building 151 counting facility

3. 2-3 days later data becomes available




The 10 hour 12- isomer in 1%°Au might allow us to explore
the interaction of highly-excited states with a HEDP?
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This is entirely new Nuclear Physics
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Radioactive 196Au collected from the pole and waist of
the NIF come from very different plasma conditions

D. Eder et a., UCRL-JRNL-206693

Polar Au comes from a HEDP
while equatorial Au does not




Is debris from the NIF hohlraum suggesting that the
J™=12- isomer feeding is being effected by NPIs?

196m A u/162 Au ratio from NIF SRC
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Option #2: A “better” NIF experiment using a
134X e-doped “exploding pusher” capsule

We maximize both neutron
flux and plasma density by
placing a **Xe dopant nuclei
In a direct-drive target

...plus a “control” sample
outside the plasma in a
sample positioner 50cm
from the target




Radioactive 133m9Xe can be pumped out of NIF minutes after a shot

using the RAGS (Radiochemical Analysis of Gaseous Samples) system

Exploding pusher test: 1%4Xe,?6Xe-doped

capsule
NIF shot N120228-001-999

128228-RAGS DETECTOR F-F SPECTRUM B°F

1000 -

NPI effects can observed using the
Double-Isomer-to-Ground State
(DIGS) Ratio

N 133mxe
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capsule

Ry s ©
IGS N 133myq

SRC —
SRC

Collection efficiency > 63% has been demonstrated




Option #2: A complementary accelerator-based
experiment can also be performed using GeV Au beams
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To an accelerator beam, an ordinary
target looks like an electron beam, a
\ | “semi-ordered plasma.”
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198Au

Plasma Properties NIF LBNL

Electron Fluence (cm-) ~3x10%2 ~1020

First test experiment fielded at LBNL 3/13
— 198Ay formed, but no isomer was formed
due to low beam energy (4_2 MeV/amu) Temperatures (keV) Te=5-50,T,=0.3 Te=2-20,T,=n.a.




New concept: We can use protons from a petawatt
laser to make excited 1°°Au via 198Pt(p,3n)

Target Normal Sheath Acceleration

Thin metallic foil
Relativistic electrons

7 Proton

—— Beam

~

Rear surface
electrostatic sheath

CPA

Hydrogen surface
contaminants

K. Markey



TNSA proton based nuclear-plasma experiment
make 19MIAU using the 198Pt(p,3n) reaction

Step #1: Use TNSA protons from a petawtt
laser to make an excited nucleus via the
198pt(p’3n)196m,gAu

Fast lons
Step #2: Use a
long pulse (ns)
laser to place the
target nuclides
Electron iInto an HED
Blow-off cloud plasma state

plasma

farget

First experiment: Platinum in a plasma state when the protons hit

Control experiment: Platinum put into a plasma state after the protons hit




The TNSA proton spectrum can be estimated
using recent “state of the art” results

* Results from Flippo (2008) at LANL show >10-fold increase in high-
energy proton production in shaped targets. Laser power <100 TW.
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Electron density (/em?)

Long-pulse laser produces a variety of -J‘L
plasma conditions

1D Radiation Hydrodynamics simulations complements of P.F. Davis
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Summary

* [nteractions between highly-excited nuclear states and
HEDPS can profoundly effect nucleosynthesis

* \We have hints of this happening right now at NIF

| E = 3MeV #+ Guttormsen et al, [13]
] A E; = 4MeV - Quadratic fit to [13]

» Outstand Francesca Giacopo is analyzing N
- Whata 4 Oslo data set right now designed to

atomic .
measure LD and RSF in 19819 Ay
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Bethany Goldblum and Darren Bleuel
will tell you about other potential experiments
and facilities to probe the J* dependence of LD and RSF
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M. Wiedeking et al., Phys. Rev. Lett. 108, 162503 (2012)






