Do we understand
radiative strength functions?

Of validity of the Brink hypothesis at the
low-energy tail of GDER from experimental data
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Bohr's wooden toy model

I N t 'O d u Ctl on of the compound nucleus

Decay of levels at low excitation energies
« often known experimentally
» described by “structure” effects

* Properties of individual levels can be
predicted in models

Decay of levels in the region of high level density
» described by “statistical approach”

e average quantities

— level density & y-ray (photon, radiative)
strength functions (+ Brink hypothesis)

(two quantities are needed
for description of y decay or y absorption)

» fluctuation properties

— Porter-Thomas fluctuations of partial radiation
widths ol

Niels Bohr - Nature (1936)
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Nuclear level density
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Detailed balance principle

« To characterize the strength of transitions one can use different
guantities, e.g. partial radiation width or photoabsorption x-section

The principle of the detailed balance:

n,y | i n,y / |

Y Y
“equivalent to”
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Fluctuations of radiation widths

* Inreality, individual partial radiation widths are expected to
strongly fluctuate — according to Porter-Thomas distribution
(y? distribution with v=1)

T or.7)

' ‘ | Porter-Thomas
0.3} P%’_tetrfght‘_’mas [ ~10eV || fluctuations

> 5 5 .
it ‘ (x%,=1 distribution)
0.2 ~0.1 eV
«—

0.1 A ) }r ~te— <Oy gphs”

. | myvavliWIY ...an energy-smoothed
0.0 T E, photoabsorption

/<> X-section

« Average quantities are (must be) used
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« Example:

Spectra of primary
transitions from
several 1-
resonances in

7Ag(n,y)
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Photon (y-ray) Strength Functions

Average quantities are used

One of them is “experimental” PSF

(RSF, ySF)

describe "average probability of

decay”
FXD) = 1 (8= )
= ; it
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Giant Dipole Electric Resonance

300

» classical electrodynamics
(response of a charged mass-point ro
with damping to the external electric 150
field in the long-wave approximation) 100
= the collective mode in E1 PSF
should be described by Lorentzian
shape

250

(E1) 1 EqFG
BA (Ey) = gCE 2
3(mhe)* (B2 — E2)" + E21%

Cross Sectign-mb

Csy =o0glg

* measured in (y,xn) experiments in
many nuclei (above neutron
separation energy)

 experiment does not distinguish o I W e m
multipolarity, dominance of E1 Photon  Energy - Me¥
assumed B.L. Berman, S.C. Fultz,

Rev. Mod. Phys. 47 (1975) 713
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Brink hypothesis

A target in photonuclear/photoabsorption
experiment is in the ground state

n,y

A

A

n,y

<€
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“equivalent to”
g.s. g.s.
PR E— ) .
Identical !
. . )
Brink hypothesis:
generalization “g.s.” — “f”
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“equivalent to”
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experiments

- ~ /
Fictitious (y,y‘) and
(v,X) experiments

Photoexcitation pattern of
an excited target nucleus



Brink hypothesis

The energy dependence of the photoeffect is independent
of the detailed structure of the initial state

Suggested for E1 transitions on the tail of the GDER

Usually generalized: any “collective” excitation mode built on excited
states have the same properties as those built on the ground state

Quantities which PSFs can dependent on:

— type of transitions (E1, M1, E2, ...) v
— vy-ray energy v
— microscopic properties of the level (T,J7) ?

No dependence = Brink hypothesis

— not applicable at the lowest excitation energies
(surely not below pairing gap)
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Validity of the hypothesis?
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Brink hypothesis

at least approximately - from primaries in (n,y) reaction and “hot” nuclei
some weak signs of temperature (excitation energy) dependence

in hot nuclei

valid probably not only for GDER but also for M1 scissors mode

4 & '8 10 12 14
F-RAY  ENERGY {iMeV) e

Photoexcitation

fo(Ey) = fa(E,) = fu(E,) = f(E,)

2 n
DR
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Where could we learn

about PSFs from?

(at low-energy GDER tail,
nuclei near the valley of stability)

« photoexcitation techniques
> (y,particle)
» NRF experiments
« primaries from (n,y) reaction
« two-step cascades spectra - (n,y)
« spectrum fitting method
» singles spectra
» coincidence spectra

 inelastic scattering of charged particles
(e.€), (p.p), (a,0) ...
« sequential extraction (Oslo, 3He-induced)

« particle - y - y coincidence

Oslo, May 27-31, 2013
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“Experimental” PSFs below S

Many problems:

* Inconsistency of PSFs derived
from different experiments
(difference in PSF shape from
NRF and “decay” probing
experiments,...)

« Exact shape of E1 at low
energy tail of GDER

« Dependence of low-energy
GDER tail on excitation
energy (temperature)

« Contribution of M1 strength

« Existence of additional
resonance structure (pygmy
dipole resonance, low-energy
upbend,...)
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- updated |
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“2Nd(y,y’) @ HWS

G.S. (0+) C.T. Angell et al., PRC 86, 051302(R) (2012)
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12Nd(y,y’) @ HIyS
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« “Monoenergetic photon beam”
« Linear polarization allows

separate E1 from M1 (y,y)

contribution — only E1 (vertical)
observed

G.S. (0+) C.T. Angell et al., PRC 86, 051302(R) (2012)
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G.S. (0+)

Counts (1/keV)

12Nd(y,y’) @ HIyS

Total cross section given by

Conn) * Greon)

+

60 r

40 |

20 Feliidy .

0

Negligible at low
excitation energies,
several per cent in
PDR region — must
be corrected from
“simulations”

n e Vertical

VA K
- ...,I WS\

il N i

60

40 r

20

0
5.3

Horizontal

142N(d:

seven 27 levels below
3.5 MeV: almost all
intensity goes via the
first excited state

- m—

5.4

5.5 5.6 5.7 5.8
Energy (MeV)

G, 1 (mb)

(v.n) Carlos et al.

100 (v.n) Present data -
(1.Y) E1 Present Data__guem"
10 F SLO /-
=l GLO
1
01l
‘ Fit to data
4 5 6 7 8 9 10 11 12 13
E, (MeV)

Oslo, May 27-31, 2013




12Nd(y,y’) @ HIyS

1.0
In addition to total cross section 0.8 I FI IL‘
we can look at “GS branching” ' " Sy =
<by>=0c,/c 0r<b>=0,/0,, > 0.6 | .
~ 04 B =
[
0.2

C.T. Angell et al., PRC 86, 051302(R) (2012)
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12Nd(y,y’) @ HIyS

1.0
* |n addition to total cross section 08
we can look at “GS branching” '

~ 04
0.2

« Experimental values of <b,> can
be compared with results of
simulations assuming the
validity of the statistical model
(DICEBOX code)

« Extrapolation of PSFs down to o7l |
low y energies is needed {

® |Experiment

Fit to data

1 0-!.' :_

C.T. Angell et al., PRC 86, 051302(R) (2012)
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“2Nd(y.y’) @ HiyS
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2Nd(y,y') @ H"YS

« None of tested models is able to , /',/\-_"-( ]

reproduce <b,> at all energies O o

«  Problem with the shape of <b,>, N |

especially at 6-8 MeV 10tk .

= assumptions in simulations are >} :

not correct S o | [+ ] Experiment ]

»  Virually no influence of NLD, many Sy :
PSFs models tested = problem N ———"ELO" (T-dependent)

10 Lorentzian E

with Brink hypothesis
(at least for PDR region)

1.0 = >+ 1.0 e
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cross section (mb)
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130

Additional observable to c.1 (5, )
and <b,> checked

Observed population | of several
2* states shows a log decrease
with excitation energy E

Assuming that | ~ exp(-A.E),
parameter A can be checked with
results from simulations
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e(y,y’) @ HlyS — preliminary results
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J. Isaak, D. Savran,..., to be submitted to PRC/PRL
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139Te(y,y’) @ HlYS — preliminary results

« Several PSFs models tested 08| -
. : A 4 .. 3
« Shape of <b,> is not that problematic as _3'05 I g % % ' — 3
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130

Several PSFs models tested

Shape of <b,> is not that problematic as
in 14°Nd — PSF from PDR region seem to
have no problem with the Brink hypothesis

But it is extremely difficult to achieve
simultaneous reproduction of <b,> and A
at all energies, especially for E < 6.5 MeV
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e(y,y’) @ HlyS — preliminary results

T T T

¢ ()]
R 0.8 e (2)
=0 = [] B Py = (3
= 05 . .
0 2 B * ¥ L 3
1 l + } ..
= 30 |
>
-._2 25 + K _
-z “
- " 4 § N x =
NEEER LA . ™ N
,<
6 7 8
E., (MeV)

« Estimate of influence of
“non-statistical’ effects
(below 6.5 MeV)
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{arb. units)

T

Intensity x E *

Brink hypothesis and (n,y) data

Intensities of primary transitions

from “average resonance capture”

Indicated a reasonable validity of
Brink hypothesis

(a scatter of points seems to be
explainable with Porter-Thomas

fluctuations — simulations needed)

"'%' """ {-"_"_';'i'%'_".';§'.'_--‘.: A ;“'n
= _ % Experimental peints |
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Model predictions
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Oslo, May 27-31, 2013
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Brink hypothesis and (n,y) data

Several tests have been made with “spectral-fitting method”
(and analysis of TSC spectra) using DICEBOX

Brink hypothesis can be violated in any way in simulations

No definitive conclusion about temperature (excitation energy)
dependence of E1 transitions can be made

— In Gd isotopes, T-independent PSF (KMF) requires
T =0.3 MeV in a very good agreement with Oslo data on Dy

Brink hypothesis seems to be a very good approximation for M1
scissors mode

Fluctuation of points TSC spectra in °®*Mo are in a reasonable
agreement with simulations based on Porter-fluctuations — no
“structure” effects needed for excitation above about 2.5 MeV

Oslo, May 27-31, 2013



Brink hypothesis and Oslo method

e Spectra of primaries are extracted from measured spectra
(unfolding of detector response)

Iterative procedure applied to spectra of primaries - two functions
can be obtained

— one dependent only on excitation energy (level density)

— the other one only on y-ray energy (transmission coefficient/PSF)
— Brink hypothesis is an important part of the method

 What does happen if the PSF depends on excitation energy?

Oslo, May 27-31, 2013



Brink hypothesis and Oslo method

A.C. Larssen et al., PRC 83, 034315 (2011)

u realization 1 r ] realization 1, 2.10 < E < 4.14 MeV
. '1{]"S r O realization 2 _ 10-5 o realization 1, 4.14 < E < 6.18 MeV
°?_:_, input RSF, T=0 ”-> input RSF, T=0
[4] i : — 1] i . =
E N input RSF, T=0 {Einiﬁal—sn} N §, S input RSF, T=0 [Einml-ﬁn} B
c 7 __.-f"'f c 7 ,/
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0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
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« A test using simulated spectra of “artificial” 163Dy using T-dependent PSF (GLO)
- Shown PSF correspond to T; = 0 and T; = \(S,~E,)
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Brink hypothesis and Oslo method

Experimental spectra indicate
PSF “reasonably independent”
of excitation energy

(if averaging is sufficient and
PSF concept can be used)

& E =4.0-5.2 MeV
o E = 5.2-6.4 MeV
E =6.4-7.7 MeV
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A.C. Larssen et al., PRC 83, 034315 (2011)
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Brink hypothesis and Oslo method

Concept of PSF seems to be
valid even in “light” nuclei
from “low” excitation energy
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Brink hypothesis and Oslo method

Or are there some problems?
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Main conclusions

about validity of the Brink hypothesis at the low-energy tail of GDER
from experimental data

NRF data suggest that the
hypothesis is violated up to
energies of several MeV
and that PDR might not
follow the hypothesis

Oslo data indicate that
Brink hypothesis is a
reasonably good concept

(n,y) data are inconclusive
for E1, require the validity
of the hypothesis for M1
scissors mode

Oslo, May 27-31,
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v-ray strength function (arbitrary units)
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e(y,y’) @ HIlyS — preliminary results
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Photon strength functions

« give the average probability of photon emission from or
photoexcitation of “highly-excited” states (in absolute units)
« are needed in all cases where one deals with
v decay/photoexcitation
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