

Measurement of Strength Function and Level Density of ¹³⁸La at **Xoci**

Vincent Kheswa
PhD Student

Oslo Cyclotron Laboratory

iThemba LABS, Somerset West, South Africa

27 May 2013

- » Introduction
- » Experimental Setup
- » Preliminary results
- » Final Remarks

Introduction

The p-nuclei

- Most nuclei heavier than ⁵⁶Fe are synthesized in stars by s- and r- processes
- However, 35 p-nuclei, including ¹³⁸La, are shielded from s- and r- processes by the valley of stability

- Hence there exist different mechanisms responsible for synthesis of these nuclei
 - The (p,) reaction and / or photo-disintegration
- Very high temperatures and proton density required in this scenario
- Due to high coulomb barrier of heavy nuclei, (p,) is negligible for nuclei with Z 54
- By nature rp terminates at Tellurium due to -decay
- Photo-disintegration remains the main source for the heavier p-nuclei
 - producing very proton rich nuclei via (,n), (,) and (,p) reactions

Introduction 138 La is a special case

- Photo-disintegration cannot satisfactorily explain the observed abundance of ¹³⁸La
- More exotic reactions e.g ¹³⁹La(v, n)¹³⁸La or ¹³⁸Ba + ve -->¹³⁸La must be considered
- Neutrino induced reactions can explain the observed abundance of ¹³⁸La
- However (, n) processes cannot be ruled out due to high errors in their rate predictions, which are due to limited knowledge and uncertainties in <u>nuclear level densities</u>, <u>-ray strength</u> <u>function</u> and neutron optical potentials which are critical input parameters for rates calculation

Hence we measured the <u>nuclear level densities and</u> <u>-ray strength function using the Oslo Method</u>

Experimental Setup

- Beam time: first half of February 2013
- ³He beam at 38 MeV
- ¹³⁹La(³He, ⁴He)¹³⁸La

CACTUS array, 26 Nal -ray detectors

- SiRi array, 64 Si telescope detectors (particle identification)
- At $40 54^{\circ}$ with respect to the beam

Experimental Setup

La target and experimental challenges

- 2.5 mg/cm² NatLa (99.9% 139La) targets provided by iTL. (N.Y. Kheswa): 5 samples shipped to Oslo (only 3 survived)
- Elemental La oxidizes easily!
- First transportation in a vacuum-tight container (2 samples) was unsuccessful
- The foil used during the measurement was instead transported in Argon and silica gel (which absorbs moisture)
- The scattering chamber was filled with Argon during the target mounting operation

Ungated E vs E for particle identification

Analysis Gated E: E Plot

 ΔE : E for all detectors together

Analysis Particle - coincidence matrix

 From Q-value and kinematics of the reaction

> E ex

 E_{γ}

Gammas in coincidence with particles

Analysis First Generation Matrix

Level Density of La138

• (S_n) calculated using BSFG model:

...
$$(S_n) = \frac{\exp[2\sqrt{a(S_n - E_1)}]}{12\sqrt{2} + a^{1/2}(S_n - E_1)^{5/4}}$$

and

†
$$^{2} = 0.0146A^{5/3} \frac{1 + \sqrt{1 + 4a(U - E_{1})}}{2a}$$

T. von Egidy and D. Burcurescu, PRC 72, 044311(2005)

Preliminary Results

Photon Strength Function of ¹³⁸La

- Pronounced low energy enhancement
- •First observation of the low-energy enhancement above mass A~106!!!!!!

Preliminary Results National Research Foundation | IThemba Laboratory for Accelerator Based Sciences |

Comparison with GDR Model and Experimental data

Clearly there is a low energy enhancement !!!!!!!!!!

- To better understand the natural abundance of the "p-nuclei" and in particular 138La, more precise production rates have to be determined: Experimental data on PSF and LD as input parameters are needed.
- •A ¹³⁹La(³He,)¹³⁸La experiment has been successfully performed in February 2013 at OCL.
- •Preliminary results on PSF and LD have been extracted: an unexpected up-bend at low energy in the PSF have been observed for the first time in nuclei heavier than *A~106*!!!
- Next steps: comparison with more experimental data and models.

 PSF and LD for ¹³⁹La via the (³He, ³He) reaction.

 Plans for neutron capture measurements to extract PSF via TSC analysis.

- Cyclotron Laboratory of Oslo University
- N.Y. Kheswa¹ for making the target
- •The following people for participating on the experimental work:

B.V. Kheswa¹, M. Wiedeking¹, F. Giacoppo², M. Guttormsen², A. Görgen², A. C. Larsen², T. Renstrøm², S. Siem², P. E. Koehler², T. K. Eriksen², E. Sahin², T. Tornyi², M. Klintefjord², T. W. Hagen², S. Rose², F. Bello²

¹iThemba LABS, Somerset West, South Africa ² SAFE, University of Oslo, Oslo, Norway

Thank You All

Preliminary Results National Research Foundation | IThemba Laboratory for Accelerator Based Sciences |

Comparison with GDR Model and Experimental data

- •Pygmy1 and Pygmy2 are E2 and E1 resonances
- •Models:

Spin-flip Model for GMDR Isoscalar Model for Pygmy1 EGLO for GEDR and Pygmy2

Clearly there is a low energy enhancement !!!!!!!!!!