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* The shell model Monte Carlo (SMMC) approach and level densities
* Recent technical developments:
Odd-even nuclei: circumventing a sign problem

Direct SMMC calculations of level densities
(spin degeneracy is not counted)

* Applications:
Level densities in even and odd nickel isotopes
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Shell model Monte Carlo (SMMC) method

» Most microscopic treatments of heavier nuclei are based on mean-field
methods but important correlations can be missed.

 The interacting shell model accounts for correlations but diagonalization
methods are limited to ~ 101! configurations.

The SMMC method enables microscopic calculations in spaces that
are many orders of magnitude larger (~ 10°°) than those that can be
treated by conventional methods.

Gibbs ensemble e " (B =1/T) can be written as a superposition of
ensembles U _ of non-interacting nucleons in time-dependent fields a(r)

e M = j@[a] GU_
« The integrand reduces to matrix algebra in the single-particle space.

* The high-dimensional integration over ¢ is evaluated by Monte Carlo
methods.

Lang, Johnson, Koonin, Ormand, Phys. Rev. C 48, 1518 (1993);
Alhassid, Dean, Koonin, Lang, Ormand, Phys. Rev. Lett. 72, 613 (1994).



Thermodynamic approach to level densities
H. Nakada and Y.A., PRL 79, 2939 (1997)

« Calculate the thermal energy E(f)=<H > and integrate
—oInZ /10 =E(f) tofind the partition function Z (/)

e The average level density is found from Z (/) in the saddle-point

approximation:
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C = canonical heat capacity.

S(E) = canonical entropy;
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Technical developments

Odd-particle-number systems in SMMC: circumventing a sign problem
A. Mukherjee and Y.Alhassid, Phys. Rev. Lett. 109, 032503 (2012)

Applications of SMMC to odd-even and odd-odd nuclei has been hampered by
a sign problem that originates from the projection on odd number of particles.

« We introduced a method to calculate the ground-state energy of the
odd-particle system that avoids this sign problem.

We calculate the imaginary-time scalar single-particle Green’s functions in
even-even nuclei for all single-particle orbitals v=nl j:

G, (r) =%, (T 8,,(r)a/,(0))

In the asymptotic regime in 7

A PLE; (A1) -Eg (A I7]
G (r)~e " 9
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» The energy difference between the lowest energy of the odd-particle
system for a given spin | and the ground-state energy of the even-
particle system can be extracted from the slope of InG, (7)

« Minimize E;(A+1) to find the ground-state energy and its spin j.



G, (MeV)

Statistical errors of ground-state energy:
direct SMMC versus Green’s function method
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Application: pairing gaps in iron-region nuclei from
odd-even mass differences

« Complete fpg9/2-shell.
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Direct SMMC calculations of level densities (do not include spin degeneracy)
Y. Alhassid, M. Bonett-Matiz, S. Liu and H. Nakada, arXiv:1304.7258

- In SMMC, the thermal energy is calculated by tracing over the complete
Hilbert space.
— The calculated SMMC density p is the state density, in which the 2J+1
spin degeneracy of level with spin J is counted.

- However, experiments often measure the level density p, in which each
level is counted once irrespective of its spin degeneracy.

Can we calculate the level density directly in SMMC ?

For each level, the state with the lowest non-negative spin projection M
Appears exactly once.

We denote by p,, the density at fixed spin projection M.  Then:

P =Py foreven-mass nuclei

P~

P = Py, forodd-mass nuclei



SMMC level densities in iron region nuclei

« Close agreement with
experimental data
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Spin cutoff parameter from state-to-level density ratio

Spin cutoff model

P 2J +1 o=l (34207

Yo, - 227 c°

where o =o(E,) is the spin cutoff parameter.

« There is a relation between the level density and state density:

1

2wo

ﬁ(Ex) :ZJPJ (Ex): IO(EX)

— O can be determined from the state-to-level density ratio.

. o . | T
Moment of inertia | is determined from &% = —

hz
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- In even-even nuclei we observe suppression of the moment of inertia at
low excitation energies (effect of pairing correlations).



Microscopic level densities of nickel isotopes: theory versus experiment

M. Bonett-Matiz, A. Mukherjee and Y. Alhassid, arXiv:1305.0250,
PRC Rapid Comm, in press

- Recent determination of level densities in nickel isotopes from proton
evaporation spectra by the Ohio University group (A. Voinov, S. Grimes et al.).

- We can now calculate accurate ground-state energies for both even-even
and even-odd isotopes.

Even-mass isotopes

At low temperatures we can use a two-level model: only J=0 ground state
and first excited state contribute to thermal observables.
+
The ground-state energy E, and excitation energy E of the first J=2 state
can be determined from (J*) and thermal energy E
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E, =-259.87+0.03 MeV

E,(MeV)

E? =1.20+£.07 MeV
(Exp 1.33 MeV)

Odd-mass isotopes

Use Green’s function method:

E,=-264.38+0.01 MeV
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Statistical error comparable
to the error for the even nucleus

Excitation energy E, = E - E,
(to compare with experiments)
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Level densities of nickel isotopes
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State density versus level density in heavy nuclei (*%2Dy )
Y. Alhassid, M. Bonett-Matiz, S. Liu and H. Nakada, arXiv:1304.7258
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- Excellent agreement of the SMMC level density with experimental data



Conclusion

 Microscopic calculation of nuclear state and level densities are now
possible in very large model spaces using the shell model Monte Carlo
method.

» Odd-particle systems: circumventing a Monte Carlo sign problem.

* Close agreement with recent experimentally determined level densities in
mid-mass and heavy nuclei.

Prospects

* Direct comparison of spin-parity projected densities with neutron resonance
data

 Applications to unstable and exotic nuclei.



