S. M. Grimes Ohio University Athens, Ohio

4<sup>th</sup> Conference on Level Densities and Gamma Strength Functions Oslo, Norway May 27 - 31, 2013

Bohr Hypothesis:

Compound reaction has relative decay probabilities independent of entrance channel.

Weisskopf Ewing (1940):

$$\sigma(E) \propto \sigma_{inv}(E) E \rho(E^*-B-E)$$

No *J* or  $\pi$  dependence

Often unreliable for smaller decay channels

Hauser Feshbach (1952)

• Wolfenstein (1952):

$$\frac{\pi x^2}{(2I_1+1)(2I_2+1)} \left( \sum \frac{(2J+1)T_{in}T_{out}}{\sum T_{out}} \right)$$

Sum is over compound nuclear J and parity  $\pi$ 

No specifications of *K* (spin projection on symmetry axis)

Decay: If  $J_{\it final} < \ell_{\it max}$  and  $J_{\it final} < J_{\it comp}$  then  $\sigma$  to that level is proportional to  $2J_{\it final} + 1$ 



Maximum 
$$\sigma$$
 for  $J_{\mathit{Final}} \approx \ell_{\mathit{max}}$ 

# Spherical symmetry:



Deformed nuclei: 
$$\pm 5/2 = K$$
  $5/2 = J$   $\pm 3/2 = K$   $5/2 = J$   $\pm 1/2 = K$   $5/2 = J$ 

New approach to Hauser Feshbach

$$T_{in} \rightarrow \langle jm_{j}J_{+}K_{+} | J_{c}K_{c} \rangle^{2} T_{in} \qquad J_{+} = J_{in}$$

$$T_{out} \rightarrow \langle j_{out}m_{j_{out}}J_{f}K_{f} | J_{c}K_{c} \rangle^{2} T_{out} \qquad K_{+} = K_{in}$$

Population distribution is similar Compound J distribution is similar K degeneracy is broken

# Decay ratios differ

```
o, 2, 4, 6 sequence in spherical nucleus has 1:5:9:13 for population ratio Deformed nucleus has K=0 band so each level is non-degenerate
```

Ratio: 1:1:1:1

### **Cross Section Ratio Values for n** + <sup>182</sup>W

| Reaction                                                   | Bombarding Energy (MeV) |              |               |               |              |  |  |
|------------------------------------------------------------|-------------------------|--------------|---------------|---------------|--------------|--|--|
|                                                            | 0.5                     | 1            | 4             | 10            | 14           |  |  |
| (n,α)<br>(n,p)                                             | 1.67                    | 1.77         | 1.85<br>0.98  | 1.51<br>1.0   | 1.3<br>1.0   |  |  |
| (n,2n)<br>(n,nα+αn)                                        |                         |              |               |               | 0.97<br>1.82 |  |  |
| (n,γ)<br>(n,n) J=o K=o+                                    | 1.12<br>0.56            | 1.07<br>0.52 | 1.03<br>0.36  | 0.27          | 0.24         |  |  |
| (n,n') J=2 K=0 <sup>+</sup><br>(n,n') J=4 K=0 <sup>+</sup> | 2.12<br>3.25            | 2.21<br>3.44 | 1.25<br>2.84  | 1.26<br>2.15  | 1.14<br>1.96 |  |  |
| (n,n') J=6 K=0+<br>(n,n') J=0 K=0+                         |                         | 3.56         | 3·75<br>0.377 | 2.93<br>0.273 | 2.71<br>0.24 |  |  |
| (n,n') J=8 K=0 <sup>+</sup> $(n,n')$ J=2 K=2 <sup>+</sup>  |                         |              | 3.6<br>0.75   | 3·59<br>0.59  | 3.58<br>0.54 |  |  |

#### **Cross Section Ratio Values for n** + <sup>183</sup>W

| Reaction                                                           | Bombarding Energy (MeV) |              |               |              |              |  |  |
|--------------------------------------------------------------------|-------------------------|--------------|---------------|--------------|--------------|--|--|
|                                                                    | 0.6                     | 1            | 4             | 7            | 14           |  |  |
| (n,α)<br>(n,p)                                                     | 1.9                     | 2.05         | 2.2           | 2.0<br>1.0   | 1.46<br>1.0  |  |  |
| (n,2n)<br>(n,nα+αn)                                                |                         |              |               | 1.07<br>1.52 | 1.01<br>1.44 |  |  |
| $(n,\gamma)$<br>$(n,n) J=1/2 K=1/2^{-1}$                           | 1.1<br>0.18             | 1.04<br>0.19 | 1.015<br>0.18 | 1.01<br>0.16 | 0.13         |  |  |
| (n,n') J=3/2 K=1/2 <sup>-</sup><br>(n,n') J=5/2 K=1/2 <sup>-</sup> | 0.68<br>1.14            | 0.71<br>1.18 | 0.59<br>1.0   | 0.47<br>0.81 | 0.37<br>0.64 |  |  |
| (n,n') J=7/2 K=1/2 <sup>-</sup><br>(n,n') J=3/2 K=3/2 <sup>-</sup> | 1.6<br>0.5              | 1.61<br>0.61 | 1.18<br>0.54  | 1.12<br>0.46 | o.88<br>o.38 |  |  |
| (n,n') J=5/2 K=3/2 <sup>-</sup><br>(n,n') J=9/2 K=1/2 <sup>-</sup> |                         |              | 3.6<br>0.75   | 3.59<br>0.59 | 3.58<br>0.54 |  |  |
| $(n,n') J=11/2 K=11/2^+$                                           | 0.56                    | 0.65         | 1.05          | 0.94         | 0.83         |  |  |

All levels with K = 0 have degeneracy one

All levels with  $K \neq 0$  have degeneracy two

For levels  $\geq \sim 1.5$  MeV above threshold reduces range of sigma values – enhances those with small J

*K* mixing important as energy increases

Matrix elements ~ 10 keV couple (J,K) states to (J,K-1) and (J,K+1)

New code allows for mixing

Expect mixing  $\approx 0$  for U < 4 MeV and U > 30 MeV

Level Density low for U < 4 MeV

Decay width large for U > 30 MeV

Introduction of mixing does not restore spherical limit

# Isospin Mixing:

Also involves addition of Clebsch-Gordan coefficients

Proton incident on target with N > Z

Target isospin 
$$T_0 = T_Z = \frac{N-Z}{2}$$

Proton has 
$$T = 1/2, T_z = -1/2$$

Coupling: 
$$\frac{1}{2T_0 + 1}$$
 to  $\frac{T = T_0 + 1/2}{T_Z = T_0 - 1/2}$   $\frac{2T_0}{2T_0 + 1}$  to  $\frac{T = T_0 - 1/2}{T_Z = T_0 - 1/2}$ 

Decay of 
$$T = T_0 + 1/2$$
 is mostly protons

Decay of 
$$T = T_0 - 1/2$$
 is mostly neutrons

# Ratio of level densities is large

Energy shift

$$\Delta E = a_a \left[ -\frac{(N-Z)^2}{A} + \frac{(N-Z+2)^2}{A} \right] \approx 24 \left[ \frac{4(N-Z)+4}{A} \right]$$

for 
$$A \approx 40$$
  $\Delta E \approx 6 \text{ MeV}$ 

$$A \approx 100 \quad \Delta E \approx 9 \text{ MeV}$$

$$A \approx 200 \quad \Delta E \approx 19 \text{ MeV}$$

Level density ratio 
$$A \approx 40 \qquad R = 60$$
$$A \approx 100 \qquad R = 2.2 \times 10^4$$
$$A \approx 200 \qquad R > 10^{10}$$

## All mixing is down

$$R = \frac{\left(\frac{\sigma(p, p')}{\sigma(p, \alpha)}\right)}{\left(\frac{\sigma(\alpha, p)}{\sigma(\alpha, \alpha')}\right)} > 1 \quad \text{for proton and alpha induced reactions through the same compound nucleus}$$

# Angular Momentum Effects

- •Without isospin  $R \approx 1.15$
- •With isospin conserved  $(A \approx 60) R \approx 1.7$
- •Experiment  $R \approx 1.45$
- •Result: Mixing ~ 50% before decay
- •Measurements for  $E \sim 18-22 \text{ MeV}$
- •Show mixing is 40-60% for A  $\sim 60-70$
- •If mixing is 100%, recover result of Hauser-Feshbach code without isospin

# K mixing differs

- •Only two values of T many values of K
- •Big difference in branching ratios for two T values
- •Smaller difference for K
- •Mixing in both directions for K only one direction for T
- •Complete *K* mixing does not restore spherical limit

Bohr and Mottelson (vol. II, pg. 39) state that  $\rho(U,J)$  for deformed nucleus is

$$\sigma_{\perp}^2 \rho_s(U,J)$$

( $\sigma_{\perp}^2$  times spherical)

Direct calculation shows that both J and K dependence differ from Bohr-Mottelson result.

# **SUMMARY**

- •New approach proposed for Hauser Feshbach calculations in deformed nuclei
- •Can accommodate both spherical and deformed nuclei in same calculation
- •Code is slower (~8x) than conventional HF
- •Cross sections for low J enhanced and for large J are reduced
- •Cross sections for (n,2n), (n,p) and (n, $\gamma$ ) change less; similar changes in  $^{183}W(n,n')$ ,  $^{168}Er(n,n')$ ,  $^{22}Ne(\alpha,n)$  and  $^{25}Mg(n,n')$ .

# SUMMARY (Continued)

- Look at effects on surrogate reactions
- •Code improvements:
  - •Add isospin to code
  - •Add fission channel
  - •Add Angular distributions

# The End

4<sup>th</sup> Conference on Level Densities and Gamma Strength Functions Oslo, Norway May 27 - 31, 2013