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DISCLAIMER:

1. We are only users of Level Densities
and Gamma Strength Functions, not
experts

2. An slightly misleading title !, this
will only be shown in the framework
of a practical application at the very
end.
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“Practical” overview

A few words (slides) about beta decay

*\WWhy we use the total absorption technique in beta decay
studies

\WWhy we need level densities and gamma strength functions
for our analysis

*Why studying neutron-rich nuclel, applications
*Some nuclear structure aspects (as collateral effect)



Example: ®°Co decay from http://www.nndc.bnl.gov/
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Pandemonium (The Capital of Hell)

introduced by John Milton (XVII) in his epic poem Paradise Lost

John Martin (~ 1825)  Hardy et al., Phys. Lett. 71B (1977) 307




TAGS measurements

Feeding

m\B Since the gamma detection is the only
——— —— reasonable way to solve the problem, we

" need a highly efficient device:
1
! A TOTAL ABSORTION SPECTROMETER
V.
WW; But there is a change in philosophy. Instead

of detecting the individual gamma rays we
N, PSiLth  sum the energy deposited by the gamma

/\ cascades in the detector.
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Analysis

d, =ERZ.J.(B)fj or d=R(B)f _E
J B-deca

R is the response function of the spectrometer, R;;
means the probability that feeding at a level j gives
counts in data channel i of the spectrum

The response matrix R can be constructed by recursive convolution:

i1
Rj =2bjkgjk PR, 2
=0

R, : response for level k

b,: branching ratio for j — k transition

gi- Y-response for j — k transition 1
J

Mathematical formalization by Tain, Cano, et al.




Relation to level densities and gamma

strength functions

d. = E R.(B)f, — “=Zhecor
J

B = R(B)
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statistical

Ecut

known

gi- Y-response for j — k transition
R, : response for level k
b;: branching ratio for j — k transition

The treatment of the statistical region

*\We define energy bins from the cut energy up to
the beta decay Q value

*The probability of finding levels in the bin (that
satisfy beta decay selection rules) and that can be
populated indirectly (gamma feeding from bins
above) is determined by the level density

*The gamma branching interconnecting the binned
part and its connection to the known part is
determined by gamma strength functions (E1, M1,
E2)



wed 1 1 f 1 4 J
— Tl T DO o D ST

L)
D
c C
> C
o O
O T
dn
o C
o =
= 0O
D

ntother
e got intere




Fission process energy balance

Energy released in the fission of 235U

Each fission is
approximately followed by
6 beta decays (sizable
amount of energy)

Energy distribution
Kinetic energy light fission fragment
Kinetic energy heavy fission fragment
Prompt neutrons
Prompt gamma rays
Beta energy of fission fragments
Gamma energy of fission fragments

Subtotal
Energy taken by the neutrinos
Total

MeV
100.0
66.2
4.8
8.0
7.0
7.2
192.9
9.6
202.7

James, J. Nucl. Energy 23 (1969) 517
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Decay heat: summation
calculations

J (1) = El-Ei)LiNi(t)

Ei Decay energy of the nucleus i (gamma, beta or both)

. In(2)
A.  Decay constant of the nucleus i A=
: 1)

Nz' Number of nuclei i at the cooling time t

Requirements for the calculations: large databases
that contain all the required information (half-lives,
mean y- and [-energies released in the decay, n-
capture cross sections, fission vyields, this last
information is needed to calculate the inventory of
nuclides)




Pandemonium and decay heat: what
happens with the mean energies ?

Fn = SEWN(1)

Parent (Z,N) 0’10 Parent (Z,N)
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We got interested in
the topic after the work
of Yoshida and co-
workers (Journ. of
Nucl. Sc. and Tech.

36 (1999) 135)

239Py example

(similar situation for
235,238 )

Detective work:
identification of some
nuclei that could be

blamed for the

The beginning ...

239Pu example (y component)
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The “famous” list
WPEC-25 (IAEA working group)

Radionuclide Priority Radionuclide Priority Radionuclide Priority
35-Br-86 1 41-Nb-99 1 52-Te-135 2
35-Br-87 1 41-Nb-100 1 53-1-136 1
35-Br-88 1 41-Nb-101 1 53-1-136m 1
36-Kr-89 1 41-Nb-102 2 53-1-137 1
36-Kr-90 1 42-Mo-103 1 54-Xe-137 1

37-Rb-90m 2 42-Mo-105 1 54-Xe-139 1
37-Rb-92 2 43-Tc-102 1 54-Xe-140 1
38-Sr-89 2 43-Tc-103 1 55-Cs-142 3
38-Sr-97 2 43-Tc-104 1 56-Ba-145 2

39-Y-96 2 43-Tc-105 1 57-La-143 2
40-Zr-99 3 43-Tc-106 1 57-La-145 2
40-Zr-100 2 43-Tc-107 2
41-Nb-98 1 51-Sb-132 1

37 nuclides, of which 23 were given first priority, reports by A. Nichols.




New feature: IGISOL + trap-assisted spectroscopy
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Impact of the results for 23%Pu: electromagnetic

component
Motivated by Yoshida et al. (Journ. of Nucl. Sc. and Tech. 36 (1999) 135) and WPEC-25
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Some additional impact of our data
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Results of QRPA calculations

1Mo, T,,,(exp) =
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The “famous” list
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Motivation of recently analyzed cases: 8’Br,3Br

* Priority one in the IAEA list
* Moderate fission yields

« Pandemonium cases ?, 87Br is one
of the best studied nucleus from high
resolution

* Interest from the structure point of
view: vicinity of n closed shell

» Competition between gamma and
neutron emission above the Sn value

Op
%/2 - { S,(E,) f(0, - E, JdE,




Analysis of 8/Br

d=R(B)

Expgctation Maximization (EM) method: P(f J ) (d |f )P(f])
modify knowledge on causes from effects j i E P(d If )P(f])

(s)
(s+1) R f di

Algorithm: J; ER E ZR”‘ ©

Tain et al. NIM A571 (2007) 719,728

formula for the level density & y-ray strength
functions)

Some details ( d=R(B)f) E statistical
Known levels up to: 1520 keV excitation i
From 1520 keV excitation up to the Qg =6852(18) i Ecut
value we use an statistical nuclear model to create - [j 3

known

the branching ratio matrix (Back Shifted Fermi Ej_t




87Br: meas. spectrum + contaminants + analysis

| |
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87Br: clean spectrum + analysis
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Deduced feedings from 87Br decay
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87Br feedings and mean energies

Q,=6817(5) keV

Sn= 5515.4(8)
<E;>[keV]  1656(75) 1017(16) I o55.65(13)

<E > [keV] 3345(35) 4242(30)  pn (87Br) = 2.52(7)%

% above Sn 0.58 <549%  Cumfiss. (*3°U) =0.02

Cum fiss.(%3°Pu) =0.005
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88Br: meas. spectrum + contaminants + analysis
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Counts

88Br: clean spectrum + analysis
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Deduced feedings from 8Br decay
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88Br feeding and mean energies

Q;=8975(5) keV
<E,>[keV]  2392(300) 1427(20)  Sn=7054(13) keV
T,=16.29(6) s
<E,>[keV] ~ 3134(58) 5090(30) (88/23.-) 6 28)( 18)%
OA) above Sn 0.0 % <3.2 % Cum fiss. (235U) =0.018

Cum fiss.(%3°Pu) =0.007
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Conclusions

* The recently analyzed beta decay cases from the
IAEA high priority list were presented (87,88Br)

* These nuclei show a moderate beta delayed
neutron emission and competition between
gamma and neutron emission above the Sn of the
daughter. Both decays suffered from the
Pandemonium effect.

* An open question is why we suffered from the
gamma strength functions in the case of 87Br. Not
typical situation.

* Those measurements will also have an impact in
nuclear structure (as our earlier measurements)
and in neutrino physics.
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