

AN EVENT GENERATOR FOR BETA DECAY STUDIES BASED ON THE STATISTICAL NUCLEAR MODEL

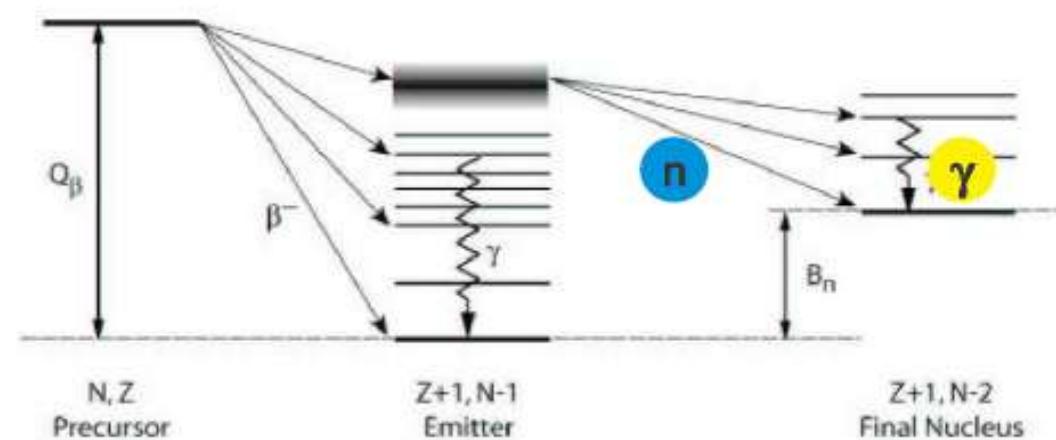
María Dolores Jordán Martín
Instituto de Física Corpuscular
(CSIC-Univ. de Valencia)

Overview

- **Introduction**
- **Objective**
- **Basis for the generator**
- **Construction of the level scheme**
- **Delayed neutron emission**
- **Inputs**
- **Integration in Geant4**
- **Tests**
- **Applications**
- **Status and future plans**
- **Summary**

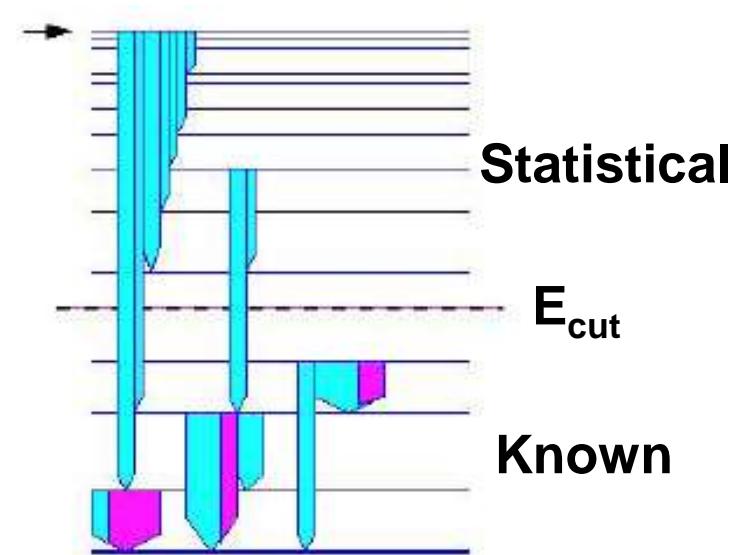
Introduction

- Complex experiments: design, optimization and performance characterization of experimental set-ups \Rightarrow simulations
 - An event generator as realistic as possible
 - Good knowledge of decaying sources (decay type, γ -ray emission, possible emission of other particles,...)
- Geant4 simulation toolkit \Rightarrow G4RadioactiveDecay is based on known nuclear level schemes from databases (high resolution measurements)
 - Not always complete (spin and parities)
 - Possibly affected from Pandemonium effect (A. Algora talk)


Objective

- An event generator for realistic simulation of complex beta decay experimental set-ups (more flexible than Geant4 “G4RadioactiveDecay”)
- Primary processes

β^- -decay
 β^+/EC -decay
 βn -decay



- Secondary processes
 - β -delayed neutron emission

Basis for generator

- Level scheme construction:
 - at low energies: **known level scheme**
 - At high energies (above the E_{cut}): **statistical model**
- β -strength distribution
- Approximations/simplifications:
 - β -spectral shape: **allowed transitions**
 - Electrons (EC or CE) only from K-shell
 - Above S_n , no γ/n competition \Rightarrow **n emitted**
 - Fluctuations in the statistical model are omitted

Low lying level scheme

- Information from ENSDF database
- Data not always complete: spin, parities, internal conversion coefficients,... of several levels are not given
- Level schemes considered complete up to E_{cut} .
- RIPL-2 library was complemented by T. Belgya with data missing in ENSDF for 3117 nuclides.
- <http://www-nds.iaea.org/RIPL-3/levels/>

Implementation of the statistical model (I)

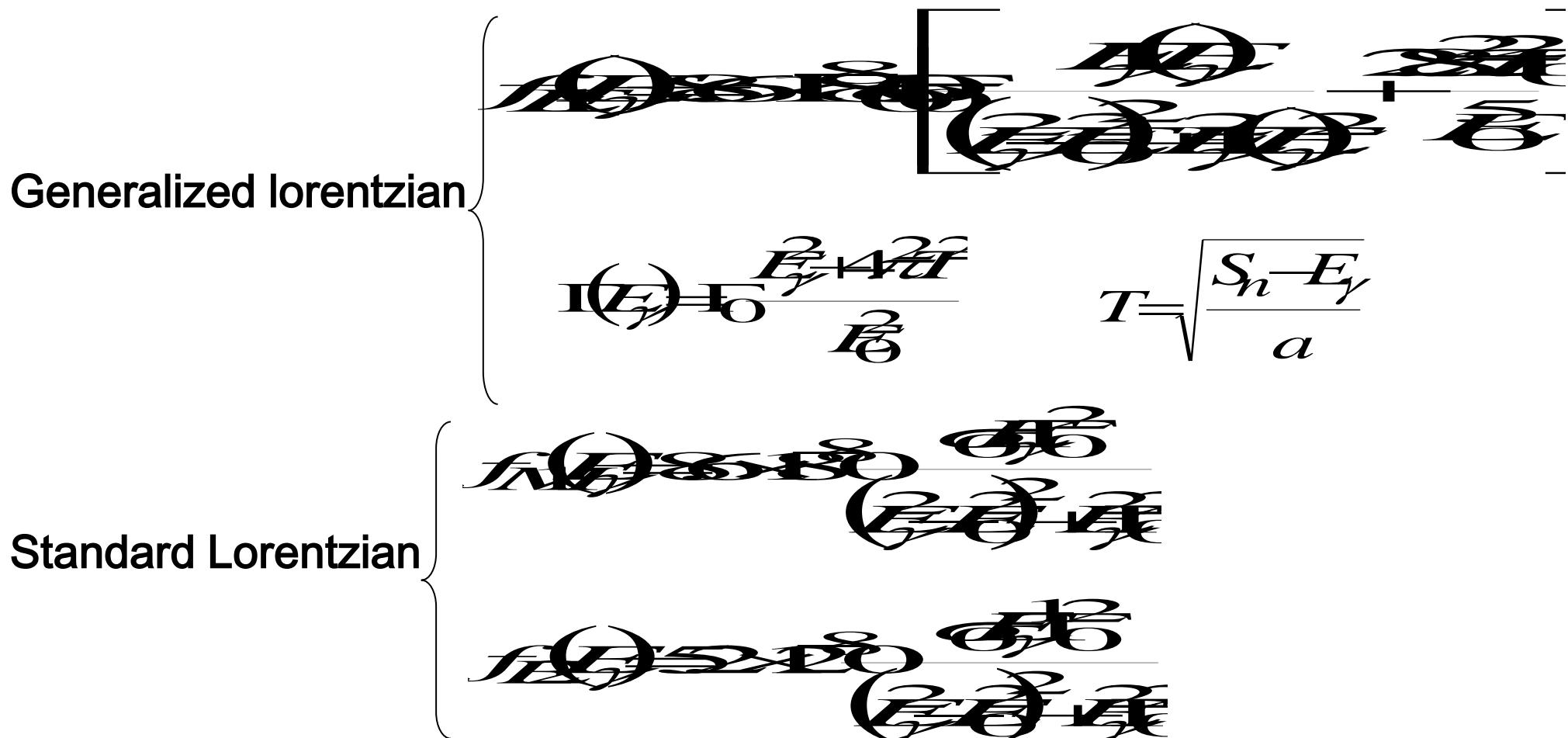
- Nuclear level density:
 - Back shifted Fermi Gas formula
 - Constant Temperature
 - Gilbert-Cameron (CT + BSFG)

BSFG formula
(a, Δ)

$$\sigma^2 = \frac{1}{2a^3 t}, \quad t = \frac{\sqrt{1 + 4E_x/\Delta}}{2a}$$

Implementation of the statistical model (II)

- γ -strengths: average radiation width from levels of spin-parity J^π at excitation energy E_x into levels within a certain interval



- L: multipolarity
- X: transition character (E: electric, M: magnetic)
- f_{XL} : strength functions

Average branching ratios: $b_{if} \propto \langle \Gamma_\gamma \rangle_{if}$

Implementation of the statistical model (III)

- Giant resonances functions (E_0 , Γ_0 and σ_0):

Delayed neutron emission

- Neutron width:
 - The nuclear surface is equivalent to a change of potential \Rightarrow for emission of l -orbital neutron:

$$\left\langle \frac{1}{r} \right\rangle$$

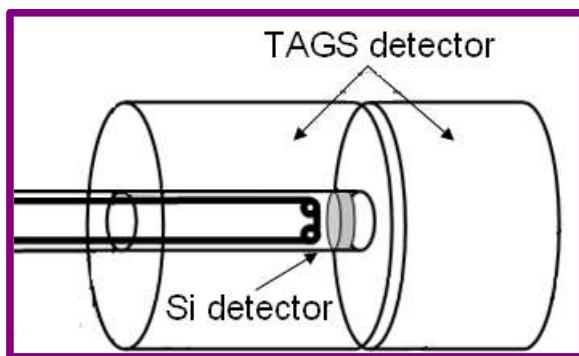
Square well potential

- T_n^l : neutron transmission coefficients

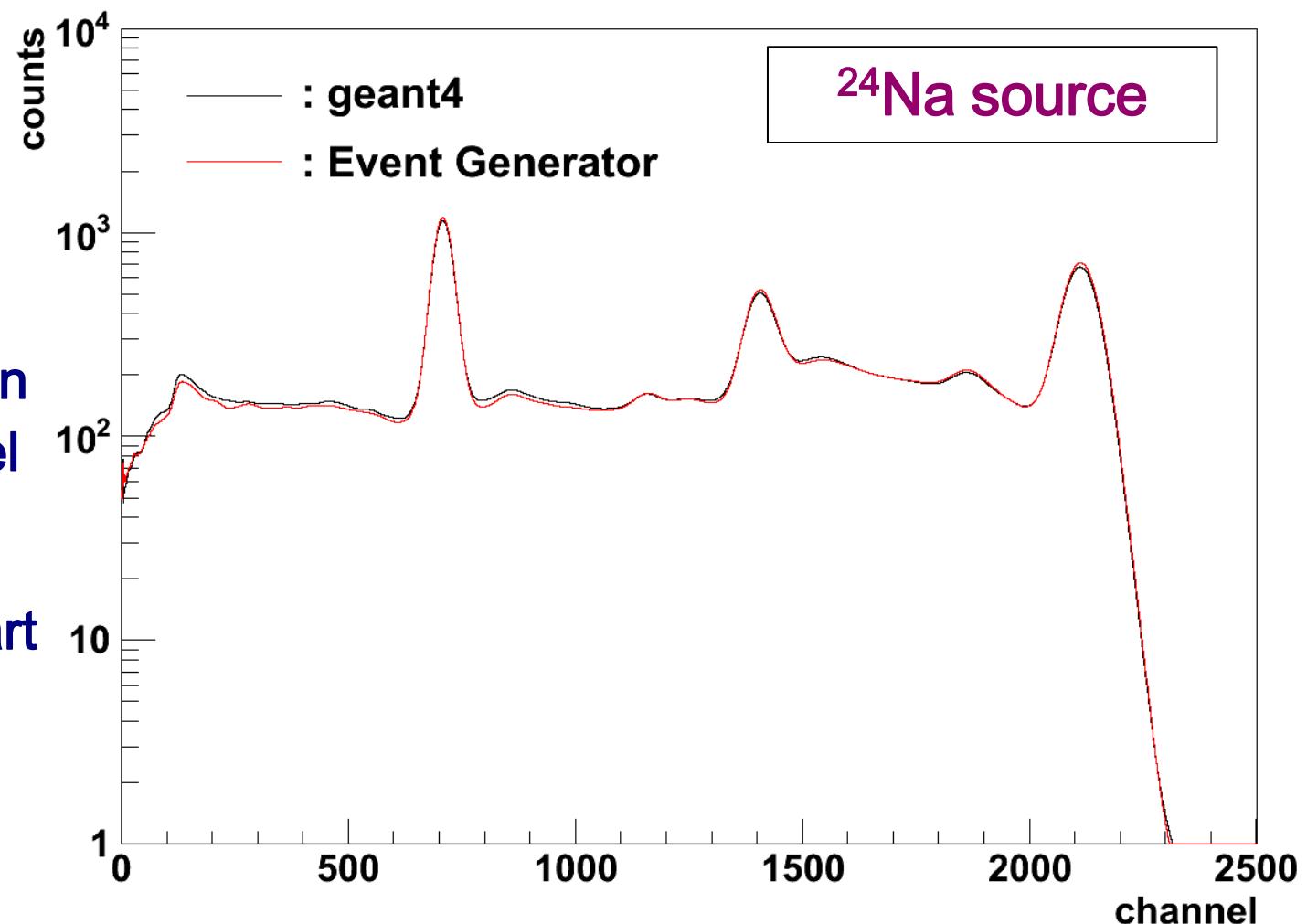
$$x = \frac{\sqrt{2\mu E_n}}{\hbar}$$

l	v_l	v'_l
0	1	1
1	$\frac{x^2}{1+x^2}$	$\frac{1}{x^2} + \left(1 - \frac{1}{x^2}\right)^2$
2	$\frac{x^4}{9+3x^2+x^4}$	$\left(1 - \frac{6}{x^2}\right)^2 + \left(\frac{6}{x^3} - \frac{3}{x^2}\right)^2$
3	$\frac{x^6}{225+45x^2+6x^4+x^6}$	$\left(1 - \frac{21}{x^2} + \frac{45}{x^4}\right)^2 + \left(\frac{45}{x^3} - \frac{6}{x}\right)^2$

inputs


- Parent nucleus/level variables (A , Z , $T_{1/2}$, J^π)
- Type of decay (β^- , β^+ /EC, Isomeric Decay, βn)
- β -decay
 - Q-value
 - β -intensity distribution
 - known part of the level scheme: E_{lev} , J^π , E_γ , I_γ and α
 - unknown part of level scheme: parameters of the statistical model
 - neutron separation energy of the daughter nucleus (S_n)
 - level scheme of the final nucleus (assumed always known)
- Isomeric decay \Rightarrow De-excitation level scheme (assumed to be known)

Integration in Geant4


- Main program:
 - DecayGeneratorAction.cc
- External data files:
 - DecayGeneratorInput.dat
 - KnownLevelScheme.dat
 - BetaIntensity.dat (theoretical calculation for example)
 - DelayedNeutronLevelScheme.dat
 - BSFGparameters.dat (RIPL-2, RIPL-3) If the level density parameters for a given (Z,A) are not in the dat file a global parametrization is used (A.J. Koning et al., Nucl. Phys. A 810 (2008) 13)

Tests performed

- Simulation of a TAGS + Si detectors (experiment performed in Jyväskylä in 2007)

- Test using well known sources (knowm level scheme part)
- Test for unknown part of the level scheme (statistical model) using TAGS data

NEDENSAA NuPNET project

- NEDENSAA: NEutron Dectectors developments for Nuclear Structure, Astrophysics and Applications
- Collaboration of several European countries.
- Project interested in spectroscopy of exotic neutron-rich nuclei
- Optimization of the combination of different geometries: high resolution spectroscopy (**Ge detectors**) + neutron detectors or/and medium resolution, high efficiency (**LaBr₃ detectors**)
- Use of the event generator for the performance of the tests combining the different kind of detectors.

Status and future plans

- Status:
 - Adapted to the last version of Geant4 ([geant4.6.0](#)) and ready to be used.
- Future plans:
 - To make it more user friendly and simplifying inputs
 - To include the emission of other secondary particles: p and α
 - To include the decaying nuclei spatial implantation distribution
 - To include backgrounds:
 - [Implantation breamsstrahlung](#)
 - [Beam-line related background](#)
 - [Ambient background](#)

Summary

- We have developed a “realistic” event generator for design, optimization and performance characterization of β -decay experiments
- The statistical model of the nucleus has been used for population and decay of the nucleus at high excitation energies, above E_{cut} .
- The event generator has been integrated in the Geant4 framework and it has been tested.
- The event generator will be used, within the NEDENSAA (NuPNET) framework, for testing new combinations of detectors.

Thank you for your attention!

Thanks to the collaborators:
J.L. Taín & A. Algora