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Scissors mode (SM) in M1 PSF

SM proposed in deformed nuclei by theorists in late 70’s:

N. Lo ludice and F. Palumbo, Phys. Rev. Lett. 53, 1532 (1978).
R. R. Hilton, in Proceedings of the International Conference on Nuclear Structure, Dubna, 1976.




Scissors mode (SM) in M1 PSF
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Scissors mode (SM) in M1 PSF

SM proposed in deformed nuclei by theorists in late 70’s:

N. Lo ludice and F. Palumbo, Phys. Rev. Lett. 53, 1532 (1978).
R. R. Hilton, in Proceedings of the International Conference on Nuclear Structure, Dubna, 1976.

SM experimentally confirmed in high-resolution (e,e’) experiments on rare-earth nuclei
D. Bohle et al., Phys. Lett. B 137, 27 (1984).

SM for the GS transitions in even-even nuclei studied in detail in the 80’s and 90’s mainly

using the (y,y’) experiments




SM in Nuclear Resonance Fluorescence technique
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SM in Nuclear Resonance Fluorescence technique

In well-deformed even-even nuclei




SM in Nuclear Resonance Fluorescence technique
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SM in Nuclear Resonance Fluorescence technique
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SMin Oslo method (*He-induced reactions)
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SM observed in (n,y) reactions - TSC

e = 25%

6 m long neutron guide

) (Gaget)  DAQ time: 800 h

(GrediD) & = 28%

Tbh,0, (m =0.88Q)

3.0x10%° ncm2st En = 0.025 eV
DAQ conditions for the TSCs: Neutron shielding: 5Li,CO;
» energiesE; and E , Low energy y-ray shielding: Lead
* time difference




SM observed in (n,y) reactions — TSC

J. Kroll et al., Int. Jour. Mod. Phys. E
20, No. 2, 526 (2011).
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SM observed in (n,y) reactions - TSC
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SM observed in (n,y) reactions — TSC

Esy = 3.0 MeV
[« = 0.6 MeV
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SM observed in (n,y) reactions - TSC

SM on the excited states was observed for the first time in TSC experiment with 163Dy

M. KrtiCka et al., Phys. Rev. Lett. 92, 172501 (2004). _
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SM observed in (n,y) reactions - TSC

SM on the excited states was observed for the first time in TSC experiment with 163Dy
M. KrtiCka et al., Phys. Rev. Lett. 92, 172501 (2004).
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SM observed in (n,y) reactions - TSC
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SM observed in (n,y) reactions - TSC
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DANCE experiment at LANSCE

» Moderated W target gives “white” neutron
spectrum = 14 n’s / proton

> Repetition rate 20 Hz
» Pulse width ~ 125 ns

» DANCE (Detector for Advanced Neutron Capture
Experiments) detector is placed on a 20m long
flight path / ~ 1 cm beam after collimation
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Average proton current ~ 100 uA




DANCE experiment at LANSCE - BaF, crystals

» DANCE consists of 160 BaF2 crystals (fullerene-type structure)

» total efficiency of detecting o photon from cascade > 90%

« efficiency for 1 MeV photon ~ 86%

* energy resolution: dE/E = 1.089e-2 + 0.146/sqrt(E)
e 1MeV y-ray = 16%
* 6 MeVyray=7%

« timing resolution ~ 2 ns




DANCE experiment at LANSCE - signal

> Data Acquisition System Teirst channel
« Each crystal is connected to a chanel in two different digitizers ! \
« Acqiris 4-channel DC256 difitizers (500 MHz, 8 bit resolution)  baseline

T
‘/ Leading edge

BaF, light output consits of
Fast component (0.6 ns, 220 nm) — 1 integral / 32pts = 64ns

Slow component (630 ns, 310 nm) — 5 integrals / 100pts = 200ns

> Data rate reduced to ~ 1 Mbyte/s VAN N N T~
Bkgd  Fast Integrals of slow
» DAQ has ~ 40 ms to read out the digitizers, extract the waveform component signal

information and send data to the Midas served
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DANCE experiment at LANSCE - calibration

> Primary energy calibration (88Y, 8°Co, 22Na) 1000
> Gain for each crystal updated run-by-run by the a-particles ~ *° 3 '&L,W
from Ra isotopes present in BaF, crystals C component
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DANCE experiment at LANSCE - calibration

Gamma Fast Integral (MeV)

Primary energy calibration (88Y, 6°Co, %?Na)

Gain for each crystal updated run-by-run by the a-particles
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DANCE experiment at LANSCE - calibration

Gamma Fast Integral (MeV)

> Primary energy calibration (88Y, 6°Co, ?°Na)

» Gain for each crystal updated run-by-run by the a-particles

» Signal from a-particles is easily identified

from Ra isotopes present in BaF, crystals

Alpha signal in crystal #5
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DANCE experiment — Gd isotopes

With a DANCE detector we have measured stable
Gd isotopes

153Gd’ 1556d1 156Gd, 157Gd’ 158Gd’ 159Gd

mainly to get information about the Photon Strength
Functions (PSFs)




DANCE experiment — TOF method
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DANCE experiment — data processing

Sum-energy spectra for different multiplicities
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DANCE experiment — data processing

%10° | Crystal multiplicity distribution |
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DANCE experiment — data processing

Intensity (arb. units)

Intensity (arb. units)

Experimental MSC spectra
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Simulations of gamma decay — DICEBOX

1. Below a critical energy E_,; the energies E, spins J, parities = and the decay properties of
all levels are taken from known data




Simulations of gamma decay — DICEBOX

Below a critical energy E_,; the energies E, spins J, parities n and the decay properties of
all levels are taken from known data

Above the critical energy E_; the energies E, spins J and parities « of levels are obtained by
random discretization of an a priory known level density

Level density




Simulations of gamma decay — NLD

10° | ' | y T ' T ' T
NLD Models: 159 -
— HFB [1] Gd :
——CT[2] ]
—~ ~ — -CT[3] 5
> - - -BSFG [3] :
2 ]
> 10° -
‘0 ]
% ;
S :
-~ ]
% 10° Experimental data _
— from (*He,a) reaction:
. 161Dy .
10° <
I . I L

1 2 3 4 5 6

Excitation Energy (MeV)

[1] R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

[2] T.von Egidy and D. Bucurescu, Phys. Rev. C 72, 044311 (2005).
[3] T.von Egidy and D. Bucurescu, Phys. Rev. C 80, 054310 (2009).
161Dy data: M. Guttormsen et al., Phys. Rev. C 68, 064306 (2003).




Simulations of gamma decay — DICEBOX

Below a critical energy E_,; the energies E, spins J, parities n and the decay properties of
all levels are taken from known data

Above the critical energy E_; the energies E, spins J and parities « of levels are obtained by
random discretization of an a priory known level density

Level density

Partial radiation widths T'¢ for transitions between initial (i) and final (f) levels are
generated according to the formula:

fY(E; — By)
Liyy = ZyizfXJ(Ei - Ef)NH o(E;, J; ﬂ.)f

XJ




Simulations of gamma decay — DICEBOX

Below a critical energy E_,; the energies E, spins J, parities n and the decay properties of
all levels are taken from known data

Above the critical energy E_; the energies E, spins J and parities « of levels are obtained by
random discretization of an a priory known level density

Level density

Partial radiation widths T'¢ for transitions between initial (i) and final (f) levels are
generated according to the formula:

mSFS
[YDNE; — Ey)
Fi _ yz2 (Ez . E )2J—|—

" XZJ & g p(EH Jiaﬂ-i)




Simulations of gamma decay — PSFs

1.00 |- PSF MO('jeIs:

——SLO+SM+ SF
| —— KMF + SM + SF
——MGLO (k,=4.0) + SM + SF

0.75 | MLO2 + SM + SF

e

Experimental data:
from (*He,q) reaction:
® 161Dy

PSF (x10" MeV™®)
B g

E (MeV)

The energy of the SM is 3.0 MeV, damping width is 1.0 MeV and the
strength 2B, (SM)1 = 7.46 p?*

161Dy data: M. Guttormsen et al., Phys. Rev. C 68, 064306 (2003).




Simulations of gamma decay — DICEBOX

Below a critical energy E_,; the energies E, spins J, parities n and the decay properties of
all levels are taken from known data

Above the critical energy E_; the energies E, spins J and parities « of levels are obtained by
random discretization of an a priory known level density

Level density

Partial radiation widths T'¢ for transitions between initial (i) and final (f) levels are
generated according to the formula:

mSFS
[YDNE; — Ey)
Fi _ yz2 (Ez . E )2J—|—

" XZJ & g p(EH Jiaﬂ-i)




Simulations of gamma decay — DICEBOX

Below a critical energy E_,; the energies E, spins J, parities n and the decay properties of
all levels are taken from known data

Above the critical energy E_; the energies E, spins J and parities « of levels are obtained by
random discretization of an a priory known level density

Level density

Partial radiation widths T'¢ for transitions between initial (i) and final (f) levels are
generated according to the formula:

P-T fluctuations @SFS
E — E;)
Fi _ EZ . E 2J+ f L J
" f) \p‘(Eiajiaﬂ-i)




Simulations of gamma decay — DICEBOX

Below a critical energy E_,; the energies E, spins J, parities n and the decay properties of
all levels are taken from known data

Above the critical energy E_; the energies E, spins J and parities « of levels are obtained by
random discretization of an a priory known level density

Level density

Partial radiation widths T'¢ for transitions between initial (i) and final (f) levels are
generated according to the formula:

P-T fluctuations @SFS
E — E;)
Fi _ EZ . E 2J+ f L J
" f) \p‘(Eiajiaﬂ-i)

Partial radiation widths I';; for different initial and/or final levels are statistically independent.




Simulations of gamma decay — DICEBOX

Nuclear Realization: Level EXxcitation
l Number Precursor Energy
106 energy leves \ l
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~ [0 s
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Detector response — Geant4

» The outputs of DICEBOX simulations are transformed to the form of Geant4 input.

» Simulations of detector response include the exact geometry and chemical composition (regular and
irregular pentagonal and hexagonal BaF, crystals), all shielding, aluminium beamline, radioactive

target holder, etc.




Comparison of experimental MSC spectra with simulations

Intensity (arb. units)

» To get information on PSFs and LD we compare experimental data with outputs of

simulations
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Comparison of experimental MSC spectra with simulations
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>B(M1,2.7-3.7)1 in even nuclei
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NRF data [black] U. Kneissl et al., Prog. Part. Nucl. Phys. 37, 349 (1996).

148Sm [red] S. Siem et al., PRC 65, 044314 (2002); 160.162Dy [red] M. Guttormsen et al., PRC 68, 064306 (2003);
164Dy [red] H.T. Nyhus et al., PRC 81, 024325 (2010); 16Er [red] E. Melby et al., PRC 63, 044309 (2001);

172yb [red] A. Voinov et al., PRC 63, 044313 (2001);

158Gd [blue] A. Chyzh et al., PRC 84, 014306 (2011); *°¢Gd [blue] B. Baramsai et al., PRC 87, 044609 (2013).




>B(M1,2.7-3.7)7 in odd / odd-odd nuclel
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NRF data [black] A. Nord et al., Phys. Rev. C 67, 034307 (2003).

149Sm [red] S. Siem et al., PRC 65, 044314 (2002); 161Dy [red] M. Guttormsen et al., PRC 68, 064306 (2003);

163Dy [red] H.T. Nyhus et al., PRC 81, 024325 (2010); 67Er [red] E. Melby et al., PRC 63, 044309 (2001);

171yb [red] A. Voinov et al., PRC 63, 044313 (2001);

153,155.157.159Gd [blue] J. Kroll et al., EPJ Web of Conferences 21, 04005 (2012); J. Kroll et al., Phys. Scr. T 154, 014009 (2013).
163Dy [purple] M. Krticka et al. PRL 92, 175501 (2004); 1%9Tb [purple] J. Kroll et al., Int. Jour. Mod. Phys. E, V. 20, N. 2, 526 (2011).




>B(M1,2.7-3.7)1 all data together
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NRF data even [black] U. Kneissl et al., Prog. Part. Nucl. Phys. 37, 349 (1996).

NRF data odd [black] A. Nord et al., Phys. Rev. C 67, 034307 (2003).

148,1499m [red] S. Siem et al., PRC 65, 044314 (2002); 160.161.162Dy [red] M. Guttormsen et al., PRC 68, 064306 (2003);

163,164Dy [red] H.T. Nyhus et al., PRC 81, 024325 (2010); 166.167Er [red] E. Melby et al., PRC 63, 044309 (2001);

171.172¥p [red] A. Voinov et al., PRC 63, 044313 (2001);

158Gd [blue] A. Chyzh et al., PRC 84, 014306 (2011); 156Gd [blue] B. Baramsai et al., PRC 87, 044609 (2013).

153,155,157,159Gd [blue] J. Kroll et al., EPJ Web of Conferences 21, 04005 (2012); J. Kroll et al., Phys. Scr. T 154, 014009 (2013).
163Dy [purple] M. Krti¢ka et al. PRL 92, 175501 (2004); 69Tb [purple] J. Kroll et al., Int. Jour. Mod. Phys. E, V. 20, N. 2, 526 (2011).




>B,.(SM)1 all data together
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NRF data even [black] U. Kneissl et al., Prog. Part. Nucl. Phys. 37, 349 (1996).

NRF data odd [black] A. Nord et al., Phys. Rev. C 67, 034307 (2003).
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153,155,157,159Gd [blue] J. Kroll et al., EPJ Web of Conferences 21, 04005 (2012); J. Kroll et al., Phys. Scr. T 154, 014009 (2013).
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>B,.(SM)1 all data together
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NRF data even [black] U. Kneissl et al., Prog. Part. Nucl. Phys. 37, 349 (1996).

NRF data odd [black] A. Nord et al., Phys. Rev. C 67, 034307 (2003).

148,1499m [red] S. Siem et al., PRC 65, 044314 (2002); 160.161.162Dy [red] M. Guttormsen et al., PRC 68, 064306 (2003);

163,164Dy [red] H.T. Nyhus et al., PRC 81, 024325 (2010); 166.167Er [red] E. Melby et al., PRC 63, 044309 (2001);

171.172¥p [red] A. Voinov et al., PRC 63, 044313 (2001);

158Gd [blue] A. Chyzh et al., PRC 84, 014306 (2011); 156Gd [blue] B. Baramsai et al., PRC 87, 044609 (2013).

153,155,157,159Gd [blue] J. Kroll et al., EPJ Web of Conferences 21, 04005 (2012); J. Kroll et al., Phys. Scr. T 154, 014009 (2013).
163Dy [purple] M. Krti¢ka et al. PRL 92, 175501 (2004); 69Tb [purple] J. Kroll et al., Int. Jour. Mod. Phys. E, V. 20, N. 2, 526 (2011).




Conclusions

M1 SM plays an important role in gamma deexcitation of studied Gd
isotopes.

M1 SM is observed above the accessible excited states in all studied Gd
nuclei.

Values of £B(M1,2.7-3.7)1 obtained for 156.158Gd are slightly below the results
of (y,y’) experiments.

We have gotten new results for XB(M1)1 present in odd rare-earth isotopes
153,155,157,159Gd_

Odd-even asymmetry of XB(M1)1 in 156.158Gd and 157:159Gd is in disagreement
with the Oslo data for Dy isotopes.
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