

Time-of-flight measurements at n_TOF CERN

Frank Gunsing

CEA/Saclay DSM / Irfu / SPhN F - 91911 Gif-sur-Yvette, France frank.gunsing@cea.fr

for the n_TOF Collaboration

CERN location

CERN location

CERN location

Frank Gunsing, CEA/Saclay Oslo, 4th Workshop on Nuclear Level Density and Gamma Strength, May 29, 2013

Frank Gunsing, CEA/Saclay Oslo, 4th Workshop on Nuclear Level Density and Gamma Strength, May 29, 2013

Pulsed white neutron source:

- 20 GeV/c protons
- neutrons from spallation
- 6 ns rms pulse width
- frequency 1 pulse/2.4 seconds
- separate cooling and moderation
- flight path length EAR1: 185 m
- @source: 7x10¹² protons/pulse
- @source: 2x10¹⁵ neutrons/pulse
- $\overline{@}$ EAR1: 5 10⁵(capture) 5 10⁷(fission) neutrons/pulse

Main features:

- Large energy range in one experiment (0.1 eV 250 MeV)
- Favorable signal to noise ratio for capture on radioactive isotopes (actinides, fission products)

New Spallation Target in 2009

The n_TOF neutron spectrum

n_TOF experimental setup

- 1. Spallation target and moderator producing neutrons with energies from thermal up to several GeV
- 2. first collimator (Ø=11 cm) for first shaping of the beam + filter station
- **3.** Sweeping magnet
- 4. Second variable collimator (Ø=1.8/8 cm) final beam shaping
- 5. Experimental Area 1 (EAR1), with samples and detectors

Nuclei of interest for neutron induced reactions

Stellar nucleosynthesis (s-, r-process)

Actinide build-up in reactors (w-process)

n_TOF Detectors

n_TOF data acquisition system

- 56 Acqiris fADC channels
- up to 1 GHz sampling rate, 8-10 bit resolution
- full recording of detector signal up to 80 ms
- Offline signal processing and event construction

n_TOF CERN phase I (2001-2004) Summary of measurements

capture C₆D₆ ^{24,25,26}Mg

⁵⁶Fe 90,91,92,93,94,96**Z**r

¹³⁹La ¹⁵¹Sm ^{186,187,188}Os ¹⁹⁷Au ^{204, 206,} 207,208Pb ²⁰⁹Bi

²³²Th

capture BaF ₂
¹⁹⁷ Au
233,234U
²³⁷ Np
²⁴⁰ Pu
²⁴³ Am

fission FIC
²³² Th
²³⁷ Np
233,234,235,236,238
^{241,243} Am
²⁴⁵ Cm

Frank Gunsing, CEA/Saclay Oslo, 4th Workshop on Nuclear Level Density and Gamma Strength, May 29, 2013

n_TOF CERN phase II (2008-2012) Summary of measurements

MICROMEGAS-BASED NEUTRON BEAM PROFILER

Goal:

Pilot experiment to measure neutron resonance spins of ⁸⁷Sr with BaF₂ TAC 87 Sr has J^{π} = 9/2⁺

s-waves (I=0): $J^{\pi} = 4^+ \text{ or } 5^+$ p-waves (I=1): $J^{\pi} = 3^-, 4^-, 5^-, 6^-$

Development:

Optimize possible analysis methods for spin assignments using TAC. In future, apply to other isotopes.

How:

• Exploit gamma-ray spectra from decay from resonance state

- gamma-ray multiplicity spectra
- low-level population
- primary gamma-rays (presence, angular distribution)

Why ⁸⁷Sr?

- Extension of multiplicity method to p-waves
- Large spin window, large p-wave resonances (peak in p-wave strength function)
- Enriched sample is available from Los Alamos
- Additional interest for astrophysics (s-process branching through ⁸⁵Kr)

Nuclear level densities

⁸⁷Sr(n,γ_{thermal})⁸⁸Sr spectrum

⁸⁷Sr(n,γ_{thermal})⁸⁸Sr spectrum

Simulated decay of ⁸⁸Sr*

Spin dependence of population ratio

Data reduction

Data reduction

Energy deposit in BaF₂ crystals

Data reduction

Energy deposit in BaF₂ crystals

Spectrum TOF-amplitude

Multiplicity decomposition

Multiplicity decomposition

Assign orbital momentum

Integrate over resonances

Low-level population using pulse height spectra

Cea

Low-level population using pulse height spectra

40

The n_TOF beam line EAR1

The spallation target area

Experimental Hall EAR2

Installation of Collimator1

Frank Gunsing, CEA/Saclay

n_TOF Collaboration /

NA--- 0040

Oallahanatian Daard

Experimental Hall EAR2

Experimental Hall EAR2

Frank Gunsing, CEA/Saclay

Oslo, 4th Workshop on Nuclear Level Density and Gamma Strength, May 29, 2013 International Conference on 50

EAR2 material irradiation

Basket for material irradiation

EAR2 enhanced flux

n_TOF Collaboration

• The n_TOF Collaboration operates the facility since 2001.

- Members as of 2012 (not necessarily CERN member states):
 - 33 Institutions (EU, USA, India) + coll. with Japan and Russia
 - 100 scientists
 - 16 PhD students

 From July 2014, after the planned beam stop, n_TOF will take data again from, simultaneously in EAR1 (185 m) and EAR2 (20 m)

Thank you for your attention.

The n_TOF Collaboration

E. Chiaveri, S. Andriamonje, J. Andrzejewski, L. Audouin, V. Avrigeanu, M. Barbagallo, V. Bécares, F. Bečvář, F. Belloni, E. Berthoumieux, J. Billowes, D. Bosnar, M. Brugger, M. Calviani, F. Calviño, D. Cano-Ott, C. Carrapiço, F. Cerutti, M. Chin, N. Colonna, G. Cortés, M.A. Cortés-Giraldo, M. Diakaki, I. Dillmann, C. Domingo-Pardo, I. Duran, N. Dzysiuk, C. Eleftheriadis, M. Fernández-Ordóñez, A. Ferrari, K. Fraval, S. Ganesan, Y. Giomataris, G. Giubrone, M.B. Gómez-Hornillos, I.F. Gonçalves, E. González-Romero, F. Gramegna, E. Griesmayer, C. Guerrero, F. Gunsing, M. Heil, D.G. Jenkins, E. Jericha, Y. Kadi, F. Käppeler, D. Karadimos, P. Koehler, M. Kokkoris, M. Krtička, J. Kroll, Ch. Lampoudis, C. Lederer, H. Leeb, L.S. Leong, R. Losito, M. Lozano, A. Manousos, J. Marganiec, T. Martinez, C. Massimi, P.F. Mastinu, M. Mastromarco, M. Meaze, E. Mendoza, A. Mengoni, P.M. Milazzo, M. Mirea, W. Mondelaers, Th. Papaevangelou, C. Paradela, A. Pavlik, J. Perkowski, A. Plompen, J. Praena, J.M. Quesada, T. Rauscher, R. Reifarth, A. Riego, F. Roman, C. Rubbia, R. Sarmento, P. Schillebeeckx, G. Tagliente, J.L. Tain, D. Tarrìo, L. Tassan-Got, A. Tsinganis, S. Valenta, G. Vannini, V. Variale, P. Vaz, A. Ventura, M.J. Vermeulen, V. Vlachoudis, R. Vlastou, A. Wallner, T. Ware, C. Weiß, T.J. Wright

More information: www.cern.ch/ntof