Do we understand Gamma Strength Functions? The case of ⁹⁶Mo*

TECHNISCHE UNIVERSITÄT DARMSTADT

4th Workshop on Nuclear Level Density and Gamma Strength Dirk Martin for the E376 collaboration

Outline

- Gamma Strength Function and Axel-Brink Hypothesis
- Polarized proton scattering at 0°
- Data analysis
- First results
- Summary and outlook

Gamma Strength Function (GSF)

Describes the (average) energy distribution of photon emission from highly-excited states or cross section for photon absorption

Gamma Strength Function (GSF)

Principle of detailed balance:

Axel-Brink Hypothesis

- Gamma Strength Function:
 - only depends on E_{γ}
 - is independent of the initial state structure: excitation energy E_x , J^{π} ,...
- Same GSF for absorption and gamma emission
- Used for correction of stellar cross sections due to thermal population of excited states

Experimental discrepancies in GSF

Ann-Cecilie Larsen, 3rd Workshop on Level Density and Gamma Strength, Oslo, Norway, May 23 — 27, 2011

Experimental problems

• (γ, γ') experiments:

- Measure strength up to neutron threshold only
- Experimental quantity $\Gamma_0 \cdot \frac{\Gamma_0}{\Gamma}$
- Assumption in most analyses: $\frac{\Gamma_0}{\Gamma} = 1$

lower limit

 Alternatively: correction with statistical model calculations

[G. Rusev et al., PRC 79 (2009) 061302]

Experimental problems (continued)

- (γ, xn) reactions provide information only above threshold
- Decay reactions:
 - Normalization at the S_n energy
 - Level densities needed

Consistent data on strength below and above the neutron threshold highly important!

[G. Rusev et al., PRC 79 (2009) 061302]

Complete E1 and M1 strength distributions

- Polarized proton scattering at 0°
 - Intermediate energy: 300 MeV optimal
 - High energy resolution: $\Delta E = 25-30 \text{ keV}$ (FWHM)
 - Angular distributions: E1 / M1 separation via multipole decomposition analysis
 - Polarization observables: spinflip / non-spinflip separation

- ²⁰⁸Pb as a reference case (I. Poltoratska, doctoral thesis)
- Low-energy dipole modes in the heavy deformed nucleus ¹⁵⁴Sm
- Complete dipole response in ¹²⁰Sn

Research Center for Nuclear Physics (RCNP) in Osaka, Japan

- ► E_p = 295 MeV
- Beam intensity: 1-2 nA

TECHNISCHE UNIVERSITÄT

DARMSTADT

- Dispersion matching:
 \Delta E = 25-30 keV
- Polarization: ~70%
- Beam polarization was periodically flipped to avoid instrumental asymmetries

0° setup at RCNP in Osaka

Focal plane detector system:

Determination of positions $x_{fp}^{}$, $y_{fp}^{}$ and angles $\theta_{fp}^{}$, $\phi_{fp}^{}$ Focal plane polarimeter:

Measurement of the polarization p" after a secondary scattering off a carbon slab

E1/M1 decomposition by spin observables

Polarization observables at 0°

(model-independent)

spinflip / non-spinflip separation*

$$D_{SS} + D_{NN} + D_{LL} = \begin{cases} -1 \text{ for } \Delta S = 1 \\ 3 \text{ for } \Delta S = 0 \end{cases}$$

E1 and M1 cross sections can be decomposed

At 0°: $D_{SS} = D_{NN}$

Total Spin Transfer
$$\Sigma \equiv \frac{3 - (2D_{NN} + D_{LL})}{4} = \begin{cases} 1 \text{ for } \Delta S = 1 \pmod{1} \\ 0 \text{ for } \Delta S = 0 \pmod{1} \end{cases}$$

* [T. Suzuki, Prog. Theo. Phys. 103 (2000) 859]

Multipole decomposition of angular distributions

^{30.05.13 |} TU Darmstadt | Institut für Kernphysik | Dirk Martin | Oslo 2013 | 14

B(E1) strength: low-energy region

Gamma Strength Function in ²⁰⁸Pb

TECHNISCHE UNIVERSITÄT DARMSTADT

0° setup at RCNP in Osaka

30.05.13 | TU Darmstadt | Institut für Kernphysik | Dirk Martin | Oslo 2013 | 20

Analysis steps

Drift time to drift length conversion

Determination of efficiency of VDCs

Calibration of scattering angles

High-resolution correction and excitation energy calibration

- 26Mg runs before each 96Mo run
- Many prominent 1⁺ states in ²⁶Mg
- Test of the polarization transfer analysis (spinflip M1 transitions)

close to anode wires

200

300

88%

Counts · 10⁵ / channel

8

6

2

close to cathode planes

100

Background subtraction

Background events: flat distribution in non-dispersive focal plane

True events focus at $y_c = 0$

Background subtraction

Qualitative comparison to (γ, γ') experiments

- Endpoint energy: 13.2 MeV
- θ = 127°
- Convoluted with a Gaussian with ∆E = 25 keV
- Arbitrarily normalized to peaks between 6 MeV and 6.5 MeV

TECHNISCHE UNIVERSITÄT DARMSTADT

Polarization transfer analysis

Second scattering off a carbon slab (~9 cm thick):

 $p_N^{\prime\prime t} = D_{NN}p_N$ $p_N^{\prime\prime b} = p_N$

$$p_{S}^{\prime\prime t} = D_{SS} p_{S} \cos \chi_{p} + D_{LL} p_{L} \sin \chi_{p}$$
$$p_{S}^{\prime\prime b} = p_{S} \cos \chi_{p} + p_{L} \sin \chi_{p}$$

Spin precession angle χ_p of the GR spectrometer

 \triangleright p_L , p_S and p_N : longitudinal, sidewards and normal beam polarization

Background events do not contribute to the depolarization, i.e. $D_{NN} = D_{SS} = D_{LL} = 1$

Estimator method

Estimator for measured asymmetries after secondary scattering:

- Close to maximum use of data (compared to sector method e.g.)
- Calculation of uncertainties with covariance matrix
- Statistical treatment is well-defined and clear
 - [D. Besset et al., Nucl. Instr. Meth. 166 (1979) 515]

^{30.05.13 |} TU Darmstadt | Institut für Kernphysik | Dirk Martin | Oslo 2013 | 26

Consistency check of both polarization transfer measurements

Polarization transfer observables in ⁹⁶Mo

TECHNISCHE UNIVERSITÄT DARMSTADT

^{30.05.13 |} TU Darmstadt | Institut für Kernphysik | Dirk Martin | Oslo 2013 | 28

Gamma Strength Function of ⁹⁶Mo

► Gating on very forward angles θ_t and ϕ_t : $\sum_{X\lambda} f^{X\lambda}(E_{\gamma}) \approx \sum_X f^{X\lambda=1}(E_{\gamma})$

Summary

- Gamma Strength Function and Axel-Brink hypothesis
- Incompatible experimental data for ⁹⁶Mo
- Polarized proton scattering at 0° as the tool to study the GSF below and above the threshold
- Two different methods to extract E1 and M1 strength
 - Multipole decomposition analysis
 - Polarization transfer observables
- Preliminary results: polarization transfer observable analysis and GSF

Outlook

- Angular distribution for multipole decomposition analysis (defining scattering angle cuts for measurements at 0°, 3° and 4.5°)
- Compare GSF deduced from absorption and decay experiments
- Check of Axel-Brink Hypothesis
- Extraction of level densities

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

E376 Collaboration:

Miyazaki University

Y. Maeda

Niigata University

M. Nagashima, Y. Shimbara

Istanbul University

B. Bilgier, E. Ganioglu, C. Kozer

iThemba LABS

R. Neveling, M. Wiedeking, I. Usman

Univ. of Witwatersrand

J. Carter, L. Donaldson

Kyoto University T. Kawabata

RIKEN

J. Lee. H. Matsubara, J. Zenihiro

RCNP, Osaka University

N. Aoi, H. Fujita, Y. Fujita, K. Hatanaka, T. Hashimoto, T. Itoh, B. Liu, K. Miki, H.-J. Ong, H. Sakaguchi, T. Shima, T. Suzuki, A. Tamii, M. Yosoi

IKP, TU Darmstadt

A. Ebert, A. Krugmann, A. M. Krumbholz,

- D. Martin, P. von Neumann-Cosel, N. Pietralla,
- I. Poltoratska, V. Yu. Ponomarev, A. Richter,
- J. Wambach, M. Zweidinger

Appendix 1: 3° spectrum

Appendix 2: 4.5° spectrum

Appendix 3: 3° and 4.5° spectra

Appendix 4: Franey-Love interaction

Small momentum transfer: spin-orbit and tensor part of effective interaction negligible:

$$V(\vec{r}) = V_0^C(r) + V_\sigma^C(r)\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_\tau^C(r)\vec{\tau}_1 \cdot \vec{\tau}_2 + V_{\sigma\tau}^C(r)\vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2$$

- Measurements with $E_{p} = 300 \text{ MeV}$
- Spin-isospin independent term has a minimum
- Good conditions to observe spin M1 transitions mediated by the spinisosopin dependent part

[W.G. Love and M.A. Franey, PRC **24** (1981) 1073]

Appendix 5: Focus modes

Appendix 6: Beam polarization

$$p_{N(S)} = \frac{1}{A_y^{BLP}} \frac{1 - X_{N(S)}}{1 + X_{N(S)}}$$

$$X_{N(S)} = \sqrt{\frac{N_{L(D)}^{\uparrow} N_{R(U)}^{\downarrow}}{N_{L(D)}^{\downarrow} N_{R(U)}^{\uparrow}}}$$

$$p_N = p_N^1 = p_N^2$$

$$p_S = p_S^1$$

$$p_L = \frac{p_S^1 \cos \chi_{BLP} - p_S^2}{\sin \chi_{BLP}}$$

Appendix 7: Reconstruction of the scattering angles

⁵⁸Ni (100.1 mg/cm²)

$$\theta_{\rm GR} = 10^{\circ}$$

- Several settings of the magnetic field
- Vertical positions: 0, ±1 mm

Appendix 8: Sieve slit analysis

Determination of centers:

Plane divided into sectors

Appendix 8: Sieve slit analysis

Appendix 8: Sieve slit analysis

Appendix 9: High-resolution corrections

- Discrete transitions in ²⁶Mg
- Curved lines in the focal plane
- Aberration effects (\rightarrow optics)
- Polynomial fit:

$$x_c = x_{fp} + \sum_{i=0}^3 \sum_{j=0}^4 d_{ij} \cdot x_{fp}^i \theta_{fp}^j$$

2nd order polynomial + energy shifts using the highest peak of ²⁶Mg

Appendix 11: Estimator method

• Effective estimator
$$\hat{\varepsilon} = \mathbf{F}^{-1}\mathbf{B} = \begin{pmatrix} \varepsilon_N \\ \hat{\varepsilon}_S \end{pmatrix}$$
 with

$$\mathbf{B} = \begin{pmatrix} \sum_{N} \cos \phi_{FPP} \\ \sum_{N} \sin \phi_{FPP} \end{pmatrix}$$

 $\langle \land \rangle$

$$\mathbf{F} = \begin{pmatrix} \sum_{N} \cos^{2} \phi_{FPP} & \sum_{N} \sin \phi_{FPP} \cos \phi_{FPP} \\ \sum_{N} \sin \phi_{FPP} \cos \phi_{FPP} & \sum_{N} \sin^{2} \phi_{FPP} \end{pmatrix}$$

Sums over all events

► Calculation of uncertainties with the covariance matrix $V(\hat{\varepsilon}) = \mathbf{F}^{-1}$

