Electromagnetic Dipole Strength distribution in 124,128,134Xe below the neutron separation energy

Ralph Massarczyk

Helmholtz-Zentrum Dresden-Rossendorf

29.05.2013
Outlook

my original idea

- introduction
- experiment
- my results
- other results
Outlook

Oh oh I got 40 minutes talk...

- introduction
- experiment
- my results
- other results
Outlook
new idea

My Hitchhiker’s Guide to a PhD in nuclear physics ...
...trails and off the beaten track
new idea
My Hitchhiker’s Guide to a PhD in nuclear physics ...
...trails and off the beaten track

How would such a book look like?
Part I - Maps and Overview
How effects nuclear deformation nuclear reactions?

R. Massarczyk (HZDR) dipole strength in 124,128,134Xe 29.05.2013
Part Ib - A closer view

- deformation changes shape of the Giant Dipole Resonance
- different parameterizations available
deformation changes shape of the Giant Dipole Resonance

different parameterizations available
deformation changes shape of the Giant Dipole Resonance

different parameterizations available
Part Ib - A closer view

- deformation changes shape of the Giant Dipole Resonance
- different parameterizations available
Part Ic - some background

photo-absorption cross-section vs. strength function

\[f_{0\lambda XL}^J = 26 \cdot 10^{-8} \frac{\sigma_{0\alpha XL}^J (E_\gamma)}{g_J E_\gamma^{2L-1}} (MeV)^{- (2L+1)} \]

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• is what we can measure</td>
<td>• is needed to describe deexcitations of excited states</td>
</tr>
<tr>
<td>• starts from ground state</td>
<td>• splits up in E1, M1, E2 ...</td>
</tr>
<tr>
<td>• often includes E1, M1, E2 transitions as well as ((\gamma, \gamma')), ((\gamma, n)) and other reactions ((\gamma, X))</td>
<td>• should be independent from excitation energy, spin, parity, excitation mechanism</td>
</tr>
<tr>
<td>• an idea based on statistical assumptions</td>
<td></td>
</tr>
</tbody>
</table>

R. Massarczyk (HZDR) dipole strength in \(^{124, 128, 134}\)Xe 29.05.2013 5 / 22
A short why-to-visit the energy region below the threshold

- interesting for a lot of nuclear reactions
- cross-over from a system dominated to a statistical dominated system
- new resonances (pygmy, M1, soft pole), new picture of nuclear matter?
- fascinating how small scale effects can change big things
A short why-to-visit the energy region below the threshold

- interesting for a lot of nuclear reactions
- cross-over from a system dominated to a statistical dominated system
- new resonances (pygmy, M1, soft pole), new picture of nuclear matter?
- fascinating how small scale effects can change big things

\[^1]\text{figure by D. Savran}\]

R. Massarczyk (HZDR) dipole strength in 124,128,134Xe

29.05.2013 6 / 22
A short why-to-visit the energy region below the threshold

- interesting for a lot of nuclear reactions
- cross-over from a system dominated to a statistical dominated system in heavy nuclei
- new resonances (pygmy, M1, soft pole), new picture of nuclear matter?
- fascinating how small scale effects can change big things
A short why-to-visit the energy region below the threshold

- interesting for a lot of nuclear reactions
- cross-over from a system dominated to a statistical dominated system in heavy nuclei
- new resonances (pygmy, M1, soft pole), new picture of nuclear matter?

- fascinating how small scale effects can change big things
A short why-to-visit the energy region below the threshold

- interesting for a lot of nuclear reactions
- cross-over from a system dominated to a statistical dominated system in heavy nuclei
- new resonances (pygmy, M1, soft pole), new picture of nuclear matter?
- fascinating how small scale effects can change big things

R. Massarczyk (HZDR) dipole strength in 124,128,134Xe
My personal walking tour

- measure the photo-absorption cross section in a chain of stable isotopes
- recently published results of chain with neutron number $N = 50$
- What happens if neutron excess and nuclear deformation go in different directions?
- measurements of Xenon isotopes \leftrightarrow learn something about the general behavior
My personal walking tour

- measure the photo-absorption cross section in a chain of stable isotopes
- recently published results of chain with neutron number $N = 50 \, ^1$
- What happens if neutron excess and nuclear deformation go in different directions?
- measurements of Xenon isotopes \Rightarrow learn something about the general behavior

1R. Schwengner PRC 87 (2013) 024306
My personal walking tour

- measure the photo-absorption cross section in a chain of stable isotopes
- recently published results of chain with neutron number \(N = 50 \)

What happens if neutron excess and nuclear deformation go in different directions?
- measurements of Xenon isotopes \(\Leftrightarrow \) learn something about the general behavior

\(^1\) R. Schwengner PRC 87 (2013) 024306
My personal walking tour

- measure the photo-absorption cross section in a chain of stable isotopes
- recently published results of chain with neutron number $N = 50$ \(^1\)
- What happens if neutron excess and nuclear deformation go in different directions?
- measurements of Xenon isotopes ⇔ learn something about the general behavior

\(^1\) R. Schwengner PRC 87 (2013) 024306
My personal walking tour

- measure the photo-absorption cross section in a chain of stable isotopes
- recently published results of chain with neutron number $N = 50$
- What happens if neutron excess and nuclear deformation go in different directions?
- measurements of Xenon isotopes \Leftrightarrow learn something about the general behavior

1. R. Schwengner PRC 87 (2013) 024306

R. Massarczyk (HZDR) dipole strength in 124,128,134Xe 29.05.2013 7 / 22
pro and cons of Xenon

Pro and Contra

- noble gas
- interesting for reactor physics
- acts as the most important reactor poison - $^{135}\text{Xe}(n,\gamma)$
- $^{129}\text{Xe}/^{130}\text{Xe}$, $^{136}\text{Xe}/^{130}\text{Xe}$ ratios important in solar system studies and planetary differentiation
- rarest not radioactive element on earth
- noble gas
pro and cons of Xenon

Pro and Contra

- noble gas
- interesting for reactor physics
- acts as the most important reactor poison - $^{135}\text{Xe}(n,\gamma)$
- $^{129}\text{Xe}/^{130}\text{Xe}$, $^{136}\text{Xe}/^{130}\text{Xe}$ ratios important in solar
- rarest not radioactive element on earth
- noble gas
pro and cons of Xenon

Pro and Contra

- rarest not radioactive element on earth
- noble gas (High-pressure gas targets ~80 bar)

- noble gas
- interesting for reactor physics
- acts as the most important reactor poison - $^{135}\text{Xe}(n,\gamma)$
- $^{129}\text{Xe}/^{130}\text{Xe},^{136}\text{Xe}/^{130}\text{Xe}$ ratios important in solar system studies and planetary differentiation
pro and cons of Xenon

Pro and Contra

- noble gas, generally nonreactive
- interesting for reactor physics acts as the most important reactor poison - 135Xe(n,γ)
- 129Xe/130Xe, 136Xe/130Xe ratios important in solar system studies and planetary differentiation
- rarest not radioactive element on earth
- noble gas (High-pressure gas targets ~80 bar)
pro and cons of Xenon

Pro and Contra

- **noble** gas, generally nonreactive
- interesting for reactor physics acts as the most important reactor poison - 135Xe(n,γ)
- 129Xe/130Xe, 136Xe/130Xe ratios important in solar system studies and planetary differentiation
pro and cons of Xenon

Pro and Contra

- **noble** gas, generally nonreactive
- interesting for reactor physics
 - acts as the most important reactor poison - $^{135}\text{Xe}(n,\gamma)$
 - $^{129}\text{Xe}/^{130}\text{Xe}$, $^{136}\text{Xe}/^{130}\text{Xe}$ ratios important in solar system studies and planetary differentiation

1 J. Kunz Science 280 (1998) 877
pro and cons of Xenon

Pro and Contra

- noble gas
- interesting for reactor physics
acts as the most important reactor poison - 135Xe(n,γ)
- 129Xe/130Xe, 136Xe/130Xe ratios important in solar system studies and planetary differentiation

\[\text{dipole strength in } ^{124,128,134}\text{Xe} \]

\(^1\)J. Kunz Science 280 (1998) 877
Part II - Sites

The (new) **ELBE** at Dresden

Electron Linac for secondary radiation purposes
(neutrons, positrons, FEL, activation experiments, bremsstrahlung)
Part II - Sites

- Photon excitation at the bremsstrahlung setup at the electron accelerator ELBE
- Electron energies from 5 to 20 MeV with up to 1 mA
- Electron beam on thin niobium foil produces bremsstrahlung
- Setup contains high purity Germanium detectors with BGO shielding
- Empty target measurements necessary
Part II - Sites

- photon excitation at the bremsstrahlung setup at the electron accelerator ELBE
- electron energies from 5 to 20 MeV with up to 1mA
- electron beam on thin niobium foil produces bremsstrahlung
- setup contains high purity Germanium detectors with BGO shielding
- empty target measurements necessary
Part II - Sites

- photon excitation at the bremsstrahlung setup at the electron accelerator ELBE
- electron energies from 5 to 20 MeV with up to 1mA
- electron beam on thin niobium foil produces bremsstrahlung
- setup contains high purity Germanium detectors with BGO shielding

empty target measurements necessary
Part II - Sites

- photon excitation at the bremsstrahlung setup at the electron accelerator ELBE
- electron energies from 5 to 20 MeV with up to 1mA
- electron beam on thin niobium foil produces bremsstrahlung
- setup contains high purity Germanium detectors with BGO shielding
- empty target measurements necessary
Part III - A walk through the analysis

- subtraction of the background from target container
- correction for efficiency and deconvolution of detector response (GEANT4)
- subtraction of atomic background

![Graph showing photon energy distribution with peaks and valleys, labeled with $S_n = 8.5$ MeV and $pc = 12$ MeV.](image)
Part III - A walk through the analysis

- subtraction of the background from target container
- correction for efficiency and deconvolution of detector response (GEANT4)
- subtraction of atomic background
Part III - A walk through the analysis

- subtraction of the background from target container
- correction for efficiency and deconvolution of detector response (GEANT4) \(^1\)
- subtraction of atomic background

\(^1\)R. Massarczyk PRC 86 (2012) 014319
Part III - A walk through the analysis

- subtraction of the background from target container
- correction for efficiency and deconvolution of detector response (GEANT4) \(^1\)
- subtraction of atomic background

\(^1\) R. Massarczyk PRC 86 (2012) 014319
beaten track and an alternative way to go

![Graph showing level spacing or FWHM (keV) vs. E_γ (keV).]

- Level spacing or FWHM (keV)
- E_γ (keV)

- Plot with data points and curves.
- Logarithmic scale.

- Diagram with energy and strength axes.
- Notation: neutron skin, p, n.

- Text: R. Massarczyk (HZDR)
- Date: 29.05.2013
- Page: 12/22

- Comment: dipole strength in 124,128,134Xe
beaten track and an alternative way to go

continuum analysis...
beaten track and an alternative way to go

continuum analysis...

... standard tool in (n,γ) analysis (e.g. Two-Step-Cascades)
beaten track and an alternative way to go

continuum analysis...

... standard tool in \((n,\gamma)\) analysis (e.g. Two-Step-Cascades)
... but not in nuclear resonance fluorescence experiments

R.Massarczyk (HZDR) dipole strength in \(^{124,128,134}\text{Xe}\) 29.05.2013 12 / 22
beaten track and an alternative way to go

In this continuum of unresolvable states ...
beaten track and an alternative way to go

In this continuum of unresolvable (not overlapping) states ...
beaten track and an alternative way to go

In this continuum of unresolvable (not overlapping) states ...

... we have distributions for strength and level densities, their means, their deviations ...
beaten track and an alternative way to go

In this continuum of unresolvable (not overlapping) states ...

... we have distributions for strength and level densities, their means, their deviations ...

... Why do we still use random numbers and waste computational power?
Based on the idea of DICEBOX\(^1\)

- First step: scheme of levels \rightarrow scheme of energy bins\(^2\), \(^3\)
- Second step: remove the random numbers, by distributions, mean values, deviations and covariances

\(^1\) F. Bečvář NIM A 417 (1998) 434
based on the idea of DICEBOX

first step: scheme of levels \rightarrow scheme of energy bins

second step: remove the random numbers, by distributions, mean values, deviations and covariances

based on the idea of DICEBOX

first step: scheme of levels \rightarrow scheme of energy bins

second step: remove the random numbers, by distributions, mean values, deviations and covariances
DEX 2.0 - off the beaten path

change computer time to computer power!

new calculation method:
γDEX 2.0 - off the beaten path

change computer time to computer power!

new calculation method:
- define Histogram of 1st bin:

\[H_1 = \delta(E_1) \]
γDEX 2.0 - off the beaten path

change computer time to computer power!

new calculation method:

- define Histogram of 1st bin:

\[H_1 = \delta(E_1) \]
\textbf{DEX 2.0 - off the beaten path}

\textit{change computer time to computer power!}

new calculation method:

- define Histogram of 1st bin:

\[H_1 = \delta(E_1) \]

- define Histogram of 2nd bin:

\[H_2 = \frac{\Gamma_{2\rightarrow 0}}{\Gamma_{tot}} \delta(E_2) + \frac{\Gamma_{2\rightarrow 1}}{\Gamma_{tot}} H_1 \]
new calculation method:

- define Histogram of 1st bin:

\[H_1 = \delta(E_1) \]

- define Histogram of 2nd bin:

\[H_2 = \frac{\Gamma_{2\rightarrow0}}{\Gamma_{tot}} \delta(E_2) + \frac{\Gamma_{2\rightarrow1}}{\Gamma_{tot}} H_1 \]
new calculation method:

- define Histogram of 1st bin:

\[H_1 = \delta(E_1) \]

- define Histogram of 2nd bin:

\[H_2 = \frac{\Gamma_{2\rightarrow0}}{\Gamma_{tot}} \delta(E_2) + \frac{\Gamma_{2\rightarrow1}}{\Gamma_{tot}} H_1 \]

- define Histogram of nth bin:

\[H_n = \frac{\Gamma_{n\rightarrow0}}{\Gamma_{tot}} \delta(E_n) + \sum_{i=1}^{n-1} \frac{\Gamma_{n\rightarrow i}}{\Gamma_{tot}} H_n \]
new calculation method:

- define Histogram of 1st bin:

\[H_1 = \delta(E_1) \]

- define Histogram of 2nd bin:

\[H_2 = \frac{\Gamma_{2\to0}}{\Gamma_{tot}} \delta(E_2) + \frac{\Gamma_{2\to1}}{\Gamma_{tot}} H_1 \]

- define Histogram of nth bin:

\[H_n = \frac{\Gamma_{n\to0}}{\Gamma_{tot}} \delta(E_n) + \sum_{i=1}^{n-1} \frac{\Gamma_{n\to_i}}{\Gamma_{tot}} H_n \]
DEX 2.0 - off the beaten path

Problems

- Uncertainty propagation much more complicated
- Statistical assumption not true for low energies
γDEX 2.0 - off the beaten path

Problems

- Uncertainty propagation much more complicated
- Statistical assumption not true for low energies

Solutions

- Uncertainty by error propagation
- Use discrete level scheme for low energies
DEX 2.0 - off the beaten path

Problems

- Uncertainty propagation much more complicated
- Statistical assumption not true for low energies

Solutions

- Uncertainty by error propagation
- Use discrete level scheme for low energies

Advantages

- TIME...TIME...TIME, calculation within a minute
- Test with different model combinations
Correction of inelastic scattered events and branching

Calculation and subtraction with γDEX $^{1, 2}$

Self-consistent: Input PSF is equal to Output PSF
Back to the experiment

- Correction of inelastic scattered events and branching
- Calculation and subtraction with γDEX 1,2
- Self-consistent:
 Input PSF is
 Output PSF

1G. Schramm PRC 85 (2012) 014311
2R. Massarczyk PRC 87 (2013) 044306
Back to the experiment

- Correction of inelastic scattered events and branching
- Calculation and subtraction with γ_{DEX}1, 2
- Self-consistent: Input PSF is Output PSF

1G. Schramm PRC 85 (2012) 014311
2R. Massarczyk PRC 87 (2013) 044306
last chapter - results

- Complete dipole strength below the neutron separation energy in gas targets
- QRPA calculations performed \(^1\)
last chapter - results

- Complete dipole strength below the neutron separation energy in gas targets
- QRPA calculations performed \(^1\)
results and theory

- Deviation to other results \(^1\)
- Follows the trend of theory in N/Z plot, extra strength observed

\[
\sum BE_{\ell,\text{eV}} \text{ (e}^2\text{fm}^2) = \text{this work }(^{124,128,134}\text{Xe} + ^{136}\text{Ba})
\]
results and theory

- Deviation to other results\(^1\)
- Follows the trend of theory in N/Z plot, extra strength observed

\[^1\] D. Savran PRL 100 (2008) 232501
results and theory

- Deviation to other results1
- Follows the trend of theory in N/Z plot, extra strength observed

1D. Savran PRL 100 (2008) 232501
results and theory

- Deviation to other results \(^1\)
- Follows the trend of theory in N/Z plot, extra strength observed

\(^1\) D. Savran PRL 100 (2008) 232501
results and theory

- Deviation to other results \(^1\)
- Follows the trend of theory in N/Z plot, extra strength observed

extra strength (pygmy resonance ?)...

... seems to be more dependent on (triaxial) deformation than known so far.

\(^1\)D. Savran PRL 100 (2008) 232501
Conclusions

- determination of dipole strength functions below the neutron separation energy
- we are able to measure gaseous targets
- fast reaction code γDEX for correction
Conclusions

- determination of dipole strength functions below the neutron separation energy
- we are able to measure gaseous targets
- fast reaction code γDEX for correction

Outlook

- additional measurement on 130Xe
- analysis of HIγS Data
- additional work with γDEX in (n,γ) experiments at GEELINA
Thank you for your attention.
Announcement

The 15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15) will take place in Dresden, Germany, from \textbf{August 25 to August 29, 2014}.

We are looking forward to seeing you there.