Observation of large scissors resonance strength in actinides

Tamás G. Tornyi

OCL/SAFE - University of Oslo, Norway
MTA ATOMKI, Debrecen
Scissors resonance in actinides

\[(\gamma,\gamma') \& (e,e')\]

Experiments on ^{232}Th at OCL

SiRi ΔE-E telescopes (x8)

Backwards angle (126°-140°) covers 14% of 4π

12 MeV d & 24 MeV ^3He

^{232}Th

CACTUS NaI(Tl) (x28)

eff$_{tot}$ \sim 15.2%
ΔE-E bananas

\[(d,d')^{232}Th\] \[(d,p)^{233}Th\] \[(^3He,\alpha)^{231}Th\] \[(^3He,t)^{232}Pa\] \[(^3He,d)^{233}Pa\]
Significant hump was discovered in the RSF sitting on the low-energy tail of GDR.

$^{237}\text{Np}(d,p)^{238}\text{Np}$

($E_{\text{beam}} = 13.5$ MeV)

Backwards angle (126°-140°) covers 14% of 4π

SiRi ΔE-E telescopes (x8)

CACTUS NaI(Tl) (x28)

Fission fragment detector PPAC (x4)

^{237}Np 150 μg/cm2 on 20 μg/cm2 C backing

Tamás G. Tornyí
4th Workshop on Nuclear Level Density and Gamma Strength
Oslo 2013
Level density & RSF

Tamás G. Tornyi
4th Workshop on Nuclear Level Density and Gamma Strength
Oslo 2013
Expected scissors resonance is found in 238Np

average centroid ≈ 2.2 MeV
Other possibilities in the existing ^{238}Np data

γ-fission branching ratio can be determined by the help of newly developed fission detector array

ENICE
(Electronic Nuclear device to Count fission Events)
4 x PPAC

T. G. Tornyi et al., to be published NIM (2013)
Fission probabilities via surrogate-reaction method

\[^{238}\text{U}(\text{d},\text{pf}) \]

\[^{238}\text{U}(^{3}\text{He},^{4}\text{He f}) \]

B. Jurado et al., EPJ Web of Conferences 42, 01003 (2013)
Development of a new fission detector (ENICE)

Requirements:

- High efficiency
- Large covered solid angle
- Insensitivity to light particle
- No aging effect

Low pressure gas filled detector seemed to be the best solution

T. G. Tornyi et al., to be published NIM (2013)
Advantages:

- fast working ($f \approx 0.1$ GHz)
 -> short deadtime
 -> high efficiency ($\approx 100\%$)
- insensitive to light charged particles
- large covered solid angle
 (60% of 2π -> 60% of 4π virtually!)
- no aging effect
- low price

Disadvantage:

- very sensitive to the pressure difference between in- & outside
 ($\Delta p_{\text{max}} \approx 10$ mbar)
E-ΔE particle matrix

tritons (d,t)
deuterons (d,d)
protons (d,p)

E-ΔE matrix gated on fragments (d,pf)

Tamás G. Tornyí
4th Workshop on Nuclear Level Density and Gamma Strength
Oslo 2013
E_x-E_y matrix

E_x-E_y matrix gated on fragments (d,pf)
Thank you for your attention!

Special thanks to
• Ann-Cecilie Larsen
• Sunniva Siem
• Andreas Görgen
• Magne Guttormsen