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3p3h NpNh Approx.
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Time blocking approximation = % Separation of the integrations in the BSE kernel
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.Proton-Neutron" relativistic time blocking approximation: p, m, phonons
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Natural quenching of S™ due to ph+phonon configurations,
relativistic effects and finite momentum transfer



(&)
T T

S [fm°/MeV]

| Neutron skin
thickness

—

50

Onp = \/ (%), — 1/ (D),

T. Marketin, E.L., D. Vretenar, P. Ring, PLB 706, 477 (2012).



E.L., P.Ring, and V. Tselyaev, Phys. R\) C78 014312 (2008)

Please, do not
compare this

Low-lying dipole strength in 116Sn
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’Jme structure Qf,gpec‘rm - fext-order clmrela‘rlons

from “2q+phonon’ § *2.phofions"

P. Schuck, Z. Phys. A 279, 31 (1976) & Mode Coupling Theory
V.I. Tselyaev, PRC 75, 024306 (2007) Time Blocking
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Replacement of the uncorrelated
propagator inside the & amplitude
by QRPA response

_ mb6(n),
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Nuclear response: R=A+A (V + & - CBO) R

Poles may appear at lower energies:

'2q+phonon’ response: I ‘2 phonon' response:
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Pygmy dipole resonance in neutron-rich Ni:
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(n,y) via compound nuc’reus -hransikions Q
between excited states m ‘rhe quasncon‘rmuum

Low-energy enhancement of y-strength Correlations due to coupling

A. Voinov et al., PRL 93, 142504 (2004) fo single-particle continuum
M. Guttormsen et al., PRC 71, 044307 (2005)
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s Nuclear r'eS’ponse ahf,muﬂa ieﬂwpera’rure &

Density matrix variation at T > O:
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de
Al.a'sw.T) = 3 i@ pa@pa(a)ei@) [ 3=Grale. DG+, 1)
i \_ W,
1234

YT
Matsubara GF

Radiative strength function (RSF):

R¢?

s (B, )=
fEl( Y 9 ) 27(’7(“)'5

Im / (I;I‘Pgl (2)0R(z;w,T)

w=FE, + A, A — 0 Exp. energy resolution



, ‘LL

AP (0, T)
- —Z i (T)(1 = ny(T) I"‘("”"l‘"")z'1}'7_)‘”"“"'
| {242

[(Jl o L u(T) — By(T) +w)

S8’

+ (—1) (50787 2 Yo u(T) = Ey(T) - ]

S Z w (T)ny (T)Ry(r) R (r') Z L
1

x[(u, L (T) + Ey(T) + w)

+ (=1)5+5' G (ot (T + Ey(T) — w-)].

AL o (p 705 T)
disc

- Z Ry(r)Ra(r" Ry (r") Raf l‘)'li_,"l‘\"’.’
2

Lrolw. T) U5 Illxl—n»(l)l
X P12 ) —-
=4 ' /1(1|~1|7f’)|])

r"l'l"/‘_I(l —n1(T))
= () +ea + E (T
u%l] TYyna(T)
w+ Ty —ep + Es(T)

|
T

ui (T (T) S s o,
= — 4+ (=1)" M2(w.T
w—pu(T) + e — Ey(T) 2 )I

1
1L+ exp(E(T)/T)

milL ) =

u,4(T) = 1-v,4(T)

Lip(w.T) = Apnl (w.T)
(H.'I'.II::;*I'I'I [L,—[_.)—lulu,—l o )*]

— .-‘I,!,(-L'. Il[— (llfl'.:; - ("‘13”:‘.‘:),](["'1 4 ,_)]

+ (ujes — it "_’u].
o A1da - ;
Mp(wT) = —— [,—l,,u. I')(Ey — E9

+ App(w, T)(Ey + Li_»n].

i (T) —na(T)

|: I‘_‘l — I-::]-’ o *f_)'
I —ny(T) —ng(T)
(Ey + Ea2)? —w?

.—‘},[,|-'~'. .I‘.| -

‘—‘[’i‘(“'.’ Il =




1. Saturation of RSF with A
at A =10 keV for T50

2. The low-energy RSF is not
a tail of the GDR and not a part of
PDR!

1
fe,MeV]

3. The nature of RSF at E,-> 0
Is continuum fransitions
from the thermally unblocked states

4. Spurious translation mode should be
eliminated exactly.
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Eliminatioh of ThéJESﬁpri dus state

G(@; T)

W — W
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By, = / da¢(z, T)Pgi(2) = 0 Condition 2

V. Tselyaev: S. Kamerdzhiev et al., PRC 58, 172 (1998)
M.I. Baznat et al., Sov. J. Nucl. Phys. 52, 627 (1990)
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T =155 MeV I 5w Larger microscopic level density
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: / => Lower upper limit for the
1E8 | | temperature at S,

: {  Other effects
sig (ideally, all to be combined in one approach)

: TCQRPA

A =100 keV J At 3-4 MeV:
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BT H o 10 ] VAVa 4 -Thermal fluctuations:

: - s’ ' ' M. Gallardo et al., NPA443, 415 (1985)
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g Quasiparsicle-vibPation couplingg |

Pairing correlations of the supﬂigfﬁffy e+ coupling t Mbiorne:
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Nuclear Polar'izabili’ry:
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_auNext- order RQ;FBA for 3p;§h ganfiglrations &
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Nested configurations
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3p3h: two-fish approximation, ...
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Dlpole sTr'éfhg’rh in Sngrso’rd’ﬁes
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Dlpole sTr'éfhg’rh in Sngrso’rd’ﬁes
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136g
I'=0.25 MeV
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E, (MeV)

R. Massarczyk, R. Schwengner, F. Doenau, E. Litvinova, 6. Rusev et al.,
Phys. Rev. C 86, 014319 (2012)



RQTBA systematics for PDR:

A proper definition of Pygmy Dipole Resonance is important!
PDR = all states with the "isoscalar” underlying structure!
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JRadiative neu’rron eﬂp‘rur'e m;rhg ngserl:eshbach mo d&s\i

standard Lorentziat microscopic structure
E. L., H.P. Loens, K. Langanke, et al. l}lucl. Phys. A 823, 26 (2009).
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wNuclei are heated"in as‘rrqahys';i‘cal_”,‘envirc_.)nl'nen‘r!
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Consequences for (n,y) reaction rates - ?
‘For electric dipole polarizability (EDP) - ???

‘For EDP - neutron skin correlation - ?2?




Nuclear matter,
Neutron stars, ...
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