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OUTLINE

From shell model and quantum chaos to level density
Statistics of unstable quantum states
Porter-Thomas distribution?

Miscellaneous (time permitting)
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KEY WORDS

Shell model

finite orbital space

effective single-particle energies
(mean field)

effective matrix elements of interaction

diagonalization (if possible)

Quantum Chaos:

exceedingly complicated wave functions
limiting Gaussian ensembles of
random maftrices
high information entropy with respect
fo mean-field basis
internal “thermalization”
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Microscopic description of Nuclear Level Density

Shell model (the most successful) \ 28g;
» Restricted model space /2 7
Dim(sd) ~ 108 \ /d
Dim(fp) ~ 101° sd\—e—eo—F o

» Need effective interaction

. . o P X core
» Numerical diagonalization S

» High accuracy: dE ~ =200KeV

How it works:



Statistical approach to Nuclear Level Density (cont.)

p(E,3) = Z Dg, - G(E — Egx,08x) = 100k 28, y7_o+ _
% : | |
G(x. o) - Gaussian distribution 3 sof B ]
B3 ={n.J. T, 7} - quantum numbers g ] |
Z
—_ ==y gl
K- COnflguratlonS Excitation energy (MeV)

Dg,. - number of many-body states with given

ko d2 st d3 /3 that can be built for a given configuration «
; 2 ? 8 Moments of H for each configuration &:

2 451 g (1) Eg. = T'?)[H]/Dg,

5 0 2 4|  0%=TOVH/Ds — (TPI[H]/Ds.)

M. Horoi, M. Ghita, and V. Zelevinsky, PRC 69 (2004) 041307(R)



Shell model level density (28Si, J=0, T=0)

Averaging over
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Widths of level distributions in the J-class for a single-j model

(6 particles; random inreractions)
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(a) All 3276 states ; (b) energy centroids
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BI'- ' —d | | ]

0 1000 2000 3000

Energy dispersion for individual statesbis nearly constant
(result of geometric chaoticity!)

Also in multiconfigurational method (hybrid of shell model and
density functional)

Gf. = fl’|{H — Hg.-gl- ):“l.' = Z Hfﬁ y

I#k



a = {nJ 1,1}
p(E.a) — Z Daﬂ ' GON(E) Quantum numbers

h= {ﬂlrﬂﬂr'“ rnq}
Partitions
Gas(E) = G(E + Egs. = Eox, 0ax)
OXp(-I 20 ) l.t| < na Finite range
G(I,U) = C { ( |Il S N0 Gaussian DEI: A
Eaﬁ 2 (H)am Many-body dimension
= \/(Hg)mc = (H)?u, '[}(J)[, 1= Tr”‘*':'[---]JI_J - Truz]l"'liz-m

(H)ax = Tr' ) [H]/Dax. Centroids
(HQ)ON = TI'(C"{)[HQ]/Dcm Widths



288, parity=+1, some J, sd-shell

WHAT WE HAVE LEARNED FROM SHELL MODEL EXPERIENCE

Shell Model (solid line) vs.

Nuclear level density (MeV')

Nuclear level density (MeV ')

Moments Method (dashed line).
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Distribution of off-diagonal

matrix elements

i of the Hamiltonian

I (P {H})

hetween J™T' = 210 states,

solid line
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G-4-3-2-101 83 465 (HH)

H

iI/H)

EXPONENTIAL DISTRIBUTION :

Nuclei (various shell model versions), atoms, IBM
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A, (L)

—one sequence
—two sequences (1‘1:0.4}
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D. Mulhall, Z. Huard, V.Z.,
PRC 76, 064611 (2007).



MEASURING COMPLEXITY

Eigenstate |a) in a shell model basis |k)
k)

Information entropy

S* = — Tk |CE)F In |CR

No mixing: S* — 0

a) = £

“Microcanonical” mixing: S — In N

GOE: S® =In(0.48N)

Information entropy is basis-dependent
- special role of mean field
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exp(5")

INFORMATION ENTROPY of EIGENSTATES
(a) function of energy; (b) function of ordinal number

ORDERING of EIGENSTATES of GIVEN SYMMETRY
SHANNON ENTROPY AS THERMODYNAMIC VARIABLE
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Smart information entropy
(separation of center-of-mass excitations
of lower complexity shifted up in energy)

CROSS-SHELL MIXING WITH SPURIOUS STATES

I 12,

1183 states



Removal of the center-of-mass spurious states

Harmonic oscillator:

J\spur(Khu)) ~ Z ./V’pure((K — K,)hu.)). 44+ ’ .' :t‘. .-.

f
/

K’=1 \/ \_/

where K’ presents how many times we act
with AL

+ o @ ,
4”/1 cm i = \ /
P. Van Isacker, Phys. Rev. Lett. 89, 262502 (2002) \ / \ /

\ /"’ \ ‘./"”

Nuclear level density. Recursive method:

K K,step2 J+Jy

/)pure(EaJeK) PLE;:J, K)— S‘ y‘ Z /)pure(EsJ’sK—Kl)
K= dards = d=ikin

M. Horoi and V. Zelevinsky, Phys. Rev. Lett. 98, 262503 (2007)



p‘o)(E. ‘]. O) — /)('E. J. O) Nl classification

Pure Total (N=0)

41

B I =pE J1)- Y pEJ0) e
J'=|]-1

p'O(E,J,N) = p(E,J,N)-

step?2  JiJx Recursive relation

—Z Z Z p E.] (N - K))

=1 Jg= me—.] JKI

LOGICAL IDENTITY
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2Fe, 52Cr, parity=+1, some J, pf-shell
Shell Model (solid line), Moments Method (dashed line), and
HF+BCS method (dotted line).
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Mg, (s-p-sd-pf)-model space, 15w, 3- A= 110MeV
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Staircase — experimental counting of levels (“pessimistic” and “optimistic”)

PROBLEMS:

Oscillator classification

Parameter of the finite range Gaussians
Ground state energy

Inter-shell effective interactions

Excited states are in the continuum



FUTURE DIRECTIONS:

AN

>

> > > >

Interaction dependence; simple models and
smoothing by “chaotic” interactions

Different mass regions

Odd and odd-odd nuclei

Comparison with data in the region of neutron
separation energy

Fit for phenomenological parameters

Spin cut-off factor

Global behavior

From Shell Model to Continuum Shell Model



STATISTICAL MECHANICS of CLOSED MESOSCOPIC SYSTEMS

* SPECIAL ROLE OF MEAN FIELD BASIS
(separation of regular and chaotic motion;

mean field out of chaos)

*CHAOTIC INTERACTION as HEAT BATH

* SELF — CONSISTENCY OF
mean field, interaction and thermometer

* SIMILARITY OF CHAOTIC WAVE FUNCTIONS

*SMEARED PHASE TRANSITIONS

* CONTINUUM EFFECTS (IRREVERSIBLE DECAY)
new effects when widths are of the order of spacings -

restoration of symmetries
super-radiant and trapped states
conductance fluctuations ...



COMPLEXITY of QUANTUM STATES
RELATIVE!

Typical eigenstate:

1
a) = S C k) |CR)7 N
coe:  Prob(CY,...,Cy) x 01 — ZC%)
2
at N > 1, Prob(C x/r\/Qﬂj_W &
Porter-Thomas distribution for weights: Hk — (C;L)

B} 1 1 _W/2UW
Ppor(W) = —W/2(W)
P T( ) \/271_ < L{fr> #L‘L—’T E

Neutron width of neutron resonances as an analyzer

(1 channel)




bound orbitals

*System 8 s.p. levels, 3 particles
*One s.p. level in continuum e=¢ —iy/2

-100 . HEE IR I I S T B S U | .
-100 -50 0 50 100

Single-particle decay in a many-body system

Evolution of complex energies ==E-i /2
as a function of y

0

-20 +

-40 -

-60 -

-80

Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21
Quasistationary states are determined by continuum

Doorway states



Superradiance, collectivization by

decay |
Analog in a complex system
Dicke coherent state Interaction via continuum
N identical two-level atoms Trapped states ) self-organization
coupled via common radiation S C
Single atom D "> = 4
g Y 74 Coherent state
"""""" I'~N
Coherent state T~Ny Y
i (s
o LSS
NEFIS RN STTTTTTTTT77777
L SL R, : M Ya’
5(\/’ e VA Y E Y%, ~ D and few channels
(\,5 k‘vu * Nuclei far from stability
 High level density (states of
Volume ¢ A3 same symmetry)

* Channel thresholds



COUPLING THROUGH CONTINUUM

| (c = 1)(2 —=¢)
YlE) ~ = [dT : :
12(2) [all]f ©“ E—E.+i0

Real (dispersive) part: principal value (virtual,
off-shell processes), closed and open channels =
renormalization of Hermitian Hamiltonian

Imaginary (absorptive) part: Jd-function (real,

on-shell processes), only open channels =
non-Hermitian energy-dependent Hamiltonian

H(E) = Hy(E)+ A(E) — % W(E)

Wia(E)= = Aj(E)AS(E)

- clopen)

Factorization < Unitarity




|
E+) — E'(e.7')

Hiz=Hip+y / (dr')dE'(1|Hgplc, 7', E') (e, E'|Hpg|2)

+) means +i0
(Eigenchannels in P-space) (+)

= 1 )

H=H+A[E) ApE)=Pv) / (dr')dE'(1|Hgple,7', E') 1 (c,7',E'|Hpo|2)

E-E'cr)
(off-shell)
[.1;",2(13):% Z Af(E)AE'(E) (on-shell)

¢{open)

Factorization (unitarity), energy dependence (kinematic thresholds)



EFFECTIVE HAMILTONIAN

H(E) = H — L (E)- non-Hermitian

2
Wia= Y AfA;
c.open( E)
One open
Internal representation: H — €, channel

H=| —(i/2)A142 e — (i/2)A2 —(i/2)AsAs

(el—(i/Q)A% —(1/2)A1As —(i/2)A A3
—(i/2)A1A3 —(i/2)AA3 €3 — (i/2) A2

Weak coupling, x < 1 — isolated resonances

E.=FE, — (i/2)[’,,_ ~ €p — (2/2)/43;

)

= pAl



Ingredients

* Intrinsic states: Q-space
— States of fixed symmetry
— Unperturbed energies ¢,; some ¢,>0
— Hermitian interaction V

 Continuum states: P-space
— Channels and their thresholds E¢,
— Scattering matrix S2°(E)
* Coupling with continuum
— Decay amplitudes A%, (E)
— Typical partial width y=|A|?
— Resonance overlaps: level spacing vs. width




EFFECTIVE HAMILTONIAN

H(E) = H — L (E)- non-Hermitian

2
Wia= Y AfA;
c.open( E)
One open
Internal representation: H — €, channel

H=| —(i/2)A142 e — (i/2)A2 —(i/2)AsAs

(el—(i/Q)A% —(1/2)A1As —(i/2)A A3
—(i/2)A1A3 —(i/2)AA3 €3 — (i/2) A2

Weak coupling, x < 1 — isolated resonances

E.=FE, — (i/2)[’,,_ ~ €p — (2/2)/43;

)

= pAl



Strong coupling. « > 1

k& open channels = & nonzero eigenvalues of W5,

Dioorway represantation:
R=1=T,;="Tracel¥

E] —_— {il.'lgl:ll_'d' .rii |F|-_l.
M= h £y 0
hg 0 Es

Width collectivization:
broad super-radiant state T’ &= Tyl — O],

narrow (trapped) states Tog ~ Ty [V — 1)#5]

Dhvnamics is determined by alignment
to open decay channels




TIME HIERARCHY

OMNE-CHAMNNEL CASE

Weak coupling: v =~ /D < 1
Separated narrow resonances:
AE=ND>»T= N~

Strong coupling: w = 1,
overlap

Direct process tyr ~ 8/ Tsg

Fragmentation t; ~ R/AE ~ srge

Recurrence , ~ 8/ 0 ~ k7N (Weisskopf time)
Trapped (compound) states 7o~ 8/T ~ ke

Mo room for Ericson fluctuations - only for &
(many) open channels, 1< & < k.




GAUSSIAN ENSEMBLES

Hermitian:

PE'{EJ — C'T,.'ﬁ'.-"f ILm<n |Em — Er1|'3 exp [_j % 2on E?zz]

Complex:

P(E) — C'T.-"'f [Linen |zm — z”"} EXp [_2 gf >on |En|2}

Unstable: &, = FE, — é r, (GOE + 1 open channel)
v 1 Em—En 2
P(E} — C’.-""r'_ I1,, N inen m}{

exp {—f\" L—jg >, B2 + % ., + ﬁq > m<n FmF?z]}
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Loosely stated, the PTD is based on the assumptions that

s-wave neutron scattering is a single-channel process, the

widths are statistical, and time-reversal invariance holds;

hence, an observed departure from the PTD implies that

one or more of these assumptions is violated

(a)
(b)
(c)
(d)
(e)
(f)
(g)

(b) and (d) are wrong; (c), (e), (f), (g) depend on the nucleus

Time-reversal invariance holds
Single-channel process

Widths are statistical (whatever it means...)
Intrinsic “chaotic” states are uncorrelated
Energy dependence of widths is uniform
No doorway states

No structure pecularities

P.E. Koehler et al.

PRL 105, 072502 (2010)



No level repulsion at short distances!

(Energy of an unstable state is not well defined)
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FIG. 2: Width distribution, P(I'/(T")), for M = 10 and x =
0.01 (panel a), & = 1 (panel b), and & = 10 (panel ¢). Symbols
are the same as in Fig. 1. The xi, distribution is shown with
smooth curve,



Resonance width distribution
(chaotic closed system, single open channel)

G. Shchedrin, V.Z., PRC (2012)
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Adding many “gamma” - channels
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FUTURE DIRECTIONS:

A Experimental situation

A Realistic spacing distribution

A Realistic gamma-width distribution

A Single-particle resonances

A Evolution with energy (new channels)



Particle in Many-Well Potential

Hopping
Decay Decay
« ® —_—

Hamiltonian Matrix:

(
Hpm = Eanm+ﬂ(5mn+1+5m,n—1)—§ (TL5n15m1 + '}'RanN)

A LY
: decay decay
hopping et fight

Solutions:

*No continuum coupling - analytic solution

*Weak decay - perturbative treatment of decay

*Strong decay — localization of decaying states at the edges



Quantum signal transmission through a simple chain of wells
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Disordered problem

Hopping

=

Decay Decay
oadr I P T

)
Hom= ﬁﬁnm+ﬂ(5mn+1+5m,n—l)—§ (’TLénléml + 'TR'gnN)

f ! 7 X

random hopp| ng deCClV dBCGV
energy left right



n=1000  Example: disorder + localization

e=random number and v=1
Critical decay
strength y about 2
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Distribution of widths
as a function of decay strength

Weak decay: Random Distribution

Transitional region:
Formation of superradiant states

Strong decay: Superradiance
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EPL 88 (2009) 27003

|

One-Body

i

Cross section (conductance) fluctuations

in a system of randomly interacting
fermions, similarly to the shell model,
as a function of the intrinsic interaction
strength. Transition (lambda =1) —
onset of chaos, exactly as in the theory
of universal conductance fluctuations
in quantum wires

7 particles, 14 orbitals,
3432 many-body states, 20 open channels

Cross section (conductance) fluctuations
as a function of openness.

No dependence on the character of
chaos,

one-body (disorder) or

many-body (interactions).
Transition to superadiance: kappa=1
(“perfect coupling”)




K ’,\b “Star” graph
.

\ “bound state”

%‘H.H. : ‘6' 9 @ -0 in the center,

& 1

/. long life time

4
. N

Next step — insert
A. Ziletti et al. Phys. Rev. B 85, 052201 (2012).

a qubit (qubits)

Ya. Greenberg et al. arXiv:1302.2305



Kleinwaechter & Rotter, 1985

Dipole resonance in 160

From 15N(p,p’) reaction

AN Shell model calculation
changing as a function
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HLi model

Dynamics of two states coupled to a common decay

channel
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Interaction between resonances

H=H+V - iW/2
Imaginary W
W=0
* RealV
— Energy repulsion
— Width attraction E

* |maginary W
— Energy attraction
— Width repulsion V=0
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Figure 7: The probability P(0) of finding the resonance energy spacing (in units
of the mean spacing) s < 0.04 [47]. The intrinsic dynamics corresponds to the
GOE. upper panel, with different numbers of open channels M, and to the
TBRE, lower panel, for M = 10, and different strength of the two-body random
interaction, from v = 0 through the critical value for onset of intrinsic chaos to
the strong interaction for degenerate single-particle levels, when the results are
identical to those for the GOE case. Note that for the TBRE the vertical scale
is different; at weak interaction the deviations from P(0) = 0 start at a very
small continuum coupling strength.
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Figure 8: The best fitted parameter v for the chi-square distribution with »
degrees of freedom used for the description of the width distribution found with
averaging over 1000 random realizations of intrinsic interactions for one, upper
panel, and two, lower panel, open channels [47]. Full circles refer to the GOE
intrinsic Hamiltonian, crosses stand for the TBRE with the interaction below
onset of chaos, and squares for TBRE with no intrinsic chaos. The inserts show
the unsatisfactory growing chi-square criterion of the fit as a function of .



M
H=H- w EA,A,

Theoretical framework

cac’ c'l

_ | bha 2 I a
o?(E) = |T"(E)| TH(E) = EA(E H)A

Cross section Transition amplitude
ba _ 8‘)0 T ba
§“=0"-1T
_ 1 —iK Scattering matrix in space of channels
1 +iK (unitary)
K= l~\ I AT Analog of R-matrix (K*)=-imd" bl‘p(O)z-iﬁabKa
2" E—H N



Averaging over intrinsic states (GOE or TBRE)
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Maximum at perfect coupling
(“super-radiance”)
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If the number of channels M >>1

C(e) = (o E)o(E + €)) — (a(E))?
Standard (Ericson) theory predicts small fluctuations
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Width fluctuations

in different models

of intrinsic interactions

GOE level

Fg. 3. (Color oaline.) Dimensionless variance of the widths versus vy /dy for
M = 10 (coanected circles): the GOE valoe is shown by borizontal dashed line;

the vertical dot-dashed line marks the value 1y = v comresponding to the onset .
of chaos. In the inset the level spacing distribation is shown for ¥ = 0 and At the arrow pOSItIOnZ

iy /dy = 0.2 (crosses). see the arrow in the main part, and for the GOE (circles).
The smooth curve is the WD-distribution,
P(s) is not sensitive
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FIG. 3. (Color online) Normalized variance of the width as a
function of the number of channels M. for different coupling
strengths « (symbols are the same as in Fig. 1). While for small
coupling k=0.01, the variance decreases with the number of chan-
nels very fast in accordance with the expected y* distribution
(dashed line), for large couplings x=0.5 and 0.9 the behavior is
different from the 1/M dependence. Pluses, crosses, etc. stand for
the same situations as in Fig. |.
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FIG. 4. (Color online) Numerical data for the normalized vari-
ance of the widths vs x for GOE and M=2 (circles), in comparison
with the result of numerical integration of Eg. (50) (solid curve),
and with Eq, (51) (dashed curve) (see in the text).
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Large width fluctuations

Y. V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918
(1997); H.-J. Sommers, Y. V. Fyodorov, and M. Titov, J. Phys.
A 32, L77 (1999).

Divergence independently of M
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Figure 9: The fluctuating part of the elastic cross section for 10 open channels
and x = 0.8 as a function of the intrinsic interaction strength in the TBRE; the
GOE value is shown by a horizontal line [46]. The dashed vertical line shows
the critical value A, for the transition to chaos in the TBRE.
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Transmission at the center osH 9=13 i
of the energy band, o g=100 ]
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disordered chain, i |

N=100, o3
asymmetric leads 0.2
with ratio of width q.

Curves: Anderson disorder model Eﬂ ' ] 3 100

Points : sequence of potential barriers
with random levels for each site

Full correspondence with universal conductance fluctuations
Various regimes of asymmetry and disorder

Various geometries: 1-d, quasi 1-d, 2-d, 3-d, Y, crossings, stars ...
Attach reservoirs at the ends

Noise and decoherence



SUMMARY

1. General method for open and marginally stable many-body quantum systems

2. Instrument for studying the intrinsic chaos by cross sections
and their fluctuations and correlations

3. Broad range of applications: exotic nuclei, particle resonances,
chemical reactions, micro- and nano-devices,
engineering for quantum information and signal transmission

4. Many unsolved problems:
N theoretical description beyond canonical Gaussian ensembles
N interaction with collective excitations and doorway structure
A interaction with external noise
A distribution function in the complex plane — problem for experiment



Loosely stated, the PTD is based on the assumptions that

s-wave neutron scattering is a single-channel process, the P.E. Koehler et al.
widths are statistical, and time-reversal invariance holds; PRL 105, 072502 (2010)
hence, an observed departure from the PTD implies that

one or more of these assumptions is violated the combined probability

that the PTD is

valid is less than 3x107>
Attempts to fit by the PTD: ¥ < 1

(a) Time-reversal invariance holds
(b) Single—channel process — (n,gamma) ?
(c) Widths are statistical ? Whatever it means -

(d) Intrinsic “chaotic” states are correlated through
common decay channel

(e) Single—particle resonance — doorway state?

(f) Combination of (c), (d) and (e)



6 Al and 2®Si, (s-p-sd-pf)-model space, both parities, all J
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