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Outline 

• Why simulate Gg distributions? 

• What is Gg? 

• How are Gg’s measured? 

• Simulating Gg distributions with the statistical model. 

• Results and physics issues. 
Testing level-densities and photon-strength-functions. 
Constraining the Porter-Thomas distribution in Pt. 
Failure of the statistical model in 96Mo? 

 



Motivation: Can the Loop be Closed? 

• Measured r(Ex) and fXL(Eg) calibrated using part of 
the neutron data. 
 D0 and <Gg0>. 
 

• Can statistical-model simulations reproduce <Gg> as 
well as Gg distributions (for all Jp)? 
 

• Tests: 
r(Ex) and fXL(Eg). 
Statistical-model assumptions. 
Jp distribution model. 



What is Gg? 
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How are Gg’s Measured? 

• R-matrix analysis of 
neutron-resonance data. 

• Need both capture and 
total (transmission) data. 

• Capture area. 
Ag=gJGnGg/(Gn+Gg). 

• Transmission → Gn. 

• Get Gg only for subset of s-
wave resonances. 

• Much better and larger 
sets of Gg data due to 
recent improvements. 



What Does the Statistical Model Predict? 
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Comparison of Gn
0 and Gg Distributions 

• Neutrons, Gn
0. 

Single channel, =1. 
PTD. 
Very broad. 
 

• Gammas, Gg. 
~100 channels. 
Very narrow. 
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Simulating Gg Distributions: Step 1 
Generating a Level Scheme 

• Use r(Ex) and random 
number generator to 
get set of Exi’s. 

• Throw away those 
below Ecut. 

• Add in known levels 
below Ecut. 



Simulating Gg Distributions: Step 2 
Calculating the Ggi’s 

• Egi = Sn – Exi. 
 

• Calculate fX1(Egi)’s. 
 

• Calculate “PTD” factor ξi
2. 

 
Generalize to allow ≠1. 
 

• Ggi = D0 ξi
2 fX1(Egi) Egi

3. 
 
Calculate Ggi ’s for each Jp 
reached by dipole decay. 
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197Pt M1 PSF Models
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Simulating Gg Distributions: Steps 3 and 4 
Calculating Total Widths and Iterating 
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Examples: 197Pt LD and PSF Models in Talys 

• Five LD models. 
1 – Const. T + Fermi Gas. 
2 – Back-shifted Fermi Gas. 
3 – Generalized Superfluid.* 
4 – Goriely. 
5 – Hilaire. 

• Five PSF models. 
1 – Kopecky-Uhl Lorentzian. 
2 – Brink-Axel Lorentzian. 
3 – Hartree-Fock BCS. 
4 – Hartree-Fock Bogolyubov. 
5 – Goriely’s Hybrid. 
 
*Didn’t use. Couldn’t normalize. 
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197Pt Talys Results for ‹Gg› 

• Talys calculation with 4 LD and 
5 PSF models. 

• Normalized LD models to 
ORELA D0 = 153 eV. 
LD models 1 and 2 normalized 
using “a”, models 4 and 5 using 
“c” and “d”. 

• PSF models un-normalized. 

• Chose LD/PSF combinations 
which gave closest to ORELA 

value, ‹Gg› = 85.9±1.8 meV, for 

simulations.  
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197Pt Simulation Results with Talys Models 

• All simulations using Talys 
models yielded Gg distributions 
significantly narrower than 
measured. 
 

• Decreasing  results in much 
better agreement between 
simulation and data. 
 
Another sign of violation of 
the PTD? 
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197Pt Simulation Results with LD and PSF from Oslo 

• Oslo LD is somewhat 
different than TALYS. 

• Oslo PSF’s are significantly 
different from TALYS. 

• Simulations with Oslo LD 
and PSF in very good 
agreement with the data. 

• Open questions affecting 
simulated shape. 
What is spin distribution? 
How to partition PSF 
between M1 and E1? 
How important is lack of 
information about Jp’s at 
low Ex? 
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Talys model 1, Kopecky-Uhl, Gg=79.5 meV
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Lessons Learned from 
196,197Pt Simulations 

• Shape of PSF and division into E1 
vs. M1 important. 
Affects shape of Gg distribution. 
Steeper PSF results in broader Gg 
distribution, and vice versa. 

• Spin distribution of LD important. 
Experiment  affects PSF shape. 
Odd-even J staggering gives results 
in disagreement with data. 

• 195Pt may be more interesting case. 
Better statistics than 197Pt. 
Most visible “tail”. 
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The Strange Case of Mo 

• Disagreements about shape of PSF just 
below Bn. 

• Disagreements about existence of 
low-energy enhancement in PSF. 

• Disagreements about whether g decay 
is statistical. 
Sheets et al., PRC 024301 (2009): 
“…extreme statistical model works 
very well..” 
Musgrove et al., NP A270, 108 (1976): 
“…presence of non-statistical g-decay 
mechanisms.” 
“…theory needs to be extended to 
include doorway state contributions to 
the radiative widths.” 
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Large Improvement in 95Mo+n Resonance Parameters 

• ORELA measurements 
resulted in large 
increases in: 
 
Resonances: 108 → 314. 
 
Firm J: 33 → 274. 
 
Firm p: 38 → 253. 
 
Firm Jp: 32 → 253. 
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s- and p-wave: 2+, 3+, 1-, 2-, 3-,  and 4-. 
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95Mo+n ORELA Results 

Dl and Sl corrected for missed resonances using technique of Fuketa and Harvey. 

Jp Dl (eV) 104Sl ‹Gg› (meV) 

1- 275±34 0.240±0.080 670 ± 45 

2- 121.8±8.5 1.24±0.24 306.2 ± 1.8 

3- 142±11 0.89±0.19 406.4 ± 3.9 

4- 166±14 0.72±0.17 285.6 ± 6.1 

All p=- 40.1±1.7 3.09±0.35 - 

Mugh p=- 37.7±4.3 6.89±1.77 210±40 

2+ 184±14 0.171±0.035 187.17±0.83 

3+ 103.3±5.9 0.318±0.049 187.91±0.69 

All p=+ 66.1±3.0 0.489±0.060 187.54±0.76 

Mugh p=+ 81±14 0.47±0.17 162±7 
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96Mo Simulations 

• Used Oslo LD and PSF. 
LD p independent. 
PSF upbend in E1 or M1. 

• Simulations much narrower 
than measurements. 
Including simulations with 
=0.5, and with TALYS LD’s 
and PSF’s. 

• Simulated ‹Gg ›’s much 

smaller than measured. 

• Simulated ‹Gg › difference for 

the two parities much 
smaller than measured. 
Need p dependent LD? 
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Two (Very Non-statistical) Ways to Fix 96Mo 

1. All transitions to levels below 
≈Bn/2 totally correlated (same 
Porter-Thomas factor). 
Gg distribution shapes in much 
better agreement with data. 

‹Gg › still much smaller than data. 

Parity problem persists. 

2. E1 transitions to levels below 
≈Ecut enhanced by ≈25. 
Each transition still has its own 
Porter-Thomas factor. 
Both shapes and averages in 
much better agreement with the 
data. 
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96Mo E1 Transitions to Levels Below Ecut  
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Some Questions, Problems, and 
Recommendations 

• Can Pt PSF’s be determined accurately enough to use Gg 
simulations to test random matrix theory? 

• What is the basis for the even-odd J LD staggering? 
It appears to be incorrect for 196Pt. 
Parity dependent LD may be needed for 96Mo. 

• Can the large non-statistical signatures in the Gg data for 
96Mo be reconciled with the good agreement between 
DICEBOX simulations and data (DANCE and two-step 
cascades)? 
Are DICEBOX simulations valid in this case? 

• Apply new Jp technique(s) “retroactively” to n_TOF and 
GELINA data. 



Some Questions, Problems, and 
Recommendations 

• Develop a quantitative doorway 
model for g decay. 

• Better J distribution data needed. 

• Measure g spectra for 95Mo+n 
resonances. 
Ge at GELINA? 
TAC at n_TOF? 
Reexamine DANCE data? 



Simulating Gg distributions is potentially a very 
valuable way to test and constrain theory. 

Nine More Gg Distributions from ORELA 
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Gg Distribution Changes with En in 147Sm+n 

P.E. Koehler et al., Phys. Rev. Lett. 108, 142502 (2012) 
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196Pt Simulation Results with LD and PSF from Dresden 

• Dresden 196Pt PSF 
substantially different from 
Oslo 197Pt PSF. 

• Dresden LD has odd-even J 
staggering. 

• Simulated ‹Gg›’s are 
substantially different from 
ORELA data. 

• Simulated 1-/0- ‹Gg›  ratio is 
very different from ORELA 
data. 

• Simulated distributions are 
much narrower than ORELA 
data. 
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196Pt Simulation Results with TALYS LD and Dresden PSF 

• TALYS LD does not have odd-
even J staggering. 
Normalized to measured 
D0=16 eV. 

• Simulated ‹Gg›’s are closer  

to ORELA data. 

• Simulated 1-/0- ‹Gg›  ratio is 

close to ORELA data. 

• Simulated distributions are 
still much narrower than 
ORELA data. 
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196Pt Simulation Results with TALYS LD and  
Modified Dresden PSF 

• E1 PSF modified to follow 
shape of Oslo 197Pt PSF 
below 5 MeV. 

• Simulated ‹Gg›’s are closer 
to ORELA data. 

• Simulated 1-/0- ‹Gg ›  ratio 
is close to ORELA data. 

• Simulated distributions are 
much closer to ORELA data. 

• Simulations with =0.5 in 
even better agreement 
with data. 
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