

Simulating Γ_γ Distributions

Paul Koehler¹, L. Bernstein², Y. Byun³, D. Bleuel², R.B. Firestone⁴, S.M. Grimes³, A. Görgen¹, K. Guber⁵, M. Guttormsen¹, T.W. Hagen¹, A.C. Larsen¹, H.T. Nyhus¹, T. Renstrøm¹, S. Siem¹, and A. Voinov³

¹*Department of Physics, University of Oslo*

²*Lawrence Livermore National Laboratory*

³*Ohio University*

⁴*Lawrence Berkeley National Laboratory*

⁵*Oak Ridge National Laboratory*

DEPARTMENT OF PHYSICS
UNIVERSITY OF OSLO

Outline

- Why simulate Γ_γ distributions?
- What is Γ_γ ?
- How are Γ_γ 's measured?
- Simulating Γ_γ distributions with the statistical model.
- Results and physics issues.
Testing level-densities and photon-strength-functions.
Constraining the Porter-Thomas distribution in Pt.
Failure of the statistical model in ^{96}Mo ?

Motivation: Can the Loop be Closed?

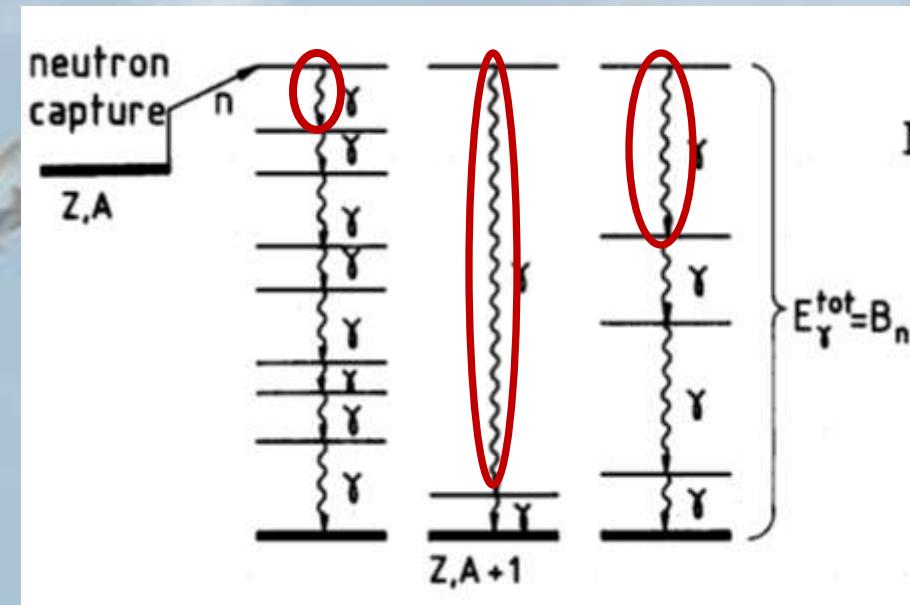
- Measured $\rho(E_x)$ and $f_{XL}(E_\gamma)$ calibrated using part of the neutron data.
 D_0 and $\langle\Gamma_{\gamma 0}\rangle$.
- Can statistical-model simulations reproduce $\langle\Gamma_\gamma\rangle$ as well as Γ_γ distributions (for all J^π)?
- Tests:
 $\rho(E_x)$ and $f_{XL}(E_\gamma)$.
Statistical-model assumptions.
 J^π distribution model.

What is Γ_γ ?

- Γ_γ is the total radiation width.

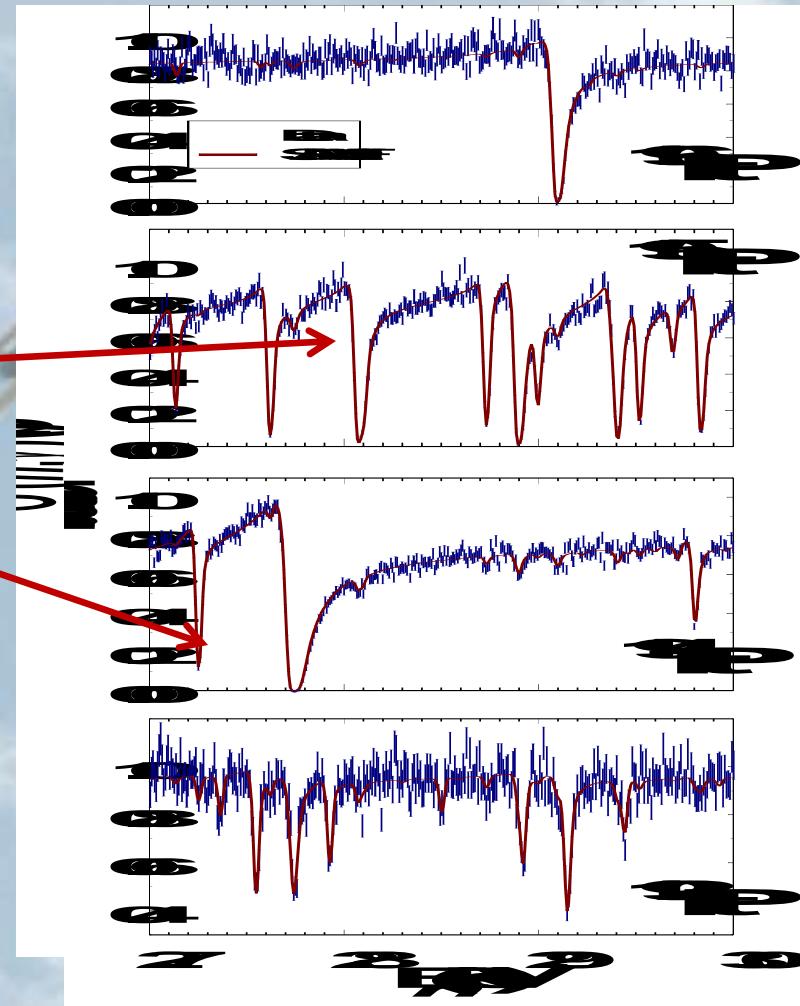
Sum of partial radiation widths, $\Gamma_{\gamma i}$, for primary transitions from the capturing state (resonance).

$$\Gamma_\gamma = \sum_{i=1}^N \Gamma_{\gamma i}$$



How are Γ_γ 's Measured?

- **R-matrix analysis of neutron-resonance data.**
- Need both capture and total (transmission) data.
- Capture area.
$$A_\gamma = g_J \Gamma_n \Gamma_\gamma / (\Gamma_n + \Gamma_\gamma).$$
- Transmission $\rightarrow \Gamma_n.$
- Get Γ_γ only for subset of s-wave resonances.
- Much better and larger sets of Γ_γ data due to recent improvements.



What Does the Statistical Model Predict?

- Γ_{γ_i} 's follow the Porter-Thomas distribution (PTD).

Same distribution as Γ_n^0

Follows from assumption of compound nucleus model and central limit theorem of statistics.

The PTD is a χ^2 distribution with 1 degree of freedom ($\nu=1$).

$$P(x; \rho) dx = \frac{\rho(\rho x)^{\rho-1} e^{-\rho x}}{\Gamma(\rho)} dx$$

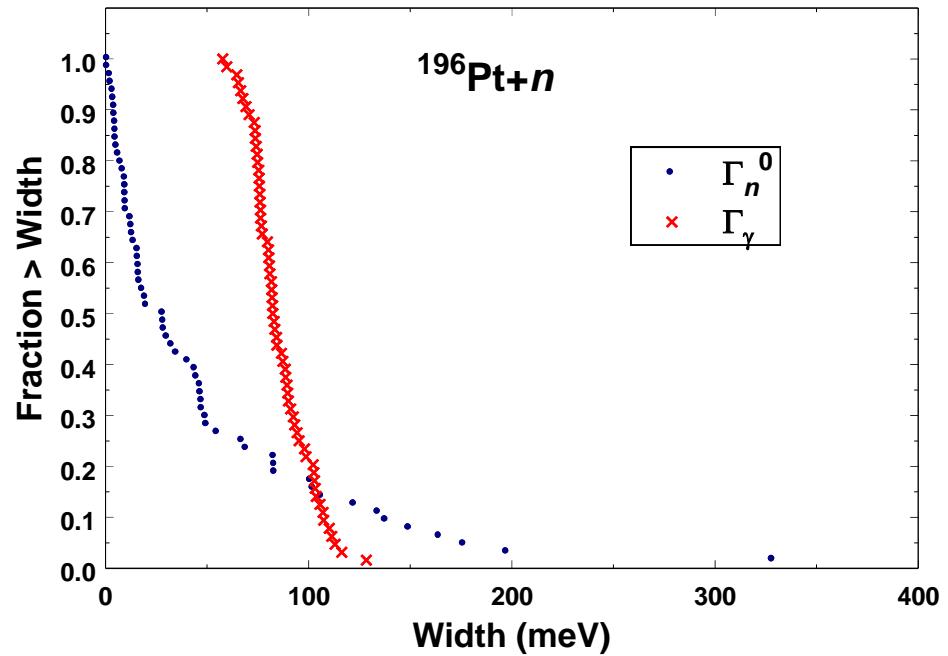
$$\nu = 2\rho, x = \frac{\Gamma}{\langle \Gamma \rangle}$$

- Sum of samples from N χ^2 distributions having $\nu = 1$ is a χ^2 distribution with N degrees of freedom.

Expect Γ_{γ} to follow a χ^2 distribution with ν equal to the number of independently-contributing channels, $\nu \approx 100$.

Comparison of Γ_n^0 and Γ_γ Distributions

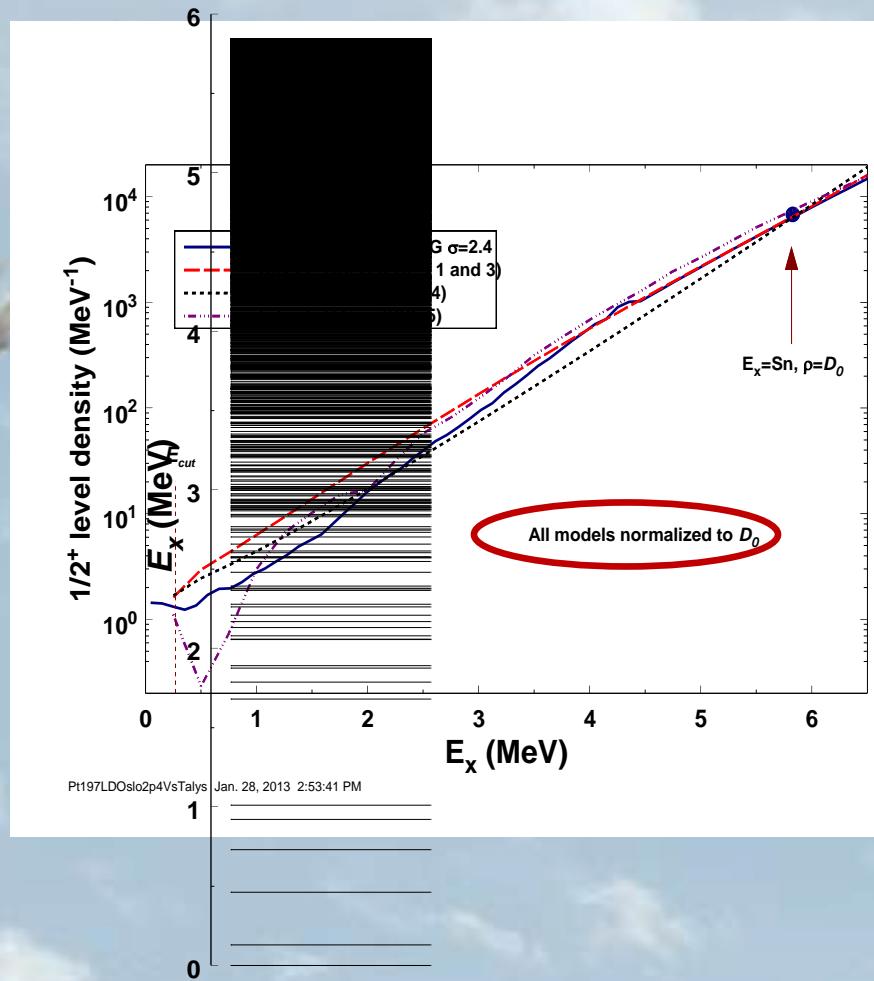
- **Neutrons, Γ_n^0 .**
Single channel, $\nu=1$.
PTD.
Very broad.
- **Gammas, Γ_γ .**
 $\nu \sim 100$ channels.
Very narrow.



Simulating Γ_γ Distributions: Step 1

Generating a Level Scheme

- Use $\rho(E_x)$ and random number generator to get set of E_{xi} 's.
- Throw away those below E_{cut} .
- Add in known levels below E_{cut} .



Simulating Γ_γ Distributions: Step 2

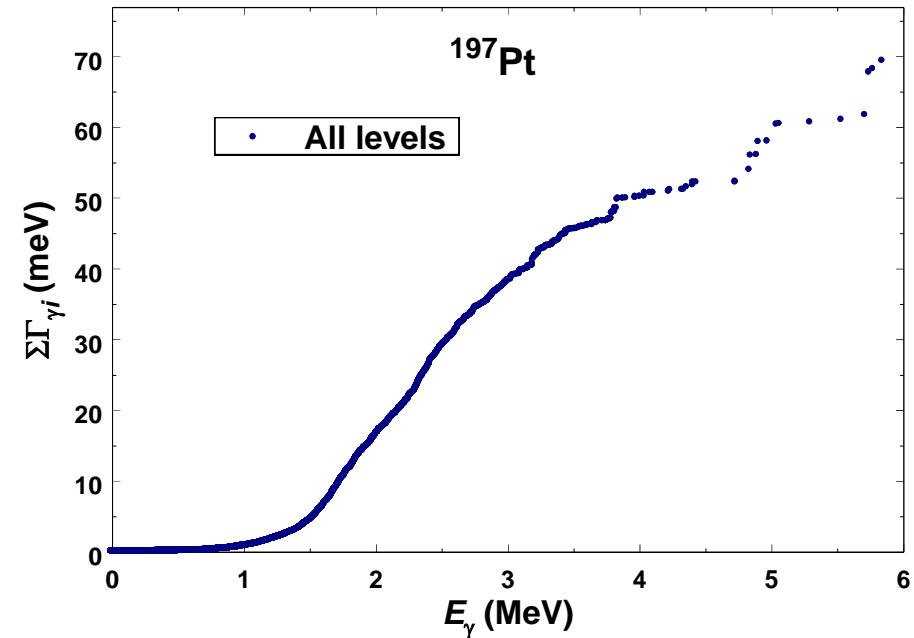
Calculating the $\Gamma_{\gamma i}$'s

- $E_{\gamma i} = S_n - E_{xi}$.
- Calculate $f_{\chi 1}(E_{\gamma i})$'s.
- Calculate “PTD” factor ξ_i^2 .

Generalize to allow $\nu \neq 1$.

- $\Gamma_{\gamma i} = D_0 \xi_i^2 f_{\chi 1}(E_{\gamma i}) E_{\gamma i}^3$.

Calculate $\Gamma_{\gamma i}$'s for each J^π reached by dipole decay.



Pt197CumGgiVsEgEB2009s2p4 Jan. 30, 2013 4:44:43 PM

Simulating Γ_γ Distributions: Steps 3 and 4

Calculating Total Widths and Iterating

- Sum $\Gamma_{\gamma i}$'s to get total width.

$$\Gamma_\gamma = \sum_{i,X,J} \Gamma_{\gamma i}$$

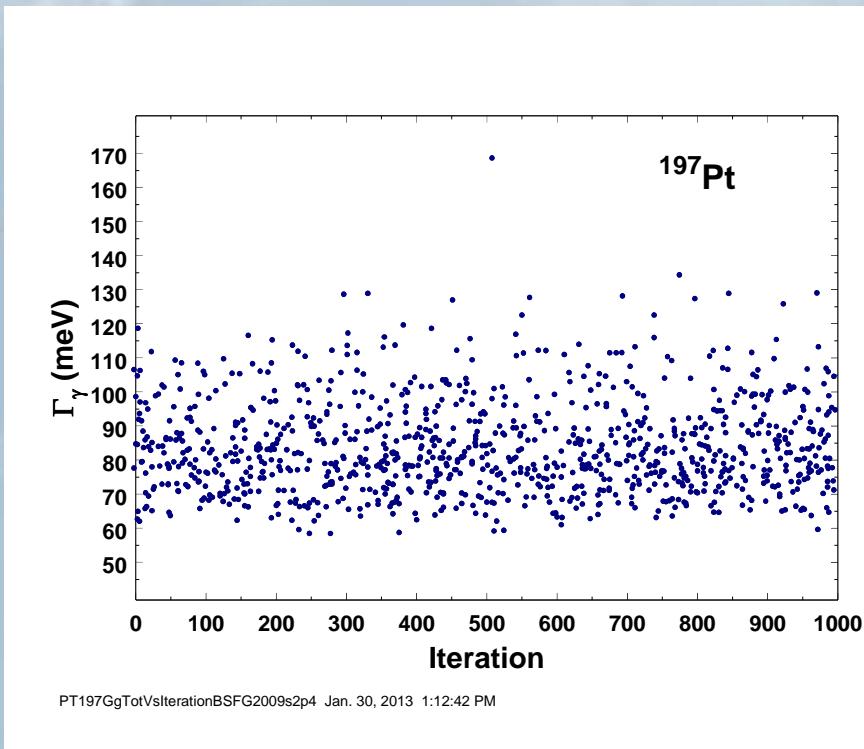
- Iterate.

Use same level schemes, etc.

New $\Gamma_{\gamma i}$'s by varying ξ_i^2 only.

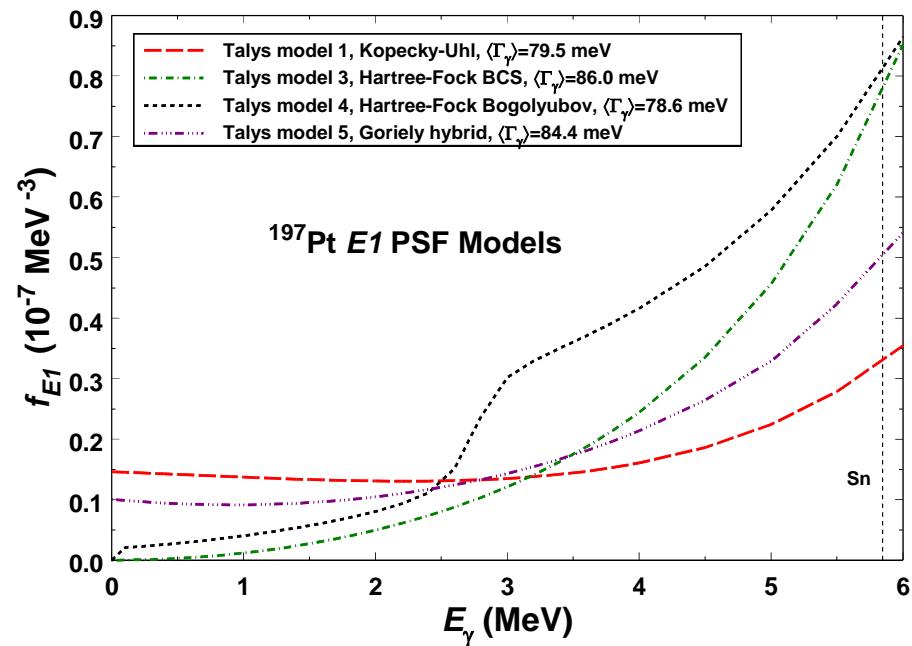
Yields distribution of Γ_γ 's.

- Shape of Γ_γ distribution due to:
Shapes of LD and PSF models.
“PTD” fluctuations.



Examples: ^{197}Pt LD and PSF Models in Talys

- Five LD models.
 - 1 – Const. T + Fermi Gas.
 - 2 – Back-shifted Fermi Gas.
 - 3 – Generalized Superfluid. *
 - 4 – Goriely.
 - 5 – Hilaire.
- Five PSF models.
 - 1 – Kopecky-Uhl Lorentzian.
 - 2 – Brink-Axel Lorentzian.
 - 3 – Hartree-Fock BCS.
 - 4 – Hartree-Fock Bogolyubov.
 - 5 – Goriely's Hybrid.

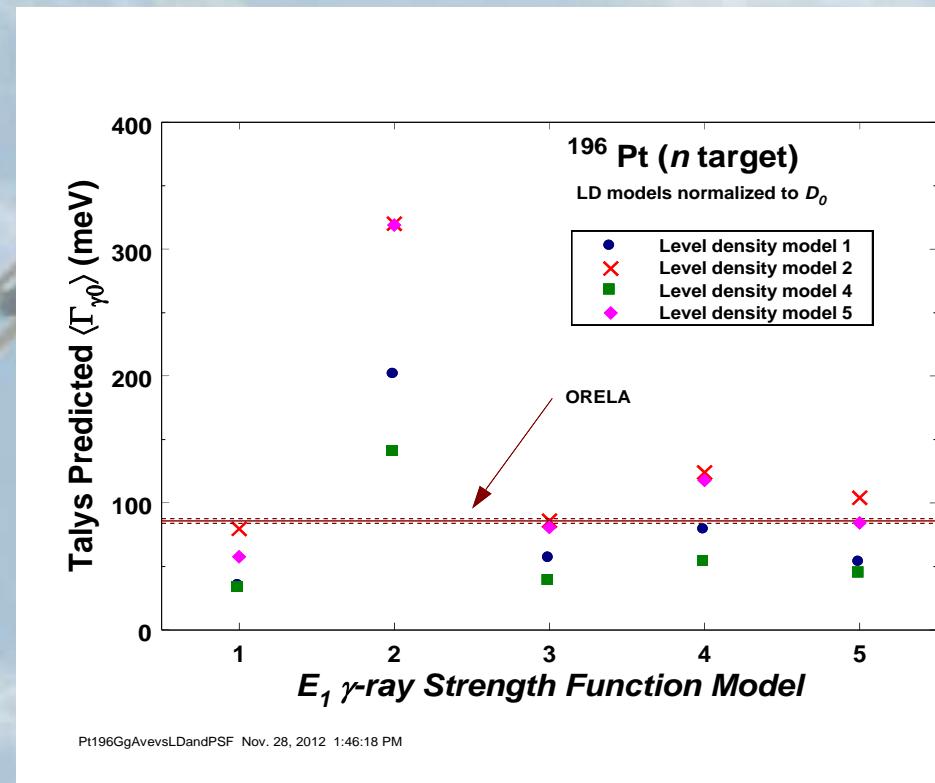


Pt197E1PSFTalys4Models Jan. 30, 2013 2:37:39 PM

* Didn't use. Couldn't normalize.

^{197}Pt Talys Results for $\langle \Gamma_\gamma \rangle$

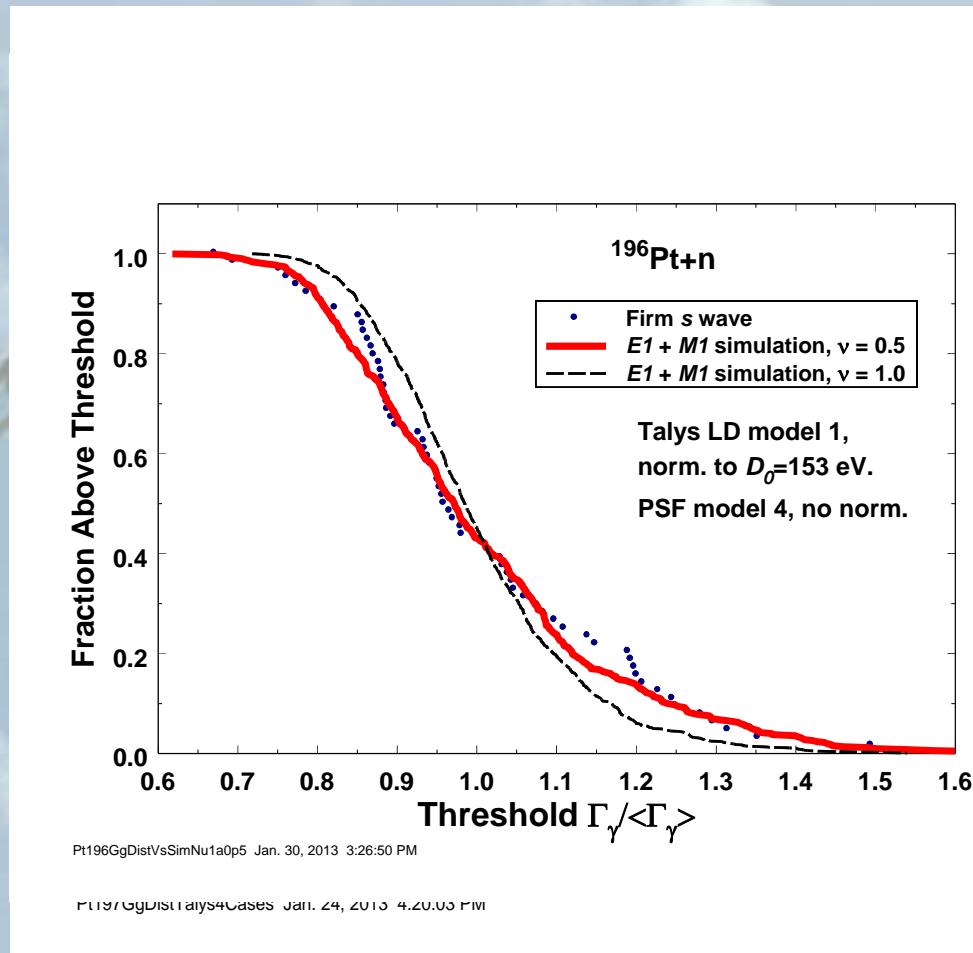
- Talys calculation with 4 LD and 5 PSF models.
- Normalized LD models to ORELA $D_0 = 153$ eV. LD models 1 and 2 normalized using “ a ”, models 4 and 5 using “ c ” and “ δ ”.
- PSF models un-normalized.
- Chose LD/PSF combinations which gave closest to ORELA value, $\langle \Gamma_\gamma \rangle = 85.9 \pm 1.8$ meV, for simulations.



^{197}Pt Simulation Results with Talys Models

- All simulations using Talys models yielded Γ_γ distributions significantly narrower than measured.
- Decreasing v results in much better agreement between simulation and data.

Another sign of violation of the PTD?



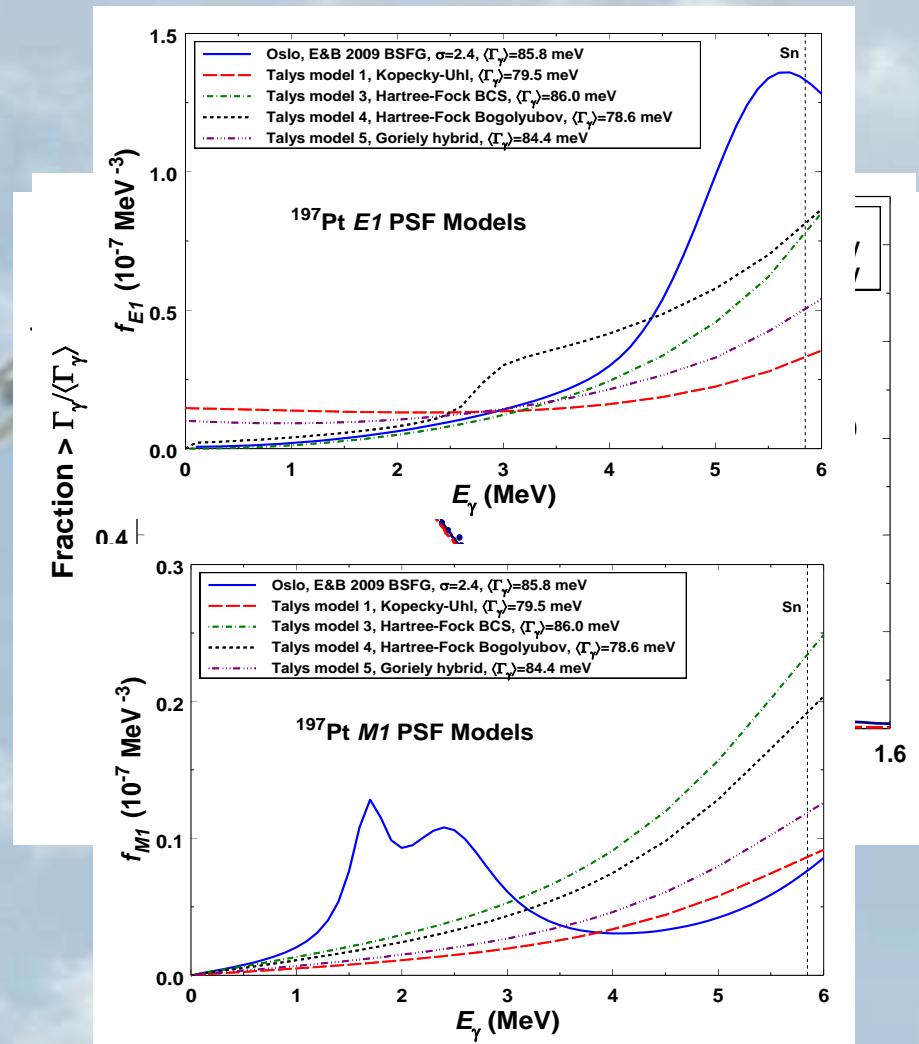
^{197}Pt Simulation Results with LD and PSF from Oslo

- Oslo LD is somewhat different than TALYS.
- Oslo PSF's are significantly different from TALYS.
- Simulations with Oslo LD and PSF in very good agreement with the data.
- Open questions affecting simulated shape.

What is spin distribution?

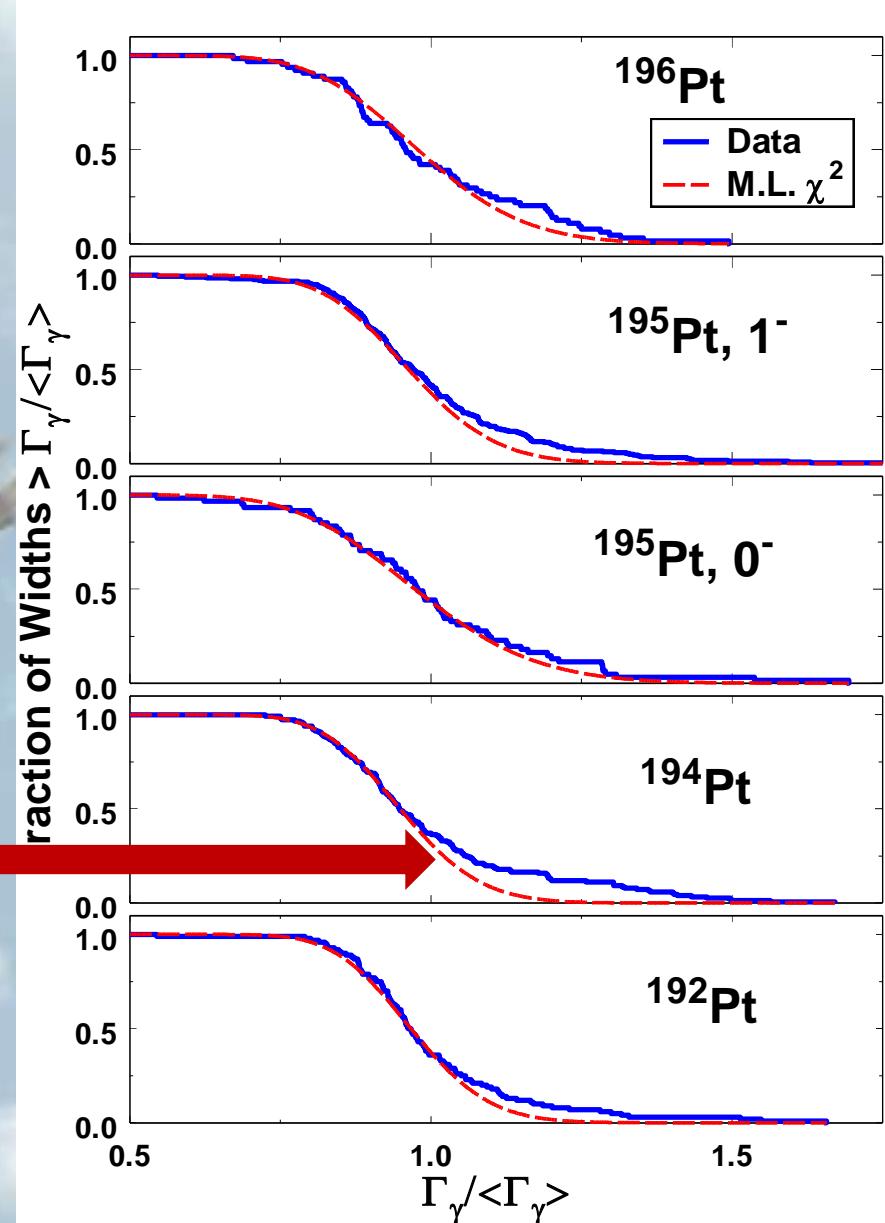
How to partition PSF between $M1$ and $E1$?

How important is lack of information about J^π 's at low E_x ?



Lessons Learned from $^{196,197}\text{Pt}$ Simulations

- Shape of PSF and division into E1 vs. M1 important.
Affects shape of Γ_γ distribution.
Steeper PSF results in broader Γ_γ distribution, and vice versa.
- Spin distribution of LD important.
Experiment σ affects PSF shape.
Odd-even J staggering gives results in disagreement with data.
- ^{195}Pt may be more interesting case.
Better statistics than ^{197}Pt .
Most visible “tail”.



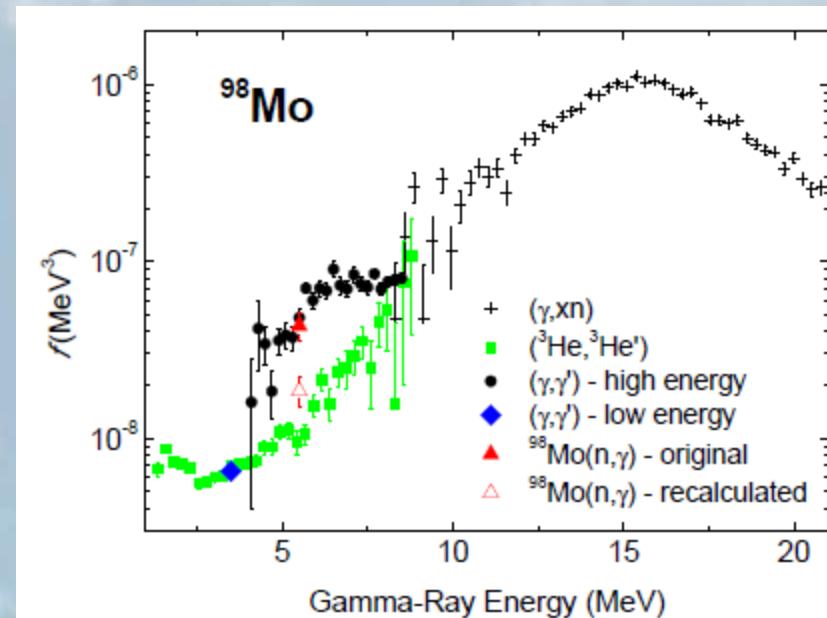
The Strange Case of Mo

- Disagreements about shape of PSF just below B_n .
- Disagreements about existence of low-energy enhancement in PSF.
- Disagreements about whether γ decay is statistical.

Sheets *et al.*, PRC 024301 (2009):
“...extreme statistical model works very well..”

Musgrove *et al.*, NP A270, 108 (1976):
“...presence of non-statistical γ -decay mechanisms.”

“...theory needs to be extended to include doorway state contributions to the radiative widths.”



Milan Krtička^{1,a} and František Bečvář¹

EPJ Web of Conferences 2, 03002 (2010)

Large Improvement in $^{95}\text{Mo}+n$ Resonance Parameters

- ORELA measurements resulted in large increases in:

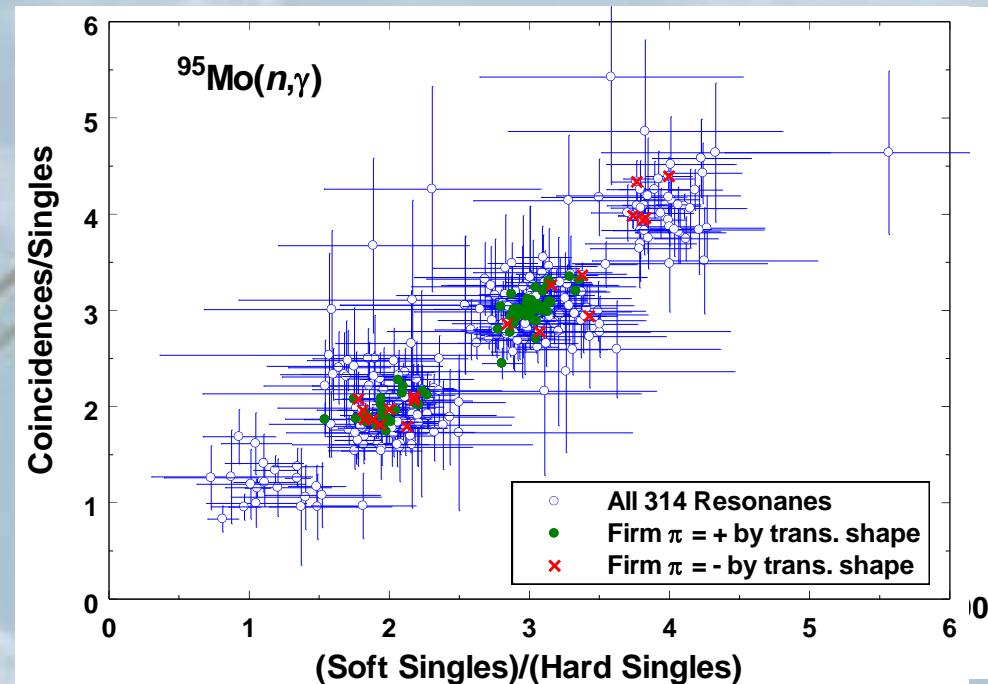
Resonances: 108 \rightarrow 314.

Firm J : 33 \rightarrow 274.

Firm π : 38 \rightarrow 253.

Firm J^π : 32 \rightarrow 253.

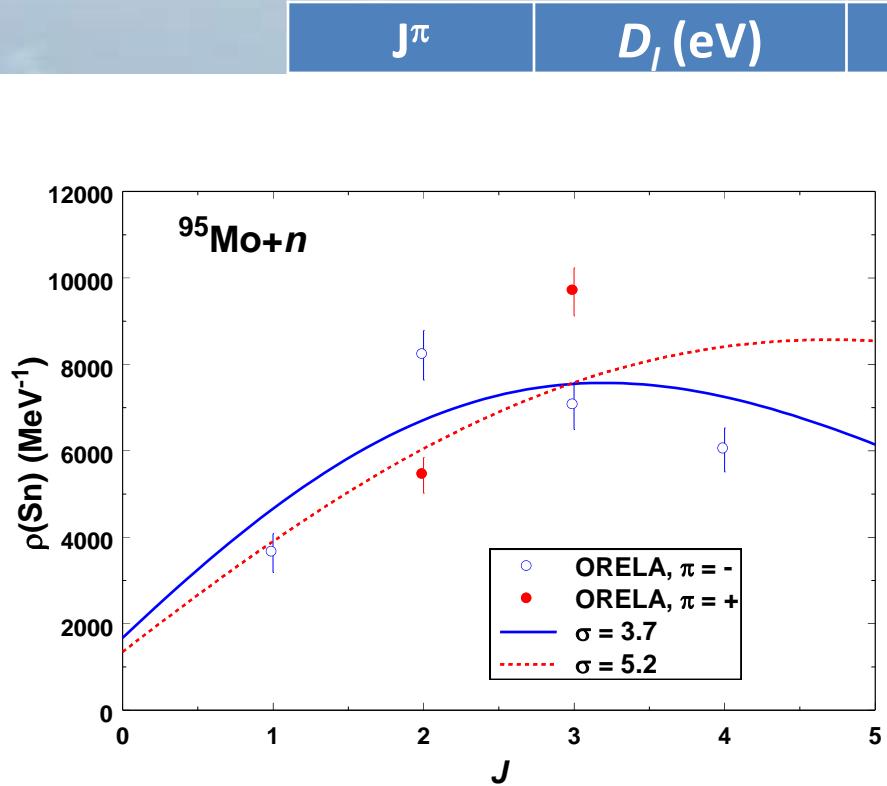
P.E. Koehler *et al.*, J. Korean Phys. Soc. 59, 2088 (2011).



s - and p -wave: $2^+, 3^+, 1^-, 2^-, 3^-,$ and 4^- .

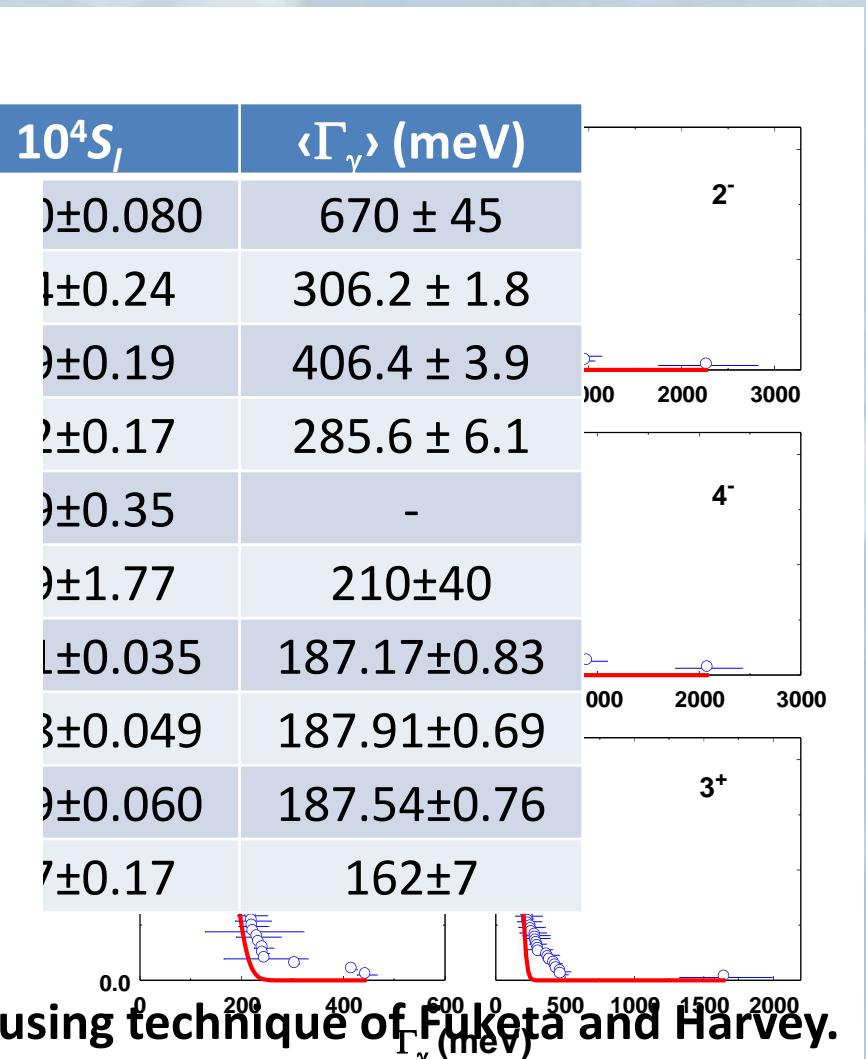
Firm J^π and Γ_γ : 11 \rightarrow 251

$^{95}\text{Mo}+n$ ORELA Results



Mo95FitNegPiSpinCutSigma3p7a5p2Darmstadt Mar. 14, 2013 12:59:10 PM

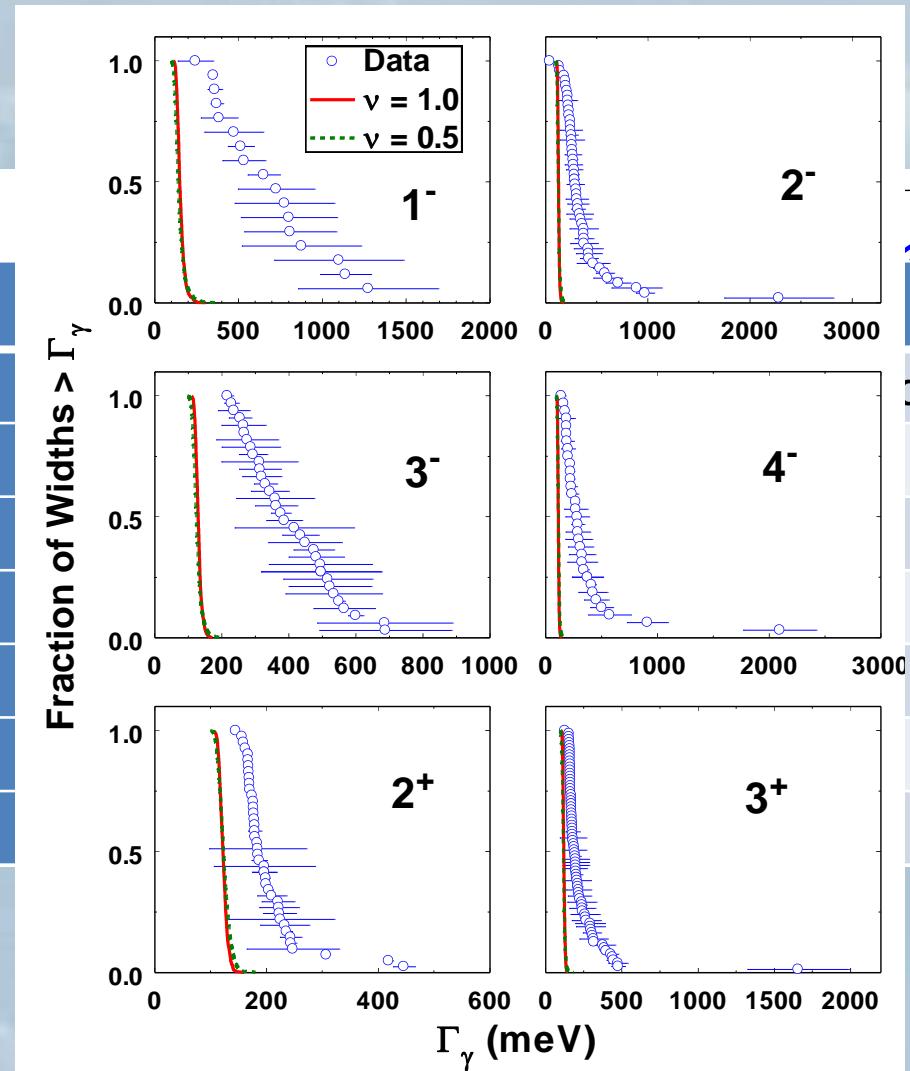
D_I and S_I corrected for missed resonances using technique of Fuketa and Harvey.



Mo95GgDistWFitAll6Jpis Mar. 14, 2013 12:59:43 PM

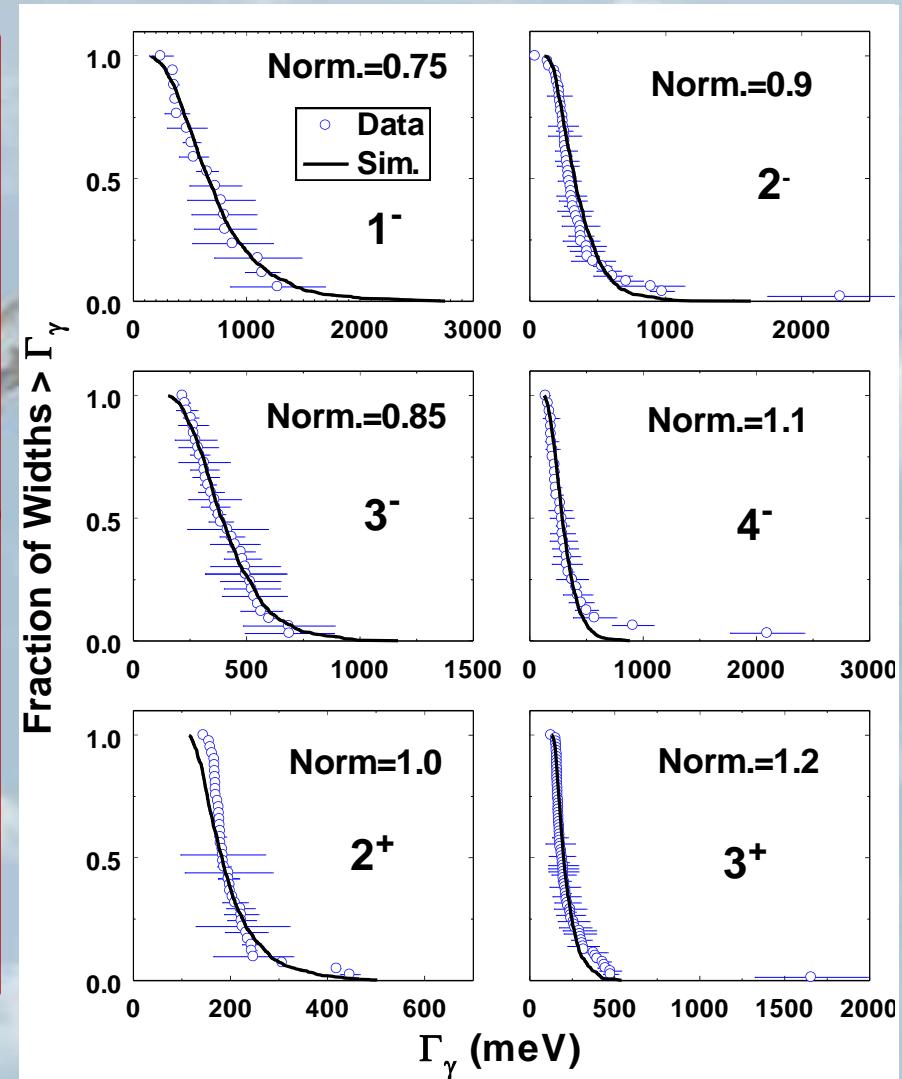
^{96}Mo Simulations

- Used Oslo LD and PSF.
LD π independent.
PSF upbend in $E1$ or $M1$.
- Simulations much narrower than measurements.
Including simulations with $\nu=0.5$, and with TALYS LD's and PSF's.
- Simulated $\langle \Gamma_\gamma \rangle$'s much smaller than measured.
- Simulated $\langle \Gamma_\gamma \rangle$ difference for the two parities much smaller than measured.
Need π dependent LD?

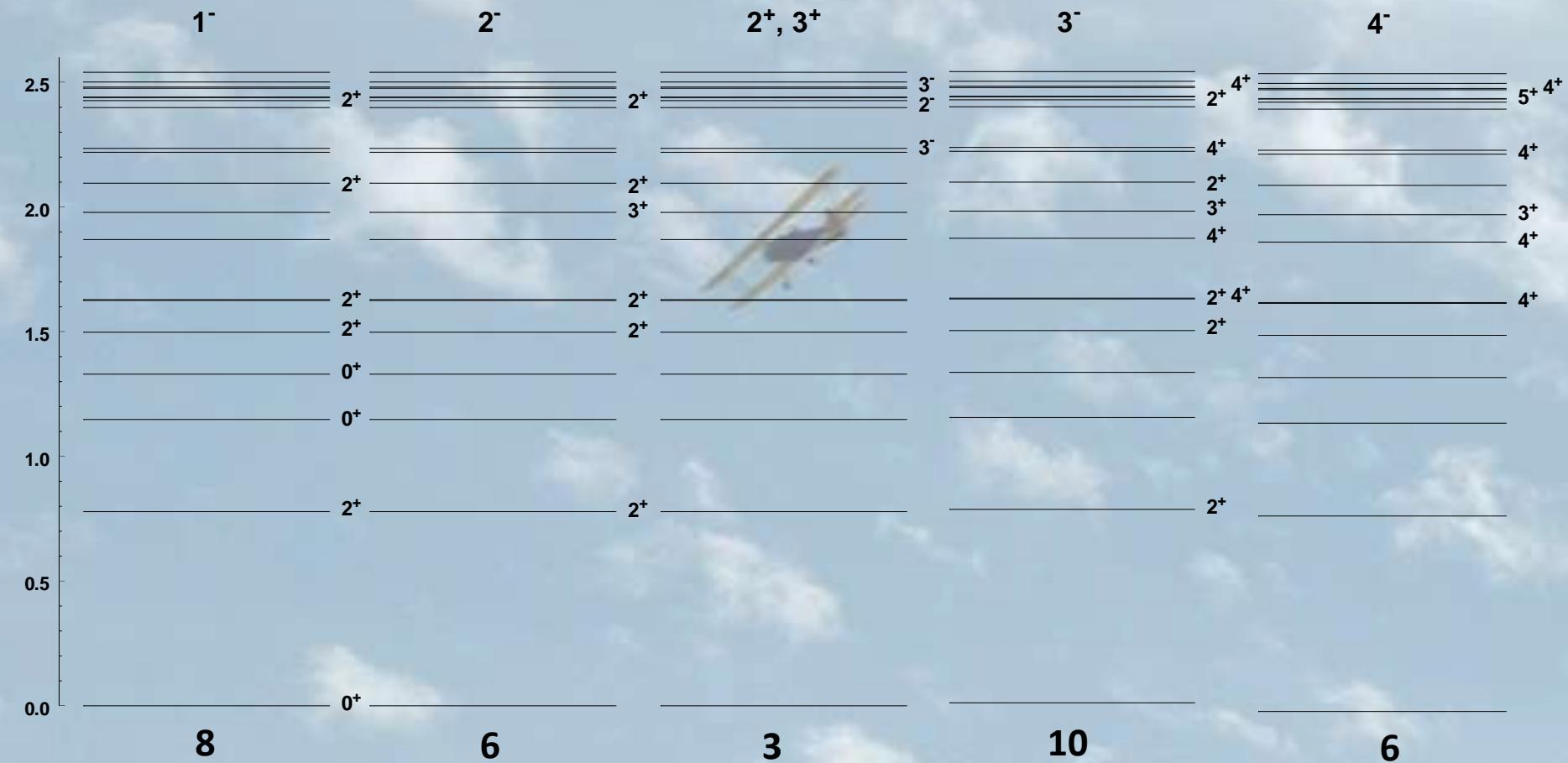


Two (Very Non-statistical) Ways to Fix ^{96}Mo

1. All transitions to levels below $\approx B_n/2$ totally correlated (same Porter-Thomas factor).
 Γ_γ distribution shapes in much better agreement with data.
 $\langle \Gamma_\gamma \rangle$ still much smaller than data.
Parity problem persists.
2. $E1$ transitions to levels below $\approx E_{\text{cut}}$ enhanced by ≈ 25 .
Each transition still has its own Porter-Thomas factor.
Both shapes and averages in much better agreement with the data.



^{96}Mo $E1$ Transitions to Levels Below E_{cut}



Some Questions, Problems, and Recommendations

- Can Pt PSF's be determined accurately enough to use Γ_γ simulations to test random matrix theory?
- What is the basis for the even-odd J LD staggering?
It appears to be incorrect for ^{196}Pt .
Parity dependent LD may be needed for ^{96}Mo .
- Can the large non-statistical signatures in the Γ_γ data for ^{96}Mo be reconciled with the good agreement between DICEBOX simulations and data (DANCE and two-step cascades)?
Are DICEBOX simulations valid in this case?
- Apply new J^π technique(s) “retroactively” to n_TOF and GELINA data.

Some Questions, Problems, and Recommendations

- Develop a quantitative doorway model for γ decay.
- Better J distribution data needed.
- Measure γ spectra for $^{95}\text{Mo}+n$ resonances.

Ge at **GELINA**?

TAC at **n_TOF**?

Reexamine **DANCE** data?

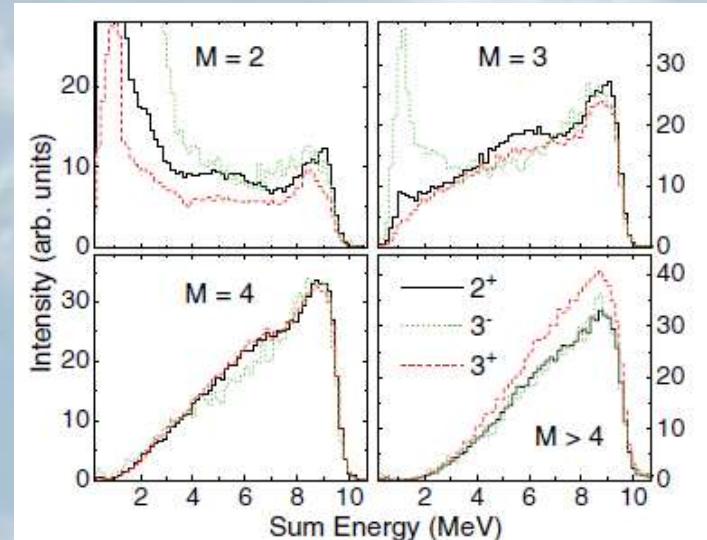
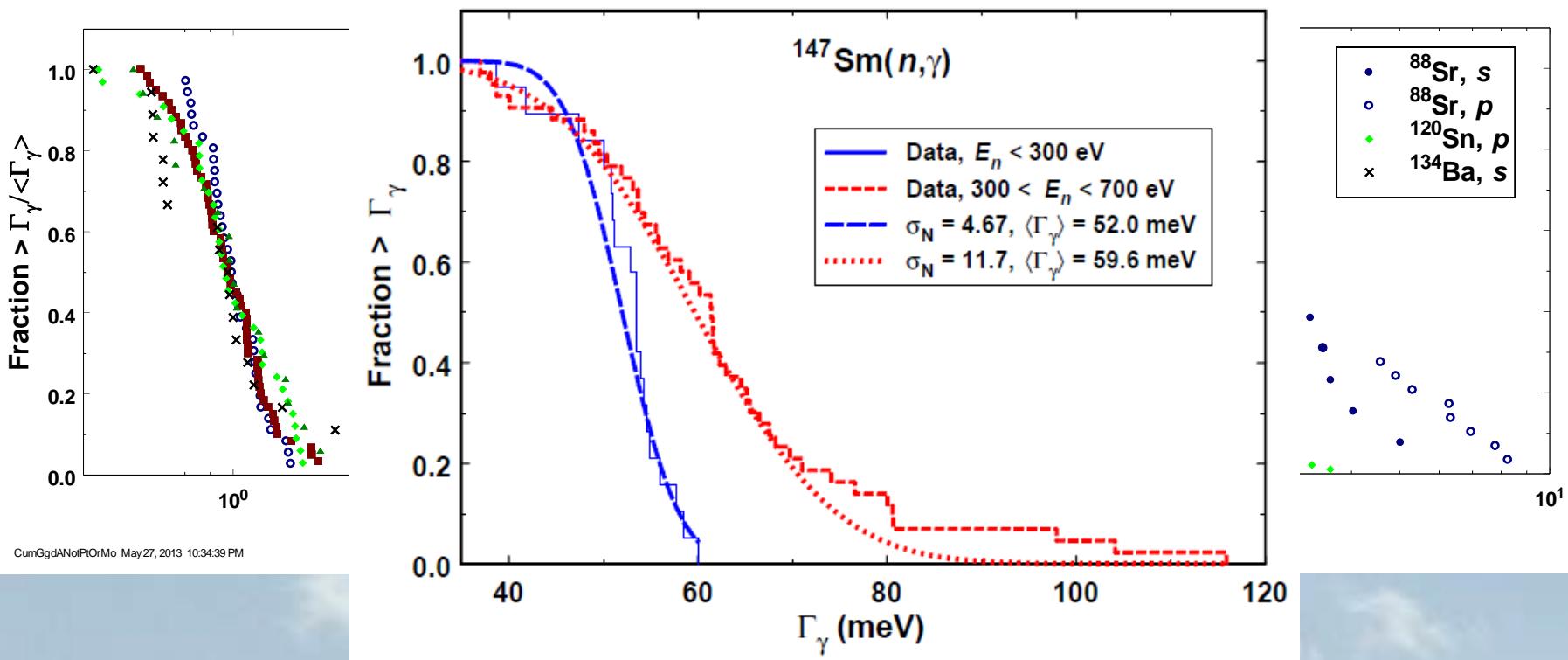


FIG. 1. (Color online) Examples of sum-energy spectra for resonances at energies of 160, 554, and 1361 eV with J^π assignments 3^+ , 2^+ , and 3^- , respectively. The multiplicities of the γ cascades, M , are indicated. The spectra are normalized to the intensity in the E_{total} peak for multiplicities $M = 2-7$.

Simulating Γ_γ distributions is potentially a very valuable way to test and constrain theory.

Nine More Γ_γ Distributions from ORELA Γ_γ Distribution Changes with E_n in $^{147}\text{Sm}+n$

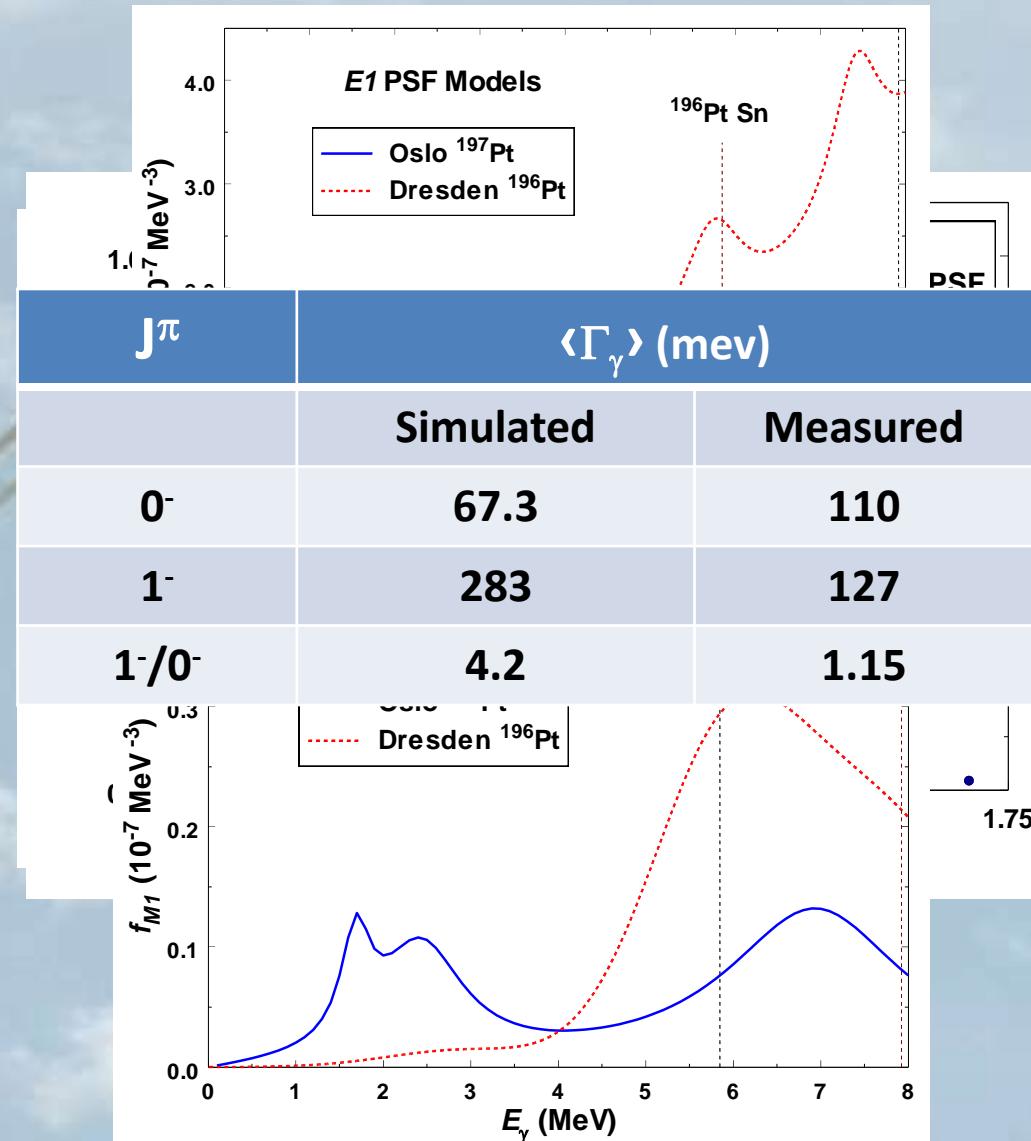


CumGgdANotPiOrMo May 27, 2013 10:34:39 PM

P.E. Koehler *et al.*, Phys. Rev. Lett. 108, 142502 (2012)

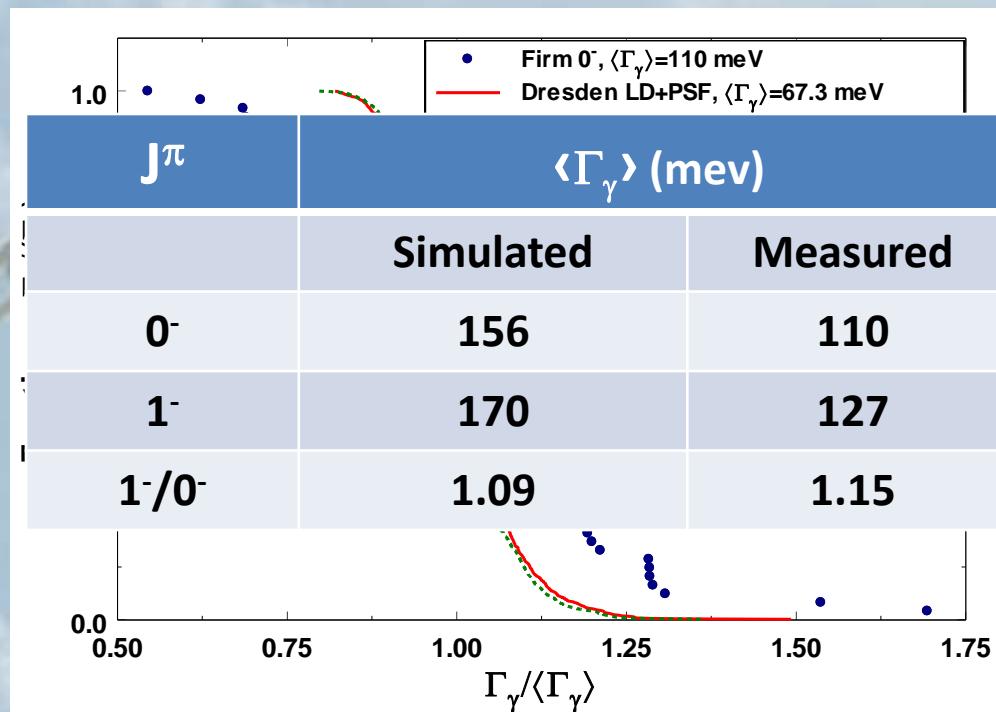
^{196}Pt Simulation Results with LD and PSF from Dresden

- Dresden ^{196}Pt PSF substantially different from Oslo ^{197}Pt PSF.
- Dresden LD has odd-even J staggering.
- Simulated $\langle \Gamma_\gamma \rangle$'s are substantially different from ORELA data.
- Simulated $1^-/0^- \langle \Gamma_\gamma \rangle$ ratio is very different from ORELA data.
- Simulated distributions are much narrower than ORELA data.



^{196}Pt Simulation Results with TALYS LD and Dresden PSF

- TALYS LD does not have odd-even J staggering.
Normalized to measured $D_0=16$ eV.
- Simulated $\langle\Gamma_\gamma\rangle$'s are closer to ORELA data.
- Simulated $1^-/0^- \langle\Gamma_\gamma\rangle$ ratio is close to ORELA data.
- Simulated distributions are still much narrower than ORELA data.



^{196}Pt Simulation Results with TALYS LD and Modified Dresden PSF

- E1 PSF modified to follow shape of Oslo ^{197}Pt PSF below 5 MeV.
- Simulated $\langle \Gamma_\gamma \rangle$'s are closer to ORELA data.
- Simulated $1^-/0^- \langle \Gamma_\gamma \rangle$ ratio is close to ORELA data.
- Simulated distributions are much closer to ORELA data.
- Simulations with $\nu=0.5$ in even better agreement with data.

