Pair Spectroscopy of the Hoyle State

T. Kibédi
Department of Nuclear Physics
Australian National University
Canberra, Australia
Tibor.Kibedi@anu.edu.au

Bungle Bungle Star Trails | Mike Salway
The triple-α rate in stellar He burning

1939: No stable A=5 to 8 elements

Triple-α process to bypass the gap; PR 55 (1939) 434

Hans A. Bethe (1906-2005)
The triple-α rate in stellar He burning

1939: No stable $A=5$ to 8 elements
 Triple-α process to bypass the gap; PR 55 (1939) 434

1952: Carbon production rate calculated; APJ 115 (1952) 326
 $^4\text{He} + ^4\text{He} + 95 \text{ keV} \rightarrow ^8\text{Be} + \gamma$ (^8Be g.s. resonance)
 $^4\text{He} + ^8\text{Be} \rightarrow ^{12}\text{C} + \gamma$
The triple-\(\alpha\) rate in stellar He burning

1939: No stable \(A=5\) to 8 elements
 Triple-\(\alpha\) process to bypass the gap; PR 55 (1939) 434

1952: Carbon production rate calculated; APJ 115 (1952) 326
 \(^4\text{He} + ^4\text{He} + 95 \text{ keV} \rightarrow ^8\text{Be} + \gamma\) (\(^8\text{Be}\) g.s. resonance)
 \(^4\text{He} + ^8\text{Be} \rightarrow ^{12}\text{C} + \gamma\)

1953: \(^4\text{He} + ^8\text{Be} + 310 \text{ keV} \rightarrow ^{12}\text{C} + \gamma\) (resonance at 7.68 MeV)
 PR 92 (1953) 1095

Hans A. Bethe (1906-2005)
Edwin E. Salpeter (1924-2008)
Sir Fred Hoyle (1915-2001)
The triple-α rate in stellar He burning

The Crafoord Prize 1997 in Astronomy: “for their pioneering contributions to the study of nuclear processes in stars and stellar evolution”
The triple-\(\alpha\) rate in stellar He burning

1939: No stable \(A=5\) to 8 elements
Triple-\(\alpha\) process to bypass the gap; PR 55 (1939) 434

1952: Carbon production rate calculated; APJ 115 (1952) 326
\[^4\text{He} + ^4\text{He} + 95 \text{ keV} \rightarrow ^8\text{Be} + \gamma \ (^{8}\text{Be \ g.s. resonance}) \]
\[^4\text{He} + ^8\text{Be} \rightarrow ^{12}\text{C} + \gamma \]

1953: \[^4\text{He} + ^8\text{Be} + 310 \text{ keV} \rightarrow ^{12}\text{C} + \gamma \ (\text{resonance at 7.68 MeV}) \]
PR 92 (1953) 1095

1953: The 7.68 MeV state identified from \[^{14}\text{N}(d,\alpha)^{12}\text{C} \]
PR 92 (1953) 649

Tibor Kibèdi, Dep. of Nuclear Physics, ANU, Canberra
New experimental results for the triple-α rate

- **Observation of a 16% alpha-decay branch bypassing the ground state of 8Be ($T_{1/2}=10^{-16}$ s; Raduta et al. PRL B705 (2011) 65)**
- **New upper limit: 0.1% (Kiresebom et al. PRL 108 (2012) 202501; Manfredi et al. PRC (2012) 037603)**
New experimental results for the triple-α rate

- 2^+ excitation of the Hoyle state: $E=9.75(10)$ MeV, $\Gamma=750(150)$ keV (Freer et al. PRC86 (2012) 034320)

New theoretical results for the triple-α rate

Controversy over calculated reaction rates at low \((10^7 \text{ K})\) temperatures

HHR - Hyperspherical Harmonic R-matrix method
NACRE - Nuclear Astrophysics Compilation of REaction rates
CDCC - Continuum Discretized Coupled Channel
BW(3B) - three-body Breit Wigner
New theoretical results for the triple-α rate

- New ab initio calculations using lattice simulations effective field theory reproduce excitation energy (Epelbaum et al. PRL 106 (2011) 192501; PRL 109 (2012) 252501)
- 3-alpha microscopic cluster model (Vasilevsky et al., PRC 85 (2012) 034318)

<table>
<thead>
<tr>
<th></th>
<th>E, MeV</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp</td>
<td>Theor</td>
<td>Exp</td>
<td>Theor</td>
<td></td>
</tr>
<tr>
<td>0⁺</td>
<td>-7.2746</td>
<td>-11.372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3796</td>
<td>0.684</td>
<td>0.0085(10)</td>
<td>2.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonance</td>
<td>0.3796</td>
<td>0.684</td>
<td>0.0085(10)</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>2⁺</td>
<td>-2.8357</td>
<td>-8.931</td>
<td>430(80)</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>Bound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.89</td>
<td>2.775</td>
<td>430(80)</td>
<td>9.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resonance</td>
<td>3.89</td>
<td>2.775</td>
<td>430(80)</td>
<td>9.95</td>
<td></td>
</tr>
</tbody>
</table>
Calculation of the triple-\(\alpha\) reaction (Rolfs and Rodney, 1988):

The rate per unit volume for the triple-\(\alpha\) reaction (Rolfs and Rodney, 1988):

\[
 r_{3\alpha} = \frac{N_\alpha^3}{2} \frac{3^{3/2}}{2} \left(\frac{2\pi\hbar^2}{M_\alpha kT}\right)^3 \frac{\Gamma_\alpha \Gamma_{rad}}{\hbar \Gamma} \exp\left(-\frac{Q_{3\alpha}}{kT}\right)
\]

\[\text{where} \quad Q_{3\alpha} = (M_{12\text{C}} - 3 \times M_\alpha) c^2 + E_r\]

Since \(\Gamma_{\text{rad}} << \Gamma_\alpha \approx \Gamma\), where \(\Gamma = \Gamma_\alpha + \Gamma_{\text{rad}}\) and \(T \approx 10^8 \text{ K}\):

\[
r_{3\alpha} \propto \Gamma_{\text{rad}} \exp\left(-\frac{Q_{3\alpha}}{kT}\right)
\]
Triple-α rate - how well it is known now

\[r_{3\alpha} \propto \left[\Gamma_{\text{rad}} \right] \exp(-[Q_{3\alpha}]/kT) \]

\[\Gamma_{\text{rad}} = \left[\frac{\Gamma_{\text{rad}}}{\Gamma} \right] \times \left[\frac{\Gamma}{\Gamma_\pi(E0)} \right] \times [\Gamma_\pi(E0)] \]

“traditional approach”
Triple-\(\alpha\) rate – how well it is known now

\[
\begin{align*}
r_{3\alpha} & \propto \left[\frac{\Gamma_{rad}}{\Gamma} \right] \exp\left(-\frac{Q_{3\alpha}}{kT} \right) \\
\Gamma_{rad} & = \left[\frac{\Gamma_{rad}}{\Gamma} \right] \times \left[\frac{\Gamma}{\Gamma_{\pi}(E0)} \right] \times \left[\Gamma_{\pi}(E0) \right]
\end{align*}
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Unc. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{3\alpha})</td>
<td>379.35(20) keV</td>
</tr>
<tr>
<td>(\Gamma_{rad}/\Gamma)</td>
<td>4.13(11)(\times 10^{-4})</td>
</tr>
<tr>
<td>(\Gamma_{\pi}(E0)/\Gamma)</td>
<td>6.75(60)(\times 10^{-6})</td>
</tr>
<tr>
<td>(\Gamma_{\pi}(E0))</td>
<td>57(5)(\times 10^{-6}) eV</td>
</tr>
</tbody>
</table>

“traditional approach”

Tibor Kibedi, Dep. of Nuclear Physics, ANU, Canberra
Triple-\(\alpha\) rate - how well it is known now

\[r_{3\alpha} \propto \left[\frac{\Gamma_{\text{rad}}}{\Gamma} \right] \exp\left(-\frac{Q_{3\alpha}}{kT}\right) \]

\[\Gamma_{\text{rad}} = \left[\frac{\Gamma_{\text{rad}}}{\Gamma} \right] \times \left[\frac{\Gamma}{\Gamma_{\pi}(E0)} \right] \times \left[\Gamma_{\pi}(E0) \right] \]

"traditional approach"

<table>
<thead>
<tr>
<th>Value</th>
<th>Unc. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{3\alpha})</td>
<td>(379.35(20)) keV</td>
</tr>
<tr>
<td>(\Gamma_{\text{rad}}/\Gamma)</td>
<td>(4.13(11)\times10^{-4})</td>
</tr>
<tr>
<td>(\Gamma_{\pi}(E0)/\Gamma)</td>
<td>(6.75(60)\times10^{-6})</td>
</tr>
<tr>
<td>(\Gamma_{\pi}(E0))</td>
<td>(57(5)\times10^{-6}) eV</td>
</tr>
</tbody>
</table>

2005 Crannell et al: \(\Gamma_{\pi}(E0)=52.0(14)\) \(\mu\)eV; \(q=0.27-3.04\) fm\(^{-1}\); Extensive data from Darmstadt, Bates-CUA, NIKHEF-K & HEPL

2010 Chernykh et al: \(\Gamma_{\pi}(E0)=62.3(20)\) \(\mu\)eV; \(q=0.21-0.67\) fm\(^{-1}\); Darmstadt S-DALINAC

\(7+1\) measurements
Data discrepant

Tibor Kibèdi, Dep. of Nuclear Physics, ANU, Canberra
Triple-\(\alpha\) rate – how well it is known now

\[
r_{3\alpha} \propto \left[\frac{\Gamma_{\text{rad}}}{\Gamma} \right] \exp\left(-\frac{Q_{3\alpha}}{kT}\right)
\]

\[
\Gamma_{\text{rad}} = \left[\frac{\Gamma_{\text{rad}}}{\Gamma} \right] \times \left[\frac{\Gamma}{\Gamma_\pi(E0)} \right] \times \left[\Gamma_\pi(E0) \right]
\]

“traditional approach”

<table>
<thead>
<tr>
<th>Value</th>
<th>Unc. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{3\alpha})</td>
<td>379.35(20) keV</td>
</tr>
<tr>
<td>(\Gamma_{\text{rad}}/\Gamma)</td>
<td>4.13(11)(\times)10(^{-4})</td>
</tr>
<tr>
<td>(\Gamma_\pi(E0)/\Gamma)</td>
<td>6.75(60)(\times)10(^{-6})</td>
</tr>
<tr>
<td>(\Gamma_\pi(E0))</td>
<td>57(5)(\times)10(^{-6}) eV</td>
</tr>
</tbody>
</table>

Largest known \(E0\) strength!

in “Wilkinson units”

\[S_{\text{wi,u.}} = |M_{\text{exp}}|^2 / |M_{\text{s.p.}}|^2 = 2.3(2) \text{ s.p.u.}\]

Tibor Kibedi, Dep. of Nuclear Physics, ANU, Canberra
Triple-α rate – how well it is known now

\[r_{3\alpha} \propto \left[\frac{\Gamma_{rad}}{\Gamma} \right] \exp\left(-\frac{Q_{3\alpha}}{kT} \right) \]

\[\Gamma_{rad} = \left[\frac{\Gamma_{rad}}{\Gamma} \right] \times \left[\frac{\Gamma}{\Gamma_\pi(E0)} \right] \times [\Gamma_\pi(E0)] \]

```
<table>
<thead>
<tr>
<th>Value</th>
<th>Unc. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{3\alpha})</td>
<td>379.35(20) keV</td>
</tr>
<tr>
<td>(\Gamma_{rad}/\Gamma)</td>
<td>4.13(11)×10^{-4}</td>
</tr>
<tr>
<td>(\Gamma_\pi(E0)/\Gamma)</td>
<td>6.75(60)×10^{-6}</td>
</tr>
<tr>
<td>(\Gamma_\pi(E0))</td>
<td>57(5)×10^{-6} eV</td>
</tr>
<tr>
<td>(\Gamma_{rad})</td>
<td>3.49(45)×10^{-3} eV</td>
</tr>
</tbody>
</table>
```

“traditional approach”

Need 5% accuracy
New approach to determine Γ_{rad}

α decay 99.96%

γ decay 0.04%

Observe both EM transitions in the same experiment to determine relative intensities

$$\Gamma_{rad} = \Gamma_{\gamma}(E2) + \Gamma_{\pi}(E0) + \Gamma_{\pi}(E2) + \Gamma_{CE}(E0) + \Gamma_{CE}(E2)$$

$\sim 98.5\%$
$\sim 1.5\%$
$\sim 0.088\%$
$\sim 9 \times 10^{-6}\%$
$\sim 3 \times 10^{-5}\%$

$$\Gamma_{rad} = \left[\frac{\Gamma_{\pi}(E2)}{\Gamma_{\pi}(E0)} \right] \times \left[1 + \frac{1}{\left[\alpha_{\pi}(E2) \right]} + 1 \right] \times \left[\Gamma_{\pi}(E0) \right]$$

Tibor Kibedi, Dep. of Nuclear Physics, ANU, Canberra
Measuring electron-positron pairs

- $e^- - e^+$ particles share the available kinetic energy:
 \[E_{\text{kin}} = E_+ + E_- = E_\gamma - 2 m_0 c^2 \]

 Need to observe both particles

- Pair emission rate: function of Z, E_γ, E_+, Θ and multipolarity; Born approx.
 \[\Gamma_\pi(E0) \sim \rho^2(E0) \times \Omega_\pi(E0) \]
 \[E_+ \approx E_- \]
 \[\theta_{\text{sep}} \approx 60^\circ \]

Tibor Kibedi, Dep. of Nuclear Physics, ANU, Canberra
Measuring electron-positron pairs

- $e^- - e^+$ particles share the available kinetic energy:
 \[E_{\text{kin}} = E_+ + E_- = E_\gamma - 2 m_0 c^2 \]

Need to observe both particles

- Pair emission rate: function of Z, E_γ, E_+, Θ and multipolarity; Born approx.

\[\alpha_\pi(E2) = \Gamma_\pi(E2)/\Gamma_\gamma(E2) \]

\[E_+ \approx E_- \]

\[\theta_{\text{sep}} \approx 30^\circ \]

\[W_\pi(E0) \sim \rho^2(E0) \times \Omega_\pi(E0) \]

\[W_\pi(E2) = \Gamma_\gamma(E2) \times \alpha_\pi(E2) \]

ICC

Tibor Kibédi, Dep. of Nuclear Physics, ANU, Canberra
\(\Omega(E_0) \) experiment vs. theory

- \(\Omega_{\pi}(E_0) \) - not accessible from experiment

\[W_{\pi}(E_0) \sim \rho^2(E_0) \times \Omega_{\pi}(E_0) \]

- \(\Omega_K(E_0) / \Omega_{\pi}(E_0) \) is known for 5 cases only
Angular correlation data for $\Omega(E0)$ is rare

S. Devons and G.R. Lindsey
Nature (London) 164 (1949) 539

A.H. Wuosmaa et al. (APEX ANL)
PRC 57 (1998) R2794

SOLID LINE: Ch. Hoffmann et al.
PRC 53 (1996) 2313
DASHED LINE: Born Approximation

Born approximation for low Z and $\Theta_s<80^\circ$ is sufficient
New pair spectrometer
Absorber system & detector

Acceptance angles: 15.9° - 46.9°
Absolute singles efficiency: 0.5%/4π

Spectrometer response from simulations

(a) 7.654 MeV E0 in 12C

Si(Li) array @350 mm
Six detectors of 236 mm2
FWHM ≈ 2.5 keV
Semikon GmbH

Absorbers made from HeavyMet
(density 18 gr/cm3)
1 mm thick low Z skin (Torr Seal®)
Old/New Absorber system
Singles data

First in-beam tests
Original lens (Apr-2009)
New lens (Jun-2012)

$^{12}\text{C}(p,p')$ @ 10.5 MeV
2 mg/cm² target

~100
Old/New Absorber system
Singles data

First in-beam tests
Original lens (Apr-2009)
New lens (Jun-2012)

12C(p,p') @ 10.5 MeV
2 mg/cm² target

Pairs hitting the same segment
New Absorber system
Electrons & Positrons in coincidence

4.439 MeV E2

Experiment: $^{12}\text{C}(p,p')$ at 10.5 MeV

$$E \approx \frac{E_\gamma - 1.022 \text{ MeV}}{2}$$
New Absorber system
Electrons & Positrons in coincidence

Experiment: $^{12}\text{C}(p,p')$ at 10.5 MeV
Simulation: electrons
New Absorber system
Electrons & Positrons in coincidence

Experiment: $^{12}\text{C}(p,p')$ at 10.5 MeV
Simulation: electrons, positrons
New Absorber system

Electrons & Positrons in coincidence

4.439 MeV E2

Experiment: 12C(p,p$'$) at 10.5 MeV
Simulation: electrons
 positrons

Partial energy deposit from annihilation quanta
New Absorber system

Electrons & Positrons in coincidence

Experiment: $^{12}\text{C}(p,p')$ at 10.5 MeV
Simulation: electrons, positrons, summed

4.439 MeV E2
New Absorber system
Electrons & Positrons in coincidence

Experiment: $^{12}\text{C}(p,p')$ at 10.5 MeV
Simulation: electrons, positrons, summed

Compton electrons ($\hbar\omega=0.511$ MeV)
$^{54}\text{Fe}(p,p'g) @ 6.9 \text{ MeV}$

CSS hpGe

Singles electrons

Sum-coincidence pairs

Tibor Kibèdi, Dep. of Nuclear Physics, ANU, Canberra
$^{54}\text{Fe}(p,p'g) \: @ \: 6.9 \text{ MeV}$

E.K. Warburton and D.E. Alburger,
Phys. Rev. C 6 (1972) 1224
\[^{54}\text{Fe}(p,p'g) @ 6.9 \text{ MeV} \]

CSS hpGe

Singles electrons

Sum-coincidence pairs
12C(p,p')12C* pair measurements
(Jun-2012)

- 55 h beam time with 100 nA on a 2 mg/cm² target
- “old” Honey detector (1997), 4.2 mm thick, reduced efficiency, continuous gain shifts
- TDC gate of +/- 6 ns wide!

graph showing peaks at 3215, 4439, 6050, and 7654 keV.
$^{12}\text{C}(p,p')^{12}\text{C}^*$ pair measurements
(Jun-2012)

800 nA on 3.5 mg/cm2
2 NaI detectors

1977Al31 D. Alburger (1977)
Courtesy of Mitchel de Vries

100 nA on 2.0 mg/cm2
6 Si(Li) detectors

ANU Super-e (2012)
Conclusion and outlook

Current status
- New pair spectrometer based on six Si(Li) detectors combined with a magnetic lens transporter
- High energy photon background drastically reduced
- High coincidence efficiency, optimized for E0 and E2: 1:1 vs. 500:1 (Alburger 1977)
- Less sensitive for correlation and attenuation effects ($E_+ \sim E_-$)
Conclusion and outlook

Current status
- New pair spectrometer based on six Si(Li) detectors combined with a magnetic lens transporter
- High energy photon background drastically reduced
- High coincidence efficiency, optimized for E0 and E2: 1:1 vs. 500:1 (Alburger 1977)
- Less sensitive for correlation and attenuation effects ($E_+ \sim E_-$)

Improvements
- 9 mm thick Si(Li) array: factor 2 higher efficiency for 7.7 MeV pairs
- 500 nA proton beam intensity: factor 5 higher yield

Challenges
- Evaluation of pair conversion efficiency accurately for up to 8 MeV transition energy
Acknowledgement

Collaborators
A.E. Stuchbery
G.D. Dracoulis

ANU technical staff
A. Cooper
A. Graton
C. Gudu
A. Harding
J. Heighway
A. Muirhead
D. Tsifakis
T. Tunningley,

Students
B. Alshahrani
P. Copp (Univ. of Wisconsin-La Crosse)
A. Devlin
V. Margerin
M. Ng
J. Nute
R. Pitt
S. Rhen
K. Robertson
C. Robertson
A. Then
B. Thorman
C. B. Vickers
M. de Vries
A. Wakhle

ANU Major Equipment Grant