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The triple-a rate in stellar He burning

Hans A. Bethe (1906-2005)

1939: No stable A=5 to 8 elements
Triple-a process to bypass the gap; PR 55 (1939) 434
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The triple-a rate in stellar He burning

Edwin E. Salpeter (1924-2008)

1939: No stable A=5 to 8 elements
Triple-a process to bypass the gap; PR 55 (1939) 434

1952: Carbon production rate calculated; APJ 115 (1952) 326
4He + 4He + 95 keV — 8Be +y (8Be g.s. resonance)
“He + 8Be — 12C +y
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The triple-a rate in stellar He burning

12C Carbon production
o — @ \ (0.04%)
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12C

1939: No stable A=5 to 8 elements
Triple-a process to bypass the gap; PR 55 (1939) 434

1952: Carbon production rate calculated; APJ 115 (1952) 326
4He + 4He + 95 keV — 8Be +y (8Be g.s. resonance) Sir Fred Hoyle (1915-2001)
“He + 8Be — 12C +vy

1953: “He + 8Be + 310 keV— 12C + y (resonance at 7.68 MeV)
PR 92 (1953) 1095
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The triple-a rate in stellar He burning

12C Carbon production
o — @ \ (0.04%)

8
a@ Be / 1 -
/ 4.44 MeV
a-decay
(99.96%)

12C

| A
Sir Fred Hoyle (1915-2001)

The Crafoord Prize 1997 in Astronomy: “for
their pioneering contributions to the study
of nuclear processes in stars and stellar
evolution”
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The triple-a rate in stellar He burning

12C Carbon production
o — @ \ (0.04%)

8
ag Be / 1 -
/ 4.44 MeV
a-decay
(99.96%)

12C

1939: No stable A=5 to 8 elements
Triple-a process to bypass the gap; PR 55 (1939) 434

1952: Carbon production rate calculated; APJ 115 (1952) 326
4He + 4He + 95 keV — 8Be +y (8Be g.s. resonance)
“He + 8Be — 12C +vy

1953: “He + 8Be + 310 keV— 12C + y (resonance at 7.68 MeV)
PR 92 (1953) 1095

1953: The 7.68 MeV state identified from *N(d,a)!2C \ {8 7 I
PR 92 (1953) 649 Noel Dunbar (1922-2011)
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<+ Observation of a 16% alpha-decay branch bypassing the
ground state of 8Be (T,,,=10-16 s; Raduta et al. PRL
B705 (2011) 65)

“*» New upper limit: 0.1% (Kiresebom et al. PRL 108 (2012)
202501; Manfredi et al. PRC (2012) 037603)
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New experimental results for the triple-a rate

<+ 2* excitation of the Hoyle state: E=9.75(10) MeV,
=750(150) keV (Freer et al. PRC86 (2012) 034320)

 R(2+)=3.07(13) fm, similar to the Hoyle state
(Ogloblin et al. Eur. Phys. J. A49 (2013) 46)
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Controversy over calculated
reaction rates at low (107 K)
temperatures
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HHR - Hyperspherical Harmonic R-matrix method

NACRE - Nuclear Astrophysics Compilation of REaction rates
CDCC - Continuum Discretized Coupled Channel

BW(3B) - three-body Breit Wigner

» 20 order of magnitude difference to NACRE compilation
(Ogata et al. Prog. Theor. Phys. 122 (2009) 1055)

> New calculated rates are only few order of magnitude
larger (Garido et al. Eur. Phys. J. A47 (2011) 102;
Nguyen et al. PRL 109 (2012) 141101, PRC 87 (2013)

054615)
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New theoretical results for the triple-a rate

** New ab initio calculations using lattice simulations
effective field theory reproduce excitation energy
(Epelbaum et al. PRL 106 (2011) 192501; PRL 109
(2012) 252501)

** 3-alpha microscopic cluster model (Vasilevsky et al., PRC
85 (2012) 034318)

EXxp Theor EXp Theor
Bound -7.2746 -11.372

Resonance 0.3796 0.684 0.0085(10) 2.78
Bound -2.8357 —-8.931
Resonance 3.89 2.775 430(80) 9.95
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Calculation of the triple-a

— 4.439 MeV

o Iy = Fy +1e+1,

Stable 12C

The rate per unit volume for the triple-a reaction (Rolfs and Rodney, 1988):

N3 27n° | T,
— _—a 3P —a—rad ayn(—Q, [KT

r3a

SinceT,,y<<T,~T,where I'=[+I',,4 and T & 108 K:

r,, <l exp(-Q,, /KT)
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Triple-a rate - how well it is known now

oo [ JeXP(-{Qs, J/ KT)

“traditional approach”

r || T (E0)

rradz[rfad}{ L }x[l“ﬂ(EO)]
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Triple-a rate - how well it is known now

oo [ JeXP(-{Qs, J/ KT)

“traditional approach”

I

rradz[rfad}{ L }x[l“ﬂ(EO)]

I (EO)
Value uUnc. [%]

Q,,  379.35(20) keV
T /T  4.13(11)x10*
T (E0)  6.75(60)x10°

T

T (E0)  57(5)x10%eV
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Triple-a rate - how well it is known now

I3, € [Frad ]exp(—[an]/ kT)
| I

£ X

[T, (EO)]

X
r | |T(E0) | &=

Value

Q,,  379.35(20) keV
T./T  413(11)x10%

T (E0)  6.75(60)x10°
T

T (E0)  57(5)x10%eV

2005 Crannell ot ol: ' (E0)=52.0(14) peV;
q=0.27-3.04 fm Extensive data from
Darmstadt, Bates-CUA, NIKHEF-K & HEPL

2010 Chernykh et al: T (E0)=62.3(20) peV:

q=0.21-0.67 fmL; Darmstadt S-DALINAC
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“traditional approach”

1 1956 Fregeau

H—e&— 1964 Crannell & Griffy

® 1 1965 Gudden & Strehl

—®— 1967 Crannell et al.
FO— 1968 Strehl & Schucan
—@— 1970 Strehl

05 Crannell et al.

@+ 2010 Chernykh et al.

7+1 measurements iM: 5.7(5) x 1072 ev

Data discrepant
‘ NRM: 6.05(16) x 1072 ev
‘ RT: 6.16(17) x 1072 &V

‘ BS: 6.11(30) x 1072 ev
| 1 | 1 | 1 | 1 |

6 7 8 9 10
I x1072 [eV]




Triple-a rate - how well it is known now

oo [ JeXP(-{Qs, J/ KT)

“traditional approach”

1_‘rad % I X
1_‘rad :|: T :| |:F7[(E0)j| [FLEO)]

Value uUnc. [%]

Q,,  379.35(20) keV
T /T  4.13(11)x10*
T (E0)  6.75(60)x10°

T

T (E0)  57(5)x10%eV Largest known EO strengthl!

in "Wilkinson units"
Suiu. = Mexpl? 7 1M, 12 =2.3(2) s.p.u.
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Triple-a rate - how well it is known now

oo [ JeXP(-{Qs, J/ KT)

“traditional approach”

rra_d:{rfad}{ L }X[Fﬁ(EO)]

r || T (E0)

Value uUnc. [%]

Q,,  379.35(20) keV
T /T  4.13(11)x10*
T (E0)  6.75(60)x10°

T

T (E0)  57(5)x10%eV

Fag 3.49(45)x107eV Need 5% accuracy
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New approach to determine I', 4

M le: [0 EM decoy 0.04%

— 4.439 MeV

Stable 12C

Observe both EM transitions in the same experiment
to determine relative intensities

N =1, (E2)+ T (EOQ)+T,(E2)+I(EO)+I(E2)

~98.5% ~1.5% ~0.088% ~9%106% ~3%10°%
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e- - e* particles share the available Kinetic energy:
Ein=E+TE=E, —2my?

Need to observe both particles t‘-”‘,
(& L)

T,(E0) ~ p(EO) x Q,(EO)
E.=E.

0, ~ 60°
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e- - e* particles share the available Kinetic energy:
Ein=E+TE=E, —2my?

Need to observe both particles t‘-”‘,
(& L)

'.’. 9

Pair emission rate: function of Z, E, E,, ® and multipolarity; Born approx.

o, (E2) = [(E2)T(E2)
EREIES

~ 30°

3.2148 MeV E2 in 12_|

esep

W,(EO) ~ p(EO) X

W,(E2) = T,(E2) x

|
|
|
|
|
I
—
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Q(EOQ) experiment vs. theory

AR[SXEQ; Exp:Theor)] [%]

» Q/(EO) - not accessible from experiment
W (E0) ~ p?(E0) x Q(EO)
>  Qg(E0)/ Q. (EO) is known for 5 cases only
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Q(EOQ) experiment vs. theory

6.05 MeV EO in 1O
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S. Devons and G.R. Lindsey
Nature (London) 164 (1949) 539
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A.H. Wuosmaa et al. (APEX ANL) . .
PRC 57 (1998) R2794 Born approximation for low Z

and ©.,<80° is sufficient

SOLID LINE: Ch. Hoffmann et al.
PRC 53 (1996) 2313
DASHED LINE: Born Approximation
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New pair spectrometer

Absorber system & detector

Acceptance angles: 15.9°-46.9°
Absolute singles efficiency: 0.5%/4n

Spectrometer response

from simulations
(a) 7.654 MeV E0 in '2C

detected pairs

Si(Li) array @350 mm
Six detectors of 236 mm?
FWHM = 2.5 keV
Semikon GmBh

1.0 2.0 3.0 4.0 5.0 6.0
Eo. [MeV]

Absorbers made from HeavyMet
(density 18 gr/cm3)
1 mm thick low Z skin (Torr Seal®)

Tibor Kibédi , Dep. of Nuclear Physics, ANU, Canberra



Old/New Absorber system
Singles data

First in-beam tests
Original lens (Apr-2009)

12C(p,p") @ 10.5 MeV
2 mg/cm?2 target

3000 4000 5000 6000
energy [keV]
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Old/New Absorber system
Singles data

First in-beam tests
Original lens (Apr-2009)

12C(p,p") @ 10.5 MeV
2 mg/cm2 target

Pairs hitting the }

same segment

2000 3000 4000 5000 6000
energy [keV]
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New Absorber system
Electrons & Positrons in coincidence

1000 H : .
| Experiment: 12C(p,p’) at 10.5 MeV |
I
100 H I .
2 I
= |
O
& I
10 G .
- I ]
I
I E, —1.022 MeV
| E = i
| | || | -
0.1 | ' —
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electron / positron energy [MeV]
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New Absorber system
Electrons & Positrons in coincidence

1000 H i
Experiment: 12C(p,p’) at 10.5 MeV |
Simulation: electrons
100 H .
m b
I=
-
0o
(&)
10 H —_
| ' |
0.1 I | || J“L |

0 1 2 3 4 5
electron / positron energy [MeV]

Tibor Kibédi , Dep. of Nuclear Physics, ANU, Canberra



New Absorber system
Electrons & Positrons in coincidence

1000

Experiment: 12C(p,p’) at 10.5 MeV |
Simulation: electrons
positrons

100

_ ‘\L'HHI | _.,H : JI{'“ ki i ) ~--,.",.'|".-| !

counts

0.1 : :

0 1 2 3

electron / positron energy [MeV]
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New Absorber system
Electrons & Positrons in coincidence

1000 | §
Experiment: 12C(p,p’) at 10.5 MeV
Simulation: electrons

positrons

100 - ‘L'”HI | _,lH , ]I{r“ "‘-I'1 Hlll“FI'll i ""l-"."h.q Al

counts

Partial energy deposit from
annihilation quanta
\
01 l |

|
0 1 2 3

electron / positron energy [MeV]

10 H
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New Absorber system
Electrons & Positrons in coincidence

1000 |
Experiment: 12C(p,p’) at 10.5 MeV |
Simulation: electrons

positrons

100 summed

counts

10 H

| | | '
0.1 Hnin

0 1 2 4 5
electron / positron energy [MeV]
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New Absorber system
Electrons & Positrons in coincidence

1000 | i
: Experiment: 12C(p,p’) at 10.5 MeV |
Simulation: electrons
positrons
100 summed B
{2 Compton electrons (hw=0.511 MeV) -
5
Q i : .
O : ik
10 | —_
| ' |
0.1 | | || | B

0 1 2 3 4 5
electron / positron energy [MeV]
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%‘Fe(p,pg) @ 6.9 MeV
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OFe(p,p'g) @ 6.9 MeV
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12C(p.p )!12C* pair measurements
(Jun-2012)

» 55 h beam time with 100 nA on a 2 mg/cm? target

> “old" Honey detector (1997), 4.2 mm thick, reduced efficiency,
continuous gain shifts

» TDC gate of +/- 6 ns widel

12C

ANU Super-e (2012)
4439 E2

160
2c 6050 EO
3215 E2

|
x10

3000 4000 5000 6000
E, [keV]

4.803 A 6.807 A 9.396 A 12.450 A
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12C(p,p )1°C* pair measurements
(Jun-2012)

800 nA on 3.5 mg/cm? 1977AI31 D. Alburger (1977)
C

2 NaI detectors Courtesy of Mitchel de Vries
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Conclusion and outlook

Current status

» New pair spectrometer based on six Si(Li) detectors combined with a
magnetic lens fransporter

» High energy photon background drastically reduced

» High coincidence efficiency, optimized for EO and E2: 1:1 vs. 500:1 (Alburger
1977)

> Less sensitive for correlation and attenuation effects (E, ~ E.)
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Conclusion and outlook

Current status

> New pair spectrometer based on six Si(Li) detectors combined with a
magnetic lens fransporter

» High energy photon background drastically reduced

» High coincidence efficiency, optimized for EO and E2: 1:1 vs. 500:1 (Alburger
1977)

> Less sensitive for correlation and attenuation effects (E, ~ E.)

Improvements

> 9 mm thick Si(Li) array: factor 2 higher efficiency for 7.7 MeV pairs

» 500 nA proton beam intensity: factor 5 higher yield

Challenges

» Evaluation of pair conversion efficiency accurately for up to 8 MeV transition

energy

MC simulations, radiactive source (?°7Bi, Fermi-Kurie plot, known EO
transitions (E, > 4 MeV; 1°Be : 6.179 MeV; 1C: 6.588 MeV; 160 : 6.049 MeV;
2ONe : 6.725 MeV, 7.191 MeV; 2*Mg: 6.433 MeV; 28Si: 4979 MeV; %8Ca: 4.284
MeV; 54Fe: 4.291 MeV)
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